xref: /openbmc/linux/net/tls/tls.h (revision c1e0230e)
1 /*
2  * Copyright (c) 2016 Tom Herbert <tom@herbertland.com>
3  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
4  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #ifndef _TLS_INT_H
36 #define _TLS_INT_H
37 
38 #include <asm/byteorder.h>
39 #include <linux/types.h>
40 #include <linux/skmsg.h>
41 #include <net/tls.h>
42 #include <net/tls_prot.h>
43 
44 #define TLS_PAGE_ORDER	(min_t(unsigned int, PAGE_ALLOC_COSTLY_ORDER,	\
45 			       TLS_MAX_PAYLOAD_SIZE >> PAGE_SHIFT))
46 
47 #define __TLS_INC_STATS(net, field)				\
48 	__SNMP_INC_STATS((net)->mib.tls_statistics, field)
49 #define TLS_INC_STATS(net, field)				\
50 	SNMP_INC_STATS((net)->mib.tls_statistics, field)
51 #define TLS_DEC_STATS(net, field)				\
52 	SNMP_DEC_STATS((net)->mib.tls_statistics, field)
53 
54 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
55  * allocated or mapped for each TLS record. After encryption, the records are
56  * stores in a linked list.
57  */
58 struct tls_rec {
59 	struct list_head list;
60 	int tx_ready;
61 	int tx_flags;
62 
63 	struct sk_msg msg_plaintext;
64 	struct sk_msg msg_encrypted;
65 
66 	/* AAD | msg_plaintext.sg.data | sg_tag */
67 	struct scatterlist sg_aead_in[2];
68 	/* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
69 	struct scatterlist sg_aead_out[2];
70 
71 	char content_type;
72 	struct scatterlist sg_content_type;
73 
74 	struct sock *sk;
75 
76 	char aad_space[TLS_AAD_SPACE_SIZE];
77 	u8 iv_data[MAX_IV_SIZE];
78 	struct aead_request aead_req;
79 	u8 aead_req_ctx[];
80 };
81 
82 int __net_init tls_proc_init(struct net *net);
83 void __net_exit tls_proc_fini(struct net *net);
84 
85 struct tls_context *tls_ctx_create(struct sock *sk);
86 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
87 void update_sk_prot(struct sock *sk, struct tls_context *ctx);
88 
89 int wait_on_pending_writer(struct sock *sk, long *timeo);
90 void tls_err_abort(struct sock *sk, int err);
91 
92 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
93 void tls_update_rx_zc_capable(struct tls_context *tls_ctx);
94 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
95 void tls_sw_strparser_done(struct tls_context *tls_ctx);
96 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
97 void tls_sw_splice_eof(struct socket *sock);
98 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
99 void tls_sw_release_resources_tx(struct sock *sk);
100 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
101 void tls_sw_free_resources_rx(struct sock *sk);
102 void tls_sw_release_resources_rx(struct sock *sk);
103 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
104 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
105 		   int flags, int *addr_len);
106 bool tls_sw_sock_is_readable(struct sock *sk);
107 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
108 			   struct pipe_inode_info *pipe,
109 			   size_t len, unsigned int flags);
110 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc,
111 		     sk_read_actor_t read_actor);
112 
113 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
114 void tls_device_splice_eof(struct socket *sock);
115 int tls_tx_records(struct sock *sk, int flags);
116 
117 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
118 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
119 
120 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
121 		     unsigned char *record_type);
122 int decrypt_skb(struct sock *sk, struct scatterlist *sgout);
123 
124 int tls_sw_fallback_init(struct sock *sk,
125 			 struct tls_offload_context_tx *offload_ctx,
126 			 struct tls_crypto_info *crypto_info);
127 
128 int tls_strp_dev_init(void);
129 void tls_strp_dev_exit(void);
130 
131 void tls_strp_done(struct tls_strparser *strp);
132 void tls_strp_stop(struct tls_strparser *strp);
133 int tls_strp_init(struct tls_strparser *strp, struct sock *sk);
134 void tls_strp_data_ready(struct tls_strparser *strp);
135 
136 void tls_strp_check_rcv(struct tls_strparser *strp);
137 void tls_strp_msg_done(struct tls_strparser *strp);
138 
139 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb);
140 void tls_rx_msg_ready(struct tls_strparser *strp);
141 
142 void tls_strp_msg_load(struct tls_strparser *strp, bool force_refresh);
143 int tls_strp_msg_cow(struct tls_sw_context_rx *ctx);
144 struct sk_buff *tls_strp_msg_detach(struct tls_sw_context_rx *ctx);
145 int tls_strp_msg_hold(struct tls_strparser *strp, struct sk_buff_head *dst);
146 
147 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
148 {
149 	struct sk_skb_cb *scb = (struct sk_skb_cb *)skb->cb;
150 
151 	return &scb->tls;
152 }
153 
154 static inline struct sk_buff *tls_strp_msg(struct tls_sw_context_rx *ctx)
155 {
156 	DEBUG_NET_WARN_ON_ONCE(!ctx->strp.msg_ready || !ctx->strp.anchor->len);
157 	return ctx->strp.anchor;
158 }
159 
160 static inline bool tls_strp_msg_ready(struct tls_sw_context_rx *ctx)
161 {
162 	return ctx->strp.msg_ready;
163 }
164 
165 static inline bool tls_strp_msg_mixed_decrypted(struct tls_sw_context_rx *ctx)
166 {
167 	return ctx->strp.mixed_decrypted;
168 }
169 
170 #ifdef CONFIG_TLS_DEVICE
171 int tls_device_init(void);
172 void tls_device_cleanup(void);
173 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
174 void tls_device_free_resources_tx(struct sock *sk);
175 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
176 void tls_device_offload_cleanup_rx(struct sock *sk);
177 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
178 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx);
179 #else
180 static inline int tls_device_init(void) { return 0; }
181 static inline void tls_device_cleanup(void) {}
182 
183 static inline int
184 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
185 {
186 	return -EOPNOTSUPP;
187 }
188 
189 static inline void tls_device_free_resources_tx(struct sock *sk) {}
190 
191 static inline int
192 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
193 {
194 	return -EOPNOTSUPP;
195 }
196 
197 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
198 static inline void
199 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
200 
201 static inline int
202 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx)
203 {
204 	return 0;
205 }
206 #endif
207 
208 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
209 		struct scatterlist *sg, u16 first_offset,
210 		int flags);
211 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
212 			    int flags);
213 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
214 
215 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
216 {
217 	return !!ctx->partially_sent_record;
218 }
219 
220 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
221 {
222 	return tls_ctx->pending_open_record_frags;
223 }
224 
225 static inline bool tls_bigint_increment(unsigned char *seq, int len)
226 {
227 	int i;
228 
229 	for (i = len - 1; i >= 0; i--) {
230 		++seq[i];
231 		if (seq[i] != 0)
232 			break;
233 	}
234 
235 	return (i == -1);
236 }
237 
238 static inline void tls_bigint_subtract(unsigned char *seq, int  n)
239 {
240 	u64 rcd_sn;
241 	__be64 *p;
242 
243 	BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8);
244 
245 	p = (__be64 *)seq;
246 	rcd_sn = be64_to_cpu(*p);
247 	*p = cpu_to_be64(rcd_sn - n);
248 }
249 
250 static inline void
251 tls_advance_record_sn(struct sock *sk, struct tls_prot_info *prot,
252 		      struct cipher_context *ctx)
253 {
254 	if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
255 		tls_err_abort(sk, -EBADMSG);
256 
257 	if (prot->version != TLS_1_3_VERSION &&
258 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
259 		tls_bigint_increment(ctx->iv + prot->salt_size,
260 				     prot->iv_size);
261 }
262 
263 static inline void
264 tls_xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq)
265 {
266 	int i;
267 
268 	if (prot->version == TLS_1_3_VERSION ||
269 	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
270 		for (i = 0; i < 8; i++)
271 			iv[i + 4] ^= seq[i];
272 	}
273 }
274 
275 static inline void
276 tls_fill_prepend(struct tls_context *ctx, char *buf, size_t plaintext_len,
277 		 unsigned char record_type)
278 {
279 	struct tls_prot_info *prot = &ctx->prot_info;
280 	size_t pkt_len, iv_size = prot->iv_size;
281 
282 	pkt_len = plaintext_len + prot->tag_size;
283 	if (prot->version != TLS_1_3_VERSION &&
284 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) {
285 		pkt_len += iv_size;
286 
287 		memcpy(buf + TLS_NONCE_OFFSET,
288 		       ctx->tx.iv + prot->salt_size, iv_size);
289 	}
290 
291 	/* we cover nonce explicit here as well, so buf should be of
292 	 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
293 	 */
294 	buf[0] = prot->version == TLS_1_3_VERSION ?
295 		   TLS_RECORD_TYPE_DATA : record_type;
296 	/* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
297 	buf[1] = TLS_1_2_VERSION_MINOR;
298 	buf[2] = TLS_1_2_VERSION_MAJOR;
299 	/* we can use IV for nonce explicit according to spec */
300 	buf[3] = pkt_len >> 8;
301 	buf[4] = pkt_len & 0xFF;
302 }
303 
304 static inline
305 void tls_make_aad(char *buf, size_t size, char *record_sequence,
306 		  unsigned char record_type, struct tls_prot_info *prot)
307 {
308 	if (prot->version != TLS_1_3_VERSION) {
309 		memcpy(buf, record_sequence, prot->rec_seq_size);
310 		buf += 8;
311 	} else {
312 		size += prot->tag_size;
313 	}
314 
315 	buf[0] = prot->version == TLS_1_3_VERSION ?
316 		  TLS_RECORD_TYPE_DATA : record_type;
317 	buf[1] = TLS_1_2_VERSION_MAJOR;
318 	buf[2] = TLS_1_2_VERSION_MINOR;
319 	buf[3] = size >> 8;
320 	buf[4] = size & 0xFF;
321 }
322 
323 #endif
324