1 // SPDX-License-Identifier: GPL-2.0 2 /** 3 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption 4 * 5 * Copyright (c) 2019, Ericsson AB 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the names of the copyright holders nor the names of its 17 * contributors may be used to endorse or promote products derived from 18 * this software without specific prior written permission. 19 * 20 * Alternatively, this software may be distributed under the terms of the 21 * GNU General Public License ("GPL") version 2 as published by the Free 22 * Software Foundation. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 34 * POSSIBILITY OF SUCH DAMAGE. 35 */ 36 37 #include <crypto/aead.h> 38 #include <crypto/aes.h> 39 #include "crypto.h" 40 41 #define TIPC_TX_PROBE_LIM msecs_to_jiffies(1000) /* > 1s */ 42 #define TIPC_TX_LASTING_LIM msecs_to_jiffies(120000) /* 2 mins */ 43 #define TIPC_RX_ACTIVE_LIM msecs_to_jiffies(3000) /* 3s */ 44 #define TIPC_RX_PASSIVE_LIM msecs_to_jiffies(180000) /* 3 mins */ 45 #define TIPC_MAX_TFMS_DEF 10 46 #define TIPC_MAX_TFMS_LIM 1000 47 48 /** 49 * TIPC Key ids 50 */ 51 enum { 52 KEY_UNUSED = 0, 53 KEY_MIN, 54 KEY_1 = KEY_MIN, 55 KEY_2, 56 KEY_3, 57 KEY_MAX = KEY_3, 58 }; 59 60 /** 61 * TIPC Crypto statistics 62 */ 63 enum { 64 STAT_OK, 65 STAT_NOK, 66 STAT_ASYNC, 67 STAT_ASYNC_OK, 68 STAT_ASYNC_NOK, 69 STAT_BADKEYS, /* tx only */ 70 STAT_BADMSGS = STAT_BADKEYS, /* rx only */ 71 STAT_NOKEYS, 72 STAT_SWITCHES, 73 74 MAX_STATS, 75 }; 76 77 /* TIPC crypto statistics' header */ 78 static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok", 79 "async_nok", "badmsgs", "nokeys", 80 "switches"}; 81 82 /* Max TFMs number per key */ 83 int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF; 84 85 /** 86 * struct tipc_key - TIPC keys' status indicator 87 * 88 * 7 6 5 4 3 2 1 0 89 * +-----+-----+-----+-----+-----+-----+-----+-----+ 90 * key: | (reserved)|passive idx| active idx|pending idx| 91 * +-----+-----+-----+-----+-----+-----+-----+-----+ 92 */ 93 struct tipc_key { 94 #define KEY_BITS (2) 95 #define KEY_MASK ((1 << KEY_BITS) - 1) 96 union { 97 struct { 98 #if defined(__LITTLE_ENDIAN_BITFIELD) 99 u8 pending:2, 100 active:2, 101 passive:2, /* rx only */ 102 reserved:2; 103 #elif defined(__BIG_ENDIAN_BITFIELD) 104 u8 reserved:2, 105 passive:2, /* rx only */ 106 active:2, 107 pending:2; 108 #else 109 #error "Please fix <asm/byteorder.h>" 110 #endif 111 } __packed; 112 u8 keys; 113 }; 114 }; 115 116 /** 117 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs 118 */ 119 struct tipc_tfm { 120 struct crypto_aead *tfm; 121 struct list_head list; 122 }; 123 124 /** 125 * struct tipc_aead - TIPC AEAD key structure 126 * @tfm_entry: per-cpu pointer to one entry in TFM list 127 * @crypto: TIPC crypto owns this key 128 * @cloned: reference to the source key in case cloning 129 * @users: the number of the key users (TX/RX) 130 * @salt: the key's SALT value 131 * @authsize: authentication tag size (max = 16) 132 * @mode: crypto mode is applied to the key 133 * @hint[]: a hint for user key 134 * @rcu: struct rcu_head 135 * @seqno: the key seqno (cluster scope) 136 * @refcnt: the key reference counter 137 */ 138 struct tipc_aead { 139 #define TIPC_AEAD_HINT_LEN (5) 140 struct tipc_tfm * __percpu *tfm_entry; 141 struct tipc_crypto *crypto; 142 struct tipc_aead *cloned; 143 atomic_t users; 144 u32 salt; 145 u8 authsize; 146 u8 mode; 147 char hint[TIPC_AEAD_HINT_LEN + 1]; 148 struct rcu_head rcu; 149 150 atomic64_t seqno ____cacheline_aligned; 151 refcount_t refcnt ____cacheline_aligned; 152 153 } ____cacheline_aligned; 154 155 /** 156 * struct tipc_crypto_stats - TIPC Crypto statistics 157 */ 158 struct tipc_crypto_stats { 159 unsigned int stat[MAX_STATS]; 160 }; 161 162 /** 163 * struct tipc_crypto - TIPC TX/RX crypto structure 164 * @net: struct net 165 * @node: TIPC node (RX) 166 * @aead: array of pointers to AEAD keys for encryption/decryption 167 * @peer_rx_active: replicated peer RX active key index 168 * @key: the key states 169 * @working: the crypto is working or not 170 * @stats: the crypto statistics 171 * @sndnxt: the per-peer sndnxt (TX) 172 * @timer1: general timer 1 (jiffies) 173 * @timer2: general timer 1 (jiffies) 174 * @lock: tipc_key lock 175 */ 176 struct tipc_crypto { 177 struct net *net; 178 struct tipc_node *node; 179 struct tipc_aead __rcu *aead[KEY_MAX + 1]; /* key[0] is UNUSED */ 180 atomic_t peer_rx_active; 181 struct tipc_key key; 182 u8 working:1; 183 struct tipc_crypto_stats __percpu *stats; 184 185 atomic64_t sndnxt ____cacheline_aligned; 186 unsigned long timer1; 187 unsigned long timer2; 188 spinlock_t lock; /* crypto lock */ 189 190 } ____cacheline_aligned; 191 192 /* struct tipc_crypto_tx_ctx - TX context for callbacks */ 193 struct tipc_crypto_tx_ctx { 194 struct tipc_aead *aead; 195 struct tipc_bearer *bearer; 196 struct tipc_media_addr dst; 197 }; 198 199 /* struct tipc_crypto_rx_ctx - RX context for callbacks */ 200 struct tipc_crypto_rx_ctx { 201 struct tipc_aead *aead; 202 struct tipc_bearer *bearer; 203 }; 204 205 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead); 206 static inline void tipc_aead_put(struct tipc_aead *aead); 207 static void tipc_aead_free(struct rcu_head *rp); 208 static int tipc_aead_users(struct tipc_aead __rcu *aead); 209 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim); 210 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim); 211 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val); 212 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead); 213 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey, 214 u8 mode); 215 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src); 216 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm, 217 unsigned int crypto_ctx_size, 218 u8 **iv, struct aead_request **req, 219 struct scatterlist **sg, int nsg); 220 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb, 221 struct tipc_bearer *b, 222 struct tipc_media_addr *dst, 223 struct tipc_node *__dnode); 224 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err); 225 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead, 226 struct sk_buff *skb, struct tipc_bearer *b); 227 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err); 228 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr); 229 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead, 230 u8 tx_key, struct sk_buff *skb, 231 struct tipc_crypto *__rx); 232 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c, 233 u8 new_passive, 234 u8 new_active, 235 u8 new_pending); 236 static int tipc_crypto_key_attach(struct tipc_crypto *c, 237 struct tipc_aead *aead, u8 pos); 238 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending); 239 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx, 240 struct tipc_crypto *rx, 241 struct sk_buff *skb); 242 static void tipc_crypto_key_synch(struct tipc_crypto *rx, u8 new_rx_active, 243 struct tipc_msg *hdr); 244 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key); 245 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead, 246 struct tipc_bearer *b, 247 struct sk_buff **skb, int err); 248 static void tipc_crypto_do_cmd(struct net *net, int cmd); 249 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf); 250 #ifdef TIPC_CRYPTO_DEBUG 251 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new, 252 char *buf); 253 #endif 254 255 #define key_next(cur) ((cur) % KEY_MAX + 1) 256 257 #define tipc_aead_rcu_ptr(rcu_ptr, lock) \ 258 rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock)) 259 260 #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock) \ 261 do { \ 262 typeof(rcu_ptr) __tmp = rcu_dereference_protected((rcu_ptr), \ 263 lockdep_is_held(lock)); \ 264 rcu_assign_pointer((rcu_ptr), (ptr)); \ 265 tipc_aead_put(__tmp); \ 266 } while (0) 267 268 #define tipc_crypto_key_detach(rcu_ptr, lock) \ 269 tipc_aead_rcu_replace((rcu_ptr), NULL, lock) 270 271 /** 272 * tipc_aead_key_validate - Validate a AEAD user key 273 */ 274 int tipc_aead_key_validate(struct tipc_aead_key *ukey) 275 { 276 int keylen; 277 278 /* Check if algorithm exists */ 279 if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) { 280 pr_info("Not found cipher: \"%s\"!\n", ukey->alg_name); 281 return -ENODEV; 282 } 283 284 /* Currently, we only support the "gcm(aes)" cipher algorithm */ 285 if (strcmp(ukey->alg_name, "gcm(aes)")) 286 return -ENOTSUPP; 287 288 /* Check if key size is correct */ 289 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE; 290 if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 && 291 keylen != TIPC_AES_GCM_KEY_SIZE_192 && 292 keylen != TIPC_AES_GCM_KEY_SIZE_256)) 293 return -EINVAL; 294 295 return 0; 296 } 297 298 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead) 299 { 300 struct tipc_aead *tmp; 301 302 rcu_read_lock(); 303 tmp = rcu_dereference(aead); 304 if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt))) 305 tmp = NULL; 306 rcu_read_unlock(); 307 308 return tmp; 309 } 310 311 static inline void tipc_aead_put(struct tipc_aead *aead) 312 { 313 if (aead && refcount_dec_and_test(&aead->refcnt)) 314 call_rcu(&aead->rcu, tipc_aead_free); 315 } 316 317 /** 318 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list 319 * @rp: rcu head pointer 320 */ 321 static void tipc_aead_free(struct rcu_head *rp) 322 { 323 struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu); 324 struct tipc_tfm *tfm_entry, *head, *tmp; 325 326 if (aead->cloned) { 327 tipc_aead_put(aead->cloned); 328 } else { 329 head = *this_cpu_ptr(aead->tfm_entry); 330 list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) { 331 crypto_free_aead(tfm_entry->tfm); 332 list_del(&tfm_entry->list); 333 kfree(tfm_entry); 334 } 335 /* Free the head */ 336 crypto_free_aead(head->tfm); 337 list_del(&head->list); 338 kfree(head); 339 } 340 free_percpu(aead->tfm_entry); 341 kfree(aead); 342 } 343 344 static int tipc_aead_users(struct tipc_aead __rcu *aead) 345 { 346 struct tipc_aead *tmp; 347 int users = 0; 348 349 rcu_read_lock(); 350 tmp = rcu_dereference(aead); 351 if (tmp) 352 users = atomic_read(&tmp->users); 353 rcu_read_unlock(); 354 355 return users; 356 } 357 358 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim) 359 { 360 struct tipc_aead *tmp; 361 362 rcu_read_lock(); 363 tmp = rcu_dereference(aead); 364 if (tmp) 365 atomic_add_unless(&tmp->users, 1, lim); 366 rcu_read_unlock(); 367 } 368 369 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim) 370 { 371 struct tipc_aead *tmp; 372 373 rcu_read_lock(); 374 tmp = rcu_dereference(aead); 375 if (tmp) 376 atomic_add_unless(&rcu_dereference(aead)->users, -1, lim); 377 rcu_read_unlock(); 378 } 379 380 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val) 381 { 382 struct tipc_aead *tmp; 383 int cur; 384 385 rcu_read_lock(); 386 tmp = rcu_dereference(aead); 387 if (tmp) { 388 do { 389 cur = atomic_read(&tmp->users); 390 if (cur == val) 391 break; 392 } while (atomic_cmpxchg(&tmp->users, cur, val) != cur); 393 } 394 rcu_read_unlock(); 395 } 396 397 /** 398 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it 399 */ 400 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead) 401 { 402 struct tipc_tfm **tfm_entry = this_cpu_ptr(aead->tfm_entry); 403 404 *tfm_entry = list_next_entry(*tfm_entry, list); 405 return (*tfm_entry)->tfm; 406 } 407 408 /** 409 * tipc_aead_init - Initiate TIPC AEAD 410 * @aead: returned new TIPC AEAD key handle pointer 411 * @ukey: pointer to user key data 412 * @mode: the key mode 413 * 414 * Allocate a (list of) new cipher transformation (TFM) with the specific user 415 * key data if valid. The number of the allocated TFMs can be set via the sysfs 416 * "net/tipc/max_tfms" first. 417 * Also, all the other AEAD data are also initialized. 418 * 419 * Return: 0 if the initiation is successful, otherwise: < 0 420 */ 421 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey, 422 u8 mode) 423 { 424 struct tipc_tfm *tfm_entry, *head; 425 struct crypto_aead *tfm; 426 struct tipc_aead *tmp; 427 int keylen, err, cpu; 428 int tfm_cnt = 0; 429 430 if (unlikely(*aead)) 431 return -EEXIST; 432 433 /* Allocate a new AEAD */ 434 tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC); 435 if (unlikely(!tmp)) 436 return -ENOMEM; 437 438 /* The key consists of two parts: [AES-KEY][SALT] */ 439 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE; 440 441 /* Allocate per-cpu TFM entry pointer */ 442 tmp->tfm_entry = alloc_percpu(struct tipc_tfm *); 443 if (!tmp->tfm_entry) { 444 kfree_sensitive(tmp); 445 return -ENOMEM; 446 } 447 448 /* Make a list of TFMs with the user key data */ 449 do { 450 tfm = crypto_alloc_aead(ukey->alg_name, 0, 0); 451 if (IS_ERR(tfm)) { 452 err = PTR_ERR(tfm); 453 break; 454 } 455 456 if (unlikely(!tfm_cnt && 457 crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) { 458 crypto_free_aead(tfm); 459 err = -ENOTSUPP; 460 break; 461 } 462 463 err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE); 464 err |= crypto_aead_setkey(tfm, ukey->key, keylen); 465 if (unlikely(err)) { 466 crypto_free_aead(tfm); 467 break; 468 } 469 470 tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL); 471 if (unlikely(!tfm_entry)) { 472 crypto_free_aead(tfm); 473 err = -ENOMEM; 474 break; 475 } 476 INIT_LIST_HEAD(&tfm_entry->list); 477 tfm_entry->tfm = tfm; 478 479 /* First entry? */ 480 if (!tfm_cnt) { 481 head = tfm_entry; 482 for_each_possible_cpu(cpu) { 483 *per_cpu_ptr(tmp->tfm_entry, cpu) = head; 484 } 485 } else { 486 list_add_tail(&tfm_entry->list, &head->list); 487 } 488 489 } while (++tfm_cnt < sysctl_tipc_max_tfms); 490 491 /* Not any TFM is allocated? */ 492 if (!tfm_cnt) { 493 free_percpu(tmp->tfm_entry); 494 kfree_sensitive(tmp); 495 return err; 496 } 497 498 /* Copy some chars from the user key as a hint */ 499 memcpy(tmp->hint, ukey->key, TIPC_AEAD_HINT_LEN); 500 tmp->hint[TIPC_AEAD_HINT_LEN] = '\0'; 501 502 /* Initialize the other data */ 503 tmp->mode = mode; 504 tmp->cloned = NULL; 505 tmp->authsize = TIPC_AES_GCM_TAG_SIZE; 506 memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE); 507 atomic_set(&tmp->users, 0); 508 atomic64_set(&tmp->seqno, 0); 509 refcount_set(&tmp->refcnt, 1); 510 511 *aead = tmp; 512 return 0; 513 } 514 515 /** 516 * tipc_aead_clone - Clone a TIPC AEAD key 517 * @dst: dest key for the cloning 518 * @src: source key to clone from 519 * 520 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is 521 * common for the keys. 522 * A reference to the source is hold in the "cloned" pointer for the later 523 * freeing purposes. 524 * 525 * Note: this must be done in cluster-key mode only! 526 * Return: 0 in case of success, otherwise < 0 527 */ 528 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src) 529 { 530 struct tipc_aead *aead; 531 int cpu; 532 533 if (!src) 534 return -ENOKEY; 535 536 if (src->mode != CLUSTER_KEY) 537 return -EINVAL; 538 539 if (unlikely(*dst)) 540 return -EEXIST; 541 542 aead = kzalloc(sizeof(*aead), GFP_ATOMIC); 543 if (unlikely(!aead)) 544 return -ENOMEM; 545 546 aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC); 547 if (unlikely(!aead->tfm_entry)) { 548 kfree_sensitive(aead); 549 return -ENOMEM; 550 } 551 552 for_each_possible_cpu(cpu) { 553 *per_cpu_ptr(aead->tfm_entry, cpu) = 554 *per_cpu_ptr(src->tfm_entry, cpu); 555 } 556 557 memcpy(aead->hint, src->hint, sizeof(src->hint)); 558 aead->mode = src->mode; 559 aead->salt = src->salt; 560 aead->authsize = src->authsize; 561 atomic_set(&aead->users, 0); 562 atomic64_set(&aead->seqno, 0); 563 refcount_set(&aead->refcnt, 1); 564 565 WARN_ON(!refcount_inc_not_zero(&src->refcnt)); 566 aead->cloned = src; 567 568 *dst = aead; 569 return 0; 570 } 571 572 /** 573 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations 574 * @tfm: cipher handle to be registered with the request 575 * @crypto_ctx_size: size of crypto context for callback 576 * @iv: returned pointer to IV data 577 * @req: returned pointer to AEAD request data 578 * @sg: returned pointer to SG lists 579 * @nsg: number of SG lists to be allocated 580 * 581 * Allocate memory to store the crypto context data, AEAD request, IV and SG 582 * lists, the memory layout is as follows: 583 * crypto_ctx || iv || aead_req || sg[] 584 * 585 * Return: the pointer to the memory areas in case of success, otherwise NULL 586 */ 587 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm, 588 unsigned int crypto_ctx_size, 589 u8 **iv, struct aead_request **req, 590 struct scatterlist **sg, int nsg) 591 { 592 unsigned int iv_size, req_size; 593 unsigned int len; 594 u8 *mem; 595 596 iv_size = crypto_aead_ivsize(tfm); 597 req_size = sizeof(**req) + crypto_aead_reqsize(tfm); 598 599 len = crypto_ctx_size; 600 len += iv_size; 601 len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1); 602 len = ALIGN(len, crypto_tfm_ctx_alignment()); 603 len += req_size; 604 len = ALIGN(len, __alignof__(struct scatterlist)); 605 len += nsg * sizeof(**sg); 606 607 mem = kmalloc(len, GFP_ATOMIC); 608 if (!mem) 609 return NULL; 610 611 *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size, 612 crypto_aead_alignmask(tfm) + 1); 613 *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size, 614 crypto_tfm_ctx_alignment()); 615 *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size, 616 __alignof__(struct scatterlist)); 617 618 return (void *)mem; 619 } 620 621 /** 622 * tipc_aead_encrypt - Encrypt a message 623 * @aead: TIPC AEAD key for the message encryption 624 * @skb: the input/output skb 625 * @b: TIPC bearer where the message will be delivered after the encryption 626 * @dst: the destination media address 627 * @__dnode: TIPC dest node if "known" 628 * 629 * Return: 630 * 0 : if the encryption has completed 631 * -EINPROGRESS/-EBUSY : if a callback will be performed 632 * < 0 : the encryption has failed 633 */ 634 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb, 635 struct tipc_bearer *b, 636 struct tipc_media_addr *dst, 637 struct tipc_node *__dnode) 638 { 639 struct crypto_aead *tfm = tipc_aead_tfm_next(aead); 640 struct tipc_crypto_tx_ctx *tx_ctx; 641 struct aead_request *req; 642 struct sk_buff *trailer; 643 struct scatterlist *sg; 644 struct tipc_ehdr *ehdr; 645 int ehsz, len, tailen, nsg, rc; 646 void *ctx; 647 u32 salt; 648 u8 *iv; 649 650 /* Make sure message len at least 4-byte aligned */ 651 len = ALIGN(skb->len, 4); 652 tailen = len - skb->len + aead->authsize; 653 654 /* Expand skb tail for authentication tag: 655 * As for simplicity, we'd have made sure skb having enough tailroom 656 * for authentication tag @skb allocation. Even when skb is nonlinear 657 * but there is no frag_list, it should be still fine! 658 * Otherwise, we must cow it to be a writable buffer with the tailroom. 659 */ 660 #ifdef TIPC_CRYPTO_DEBUG 661 SKB_LINEAR_ASSERT(skb); 662 if (tailen > skb_tailroom(skb)) { 663 pr_warn("TX: skb tailroom is not enough: %d, requires: %d\n", 664 skb_tailroom(skb), tailen); 665 } 666 #endif 667 668 if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) { 669 nsg = 1; 670 trailer = skb; 671 } else { 672 /* TODO: We could avoid skb_cow_data() if skb has no frag_list 673 * e.g. by skb_fill_page_desc() to add another page to the skb 674 * with the wanted tailen... However, page skbs look not often, 675 * so take it easy now! 676 * Cloned skbs e.g. from link_xmit() seems no choice though :( 677 */ 678 nsg = skb_cow_data(skb, tailen, &trailer); 679 if (unlikely(nsg < 0)) { 680 pr_err("TX: skb_cow_data() returned %d\n", nsg); 681 return nsg; 682 } 683 } 684 685 pskb_put(skb, trailer, tailen); 686 687 /* Allocate memory for the AEAD operation */ 688 ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg); 689 if (unlikely(!ctx)) 690 return -ENOMEM; 691 TIPC_SKB_CB(skb)->crypto_ctx = ctx; 692 693 /* Map skb to the sg lists */ 694 sg_init_table(sg, nsg); 695 rc = skb_to_sgvec(skb, sg, 0, skb->len); 696 if (unlikely(rc < 0)) { 697 pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg); 698 goto exit; 699 } 700 701 /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)] 702 * In case we're in cluster-key mode, SALT is varied by xor-ing with 703 * the source address (or w0 of id), otherwise with the dest address 704 * if dest is known. 705 */ 706 ehdr = (struct tipc_ehdr *)skb->data; 707 salt = aead->salt; 708 if (aead->mode == CLUSTER_KEY) 709 salt ^= ehdr->addr; /* __be32 */ 710 else if (__dnode) 711 salt ^= tipc_node_get_addr(__dnode); 712 memcpy(iv, &salt, 4); 713 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8); 714 715 /* Prepare request */ 716 ehsz = tipc_ehdr_size(ehdr); 717 aead_request_set_tfm(req, tfm); 718 aead_request_set_ad(req, ehsz); 719 aead_request_set_crypt(req, sg, sg, len - ehsz, iv); 720 721 /* Set callback function & data */ 722 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 723 tipc_aead_encrypt_done, skb); 724 tx_ctx = (struct tipc_crypto_tx_ctx *)ctx; 725 tx_ctx->aead = aead; 726 tx_ctx->bearer = b; 727 memcpy(&tx_ctx->dst, dst, sizeof(*dst)); 728 729 /* Hold bearer */ 730 if (unlikely(!tipc_bearer_hold(b))) { 731 rc = -ENODEV; 732 goto exit; 733 } 734 735 /* Now, do encrypt */ 736 rc = crypto_aead_encrypt(req); 737 if (rc == -EINPROGRESS || rc == -EBUSY) 738 return rc; 739 740 tipc_bearer_put(b); 741 742 exit: 743 kfree(ctx); 744 TIPC_SKB_CB(skb)->crypto_ctx = NULL; 745 return rc; 746 } 747 748 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err) 749 { 750 struct sk_buff *skb = base->data; 751 struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx; 752 struct tipc_bearer *b = tx_ctx->bearer; 753 struct tipc_aead *aead = tx_ctx->aead; 754 struct tipc_crypto *tx = aead->crypto; 755 struct net *net = tx->net; 756 757 switch (err) { 758 case 0: 759 this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]); 760 if (likely(test_bit(0, &b->up))) 761 b->media->send_msg(net, skb, b, &tx_ctx->dst); 762 else 763 kfree_skb(skb); 764 break; 765 case -EINPROGRESS: 766 return; 767 default: 768 this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]); 769 kfree_skb(skb); 770 break; 771 } 772 773 kfree(tx_ctx); 774 tipc_bearer_put(b); 775 tipc_aead_put(aead); 776 } 777 778 /** 779 * tipc_aead_decrypt - Decrypt an encrypted message 780 * @net: struct net 781 * @aead: TIPC AEAD for the message decryption 782 * @skb: the input/output skb 783 * @b: TIPC bearer where the message has been received 784 * 785 * Return: 786 * 0 : if the decryption has completed 787 * -EINPROGRESS/-EBUSY : if a callback will be performed 788 * < 0 : the decryption has failed 789 */ 790 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead, 791 struct sk_buff *skb, struct tipc_bearer *b) 792 { 793 struct tipc_crypto_rx_ctx *rx_ctx; 794 struct aead_request *req; 795 struct crypto_aead *tfm; 796 struct sk_buff *unused; 797 struct scatterlist *sg; 798 struct tipc_ehdr *ehdr; 799 int ehsz, nsg, rc; 800 void *ctx; 801 u32 salt; 802 u8 *iv; 803 804 if (unlikely(!aead)) 805 return -ENOKEY; 806 807 /* Cow skb data if needed */ 808 if (likely(!skb_cloned(skb) && 809 (!skb_is_nonlinear(skb) || !skb_has_frag_list(skb)))) { 810 nsg = 1 + skb_shinfo(skb)->nr_frags; 811 } else { 812 nsg = skb_cow_data(skb, 0, &unused); 813 if (unlikely(nsg < 0)) { 814 pr_err("RX: skb_cow_data() returned %d\n", nsg); 815 return nsg; 816 } 817 } 818 819 /* Allocate memory for the AEAD operation */ 820 tfm = tipc_aead_tfm_next(aead); 821 ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg); 822 if (unlikely(!ctx)) 823 return -ENOMEM; 824 TIPC_SKB_CB(skb)->crypto_ctx = ctx; 825 826 /* Map skb to the sg lists */ 827 sg_init_table(sg, nsg); 828 rc = skb_to_sgvec(skb, sg, 0, skb->len); 829 if (unlikely(rc < 0)) { 830 pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg); 831 goto exit; 832 } 833 834 /* Reconstruct IV: */ 835 ehdr = (struct tipc_ehdr *)skb->data; 836 salt = aead->salt; 837 if (aead->mode == CLUSTER_KEY) 838 salt ^= ehdr->addr; /* __be32 */ 839 else if (ehdr->destined) 840 salt ^= tipc_own_addr(net); 841 memcpy(iv, &salt, 4); 842 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8); 843 844 /* Prepare request */ 845 ehsz = tipc_ehdr_size(ehdr); 846 aead_request_set_tfm(req, tfm); 847 aead_request_set_ad(req, ehsz); 848 aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv); 849 850 /* Set callback function & data */ 851 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 852 tipc_aead_decrypt_done, skb); 853 rx_ctx = (struct tipc_crypto_rx_ctx *)ctx; 854 rx_ctx->aead = aead; 855 rx_ctx->bearer = b; 856 857 /* Hold bearer */ 858 if (unlikely(!tipc_bearer_hold(b))) { 859 rc = -ENODEV; 860 goto exit; 861 } 862 863 /* Now, do decrypt */ 864 rc = crypto_aead_decrypt(req); 865 if (rc == -EINPROGRESS || rc == -EBUSY) 866 return rc; 867 868 tipc_bearer_put(b); 869 870 exit: 871 kfree(ctx); 872 TIPC_SKB_CB(skb)->crypto_ctx = NULL; 873 return rc; 874 } 875 876 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err) 877 { 878 struct sk_buff *skb = base->data; 879 struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx; 880 struct tipc_bearer *b = rx_ctx->bearer; 881 struct tipc_aead *aead = rx_ctx->aead; 882 struct tipc_crypto_stats __percpu *stats = aead->crypto->stats; 883 struct net *net = aead->crypto->net; 884 885 switch (err) { 886 case 0: 887 this_cpu_inc(stats->stat[STAT_ASYNC_OK]); 888 break; 889 case -EINPROGRESS: 890 return; 891 default: 892 this_cpu_inc(stats->stat[STAT_ASYNC_NOK]); 893 break; 894 } 895 896 kfree(rx_ctx); 897 tipc_crypto_rcv_complete(net, aead, b, &skb, err); 898 if (likely(skb)) { 899 if (likely(test_bit(0, &b->up))) 900 tipc_rcv(net, skb, b); 901 else 902 kfree_skb(skb); 903 } 904 905 tipc_bearer_put(b); 906 } 907 908 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr) 909 { 910 return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE; 911 } 912 913 /** 914 * tipc_ehdr_validate - Validate an encryption message 915 * @skb: the message buffer 916 * 917 * Returns "true" if this is a valid encryption message, otherwise "false" 918 */ 919 bool tipc_ehdr_validate(struct sk_buff *skb) 920 { 921 struct tipc_ehdr *ehdr; 922 int ehsz; 923 924 if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE))) 925 return false; 926 927 ehdr = (struct tipc_ehdr *)skb->data; 928 if (unlikely(ehdr->version != TIPC_EVERSION)) 929 return false; 930 ehsz = tipc_ehdr_size(ehdr); 931 if (unlikely(!pskb_may_pull(skb, ehsz))) 932 return false; 933 if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE)) 934 return false; 935 if (unlikely(!ehdr->tx_key)) 936 return false; 937 938 return true; 939 } 940 941 /** 942 * tipc_ehdr_build - Build TIPC encryption message header 943 * @net: struct net 944 * @aead: TX AEAD key to be used for the message encryption 945 * @tx_key: key id used for the message encryption 946 * @skb: input/output message skb 947 * @__rx: RX crypto handle if dest is "known" 948 * 949 * Return: the header size if the building is successful, otherwise < 0 950 */ 951 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead, 952 u8 tx_key, struct sk_buff *skb, 953 struct tipc_crypto *__rx) 954 { 955 struct tipc_msg *hdr = buf_msg(skb); 956 struct tipc_ehdr *ehdr; 957 u32 user = msg_user(hdr); 958 u64 seqno; 959 int ehsz; 960 961 /* Make room for encryption header */ 962 ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE; 963 WARN_ON(skb_headroom(skb) < ehsz); 964 ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz); 965 966 /* Obtain a seqno first: 967 * Use the key seqno (= cluster wise) if dest is unknown or we're in 968 * cluster key mode, otherwise it's better for a per-peer seqno! 969 */ 970 if (!__rx || aead->mode == CLUSTER_KEY) 971 seqno = atomic64_inc_return(&aead->seqno); 972 else 973 seqno = atomic64_inc_return(&__rx->sndnxt); 974 975 /* Revoke the key if seqno is wrapped around */ 976 if (unlikely(!seqno)) 977 return tipc_crypto_key_revoke(net, tx_key); 978 979 /* Word 1-2 */ 980 ehdr->seqno = cpu_to_be64(seqno); 981 982 /* Words 0, 3- */ 983 ehdr->version = TIPC_EVERSION; 984 ehdr->user = 0; 985 ehdr->keepalive = 0; 986 ehdr->tx_key = tx_key; 987 ehdr->destined = (__rx) ? 1 : 0; 988 ehdr->rx_key_active = (__rx) ? __rx->key.active : 0; 989 ehdr->reserved_1 = 0; 990 ehdr->reserved_2 = 0; 991 992 switch (user) { 993 case LINK_CONFIG: 994 ehdr->user = LINK_CONFIG; 995 memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN); 996 break; 997 default: 998 if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) { 999 ehdr->user = LINK_PROTOCOL; 1000 ehdr->keepalive = msg_is_keepalive(hdr); 1001 } 1002 ehdr->addr = hdr->hdr[3]; 1003 break; 1004 } 1005 1006 return ehsz; 1007 } 1008 1009 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c, 1010 u8 new_passive, 1011 u8 new_active, 1012 u8 new_pending) 1013 { 1014 #ifdef TIPC_CRYPTO_DEBUG 1015 struct tipc_key old = c->key; 1016 char buf[32]; 1017 #endif 1018 1019 c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) | 1020 ((new_active & KEY_MASK) << (KEY_BITS)) | 1021 ((new_pending & KEY_MASK)); 1022 1023 #ifdef TIPC_CRYPTO_DEBUG 1024 pr_info("%s(%s): key changing %s ::%pS\n", 1025 (c->node) ? "RX" : "TX", 1026 (c->node) ? tipc_node_get_id_str(c->node) : 1027 tipc_own_id_string(c->net), 1028 tipc_key_change_dump(old, c->key, buf), 1029 __builtin_return_address(0)); 1030 #endif 1031 } 1032 1033 /** 1034 * tipc_crypto_key_init - Initiate a new user / AEAD key 1035 * @c: TIPC crypto to which new key is attached 1036 * @ukey: the user key 1037 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY) 1038 * 1039 * A new TIPC AEAD key will be allocated and initiated with the specified user 1040 * key, then attached to the TIPC crypto. 1041 * 1042 * Return: new key id in case of success, otherwise: < 0 1043 */ 1044 int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey, 1045 u8 mode) 1046 { 1047 struct tipc_aead *aead = NULL; 1048 int rc = 0; 1049 1050 /* Initiate with the new user key */ 1051 rc = tipc_aead_init(&aead, ukey, mode); 1052 1053 /* Attach it to the crypto */ 1054 if (likely(!rc)) { 1055 rc = tipc_crypto_key_attach(c, aead, 0); 1056 if (rc < 0) 1057 tipc_aead_free(&aead->rcu); 1058 } 1059 1060 pr_info("%s(%s): key initiating, rc %d!\n", 1061 (c->node) ? "RX" : "TX", 1062 (c->node) ? tipc_node_get_id_str(c->node) : 1063 tipc_own_id_string(c->net), 1064 rc); 1065 1066 return rc; 1067 } 1068 1069 /** 1070 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto 1071 * @c: TIPC crypto to which the new AEAD key is attached 1072 * @aead: the new AEAD key pointer 1073 * @pos: desired slot in the crypto key array, = 0 if any! 1074 * 1075 * Return: new key id in case of success, otherwise: -EBUSY 1076 */ 1077 static int tipc_crypto_key_attach(struct tipc_crypto *c, 1078 struct tipc_aead *aead, u8 pos) 1079 { 1080 u8 new_pending, new_passive, new_key; 1081 struct tipc_key key; 1082 int rc = -EBUSY; 1083 1084 spin_lock_bh(&c->lock); 1085 key = c->key; 1086 if (key.active && key.passive) 1087 goto exit; 1088 if (key.passive && !tipc_aead_users(c->aead[key.passive])) 1089 goto exit; 1090 if (key.pending) { 1091 if (pos) 1092 goto exit; 1093 if (tipc_aead_users(c->aead[key.pending]) > 0) 1094 goto exit; 1095 /* Replace it */ 1096 new_pending = key.pending; 1097 new_passive = key.passive; 1098 new_key = new_pending; 1099 } else { 1100 if (pos) { 1101 if (key.active && pos != key_next(key.active)) { 1102 new_pending = key.pending; 1103 new_passive = pos; 1104 new_key = new_passive; 1105 goto attach; 1106 } else if (!key.active && !key.passive) { 1107 new_pending = pos; 1108 new_passive = key.passive; 1109 new_key = new_pending; 1110 goto attach; 1111 } 1112 } 1113 new_pending = key_next(key.active ?: key.passive); 1114 new_passive = key.passive; 1115 new_key = new_pending; 1116 } 1117 1118 attach: 1119 aead->crypto = c; 1120 tipc_crypto_key_set_state(c, new_passive, key.active, new_pending); 1121 tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock); 1122 1123 c->working = 1; 1124 c->timer1 = jiffies; 1125 c->timer2 = jiffies; 1126 rc = new_key; 1127 1128 exit: 1129 spin_unlock_bh(&c->lock); 1130 return rc; 1131 } 1132 1133 void tipc_crypto_key_flush(struct tipc_crypto *c) 1134 { 1135 int k; 1136 1137 spin_lock_bh(&c->lock); 1138 c->working = 0; 1139 tipc_crypto_key_set_state(c, 0, 0, 0); 1140 for (k = KEY_MIN; k <= KEY_MAX; k++) 1141 tipc_crypto_key_detach(c->aead[k], &c->lock); 1142 atomic_set(&c->peer_rx_active, 0); 1143 atomic64_set(&c->sndnxt, 0); 1144 spin_unlock_bh(&c->lock); 1145 } 1146 1147 /** 1148 * tipc_crypto_key_try_align - Align RX keys if possible 1149 * @rx: RX crypto handle 1150 * @new_pending: new pending slot if aligned (= TX key from peer) 1151 * 1152 * Peer has used an unknown key slot, this only happens when peer has left and 1153 * rejoned, or we are newcomer. 1154 * That means, there must be no active key but a pending key at unaligned slot. 1155 * If so, we try to move the pending key to the new slot. 1156 * Note: A potential passive key can exist, it will be shifted correspondingly! 1157 * 1158 * Return: "true" if key is successfully aligned, otherwise "false" 1159 */ 1160 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending) 1161 { 1162 struct tipc_aead *tmp1, *tmp2 = NULL; 1163 struct tipc_key key; 1164 bool aligned = false; 1165 u8 new_passive = 0; 1166 int x; 1167 1168 spin_lock(&rx->lock); 1169 key = rx->key; 1170 if (key.pending == new_pending) { 1171 aligned = true; 1172 goto exit; 1173 } 1174 if (key.active) 1175 goto exit; 1176 if (!key.pending) 1177 goto exit; 1178 if (tipc_aead_users(rx->aead[key.pending]) > 0) 1179 goto exit; 1180 1181 /* Try to "isolate" this pending key first */ 1182 tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock); 1183 if (!refcount_dec_if_one(&tmp1->refcnt)) 1184 goto exit; 1185 rcu_assign_pointer(rx->aead[key.pending], NULL); 1186 1187 /* Move passive key if any */ 1188 if (key.passive) { 1189 tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock)); 1190 x = (key.passive - key.pending + new_pending) % KEY_MAX; 1191 new_passive = (x <= 0) ? x + KEY_MAX : x; 1192 } 1193 1194 /* Re-allocate the key(s) */ 1195 tipc_crypto_key_set_state(rx, new_passive, 0, new_pending); 1196 rcu_assign_pointer(rx->aead[new_pending], tmp1); 1197 if (new_passive) 1198 rcu_assign_pointer(rx->aead[new_passive], tmp2); 1199 refcount_set(&tmp1->refcnt, 1); 1200 aligned = true; 1201 pr_info("RX(%s): key is aligned!\n", tipc_node_get_id_str(rx->node)); 1202 1203 exit: 1204 spin_unlock(&rx->lock); 1205 return aligned; 1206 } 1207 1208 /** 1209 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption 1210 * @tx: TX crypto handle 1211 * @rx: RX crypto handle (can be NULL) 1212 * @skb: the message skb which will be decrypted later 1213 * 1214 * This function looks up the existing TX keys and pick one which is suitable 1215 * for the message decryption, that must be a cluster key and not used before 1216 * on the same message (i.e. recursive). 1217 * 1218 * Return: the TX AEAD key handle in case of success, otherwise NULL 1219 */ 1220 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx, 1221 struct tipc_crypto *rx, 1222 struct sk_buff *skb) 1223 { 1224 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb); 1225 struct tipc_aead *aead = NULL; 1226 struct tipc_key key = tx->key; 1227 u8 k, i = 0; 1228 1229 /* Initialize data if not yet */ 1230 if (!skb_cb->tx_clone_deferred) { 1231 skb_cb->tx_clone_deferred = 1; 1232 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx)); 1233 } 1234 1235 skb_cb->tx_clone_ctx.rx = rx; 1236 if (++skb_cb->tx_clone_ctx.recurs > 2) 1237 return NULL; 1238 1239 /* Pick one TX key */ 1240 spin_lock(&tx->lock); 1241 do { 1242 k = (i == 0) ? key.pending : 1243 ((i == 1) ? key.active : key.passive); 1244 if (!k) 1245 continue; 1246 aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock); 1247 if (!aead) 1248 continue; 1249 if (aead->mode != CLUSTER_KEY || 1250 aead == skb_cb->tx_clone_ctx.last) { 1251 aead = NULL; 1252 continue; 1253 } 1254 /* Ok, found one cluster key */ 1255 skb_cb->tx_clone_ctx.last = aead; 1256 WARN_ON(skb->next); 1257 skb->next = skb_clone(skb, GFP_ATOMIC); 1258 if (unlikely(!skb->next)) 1259 pr_warn("Failed to clone skb for next round if any\n"); 1260 WARN_ON(!refcount_inc_not_zero(&aead->refcnt)); 1261 break; 1262 } while (++i < 3); 1263 spin_unlock(&tx->lock); 1264 1265 return aead; 1266 } 1267 1268 /** 1269 * tipc_crypto_key_synch: Synch own key data according to peer key status 1270 * @rx: RX crypto handle 1271 * @new_rx_active: latest RX active key from peer 1272 * @hdr: TIPCv2 message 1273 * 1274 * This function updates the peer node related data as the peer RX active key 1275 * has changed, so the number of TX keys' users on this node are increased and 1276 * decreased correspondingly. 1277 * 1278 * The "per-peer" sndnxt is also reset when the peer key has switched. 1279 */ 1280 static void tipc_crypto_key_synch(struct tipc_crypto *rx, u8 new_rx_active, 1281 struct tipc_msg *hdr) 1282 { 1283 struct net *net = rx->net; 1284 struct tipc_crypto *tx = tipc_net(net)->crypto_tx; 1285 u8 cur_rx_active; 1286 1287 /* TX might be even not ready yet */ 1288 if (unlikely(!tx->key.active && !tx->key.pending)) 1289 return; 1290 1291 cur_rx_active = atomic_read(&rx->peer_rx_active); 1292 if (likely(cur_rx_active == new_rx_active)) 1293 return; 1294 1295 /* Make sure this message destined for this node */ 1296 if (unlikely(msg_short(hdr) || 1297 msg_destnode(hdr) != tipc_own_addr(net))) 1298 return; 1299 1300 /* Peer RX active key has changed, try to update owns' & TX users */ 1301 if (atomic_cmpxchg(&rx->peer_rx_active, 1302 cur_rx_active, 1303 new_rx_active) == cur_rx_active) { 1304 if (new_rx_active) 1305 tipc_aead_users_inc(tx->aead[new_rx_active], INT_MAX); 1306 if (cur_rx_active) 1307 tipc_aead_users_dec(tx->aead[cur_rx_active], 0); 1308 1309 atomic64_set(&rx->sndnxt, 0); 1310 /* Mark the point TX key users changed */ 1311 tx->timer1 = jiffies; 1312 1313 #ifdef TIPC_CRYPTO_DEBUG 1314 pr_info("TX(%s): key users changed %d-- %d++, peer RX(%s)\n", 1315 tipc_own_id_string(net), cur_rx_active, 1316 new_rx_active, tipc_node_get_id_str(rx->node)); 1317 #endif 1318 } 1319 } 1320 1321 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key) 1322 { 1323 struct tipc_crypto *tx = tipc_net(net)->crypto_tx; 1324 struct tipc_key key; 1325 1326 spin_lock(&tx->lock); 1327 key = tx->key; 1328 WARN_ON(!key.active || tx_key != key.active); 1329 1330 /* Free the active key */ 1331 tipc_crypto_key_set_state(tx, key.passive, 0, key.pending); 1332 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock); 1333 spin_unlock(&tx->lock); 1334 1335 pr_warn("TX(%s): key is revoked!\n", tipc_own_id_string(net)); 1336 return -EKEYREVOKED; 1337 } 1338 1339 int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net, 1340 struct tipc_node *node) 1341 { 1342 struct tipc_crypto *c; 1343 1344 if (*crypto) 1345 return -EEXIST; 1346 1347 /* Allocate crypto */ 1348 c = kzalloc(sizeof(*c), GFP_ATOMIC); 1349 if (!c) 1350 return -ENOMEM; 1351 1352 /* Allocate statistic structure */ 1353 c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC); 1354 if (!c->stats) { 1355 kfree_sensitive(c); 1356 return -ENOMEM; 1357 } 1358 1359 c->working = 0; 1360 c->net = net; 1361 c->node = node; 1362 tipc_crypto_key_set_state(c, 0, 0, 0); 1363 atomic_set(&c->peer_rx_active, 0); 1364 atomic64_set(&c->sndnxt, 0); 1365 c->timer1 = jiffies; 1366 c->timer2 = jiffies; 1367 spin_lock_init(&c->lock); 1368 *crypto = c; 1369 1370 return 0; 1371 } 1372 1373 void tipc_crypto_stop(struct tipc_crypto **crypto) 1374 { 1375 struct tipc_crypto *c, *tx, *rx; 1376 bool is_rx; 1377 u8 k; 1378 1379 if (!*crypto) 1380 return; 1381 1382 rcu_read_lock(); 1383 /* RX stopping? => decrease TX key users if any */ 1384 is_rx = !!((*crypto)->node); 1385 if (is_rx) { 1386 rx = *crypto; 1387 tx = tipc_net(rx->net)->crypto_tx; 1388 k = atomic_read(&rx->peer_rx_active); 1389 if (k) { 1390 tipc_aead_users_dec(tx->aead[k], 0); 1391 /* Mark the point TX key users changed */ 1392 tx->timer1 = jiffies; 1393 } 1394 } 1395 1396 /* Release AEAD keys */ 1397 c = *crypto; 1398 for (k = KEY_MIN; k <= KEY_MAX; k++) 1399 tipc_aead_put(rcu_dereference(c->aead[k])); 1400 rcu_read_unlock(); 1401 1402 pr_warn("%s(%s) has been purged, node left!\n", 1403 (is_rx) ? "RX" : "TX", 1404 (is_rx) ? tipc_node_get_id_str((*crypto)->node) : 1405 tipc_own_id_string((*crypto)->net)); 1406 1407 /* Free this crypto statistics */ 1408 free_percpu(c->stats); 1409 1410 *crypto = NULL; 1411 kfree_sensitive(c); 1412 } 1413 1414 void tipc_crypto_timeout(struct tipc_crypto *rx) 1415 { 1416 struct tipc_net *tn = tipc_net(rx->net); 1417 struct tipc_crypto *tx = tn->crypto_tx; 1418 struct tipc_key key; 1419 u8 new_pending, new_passive; 1420 int cmd; 1421 1422 /* TX key activating: 1423 * The pending key (users > 0) -> active 1424 * The active key if any (users == 0) -> free 1425 */ 1426 spin_lock(&tx->lock); 1427 key = tx->key; 1428 if (key.active && tipc_aead_users(tx->aead[key.active]) > 0) 1429 goto s1; 1430 if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0) 1431 goto s1; 1432 if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_LIM)) 1433 goto s1; 1434 1435 tipc_crypto_key_set_state(tx, key.passive, key.pending, 0); 1436 if (key.active) 1437 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock); 1438 this_cpu_inc(tx->stats->stat[STAT_SWITCHES]); 1439 pr_info("TX(%s): key %d is activated!\n", tipc_own_id_string(tx->net), 1440 key.pending); 1441 1442 s1: 1443 spin_unlock(&tx->lock); 1444 1445 /* RX key activating: 1446 * The pending key (users > 0) -> active 1447 * The active key if any -> passive, freed later 1448 */ 1449 spin_lock(&rx->lock); 1450 key = rx->key; 1451 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0) 1452 goto s2; 1453 1454 new_pending = (key.passive && 1455 !tipc_aead_users(rx->aead[key.passive])) ? 1456 key.passive : 0; 1457 new_passive = (key.active) ?: ((new_pending) ? 0 : key.passive); 1458 tipc_crypto_key_set_state(rx, new_passive, key.pending, new_pending); 1459 this_cpu_inc(rx->stats->stat[STAT_SWITCHES]); 1460 pr_info("RX(%s): key %d is activated!\n", 1461 tipc_node_get_id_str(rx->node), key.pending); 1462 goto s5; 1463 1464 s2: 1465 /* RX key "faulty" switching: 1466 * The faulty pending key (users < -30) -> passive 1467 * The passive key (users = 0) -> pending 1468 * Note: This only happens after RX deactivated - s3! 1469 */ 1470 key = rx->key; 1471 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -30) 1472 goto s3; 1473 if (!key.passive || tipc_aead_users(rx->aead[key.passive]) != 0) 1474 goto s3; 1475 1476 new_pending = key.passive; 1477 new_passive = key.pending; 1478 tipc_crypto_key_set_state(rx, new_passive, key.active, new_pending); 1479 goto s5; 1480 1481 s3: 1482 /* RX key deactivating: 1483 * The passive key if any -> pending 1484 * The active key -> passive (users = 0) / pending 1485 * The pending key if any -> passive (users = 0) 1486 */ 1487 key = rx->key; 1488 if (!key.active) 1489 goto s4; 1490 if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM)) 1491 goto s4; 1492 1493 new_pending = (key.passive) ?: key.active; 1494 new_passive = (key.passive) ? key.active : key.pending; 1495 tipc_aead_users_set(rx->aead[new_pending], 0); 1496 if (new_passive) 1497 tipc_aead_users_set(rx->aead[new_passive], 0); 1498 tipc_crypto_key_set_state(rx, new_passive, 0, new_pending); 1499 pr_info("RX(%s): key %d is deactivated!\n", 1500 tipc_node_get_id_str(rx->node), key.active); 1501 goto s5; 1502 1503 s4: 1504 /* RX key passive -> freed: */ 1505 key = rx->key; 1506 if (!key.passive || !tipc_aead_users(rx->aead[key.passive])) 1507 goto s5; 1508 if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM)) 1509 goto s5; 1510 1511 tipc_crypto_key_set_state(rx, 0, key.active, key.pending); 1512 tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock); 1513 pr_info("RX(%s): key %d is freed!\n", tipc_node_get_id_str(rx->node), 1514 key.passive); 1515 1516 s5: 1517 spin_unlock(&rx->lock); 1518 1519 /* Limit max_tfms & do debug commands if needed */ 1520 if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM)) 1521 return; 1522 1523 cmd = sysctl_tipc_max_tfms; 1524 sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF; 1525 tipc_crypto_do_cmd(rx->net, cmd); 1526 } 1527 1528 /** 1529 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit 1530 * @net: struct net 1531 * @skb: input/output message skb pointer 1532 * @b: bearer used for xmit later 1533 * @dst: destination media address 1534 * @__dnode: destination node for reference if any 1535 * 1536 * First, build an encryption message header on the top of the message, then 1537 * encrypt the original TIPC message by using the active or pending TX key. 1538 * If the encryption is successful, the encrypted skb is returned directly or 1539 * via the callback. 1540 * Otherwise, the skb is freed! 1541 * 1542 * Return: 1543 * 0 : the encryption has succeeded (or no encryption) 1544 * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made 1545 * -ENOKEK : the encryption has failed due to no key 1546 * -EKEYREVOKED : the encryption has failed due to key revoked 1547 * -ENOMEM : the encryption has failed due to no memory 1548 * < 0 : the encryption has failed due to other reasons 1549 */ 1550 int tipc_crypto_xmit(struct net *net, struct sk_buff **skb, 1551 struct tipc_bearer *b, struct tipc_media_addr *dst, 1552 struct tipc_node *__dnode) 1553 { 1554 struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode); 1555 struct tipc_crypto *tx = tipc_net(net)->crypto_tx; 1556 struct tipc_crypto_stats __percpu *stats = tx->stats; 1557 struct tipc_key key = tx->key; 1558 struct tipc_aead *aead = NULL; 1559 struct sk_buff *probe; 1560 int rc = -ENOKEY; 1561 u8 tx_key; 1562 1563 /* No encryption? */ 1564 if (!tx->working) 1565 return 0; 1566 1567 /* Try with the pending key if available and: 1568 * 1) This is the only choice (i.e. no active key) or; 1569 * 2) Peer has switched to this key (unicast only) or; 1570 * 3) It is time to do a pending key probe; 1571 */ 1572 if (unlikely(key.pending)) { 1573 tx_key = key.pending; 1574 if (!key.active) 1575 goto encrypt; 1576 if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key) 1577 goto encrypt; 1578 if (TIPC_SKB_CB(*skb)->probe) 1579 goto encrypt; 1580 if (!__rx && 1581 time_after(jiffies, tx->timer2 + TIPC_TX_PROBE_LIM)) { 1582 tx->timer2 = jiffies; 1583 probe = skb_clone(*skb, GFP_ATOMIC); 1584 if (probe) { 1585 TIPC_SKB_CB(probe)->probe = 1; 1586 tipc_crypto_xmit(net, &probe, b, dst, __dnode); 1587 if (probe) 1588 b->media->send_msg(net, probe, b, dst); 1589 } 1590 } 1591 } 1592 /* Else, use the active key if any */ 1593 if (likely(key.active)) { 1594 tx_key = key.active; 1595 goto encrypt; 1596 } 1597 goto exit; 1598 1599 encrypt: 1600 aead = tipc_aead_get(tx->aead[tx_key]); 1601 if (unlikely(!aead)) 1602 goto exit; 1603 rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx); 1604 if (likely(rc > 0)) 1605 rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode); 1606 1607 exit: 1608 switch (rc) { 1609 case 0: 1610 this_cpu_inc(stats->stat[STAT_OK]); 1611 break; 1612 case -EINPROGRESS: 1613 case -EBUSY: 1614 this_cpu_inc(stats->stat[STAT_ASYNC]); 1615 *skb = NULL; 1616 return rc; 1617 default: 1618 this_cpu_inc(stats->stat[STAT_NOK]); 1619 if (rc == -ENOKEY) 1620 this_cpu_inc(stats->stat[STAT_NOKEYS]); 1621 else if (rc == -EKEYREVOKED) 1622 this_cpu_inc(stats->stat[STAT_BADKEYS]); 1623 kfree_skb(*skb); 1624 *skb = NULL; 1625 break; 1626 } 1627 1628 tipc_aead_put(aead); 1629 return rc; 1630 } 1631 1632 /** 1633 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer 1634 * @net: struct net 1635 * @rx: RX crypto handle 1636 * @skb: input/output message skb pointer 1637 * @b: bearer where the message has been received 1638 * 1639 * If the decryption is successful, the decrypted skb is returned directly or 1640 * as the callback, the encryption header and auth tag will be trimed out 1641 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete(). 1642 * Otherwise, the skb will be freed! 1643 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX 1644 * cluster key(s) can be taken for decryption (- recursive). 1645 * 1646 * Return: 1647 * 0 : the decryption has successfully completed 1648 * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made 1649 * -ENOKEY : the decryption has failed due to no key 1650 * -EBADMSG : the decryption has failed due to bad message 1651 * -ENOMEM : the decryption has failed due to no memory 1652 * < 0 : the decryption has failed due to other reasons 1653 */ 1654 int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx, 1655 struct sk_buff **skb, struct tipc_bearer *b) 1656 { 1657 struct tipc_crypto *tx = tipc_net(net)->crypto_tx; 1658 struct tipc_crypto_stats __percpu *stats; 1659 struct tipc_aead *aead = NULL; 1660 struct tipc_key key; 1661 int rc = -ENOKEY; 1662 u8 tx_key = 0; 1663 1664 /* New peer? 1665 * Let's try with TX key (i.e. cluster mode) & verify the skb first! 1666 */ 1667 if (unlikely(!rx)) 1668 goto pick_tx; 1669 1670 /* Pick RX key according to TX key, three cases are possible: 1671 * 1) The current active key (likely) or; 1672 * 2) The pending (new or deactivated) key (if any) or; 1673 * 3) The passive or old active key (i.e. users > 0); 1674 */ 1675 tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key; 1676 key = rx->key; 1677 if (likely(tx_key == key.active)) 1678 goto decrypt; 1679 if (tx_key == key.pending) 1680 goto decrypt; 1681 if (tx_key == key.passive) { 1682 rx->timer2 = jiffies; 1683 if (tipc_aead_users(rx->aead[key.passive]) > 0) 1684 goto decrypt; 1685 } 1686 1687 /* Unknown key, let's try to align RX key(s) */ 1688 if (tipc_crypto_key_try_align(rx, tx_key)) 1689 goto decrypt; 1690 1691 pick_tx: 1692 /* No key suitable? Try to pick one from TX... */ 1693 aead = tipc_crypto_key_pick_tx(tx, rx, *skb); 1694 if (aead) 1695 goto decrypt; 1696 goto exit; 1697 1698 decrypt: 1699 rcu_read_lock(); 1700 if (!aead) 1701 aead = tipc_aead_get(rx->aead[tx_key]); 1702 rc = tipc_aead_decrypt(net, aead, *skb, b); 1703 rcu_read_unlock(); 1704 1705 exit: 1706 stats = ((rx) ?: tx)->stats; 1707 switch (rc) { 1708 case 0: 1709 this_cpu_inc(stats->stat[STAT_OK]); 1710 break; 1711 case -EINPROGRESS: 1712 case -EBUSY: 1713 this_cpu_inc(stats->stat[STAT_ASYNC]); 1714 *skb = NULL; 1715 return rc; 1716 default: 1717 this_cpu_inc(stats->stat[STAT_NOK]); 1718 if (rc == -ENOKEY) { 1719 kfree_skb(*skb); 1720 *skb = NULL; 1721 if (rx) 1722 tipc_node_put(rx->node); 1723 this_cpu_inc(stats->stat[STAT_NOKEYS]); 1724 return rc; 1725 } else if (rc == -EBADMSG) { 1726 this_cpu_inc(stats->stat[STAT_BADMSGS]); 1727 } 1728 break; 1729 } 1730 1731 tipc_crypto_rcv_complete(net, aead, b, skb, rc); 1732 return rc; 1733 } 1734 1735 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead, 1736 struct tipc_bearer *b, 1737 struct sk_buff **skb, int err) 1738 { 1739 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb); 1740 struct tipc_crypto *rx = aead->crypto; 1741 struct tipc_aead *tmp = NULL; 1742 struct tipc_ehdr *ehdr; 1743 struct tipc_node *n; 1744 u8 rx_key_active; 1745 bool destined; 1746 1747 /* Is this completed by TX? */ 1748 if (unlikely(!rx->node)) { 1749 rx = skb_cb->tx_clone_ctx.rx; 1750 #ifdef TIPC_CRYPTO_DEBUG 1751 pr_info("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n", 1752 (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead, 1753 (*skb)->next, skb_cb->flags); 1754 pr_info("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n", 1755 skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last, 1756 aead->crypto->aead[1], aead->crypto->aead[2], 1757 aead->crypto->aead[3]); 1758 #endif 1759 if (unlikely(err)) { 1760 if (err == -EBADMSG && (*skb)->next) 1761 tipc_rcv(net, (*skb)->next, b); 1762 goto free_skb; 1763 } 1764 1765 if (likely((*skb)->next)) { 1766 kfree_skb((*skb)->next); 1767 (*skb)->next = NULL; 1768 } 1769 ehdr = (struct tipc_ehdr *)(*skb)->data; 1770 if (!rx) { 1771 WARN_ON(ehdr->user != LINK_CONFIG); 1772 n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0, 1773 true); 1774 rx = tipc_node_crypto_rx(n); 1775 if (unlikely(!rx)) 1776 goto free_skb; 1777 } 1778 1779 /* Skip cloning this time as we had a RX pending key */ 1780 if (rx->key.pending) 1781 goto rcv; 1782 if (tipc_aead_clone(&tmp, aead) < 0) 1783 goto rcv; 1784 if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key) < 0) { 1785 tipc_aead_free(&tmp->rcu); 1786 goto rcv; 1787 } 1788 tipc_aead_put(aead); 1789 aead = tipc_aead_get(tmp); 1790 } 1791 1792 if (unlikely(err)) { 1793 tipc_aead_users_dec(aead, INT_MIN); 1794 goto free_skb; 1795 } 1796 1797 /* Set the RX key's user */ 1798 tipc_aead_users_set(aead, 1); 1799 1800 rcv: 1801 /* Mark this point, RX works */ 1802 rx->timer1 = jiffies; 1803 1804 /* Remove ehdr & auth. tag prior to tipc_rcv() */ 1805 ehdr = (struct tipc_ehdr *)(*skb)->data; 1806 destined = ehdr->destined; 1807 rx_key_active = ehdr->rx_key_active; 1808 skb_pull(*skb, tipc_ehdr_size(ehdr)); 1809 pskb_trim(*skb, (*skb)->len - aead->authsize); 1810 1811 /* Validate TIPCv2 message */ 1812 if (unlikely(!tipc_msg_validate(skb))) { 1813 pr_err_ratelimited("Packet dropped after decryption!\n"); 1814 goto free_skb; 1815 } 1816 1817 /* Update peer RX active key & TX users */ 1818 if (destined) 1819 tipc_crypto_key_synch(rx, rx_key_active, buf_msg(*skb)); 1820 1821 /* Mark skb decrypted */ 1822 skb_cb->decrypted = 1; 1823 1824 /* Clear clone cxt if any */ 1825 if (likely(!skb_cb->tx_clone_deferred)) 1826 goto exit; 1827 skb_cb->tx_clone_deferred = 0; 1828 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx)); 1829 goto exit; 1830 1831 free_skb: 1832 kfree_skb(*skb); 1833 *skb = NULL; 1834 1835 exit: 1836 tipc_aead_put(aead); 1837 if (rx) 1838 tipc_node_put(rx->node); 1839 } 1840 1841 static void tipc_crypto_do_cmd(struct net *net, int cmd) 1842 { 1843 struct tipc_net *tn = tipc_net(net); 1844 struct tipc_crypto *tx = tn->crypto_tx, *rx; 1845 struct list_head *p; 1846 unsigned int stat; 1847 int i, j, cpu; 1848 char buf[200]; 1849 1850 /* Currently only one command is supported */ 1851 switch (cmd) { 1852 case 0xfff1: 1853 goto print_stats; 1854 default: 1855 return; 1856 } 1857 1858 print_stats: 1859 /* Print a header */ 1860 pr_info("\n=============== TIPC Crypto Statistics ===============\n\n"); 1861 1862 /* Print key status */ 1863 pr_info("Key status:\n"); 1864 pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net), 1865 tipc_crypto_key_dump(tx, buf)); 1866 1867 rcu_read_lock(); 1868 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) { 1869 rx = tipc_node_crypto_rx_by_list(p); 1870 pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node), 1871 tipc_crypto_key_dump(rx, buf)); 1872 } 1873 rcu_read_unlock(); 1874 1875 /* Print crypto statistics */ 1876 for (i = 0, j = 0; i < MAX_STATS; i++) 1877 j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]); 1878 pr_info("\nCounter %s", buf); 1879 1880 memset(buf, '-', 115); 1881 buf[115] = '\0'; 1882 pr_info("%s\n", buf); 1883 1884 j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net)); 1885 for_each_possible_cpu(cpu) { 1886 for (i = 0; i < MAX_STATS; i++) { 1887 stat = per_cpu_ptr(tx->stats, cpu)->stat[i]; 1888 j += scnprintf(buf + j, 200 - j, "|%11d ", stat); 1889 } 1890 pr_info("%s", buf); 1891 j = scnprintf(buf, 200, "%12s", " "); 1892 } 1893 1894 rcu_read_lock(); 1895 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) { 1896 rx = tipc_node_crypto_rx_by_list(p); 1897 j = scnprintf(buf, 200, "RX(%7.7s) ", 1898 tipc_node_get_id_str(rx->node)); 1899 for_each_possible_cpu(cpu) { 1900 for (i = 0; i < MAX_STATS; i++) { 1901 stat = per_cpu_ptr(rx->stats, cpu)->stat[i]; 1902 j += scnprintf(buf + j, 200 - j, "|%11d ", 1903 stat); 1904 } 1905 pr_info("%s", buf); 1906 j = scnprintf(buf, 200, "%12s", " "); 1907 } 1908 } 1909 rcu_read_unlock(); 1910 1911 pr_info("\n======================== Done ========================\n"); 1912 } 1913 1914 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf) 1915 { 1916 struct tipc_key key = c->key; 1917 struct tipc_aead *aead; 1918 int k, i = 0; 1919 char *s; 1920 1921 for (k = KEY_MIN; k <= KEY_MAX; k++) { 1922 if (k == key.passive) 1923 s = "PAS"; 1924 else if (k == key.active) 1925 s = "ACT"; 1926 else if (k == key.pending) 1927 s = "PEN"; 1928 else 1929 s = "-"; 1930 i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s); 1931 1932 rcu_read_lock(); 1933 aead = rcu_dereference(c->aead[k]); 1934 if (aead) 1935 i += scnprintf(buf + i, 200 - i, 1936 "{\"%s...\", \"%s\"}/%d:%d", 1937 aead->hint, 1938 (aead->mode == CLUSTER_KEY) ? "c" : "p", 1939 atomic_read(&aead->users), 1940 refcount_read(&aead->refcnt)); 1941 rcu_read_unlock(); 1942 i += scnprintf(buf + i, 200 - i, "\n"); 1943 } 1944 1945 if (c->node) 1946 i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n", 1947 atomic_read(&c->peer_rx_active)); 1948 1949 return buf; 1950 } 1951 1952 #ifdef TIPC_CRYPTO_DEBUG 1953 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new, 1954 char *buf) 1955 { 1956 struct tipc_key *key = &old; 1957 int k, i = 0; 1958 char *s; 1959 1960 /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */ 1961 again: 1962 i += scnprintf(buf + i, 32 - i, "["); 1963 for (k = KEY_MIN; k <= KEY_MAX; k++) { 1964 if (k == key->passive) 1965 s = "pas"; 1966 else if (k == key->active) 1967 s = "act"; 1968 else if (k == key->pending) 1969 s = "pen"; 1970 else 1971 s = "-"; 1972 i += scnprintf(buf + i, 32 - i, 1973 (k != KEY_MAX) ? "%s " : "%s", s); 1974 } 1975 if (key != &new) { 1976 i += scnprintf(buf + i, 32 - i, "] -> "); 1977 key = &new; 1978 goto again; 1979 } 1980 i += scnprintf(buf + i, 32 - i, "]"); 1981 return buf; 1982 } 1983 #endif 1984