1 /* 2 * Copyright (c) 2016 Tom Herbert <tom@herbertland.com> 3 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 4 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #ifndef _TLS_INT_H 36 #define _TLS_INT_H 37 38 #include <asm/byteorder.h> 39 #include <linux/types.h> 40 #include <linux/skmsg.h> 41 #include <net/tls.h> 42 #include <net/tls_prot.h> 43 44 #define TLS_PAGE_ORDER (min_t(unsigned int, PAGE_ALLOC_COSTLY_ORDER, \ 45 TLS_MAX_PAYLOAD_SIZE >> PAGE_SHIFT)) 46 47 #define __TLS_INC_STATS(net, field) \ 48 __SNMP_INC_STATS((net)->mib.tls_statistics, field) 49 #define TLS_INC_STATS(net, field) \ 50 SNMP_INC_STATS((net)->mib.tls_statistics, field) 51 #define TLS_DEC_STATS(net, field) \ 52 SNMP_DEC_STATS((net)->mib.tls_statistics, field) 53 54 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages 55 * allocated or mapped for each TLS record. After encryption, the records are 56 * stores in a linked list. 57 */ 58 struct tls_rec { 59 struct list_head list; 60 int tx_ready; 61 int tx_flags; 62 63 struct sk_msg msg_plaintext; 64 struct sk_msg msg_encrypted; 65 66 /* AAD | msg_plaintext.sg.data | sg_tag */ 67 struct scatterlist sg_aead_in[2]; 68 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ 69 struct scatterlist sg_aead_out[2]; 70 71 char content_type; 72 struct scatterlist sg_content_type; 73 74 struct sock *sk; 75 76 char aad_space[TLS_AAD_SPACE_SIZE]; 77 u8 iv_data[MAX_IV_SIZE]; 78 struct aead_request aead_req; 79 u8 aead_req_ctx[]; 80 }; 81 82 int __net_init tls_proc_init(struct net *net); 83 void __net_exit tls_proc_fini(struct net *net); 84 85 struct tls_context *tls_ctx_create(struct sock *sk); 86 void tls_ctx_free(struct sock *sk, struct tls_context *ctx); 87 void update_sk_prot(struct sock *sk, struct tls_context *ctx); 88 89 int wait_on_pending_writer(struct sock *sk, long *timeo); 90 int tls_sk_query(struct sock *sk, int optname, char __user *optval, 91 int __user *optlen); 92 int tls_sk_attach(struct sock *sk, int optname, char __user *optval, 93 unsigned int optlen); 94 void tls_err_abort(struct sock *sk, int err); 95 96 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); 97 void tls_update_rx_zc_capable(struct tls_context *tls_ctx); 98 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); 99 void tls_sw_strparser_done(struct tls_context *tls_ctx); 100 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 101 void tls_sw_splice_eof(struct socket *sock); 102 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); 103 void tls_sw_release_resources_tx(struct sock *sk); 104 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); 105 void tls_sw_free_resources_rx(struct sock *sk); 106 void tls_sw_release_resources_rx(struct sock *sk); 107 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); 108 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 109 int flags, int *addr_len); 110 bool tls_sw_sock_is_readable(struct sock *sk); 111 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 112 struct pipe_inode_info *pipe, 113 size_t len, unsigned int flags); 114 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc, 115 sk_read_actor_t read_actor); 116 117 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 118 void tls_device_splice_eof(struct socket *sock); 119 int tls_tx_records(struct sock *sk, int flags); 120 121 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); 122 void tls_device_write_space(struct sock *sk, struct tls_context *ctx); 123 124 int tls_process_cmsg(struct sock *sk, struct msghdr *msg, 125 unsigned char *record_type); 126 int decrypt_skb(struct sock *sk, struct scatterlist *sgout); 127 128 int tls_sw_fallback_init(struct sock *sk, 129 struct tls_offload_context_tx *offload_ctx, 130 struct tls_crypto_info *crypto_info); 131 132 int tls_strp_dev_init(void); 133 void tls_strp_dev_exit(void); 134 135 void tls_strp_done(struct tls_strparser *strp); 136 void tls_strp_stop(struct tls_strparser *strp); 137 int tls_strp_init(struct tls_strparser *strp, struct sock *sk); 138 void tls_strp_data_ready(struct tls_strparser *strp); 139 140 void tls_strp_check_rcv(struct tls_strparser *strp); 141 void tls_strp_msg_done(struct tls_strparser *strp); 142 143 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb); 144 void tls_rx_msg_ready(struct tls_strparser *strp); 145 146 void tls_strp_msg_load(struct tls_strparser *strp, bool force_refresh); 147 int tls_strp_msg_cow(struct tls_sw_context_rx *ctx); 148 struct sk_buff *tls_strp_msg_detach(struct tls_sw_context_rx *ctx); 149 int tls_strp_msg_hold(struct tls_strparser *strp, struct sk_buff_head *dst); 150 151 static inline struct tls_msg *tls_msg(struct sk_buff *skb) 152 { 153 struct sk_skb_cb *scb = (struct sk_skb_cb *)skb->cb; 154 155 return &scb->tls; 156 } 157 158 static inline struct sk_buff *tls_strp_msg(struct tls_sw_context_rx *ctx) 159 { 160 DEBUG_NET_WARN_ON_ONCE(!ctx->strp.msg_ready || !ctx->strp.anchor->len); 161 return ctx->strp.anchor; 162 } 163 164 static inline bool tls_strp_msg_ready(struct tls_sw_context_rx *ctx) 165 { 166 return ctx->strp.msg_ready; 167 } 168 169 static inline bool tls_strp_msg_mixed_decrypted(struct tls_sw_context_rx *ctx) 170 { 171 return ctx->strp.mixed_decrypted; 172 } 173 174 #ifdef CONFIG_TLS_DEVICE 175 int tls_device_init(void); 176 void tls_device_cleanup(void); 177 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); 178 void tls_device_free_resources_tx(struct sock *sk); 179 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); 180 void tls_device_offload_cleanup_rx(struct sock *sk); 181 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); 182 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx); 183 #else 184 static inline int tls_device_init(void) { return 0; } 185 static inline void tls_device_cleanup(void) {} 186 187 static inline int 188 tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 189 { 190 return -EOPNOTSUPP; 191 } 192 193 static inline void tls_device_free_resources_tx(struct sock *sk) {} 194 195 static inline int 196 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 197 { 198 return -EOPNOTSUPP; 199 } 200 201 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {} 202 static inline void 203 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {} 204 205 static inline int 206 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx) 207 { 208 return 0; 209 } 210 #endif 211 212 int tls_push_sg(struct sock *sk, struct tls_context *ctx, 213 struct scatterlist *sg, u16 first_offset, 214 int flags); 215 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 216 int flags); 217 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx); 218 219 static inline bool tls_is_partially_sent_record(struct tls_context *ctx) 220 { 221 return !!ctx->partially_sent_record; 222 } 223 224 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) 225 { 226 return tls_ctx->pending_open_record_frags; 227 } 228 229 static inline bool tls_bigint_increment(unsigned char *seq, int len) 230 { 231 int i; 232 233 for (i = len - 1; i >= 0; i--) { 234 ++seq[i]; 235 if (seq[i] != 0) 236 break; 237 } 238 239 return (i == -1); 240 } 241 242 static inline void tls_bigint_subtract(unsigned char *seq, int n) 243 { 244 u64 rcd_sn; 245 __be64 *p; 246 247 BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8); 248 249 p = (__be64 *)seq; 250 rcd_sn = be64_to_cpu(*p); 251 *p = cpu_to_be64(rcd_sn - n); 252 } 253 254 static inline void 255 tls_advance_record_sn(struct sock *sk, struct tls_prot_info *prot, 256 struct cipher_context *ctx) 257 { 258 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) 259 tls_err_abort(sk, -EBADMSG); 260 261 if (prot->version != TLS_1_3_VERSION && 262 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 263 tls_bigint_increment(ctx->iv + prot->salt_size, 264 prot->iv_size); 265 } 266 267 static inline void 268 tls_xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq) 269 { 270 int i; 271 272 if (prot->version == TLS_1_3_VERSION || 273 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 274 for (i = 0; i < 8; i++) 275 iv[i + 4] ^= seq[i]; 276 } 277 } 278 279 static inline void 280 tls_fill_prepend(struct tls_context *ctx, char *buf, size_t plaintext_len, 281 unsigned char record_type) 282 { 283 struct tls_prot_info *prot = &ctx->prot_info; 284 size_t pkt_len, iv_size = prot->iv_size; 285 286 pkt_len = plaintext_len + prot->tag_size; 287 if (prot->version != TLS_1_3_VERSION && 288 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) { 289 pkt_len += iv_size; 290 291 memcpy(buf + TLS_NONCE_OFFSET, 292 ctx->tx.iv + prot->salt_size, iv_size); 293 } 294 295 /* we cover nonce explicit here as well, so buf should be of 296 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE 297 */ 298 buf[0] = prot->version == TLS_1_3_VERSION ? 299 TLS_RECORD_TYPE_DATA : record_type; 300 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ 301 buf[1] = TLS_1_2_VERSION_MINOR; 302 buf[2] = TLS_1_2_VERSION_MAJOR; 303 /* we can use IV for nonce explicit according to spec */ 304 buf[3] = pkt_len >> 8; 305 buf[4] = pkt_len & 0xFF; 306 } 307 308 static inline 309 void tls_make_aad(char *buf, size_t size, char *record_sequence, 310 unsigned char record_type, struct tls_prot_info *prot) 311 { 312 if (prot->version != TLS_1_3_VERSION) { 313 memcpy(buf, record_sequence, prot->rec_seq_size); 314 buf += 8; 315 } else { 316 size += prot->tag_size; 317 } 318 319 buf[0] = prot->version == TLS_1_3_VERSION ? 320 TLS_RECORD_TYPE_DATA : record_type; 321 buf[1] = TLS_1_2_VERSION_MAJOR; 322 buf[2] = TLS_1_2_VERSION_MINOR; 323 buf[3] = size >> 8; 324 buf[4] = size & 0xFF; 325 } 326 327 #endif 328