xref: /openbmc/linux/net/tipc/crypto.c (revision dfe94d40)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
4  *
5  * Copyright (c) 2019, Ericsson AB
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the names of the copyright holders nor the names of its
17  *    contributors may be used to endorse or promote products derived from
18  *    this software without specific prior written permission.
19  *
20  * Alternatively, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") version 2 as published by the Free
22  * Software Foundation.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
28  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #include <crypto/aead.h>
38 #include <crypto/aes.h>
39 #include <crypto/rng.h>
40 #include "crypto.h"
41 #include "msg.h"
42 #include "bcast.h"
43 
44 #define TIPC_TX_GRACE_PERIOD	msecs_to_jiffies(5000) /* 5s */
45 #define TIPC_TX_LASTING_TIME	msecs_to_jiffies(10000) /* 10s */
46 #define TIPC_RX_ACTIVE_LIM	msecs_to_jiffies(3000) /* 3s */
47 #define TIPC_RX_PASSIVE_LIM	msecs_to_jiffies(15000) /* 15s */
48 
49 #define TIPC_MAX_TFMS_DEF	10
50 #define TIPC_MAX_TFMS_LIM	1000
51 
52 #define TIPC_REKEYING_INTV_DEF	(60 * 24) /* default: 1 day */
53 
54 /*
55  * TIPC Key ids
56  */
57 enum {
58 	KEY_MASTER = 0,
59 	KEY_MIN = KEY_MASTER,
60 	KEY_1 = 1,
61 	KEY_2,
62 	KEY_3,
63 	KEY_MAX = KEY_3,
64 };
65 
66 /*
67  * TIPC Crypto statistics
68  */
69 enum {
70 	STAT_OK,
71 	STAT_NOK,
72 	STAT_ASYNC,
73 	STAT_ASYNC_OK,
74 	STAT_ASYNC_NOK,
75 	STAT_BADKEYS, /* tx only */
76 	STAT_BADMSGS = STAT_BADKEYS, /* rx only */
77 	STAT_NOKEYS,
78 	STAT_SWITCHES,
79 
80 	MAX_STATS,
81 };
82 
83 /* TIPC crypto statistics' header */
84 static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
85 					"async_nok", "badmsgs", "nokeys",
86 					"switches"};
87 
88 /* Max TFMs number per key */
89 int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
90 /* Key exchange switch, default: on */
91 int sysctl_tipc_key_exchange_enabled __read_mostly = 1;
92 
93 /*
94  * struct tipc_key - TIPC keys' status indicator
95  *
96  *         7     6     5     4     3     2     1     0
97  *      +-----+-----+-----+-----+-----+-----+-----+-----+
98  * key: | (reserved)|passive idx| active idx|pending idx|
99  *      +-----+-----+-----+-----+-----+-----+-----+-----+
100  */
101 struct tipc_key {
102 #define KEY_BITS (2)
103 #define KEY_MASK ((1 << KEY_BITS) - 1)
104 	union {
105 		struct {
106 #if defined(__LITTLE_ENDIAN_BITFIELD)
107 			u8 pending:2,
108 			   active:2,
109 			   passive:2, /* rx only */
110 			   reserved:2;
111 #elif defined(__BIG_ENDIAN_BITFIELD)
112 			u8 reserved:2,
113 			   passive:2, /* rx only */
114 			   active:2,
115 			   pending:2;
116 #else
117 #error  "Please fix <asm/byteorder.h>"
118 #endif
119 		} __packed;
120 		u8 keys;
121 	};
122 };
123 
124 /**
125  * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
126  * @tfm: cipher handle/key
127  * @list: linked list of TFMs
128  */
129 struct tipc_tfm {
130 	struct crypto_aead *tfm;
131 	struct list_head list;
132 };
133 
134 /**
135  * struct tipc_aead - TIPC AEAD key structure
136  * @tfm_entry: per-cpu pointer to one entry in TFM list
137  * @crypto: TIPC crypto owns this key
138  * @cloned: reference to the source key in case cloning
139  * @users: the number of the key users (TX/RX)
140  * @salt: the key's SALT value
141  * @authsize: authentication tag size (max = 16)
142  * @mode: crypto mode is applied to the key
143  * @hint: a hint for user key
144  * @rcu: struct rcu_head
145  * @key: the aead key
146  * @gen: the key's generation
147  * @seqno: the key seqno (cluster scope)
148  * @refcnt: the key reference counter
149  */
150 struct tipc_aead {
151 #define TIPC_AEAD_HINT_LEN (5)
152 	struct tipc_tfm * __percpu *tfm_entry;
153 	struct tipc_crypto *crypto;
154 	struct tipc_aead *cloned;
155 	atomic_t users;
156 	u32 salt;
157 	u8 authsize;
158 	u8 mode;
159 	char hint[2 * TIPC_AEAD_HINT_LEN + 1];
160 	struct rcu_head rcu;
161 	struct tipc_aead_key *key;
162 	u16 gen;
163 
164 	atomic64_t seqno ____cacheline_aligned;
165 	refcount_t refcnt ____cacheline_aligned;
166 
167 } ____cacheline_aligned;
168 
169 /**
170  * struct tipc_crypto_stats - TIPC Crypto statistics
171  * @stat: array of crypto statistics
172  */
173 struct tipc_crypto_stats {
174 	unsigned int stat[MAX_STATS];
175 };
176 
177 /**
178  * struct tipc_crypto - TIPC TX/RX crypto structure
179  * @net: struct net
180  * @node: TIPC node (RX)
181  * @aead: array of pointers to AEAD keys for encryption/decryption
182  * @peer_rx_active: replicated peer RX active key index
183  * @key_gen: TX/RX key generation
184  * @key: the key states
185  * @skey_mode: session key's mode
186  * @skey: received session key
187  * @wq: common workqueue on TX crypto
188  * @work: delayed work sched for TX/RX
189  * @key_distr: key distributing state
190  * @rekeying_intv: rekeying interval (in minutes)
191  * @stats: the crypto statistics
192  * @name: the crypto name
193  * @sndnxt: the per-peer sndnxt (TX)
194  * @timer1: general timer 1 (jiffies)
195  * @timer2: general timer 2 (jiffies)
196  * @working: the crypto is working or not
197  * @key_master: flag indicates if master key exists
198  * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.)
199  * @nokey: no key indication
200  * @flags: combined flags field
201  * @lock: tipc_key lock
202  */
203 struct tipc_crypto {
204 	struct net *net;
205 	struct tipc_node *node;
206 	struct tipc_aead __rcu *aead[KEY_MAX + 1];
207 	atomic_t peer_rx_active;
208 	u16 key_gen;
209 	struct tipc_key key;
210 	u8 skey_mode;
211 	struct tipc_aead_key *skey;
212 	struct workqueue_struct *wq;
213 	struct delayed_work work;
214 #define KEY_DISTR_SCHED		1
215 #define KEY_DISTR_COMPL		2
216 	atomic_t key_distr;
217 	u32 rekeying_intv;
218 
219 	struct tipc_crypto_stats __percpu *stats;
220 	char name[48];
221 
222 	atomic64_t sndnxt ____cacheline_aligned;
223 	unsigned long timer1;
224 	unsigned long timer2;
225 	union {
226 		struct {
227 			u8 working:1;
228 			u8 key_master:1;
229 			u8 legacy_user:1;
230 			u8 nokey: 1;
231 		};
232 		u8 flags;
233 	};
234 	spinlock_t lock; /* crypto lock */
235 
236 } ____cacheline_aligned;
237 
238 /* struct tipc_crypto_tx_ctx - TX context for callbacks */
239 struct tipc_crypto_tx_ctx {
240 	struct tipc_aead *aead;
241 	struct tipc_bearer *bearer;
242 	struct tipc_media_addr dst;
243 };
244 
245 /* struct tipc_crypto_rx_ctx - RX context for callbacks */
246 struct tipc_crypto_rx_ctx {
247 	struct tipc_aead *aead;
248 	struct tipc_bearer *bearer;
249 };
250 
251 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
252 static inline void tipc_aead_put(struct tipc_aead *aead);
253 static void tipc_aead_free(struct rcu_head *rp);
254 static int tipc_aead_users(struct tipc_aead __rcu *aead);
255 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
256 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
257 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
258 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
259 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
260 			  u8 mode);
261 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
262 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
263 				 unsigned int crypto_ctx_size,
264 				 u8 **iv, struct aead_request **req,
265 				 struct scatterlist **sg, int nsg);
266 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
267 			     struct tipc_bearer *b,
268 			     struct tipc_media_addr *dst,
269 			     struct tipc_node *__dnode);
270 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err);
271 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
272 			     struct sk_buff *skb, struct tipc_bearer *b);
273 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err);
274 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
275 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
276 			   u8 tx_key, struct sk_buff *skb,
277 			   struct tipc_crypto *__rx);
278 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
279 					     u8 new_passive,
280 					     u8 new_active,
281 					     u8 new_pending);
282 static int tipc_crypto_key_attach(struct tipc_crypto *c,
283 				  struct tipc_aead *aead, u8 pos,
284 				  bool master_key);
285 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
286 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
287 						 struct tipc_crypto *rx,
288 						 struct sk_buff *skb,
289 						 u8 tx_key);
290 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb);
291 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
292 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
293 					 struct tipc_bearer *b,
294 					 struct tipc_media_addr *dst,
295 					 struct tipc_node *__dnode, u8 type);
296 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
297 				     struct tipc_bearer *b,
298 				     struct sk_buff **skb, int err);
299 static void tipc_crypto_do_cmd(struct net *net, int cmd);
300 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
301 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
302 				  char *buf);
303 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
304 				u16 gen, u8 mode, u32 dnode);
305 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr);
306 static void tipc_crypto_work_tx(struct work_struct *work);
307 static void tipc_crypto_work_rx(struct work_struct *work);
308 static int tipc_aead_key_generate(struct tipc_aead_key *skey);
309 
310 #define is_tx(crypto) (!(crypto)->node)
311 #define is_rx(crypto) (!is_tx(crypto))
312 
313 #define key_next(cur) ((cur) % KEY_MAX + 1)
314 
315 #define tipc_aead_rcu_ptr(rcu_ptr, lock)				\
316 	rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
317 
318 #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock)			\
319 do {									\
320 	typeof(rcu_ptr) __tmp = rcu_dereference_protected((rcu_ptr),	\
321 						lockdep_is_held(lock));	\
322 	rcu_assign_pointer((rcu_ptr), (ptr));				\
323 	tipc_aead_put(__tmp);						\
324 } while (0)
325 
326 #define tipc_crypto_key_detach(rcu_ptr, lock)				\
327 	tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
328 
329 /**
330  * tipc_aead_key_validate - Validate a AEAD user key
331  * @ukey: pointer to user key data
332  * @info: netlink info pointer
333  */
334 int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info)
335 {
336 	int keylen;
337 
338 	/* Check if algorithm exists */
339 	if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
340 		GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)");
341 		return -ENODEV;
342 	}
343 
344 	/* Currently, we only support the "gcm(aes)" cipher algorithm */
345 	if (strcmp(ukey->alg_name, "gcm(aes)")) {
346 		GENL_SET_ERR_MSG(info, "not supported yet the algorithm");
347 		return -ENOTSUPP;
348 	}
349 
350 	/* Check if key size is correct */
351 	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
352 	if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
353 		     keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
354 		     keylen != TIPC_AES_GCM_KEY_SIZE_256)) {
355 		GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)");
356 		return -EKEYREJECTED;
357 	}
358 
359 	return 0;
360 }
361 
362 /**
363  * tipc_aead_key_generate - Generate new session key
364  * @skey: input/output key with new content
365  *
366  * Return: 0 in case of success, otherwise < 0
367  */
368 static int tipc_aead_key_generate(struct tipc_aead_key *skey)
369 {
370 	int rc = 0;
371 
372 	/* Fill the key's content with a random value via RNG cipher */
373 	rc = crypto_get_default_rng();
374 	if (likely(!rc)) {
375 		rc = crypto_rng_get_bytes(crypto_default_rng, skey->key,
376 					  skey->keylen);
377 		crypto_put_default_rng();
378 	}
379 
380 	return rc;
381 }
382 
383 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
384 {
385 	struct tipc_aead *tmp;
386 
387 	rcu_read_lock();
388 	tmp = rcu_dereference(aead);
389 	if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
390 		tmp = NULL;
391 	rcu_read_unlock();
392 
393 	return tmp;
394 }
395 
396 static inline void tipc_aead_put(struct tipc_aead *aead)
397 {
398 	if (aead && refcount_dec_and_test(&aead->refcnt))
399 		call_rcu(&aead->rcu, tipc_aead_free);
400 }
401 
402 /**
403  * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
404  * @rp: rcu head pointer
405  */
406 static void tipc_aead_free(struct rcu_head *rp)
407 {
408 	struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
409 	struct tipc_tfm *tfm_entry, *head, *tmp;
410 
411 	if (aead->cloned) {
412 		tipc_aead_put(aead->cloned);
413 	} else {
414 		head = *get_cpu_ptr(aead->tfm_entry);
415 		put_cpu_ptr(aead->tfm_entry);
416 		list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
417 			crypto_free_aead(tfm_entry->tfm);
418 			list_del(&tfm_entry->list);
419 			kfree(tfm_entry);
420 		}
421 		/* Free the head */
422 		crypto_free_aead(head->tfm);
423 		list_del(&head->list);
424 		kfree(head);
425 	}
426 	free_percpu(aead->tfm_entry);
427 	kfree_sensitive(aead->key);
428 	kfree(aead);
429 }
430 
431 static int tipc_aead_users(struct tipc_aead __rcu *aead)
432 {
433 	struct tipc_aead *tmp;
434 	int users = 0;
435 
436 	rcu_read_lock();
437 	tmp = rcu_dereference(aead);
438 	if (tmp)
439 		users = atomic_read(&tmp->users);
440 	rcu_read_unlock();
441 
442 	return users;
443 }
444 
445 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
446 {
447 	struct tipc_aead *tmp;
448 
449 	rcu_read_lock();
450 	tmp = rcu_dereference(aead);
451 	if (tmp)
452 		atomic_add_unless(&tmp->users, 1, lim);
453 	rcu_read_unlock();
454 }
455 
456 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
457 {
458 	struct tipc_aead *tmp;
459 
460 	rcu_read_lock();
461 	tmp = rcu_dereference(aead);
462 	if (tmp)
463 		atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
464 	rcu_read_unlock();
465 }
466 
467 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
468 {
469 	struct tipc_aead *tmp;
470 	int cur;
471 
472 	rcu_read_lock();
473 	tmp = rcu_dereference(aead);
474 	if (tmp) {
475 		do {
476 			cur = atomic_read(&tmp->users);
477 			if (cur == val)
478 				break;
479 		} while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
480 	}
481 	rcu_read_unlock();
482 }
483 
484 /**
485  * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
486  * @aead: the AEAD key pointer
487  */
488 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
489 {
490 	struct tipc_tfm **tfm_entry;
491 	struct crypto_aead *tfm;
492 
493 	tfm_entry = get_cpu_ptr(aead->tfm_entry);
494 	*tfm_entry = list_next_entry(*tfm_entry, list);
495 	tfm = (*tfm_entry)->tfm;
496 	put_cpu_ptr(tfm_entry);
497 
498 	return tfm;
499 }
500 
501 /**
502  * tipc_aead_init - Initiate TIPC AEAD
503  * @aead: returned new TIPC AEAD key handle pointer
504  * @ukey: pointer to user key data
505  * @mode: the key mode
506  *
507  * Allocate a (list of) new cipher transformation (TFM) with the specific user
508  * key data if valid. The number of the allocated TFMs can be set via the sysfs
509  * "net/tipc/max_tfms" first.
510  * Also, all the other AEAD data are also initialized.
511  *
512  * Return: 0 if the initiation is successful, otherwise: < 0
513  */
514 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
515 			  u8 mode)
516 {
517 	struct tipc_tfm *tfm_entry, *head;
518 	struct crypto_aead *tfm;
519 	struct tipc_aead *tmp;
520 	int keylen, err, cpu;
521 	int tfm_cnt = 0;
522 
523 	if (unlikely(*aead))
524 		return -EEXIST;
525 
526 	/* Allocate a new AEAD */
527 	tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
528 	if (unlikely(!tmp))
529 		return -ENOMEM;
530 
531 	/* The key consists of two parts: [AES-KEY][SALT] */
532 	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
533 
534 	/* Allocate per-cpu TFM entry pointer */
535 	tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
536 	if (!tmp->tfm_entry) {
537 		kfree_sensitive(tmp);
538 		return -ENOMEM;
539 	}
540 
541 	/* Make a list of TFMs with the user key data */
542 	do {
543 		tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
544 		if (IS_ERR(tfm)) {
545 			err = PTR_ERR(tfm);
546 			break;
547 		}
548 
549 		if (unlikely(!tfm_cnt &&
550 			     crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
551 			crypto_free_aead(tfm);
552 			err = -ENOTSUPP;
553 			break;
554 		}
555 
556 		err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
557 		err |= crypto_aead_setkey(tfm, ukey->key, keylen);
558 		if (unlikely(err)) {
559 			crypto_free_aead(tfm);
560 			break;
561 		}
562 
563 		tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
564 		if (unlikely(!tfm_entry)) {
565 			crypto_free_aead(tfm);
566 			err = -ENOMEM;
567 			break;
568 		}
569 		INIT_LIST_HEAD(&tfm_entry->list);
570 		tfm_entry->tfm = tfm;
571 
572 		/* First entry? */
573 		if (!tfm_cnt) {
574 			head = tfm_entry;
575 			for_each_possible_cpu(cpu) {
576 				*per_cpu_ptr(tmp->tfm_entry, cpu) = head;
577 			}
578 		} else {
579 			list_add_tail(&tfm_entry->list, &head->list);
580 		}
581 
582 	} while (++tfm_cnt < sysctl_tipc_max_tfms);
583 
584 	/* Not any TFM is allocated? */
585 	if (!tfm_cnt) {
586 		free_percpu(tmp->tfm_entry);
587 		kfree_sensitive(tmp);
588 		return err;
589 	}
590 
591 	/* Form a hex string of some last bytes as the key's hint */
592 	bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN,
593 		TIPC_AEAD_HINT_LEN);
594 
595 	/* Initialize the other data */
596 	tmp->mode = mode;
597 	tmp->cloned = NULL;
598 	tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
599 	tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL);
600 	memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
601 	atomic_set(&tmp->users, 0);
602 	atomic64_set(&tmp->seqno, 0);
603 	refcount_set(&tmp->refcnt, 1);
604 
605 	*aead = tmp;
606 	return 0;
607 }
608 
609 /**
610  * tipc_aead_clone - Clone a TIPC AEAD key
611  * @dst: dest key for the cloning
612  * @src: source key to clone from
613  *
614  * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
615  * common for the keys.
616  * A reference to the source is hold in the "cloned" pointer for the later
617  * freeing purposes.
618  *
619  * Note: this must be done in cluster-key mode only!
620  * Return: 0 in case of success, otherwise < 0
621  */
622 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
623 {
624 	struct tipc_aead *aead;
625 	int cpu;
626 
627 	if (!src)
628 		return -ENOKEY;
629 
630 	if (src->mode != CLUSTER_KEY)
631 		return -EINVAL;
632 
633 	if (unlikely(*dst))
634 		return -EEXIST;
635 
636 	aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
637 	if (unlikely(!aead))
638 		return -ENOMEM;
639 
640 	aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
641 	if (unlikely(!aead->tfm_entry)) {
642 		kfree_sensitive(aead);
643 		return -ENOMEM;
644 	}
645 
646 	for_each_possible_cpu(cpu) {
647 		*per_cpu_ptr(aead->tfm_entry, cpu) =
648 				*per_cpu_ptr(src->tfm_entry, cpu);
649 	}
650 
651 	memcpy(aead->hint, src->hint, sizeof(src->hint));
652 	aead->mode = src->mode;
653 	aead->salt = src->salt;
654 	aead->authsize = src->authsize;
655 	atomic_set(&aead->users, 0);
656 	atomic64_set(&aead->seqno, 0);
657 	refcount_set(&aead->refcnt, 1);
658 
659 	WARN_ON(!refcount_inc_not_zero(&src->refcnt));
660 	aead->cloned = src;
661 
662 	*dst = aead;
663 	return 0;
664 }
665 
666 /**
667  * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
668  * @tfm: cipher handle to be registered with the request
669  * @crypto_ctx_size: size of crypto context for callback
670  * @iv: returned pointer to IV data
671  * @req: returned pointer to AEAD request data
672  * @sg: returned pointer to SG lists
673  * @nsg: number of SG lists to be allocated
674  *
675  * Allocate memory to store the crypto context data, AEAD request, IV and SG
676  * lists, the memory layout is as follows:
677  * crypto_ctx || iv || aead_req || sg[]
678  *
679  * Return: the pointer to the memory areas in case of success, otherwise NULL
680  */
681 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
682 				 unsigned int crypto_ctx_size,
683 				 u8 **iv, struct aead_request **req,
684 				 struct scatterlist **sg, int nsg)
685 {
686 	unsigned int iv_size, req_size;
687 	unsigned int len;
688 	u8 *mem;
689 
690 	iv_size = crypto_aead_ivsize(tfm);
691 	req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
692 
693 	len = crypto_ctx_size;
694 	len += iv_size;
695 	len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
696 	len = ALIGN(len, crypto_tfm_ctx_alignment());
697 	len += req_size;
698 	len = ALIGN(len, __alignof__(struct scatterlist));
699 	len += nsg * sizeof(**sg);
700 
701 	mem = kmalloc(len, GFP_ATOMIC);
702 	if (!mem)
703 		return NULL;
704 
705 	*iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
706 			      crypto_aead_alignmask(tfm) + 1);
707 	*req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
708 						crypto_tfm_ctx_alignment());
709 	*sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
710 					      __alignof__(struct scatterlist));
711 
712 	return (void *)mem;
713 }
714 
715 /**
716  * tipc_aead_encrypt - Encrypt a message
717  * @aead: TIPC AEAD key for the message encryption
718  * @skb: the input/output skb
719  * @b: TIPC bearer where the message will be delivered after the encryption
720  * @dst: the destination media address
721  * @__dnode: TIPC dest node if "known"
722  *
723  * Return:
724  * * 0                   : if the encryption has completed
725  * * -EINPROGRESS/-EBUSY : if a callback will be performed
726  * * < 0                 : the encryption has failed
727  */
728 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
729 			     struct tipc_bearer *b,
730 			     struct tipc_media_addr *dst,
731 			     struct tipc_node *__dnode)
732 {
733 	struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
734 	struct tipc_crypto_tx_ctx *tx_ctx;
735 	struct aead_request *req;
736 	struct sk_buff *trailer;
737 	struct scatterlist *sg;
738 	struct tipc_ehdr *ehdr;
739 	int ehsz, len, tailen, nsg, rc;
740 	void *ctx;
741 	u32 salt;
742 	u8 *iv;
743 
744 	/* Make sure message len at least 4-byte aligned */
745 	len = ALIGN(skb->len, 4);
746 	tailen = len - skb->len + aead->authsize;
747 
748 	/* Expand skb tail for authentication tag:
749 	 * As for simplicity, we'd have made sure skb having enough tailroom
750 	 * for authentication tag @skb allocation. Even when skb is nonlinear
751 	 * but there is no frag_list, it should be still fine!
752 	 * Otherwise, we must cow it to be a writable buffer with the tailroom.
753 	 */
754 	SKB_LINEAR_ASSERT(skb);
755 	if (tailen > skb_tailroom(skb)) {
756 		pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n",
757 			 skb_tailroom(skb), tailen);
758 	}
759 
760 	if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) {
761 		nsg = 1;
762 		trailer = skb;
763 	} else {
764 		/* TODO: We could avoid skb_cow_data() if skb has no frag_list
765 		 * e.g. by skb_fill_page_desc() to add another page to the skb
766 		 * with the wanted tailen... However, page skbs look not often,
767 		 * so take it easy now!
768 		 * Cloned skbs e.g. from link_xmit() seems no choice though :(
769 		 */
770 		nsg = skb_cow_data(skb, tailen, &trailer);
771 		if (unlikely(nsg < 0)) {
772 			pr_err("TX: skb_cow_data() returned %d\n", nsg);
773 			return nsg;
774 		}
775 	}
776 
777 	pskb_put(skb, trailer, tailen);
778 
779 	/* Allocate memory for the AEAD operation */
780 	ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
781 	if (unlikely(!ctx))
782 		return -ENOMEM;
783 	TIPC_SKB_CB(skb)->crypto_ctx = ctx;
784 
785 	/* Map skb to the sg lists */
786 	sg_init_table(sg, nsg);
787 	rc = skb_to_sgvec(skb, sg, 0, skb->len);
788 	if (unlikely(rc < 0)) {
789 		pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
790 		goto exit;
791 	}
792 
793 	/* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
794 	 * In case we're in cluster-key mode, SALT is varied by xor-ing with
795 	 * the source address (or w0 of id), otherwise with the dest address
796 	 * if dest is known.
797 	 */
798 	ehdr = (struct tipc_ehdr *)skb->data;
799 	salt = aead->salt;
800 	if (aead->mode == CLUSTER_KEY)
801 		salt ^= ehdr->addr; /* __be32 */
802 	else if (__dnode)
803 		salt ^= tipc_node_get_addr(__dnode);
804 	memcpy(iv, &salt, 4);
805 	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
806 
807 	/* Prepare request */
808 	ehsz = tipc_ehdr_size(ehdr);
809 	aead_request_set_tfm(req, tfm);
810 	aead_request_set_ad(req, ehsz);
811 	aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
812 
813 	/* Set callback function & data */
814 	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
815 				  tipc_aead_encrypt_done, skb);
816 	tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
817 	tx_ctx->aead = aead;
818 	tx_ctx->bearer = b;
819 	memcpy(&tx_ctx->dst, dst, sizeof(*dst));
820 
821 	/* Hold bearer */
822 	if (unlikely(!tipc_bearer_hold(b))) {
823 		rc = -ENODEV;
824 		goto exit;
825 	}
826 
827 	/* Now, do encrypt */
828 	rc = crypto_aead_encrypt(req);
829 	if (rc == -EINPROGRESS || rc == -EBUSY)
830 		return rc;
831 
832 	tipc_bearer_put(b);
833 
834 exit:
835 	kfree(ctx);
836 	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
837 	return rc;
838 }
839 
840 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err)
841 {
842 	struct sk_buff *skb = base->data;
843 	struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
844 	struct tipc_bearer *b = tx_ctx->bearer;
845 	struct tipc_aead *aead = tx_ctx->aead;
846 	struct tipc_crypto *tx = aead->crypto;
847 	struct net *net = tx->net;
848 
849 	switch (err) {
850 	case 0:
851 		this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
852 		rcu_read_lock();
853 		if (likely(test_bit(0, &b->up)))
854 			b->media->send_msg(net, skb, b, &tx_ctx->dst);
855 		else
856 			kfree_skb(skb);
857 		rcu_read_unlock();
858 		break;
859 	case -EINPROGRESS:
860 		return;
861 	default:
862 		this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
863 		kfree_skb(skb);
864 		break;
865 	}
866 
867 	kfree(tx_ctx);
868 	tipc_bearer_put(b);
869 	tipc_aead_put(aead);
870 }
871 
872 /**
873  * tipc_aead_decrypt - Decrypt an encrypted message
874  * @net: struct net
875  * @aead: TIPC AEAD for the message decryption
876  * @skb: the input/output skb
877  * @b: TIPC bearer where the message has been received
878  *
879  * Return:
880  * * 0                   : if the decryption has completed
881  * * -EINPROGRESS/-EBUSY : if a callback will be performed
882  * * < 0                 : the decryption has failed
883  */
884 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
885 			     struct sk_buff *skb, struct tipc_bearer *b)
886 {
887 	struct tipc_crypto_rx_ctx *rx_ctx;
888 	struct aead_request *req;
889 	struct crypto_aead *tfm;
890 	struct sk_buff *unused;
891 	struct scatterlist *sg;
892 	struct tipc_ehdr *ehdr;
893 	int ehsz, nsg, rc;
894 	void *ctx;
895 	u32 salt;
896 	u8 *iv;
897 
898 	if (unlikely(!aead))
899 		return -ENOKEY;
900 
901 	/* Cow skb data if needed */
902 	if (likely(!skb_cloned(skb) &&
903 		   (!skb_is_nonlinear(skb) || !skb_has_frag_list(skb)))) {
904 		nsg = 1 + skb_shinfo(skb)->nr_frags;
905 	} else {
906 		nsg = skb_cow_data(skb, 0, &unused);
907 		if (unlikely(nsg < 0)) {
908 			pr_err("RX: skb_cow_data() returned %d\n", nsg);
909 			return nsg;
910 		}
911 	}
912 
913 	/* Allocate memory for the AEAD operation */
914 	tfm = tipc_aead_tfm_next(aead);
915 	ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
916 	if (unlikely(!ctx))
917 		return -ENOMEM;
918 	TIPC_SKB_CB(skb)->crypto_ctx = ctx;
919 
920 	/* Map skb to the sg lists */
921 	sg_init_table(sg, nsg);
922 	rc = skb_to_sgvec(skb, sg, 0, skb->len);
923 	if (unlikely(rc < 0)) {
924 		pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
925 		goto exit;
926 	}
927 
928 	/* Reconstruct IV: */
929 	ehdr = (struct tipc_ehdr *)skb->data;
930 	salt = aead->salt;
931 	if (aead->mode == CLUSTER_KEY)
932 		salt ^= ehdr->addr; /* __be32 */
933 	else if (ehdr->destined)
934 		salt ^= tipc_own_addr(net);
935 	memcpy(iv, &salt, 4);
936 	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
937 
938 	/* Prepare request */
939 	ehsz = tipc_ehdr_size(ehdr);
940 	aead_request_set_tfm(req, tfm);
941 	aead_request_set_ad(req, ehsz);
942 	aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
943 
944 	/* Set callback function & data */
945 	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
946 				  tipc_aead_decrypt_done, skb);
947 	rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
948 	rx_ctx->aead = aead;
949 	rx_ctx->bearer = b;
950 
951 	/* Hold bearer */
952 	if (unlikely(!tipc_bearer_hold(b))) {
953 		rc = -ENODEV;
954 		goto exit;
955 	}
956 
957 	/* Now, do decrypt */
958 	rc = crypto_aead_decrypt(req);
959 	if (rc == -EINPROGRESS || rc == -EBUSY)
960 		return rc;
961 
962 	tipc_bearer_put(b);
963 
964 exit:
965 	kfree(ctx);
966 	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
967 	return rc;
968 }
969 
970 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err)
971 {
972 	struct sk_buff *skb = base->data;
973 	struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
974 	struct tipc_bearer *b = rx_ctx->bearer;
975 	struct tipc_aead *aead = rx_ctx->aead;
976 	struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
977 	struct net *net = aead->crypto->net;
978 
979 	switch (err) {
980 	case 0:
981 		this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
982 		break;
983 	case -EINPROGRESS:
984 		return;
985 	default:
986 		this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
987 		break;
988 	}
989 
990 	kfree(rx_ctx);
991 	tipc_crypto_rcv_complete(net, aead, b, &skb, err);
992 	if (likely(skb)) {
993 		if (likely(test_bit(0, &b->up)))
994 			tipc_rcv(net, skb, b);
995 		else
996 			kfree_skb(skb);
997 	}
998 
999 	tipc_bearer_put(b);
1000 }
1001 
1002 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
1003 {
1004 	return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
1005 }
1006 
1007 /**
1008  * tipc_ehdr_validate - Validate an encryption message
1009  * @skb: the message buffer
1010  *
1011  * Return: "true" if this is a valid encryption message, otherwise "false"
1012  */
1013 bool tipc_ehdr_validate(struct sk_buff *skb)
1014 {
1015 	struct tipc_ehdr *ehdr;
1016 	int ehsz;
1017 
1018 	if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
1019 		return false;
1020 
1021 	ehdr = (struct tipc_ehdr *)skb->data;
1022 	if (unlikely(ehdr->version != TIPC_EVERSION))
1023 		return false;
1024 	ehsz = tipc_ehdr_size(ehdr);
1025 	if (unlikely(!pskb_may_pull(skb, ehsz)))
1026 		return false;
1027 	if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
1028 		return false;
1029 
1030 	return true;
1031 }
1032 
1033 /**
1034  * tipc_ehdr_build - Build TIPC encryption message header
1035  * @net: struct net
1036  * @aead: TX AEAD key to be used for the message encryption
1037  * @tx_key: key id used for the message encryption
1038  * @skb: input/output message skb
1039  * @__rx: RX crypto handle if dest is "known"
1040  *
1041  * Return: the header size if the building is successful, otherwise < 0
1042  */
1043 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
1044 			   u8 tx_key, struct sk_buff *skb,
1045 			   struct tipc_crypto *__rx)
1046 {
1047 	struct tipc_msg *hdr = buf_msg(skb);
1048 	struct tipc_ehdr *ehdr;
1049 	u32 user = msg_user(hdr);
1050 	u64 seqno;
1051 	int ehsz;
1052 
1053 	/* Make room for encryption header */
1054 	ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
1055 	WARN_ON(skb_headroom(skb) < ehsz);
1056 	ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
1057 
1058 	/* Obtain a seqno first:
1059 	 * Use the key seqno (= cluster wise) if dest is unknown or we're in
1060 	 * cluster key mode, otherwise it's better for a per-peer seqno!
1061 	 */
1062 	if (!__rx || aead->mode == CLUSTER_KEY)
1063 		seqno = atomic64_inc_return(&aead->seqno);
1064 	else
1065 		seqno = atomic64_inc_return(&__rx->sndnxt);
1066 
1067 	/* Revoke the key if seqno is wrapped around */
1068 	if (unlikely(!seqno))
1069 		return tipc_crypto_key_revoke(net, tx_key);
1070 
1071 	/* Word 1-2 */
1072 	ehdr->seqno = cpu_to_be64(seqno);
1073 
1074 	/* Words 0, 3- */
1075 	ehdr->version = TIPC_EVERSION;
1076 	ehdr->user = 0;
1077 	ehdr->keepalive = 0;
1078 	ehdr->tx_key = tx_key;
1079 	ehdr->destined = (__rx) ? 1 : 0;
1080 	ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
1081 	ehdr->rx_nokey = (__rx) ? __rx->nokey : 0;
1082 	ehdr->master_key = aead->crypto->key_master;
1083 	ehdr->reserved_1 = 0;
1084 	ehdr->reserved_2 = 0;
1085 
1086 	switch (user) {
1087 	case LINK_CONFIG:
1088 		ehdr->user = LINK_CONFIG;
1089 		memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
1090 		break;
1091 	default:
1092 		if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
1093 			ehdr->user = LINK_PROTOCOL;
1094 			ehdr->keepalive = msg_is_keepalive(hdr);
1095 		}
1096 		ehdr->addr = hdr->hdr[3];
1097 		break;
1098 	}
1099 
1100 	return ehsz;
1101 }
1102 
1103 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1104 					     u8 new_passive,
1105 					     u8 new_active,
1106 					     u8 new_pending)
1107 {
1108 	struct tipc_key old = c->key;
1109 	char buf[32];
1110 
1111 	c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1112 		      ((new_active  & KEY_MASK) << (KEY_BITS)) |
1113 		      ((new_pending & KEY_MASK));
1114 
1115 	pr_debug("%s: key changing %s ::%pS\n", c->name,
1116 		 tipc_key_change_dump(old, c->key, buf),
1117 		 __builtin_return_address(0));
1118 }
1119 
1120 /**
1121  * tipc_crypto_key_init - Initiate a new user / AEAD key
1122  * @c: TIPC crypto to which new key is attached
1123  * @ukey: the user key
1124  * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1125  * @master_key: specify this is a cluster master key
1126  *
1127  * A new TIPC AEAD key will be allocated and initiated with the specified user
1128  * key, then attached to the TIPC crypto.
1129  *
1130  * Return: new key id in case of success, otherwise: < 0
1131  */
1132 int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1133 			 u8 mode, bool master_key)
1134 {
1135 	struct tipc_aead *aead = NULL;
1136 	int rc = 0;
1137 
1138 	/* Initiate with the new user key */
1139 	rc = tipc_aead_init(&aead, ukey, mode);
1140 
1141 	/* Attach it to the crypto */
1142 	if (likely(!rc)) {
1143 		rc = tipc_crypto_key_attach(c, aead, 0, master_key);
1144 		if (rc < 0)
1145 			tipc_aead_free(&aead->rcu);
1146 	}
1147 
1148 	return rc;
1149 }
1150 
1151 /**
1152  * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1153  * @c: TIPC crypto to which the new AEAD key is attached
1154  * @aead: the new AEAD key pointer
1155  * @pos: desired slot in the crypto key array, = 0 if any!
1156  * @master_key: specify this is a cluster master key
1157  *
1158  * Return: new key id in case of success, otherwise: -EBUSY
1159  */
1160 static int tipc_crypto_key_attach(struct tipc_crypto *c,
1161 				  struct tipc_aead *aead, u8 pos,
1162 				  bool master_key)
1163 {
1164 	struct tipc_key key;
1165 	int rc = -EBUSY;
1166 	u8 new_key;
1167 
1168 	spin_lock_bh(&c->lock);
1169 	key = c->key;
1170 	if (master_key) {
1171 		new_key = KEY_MASTER;
1172 		goto attach;
1173 	}
1174 	if (key.active && key.passive)
1175 		goto exit;
1176 	if (key.pending) {
1177 		if (tipc_aead_users(c->aead[key.pending]) > 0)
1178 			goto exit;
1179 		/* if (pos): ok with replacing, will be aligned when needed */
1180 		/* Replace it */
1181 		new_key = key.pending;
1182 	} else {
1183 		if (pos) {
1184 			if (key.active && pos != key_next(key.active)) {
1185 				key.passive = pos;
1186 				new_key = pos;
1187 				goto attach;
1188 			} else if (!key.active && !key.passive) {
1189 				key.pending = pos;
1190 				new_key = pos;
1191 				goto attach;
1192 			}
1193 		}
1194 		key.pending = key_next(key.active ?: key.passive);
1195 		new_key = key.pending;
1196 	}
1197 
1198 attach:
1199 	aead->crypto = c;
1200 	aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen;
1201 	tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1202 	if (likely(c->key.keys != key.keys))
1203 		tipc_crypto_key_set_state(c, key.passive, key.active,
1204 					  key.pending);
1205 	c->working = 1;
1206 	c->nokey = 0;
1207 	c->key_master |= master_key;
1208 	rc = new_key;
1209 
1210 exit:
1211 	spin_unlock_bh(&c->lock);
1212 	return rc;
1213 }
1214 
1215 void tipc_crypto_key_flush(struct tipc_crypto *c)
1216 {
1217 	struct tipc_crypto *tx, *rx;
1218 	int k;
1219 
1220 	spin_lock_bh(&c->lock);
1221 	if (is_rx(c)) {
1222 		/* Try to cancel pending work */
1223 		rx = c;
1224 		tx = tipc_net(rx->net)->crypto_tx;
1225 		if (cancel_delayed_work(&rx->work)) {
1226 			kfree(rx->skey);
1227 			rx->skey = NULL;
1228 			atomic_xchg(&rx->key_distr, 0);
1229 			tipc_node_put(rx->node);
1230 		}
1231 		/* RX stopping => decrease TX key users if any */
1232 		k = atomic_xchg(&rx->peer_rx_active, 0);
1233 		if (k) {
1234 			tipc_aead_users_dec(tx->aead[k], 0);
1235 			/* Mark the point TX key users changed */
1236 			tx->timer1 = jiffies;
1237 		}
1238 	}
1239 
1240 	c->flags = 0;
1241 	tipc_crypto_key_set_state(c, 0, 0, 0);
1242 	for (k = KEY_MIN; k <= KEY_MAX; k++)
1243 		tipc_crypto_key_detach(c->aead[k], &c->lock);
1244 	atomic64_set(&c->sndnxt, 0);
1245 	spin_unlock_bh(&c->lock);
1246 }
1247 
1248 /**
1249  * tipc_crypto_key_try_align - Align RX keys if possible
1250  * @rx: RX crypto handle
1251  * @new_pending: new pending slot if aligned (= TX key from peer)
1252  *
1253  * Peer has used an unknown key slot, this only happens when peer has left and
1254  * rejoned, or we are newcomer.
1255  * That means, there must be no active key but a pending key at unaligned slot.
1256  * If so, we try to move the pending key to the new slot.
1257  * Note: A potential passive key can exist, it will be shifted correspondingly!
1258  *
1259  * Return: "true" if key is successfully aligned, otherwise "false"
1260  */
1261 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1262 {
1263 	struct tipc_aead *tmp1, *tmp2 = NULL;
1264 	struct tipc_key key;
1265 	bool aligned = false;
1266 	u8 new_passive = 0;
1267 	int x;
1268 
1269 	spin_lock(&rx->lock);
1270 	key = rx->key;
1271 	if (key.pending == new_pending) {
1272 		aligned = true;
1273 		goto exit;
1274 	}
1275 	if (key.active)
1276 		goto exit;
1277 	if (!key.pending)
1278 		goto exit;
1279 	if (tipc_aead_users(rx->aead[key.pending]) > 0)
1280 		goto exit;
1281 
1282 	/* Try to "isolate" this pending key first */
1283 	tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1284 	if (!refcount_dec_if_one(&tmp1->refcnt))
1285 		goto exit;
1286 	rcu_assign_pointer(rx->aead[key.pending], NULL);
1287 
1288 	/* Move passive key if any */
1289 	if (key.passive) {
1290 		tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
1291 		x = (key.passive - key.pending + new_pending) % KEY_MAX;
1292 		new_passive = (x <= 0) ? x + KEY_MAX : x;
1293 	}
1294 
1295 	/* Re-allocate the key(s) */
1296 	tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1297 	rcu_assign_pointer(rx->aead[new_pending], tmp1);
1298 	if (new_passive)
1299 		rcu_assign_pointer(rx->aead[new_passive], tmp2);
1300 	refcount_set(&tmp1->refcnt, 1);
1301 	aligned = true;
1302 	pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending,
1303 			    new_pending);
1304 
1305 exit:
1306 	spin_unlock(&rx->lock);
1307 	return aligned;
1308 }
1309 
1310 /**
1311  * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1312  * @tx: TX crypto handle
1313  * @rx: RX crypto handle (can be NULL)
1314  * @skb: the message skb which will be decrypted later
1315  * @tx_key: peer TX key id
1316  *
1317  * This function looks up the existing TX keys and pick one which is suitable
1318  * for the message decryption, that must be a cluster key and not used before
1319  * on the same message (i.e. recursive).
1320  *
1321  * Return: the TX AEAD key handle in case of success, otherwise NULL
1322  */
1323 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1324 						 struct tipc_crypto *rx,
1325 						 struct sk_buff *skb,
1326 						 u8 tx_key)
1327 {
1328 	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1329 	struct tipc_aead *aead = NULL;
1330 	struct tipc_key key = tx->key;
1331 	u8 k, i = 0;
1332 
1333 	/* Initialize data if not yet */
1334 	if (!skb_cb->tx_clone_deferred) {
1335 		skb_cb->tx_clone_deferred = 1;
1336 		memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1337 	}
1338 
1339 	skb_cb->tx_clone_ctx.rx = rx;
1340 	if (++skb_cb->tx_clone_ctx.recurs > 2)
1341 		return NULL;
1342 
1343 	/* Pick one TX key */
1344 	spin_lock(&tx->lock);
1345 	if (tx_key == KEY_MASTER) {
1346 		aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock);
1347 		goto done;
1348 	}
1349 	do {
1350 		k = (i == 0) ? key.pending :
1351 			((i == 1) ? key.active : key.passive);
1352 		if (!k)
1353 			continue;
1354 		aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1355 		if (!aead)
1356 			continue;
1357 		if (aead->mode != CLUSTER_KEY ||
1358 		    aead == skb_cb->tx_clone_ctx.last) {
1359 			aead = NULL;
1360 			continue;
1361 		}
1362 		/* Ok, found one cluster key */
1363 		skb_cb->tx_clone_ctx.last = aead;
1364 		WARN_ON(skb->next);
1365 		skb->next = skb_clone(skb, GFP_ATOMIC);
1366 		if (unlikely(!skb->next))
1367 			pr_warn("Failed to clone skb for next round if any\n");
1368 		break;
1369 	} while (++i < 3);
1370 
1371 done:
1372 	if (likely(aead))
1373 		WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1374 	spin_unlock(&tx->lock);
1375 
1376 	return aead;
1377 }
1378 
1379 /**
1380  * tipc_crypto_key_synch: Synch own key data according to peer key status
1381  * @rx: RX crypto handle
1382  * @skb: TIPCv2 message buffer (incl. the ehdr from peer)
1383  *
1384  * This function updates the peer node related data as the peer RX active key
1385  * has changed, so the number of TX keys' users on this node are increased and
1386  * decreased correspondingly.
1387  *
1388  * It also considers if peer has no key, then we need to make own master key
1389  * (if any) taking over i.e. starting grace period and also trigger key
1390  * distributing process.
1391  *
1392  * The "per-peer" sndnxt is also reset when the peer key has switched.
1393  */
1394 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb)
1395 {
1396 	struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb);
1397 	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
1398 	struct tipc_msg *hdr = buf_msg(skb);
1399 	u32 self = tipc_own_addr(rx->net);
1400 	u8 cur, new;
1401 	unsigned long delay;
1402 
1403 	/* Update RX 'key_master' flag according to peer, also mark "legacy" if
1404 	 * a peer has no master key.
1405 	 */
1406 	rx->key_master = ehdr->master_key;
1407 	if (!rx->key_master)
1408 		tx->legacy_user = 1;
1409 
1410 	/* For later cases, apply only if message is destined to this node */
1411 	if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self)
1412 		return;
1413 
1414 	/* Case 1: Peer has no keys, let's make master key take over */
1415 	if (ehdr->rx_nokey) {
1416 		/* Set or extend grace period */
1417 		tx->timer2 = jiffies;
1418 		/* Schedule key distributing for the peer if not yet */
1419 		if (tx->key.keys &&
1420 		    !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) {
1421 			get_random_bytes(&delay, 2);
1422 			delay %= 5;
1423 			delay = msecs_to_jiffies(500 * ++delay);
1424 			if (queue_delayed_work(tx->wq, &rx->work, delay))
1425 				tipc_node_get(rx->node);
1426 		}
1427 	} else {
1428 		/* Cancel a pending key distributing if any */
1429 		atomic_xchg(&rx->key_distr, 0);
1430 	}
1431 
1432 	/* Case 2: Peer RX active key has changed, let's update own TX users */
1433 	cur = atomic_read(&rx->peer_rx_active);
1434 	new = ehdr->rx_key_active;
1435 	if (tx->key.keys &&
1436 	    cur != new &&
1437 	    atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) {
1438 		if (new)
1439 			tipc_aead_users_inc(tx->aead[new], INT_MAX);
1440 		if (cur)
1441 			tipc_aead_users_dec(tx->aead[cur], 0);
1442 
1443 		atomic64_set(&rx->sndnxt, 0);
1444 		/* Mark the point TX key users changed */
1445 		tx->timer1 = jiffies;
1446 
1447 		pr_debug("%s: key users changed %d-- %d++, peer %s\n",
1448 			 tx->name, cur, new, rx->name);
1449 	}
1450 }
1451 
1452 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1453 {
1454 	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1455 	struct tipc_key key;
1456 
1457 	spin_lock(&tx->lock);
1458 	key = tx->key;
1459 	WARN_ON(!key.active || tx_key != key.active);
1460 
1461 	/* Free the active key */
1462 	tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1463 	tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1464 	spin_unlock(&tx->lock);
1465 
1466 	pr_warn("%s: key is revoked\n", tx->name);
1467 	return -EKEYREVOKED;
1468 }
1469 
1470 int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1471 		      struct tipc_node *node)
1472 {
1473 	struct tipc_crypto *c;
1474 
1475 	if (*crypto)
1476 		return -EEXIST;
1477 
1478 	/* Allocate crypto */
1479 	c = kzalloc(sizeof(*c), GFP_ATOMIC);
1480 	if (!c)
1481 		return -ENOMEM;
1482 
1483 	/* Allocate workqueue on TX */
1484 	if (!node) {
1485 		c->wq = alloc_ordered_workqueue("tipc_crypto", 0);
1486 		if (!c->wq) {
1487 			kfree(c);
1488 			return -ENOMEM;
1489 		}
1490 	}
1491 
1492 	/* Allocate statistic structure */
1493 	c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1494 	if (!c->stats) {
1495 		kfree_sensitive(c);
1496 		return -ENOMEM;
1497 	}
1498 
1499 	c->flags = 0;
1500 	c->net = net;
1501 	c->node = node;
1502 	get_random_bytes(&c->key_gen, 2);
1503 	tipc_crypto_key_set_state(c, 0, 0, 0);
1504 	atomic_set(&c->key_distr, 0);
1505 	atomic_set(&c->peer_rx_active, 0);
1506 	atomic64_set(&c->sndnxt, 0);
1507 	c->timer1 = jiffies;
1508 	c->timer2 = jiffies;
1509 	c->rekeying_intv = TIPC_REKEYING_INTV_DEF;
1510 	spin_lock_init(&c->lock);
1511 	scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX",
1512 		  (is_rx(c)) ? tipc_node_get_id_str(c->node) :
1513 			       tipc_own_id_string(c->net));
1514 
1515 	if (is_rx(c))
1516 		INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx);
1517 	else
1518 		INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx);
1519 
1520 	*crypto = c;
1521 	return 0;
1522 }
1523 
1524 void tipc_crypto_stop(struct tipc_crypto **crypto)
1525 {
1526 	struct tipc_crypto *c = *crypto;
1527 	u8 k;
1528 
1529 	if (!c)
1530 		return;
1531 
1532 	/* Flush any queued works & destroy wq */
1533 	if (is_tx(c)) {
1534 		c->rekeying_intv = 0;
1535 		cancel_delayed_work_sync(&c->work);
1536 		destroy_workqueue(c->wq);
1537 	}
1538 
1539 	/* Release AEAD keys */
1540 	rcu_read_lock();
1541 	for (k = KEY_MIN; k <= KEY_MAX; k++)
1542 		tipc_aead_put(rcu_dereference(c->aead[k]));
1543 	rcu_read_unlock();
1544 	pr_debug("%s: has been stopped\n", c->name);
1545 
1546 	/* Free this crypto statistics */
1547 	free_percpu(c->stats);
1548 
1549 	*crypto = NULL;
1550 	kfree_sensitive(c);
1551 }
1552 
1553 void tipc_crypto_timeout(struct tipc_crypto *rx)
1554 {
1555 	struct tipc_net *tn = tipc_net(rx->net);
1556 	struct tipc_crypto *tx = tn->crypto_tx;
1557 	struct tipc_key key;
1558 	int cmd;
1559 
1560 	/* TX pending: taking all users & stable -> active */
1561 	spin_lock(&tx->lock);
1562 	key = tx->key;
1563 	if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1564 		goto s1;
1565 	if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1566 		goto s1;
1567 	if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME))
1568 		goto s1;
1569 
1570 	tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1571 	if (key.active)
1572 		tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1573 	this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1574 	pr_info("%s: key[%d] is activated\n", tx->name, key.pending);
1575 
1576 s1:
1577 	spin_unlock(&tx->lock);
1578 
1579 	/* RX pending: having user -> active */
1580 	spin_lock(&rx->lock);
1581 	key = rx->key;
1582 	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1583 		goto s2;
1584 
1585 	if (key.active)
1586 		key.passive = key.active;
1587 	key.active = key.pending;
1588 	rx->timer2 = jiffies;
1589 	tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1590 	this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1591 	pr_info("%s: key[%d] is activated\n", rx->name, key.pending);
1592 	goto s5;
1593 
1594 s2:
1595 	/* RX pending: not working -> remove */
1596 	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10)
1597 		goto s3;
1598 
1599 	tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1600 	tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock);
1601 	pr_debug("%s: key[%d] is removed\n", rx->name, key.pending);
1602 	goto s5;
1603 
1604 s3:
1605 	/* RX active: timed out or no user -> pending */
1606 	if (!key.active)
1607 		goto s4;
1608 	if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) &&
1609 	    tipc_aead_users(rx->aead[key.active]) > 0)
1610 		goto s4;
1611 
1612 	if (key.pending)
1613 		key.passive = key.active;
1614 	else
1615 		key.pending = key.active;
1616 	rx->timer2 = jiffies;
1617 	tipc_crypto_key_set_state(rx, key.passive, 0, key.pending);
1618 	tipc_aead_users_set(rx->aead[key.pending], 0);
1619 	pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active);
1620 	goto s5;
1621 
1622 s4:
1623 	/* RX passive: outdated or not working -> free */
1624 	if (!key.passive)
1625 		goto s5;
1626 	if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) &&
1627 	    tipc_aead_users(rx->aead[key.passive]) > -10)
1628 		goto s5;
1629 
1630 	tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1631 	tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1632 	pr_debug("%s: key[%d] is freed\n", rx->name, key.passive);
1633 
1634 s5:
1635 	spin_unlock(&rx->lock);
1636 
1637 	/* Relax it here, the flag will be set again if it really is, but only
1638 	 * when we are not in grace period for safety!
1639 	 */
1640 	if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD))
1641 		tx->legacy_user = 0;
1642 
1643 	/* Limit max_tfms & do debug commands if needed */
1644 	if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1645 		return;
1646 
1647 	cmd = sysctl_tipc_max_tfms;
1648 	sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1649 	tipc_crypto_do_cmd(rx->net, cmd);
1650 }
1651 
1652 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
1653 					 struct tipc_bearer *b,
1654 					 struct tipc_media_addr *dst,
1655 					 struct tipc_node *__dnode, u8 type)
1656 {
1657 	struct sk_buff *skb;
1658 
1659 	skb = skb_clone(_skb, GFP_ATOMIC);
1660 	if (skb) {
1661 		TIPC_SKB_CB(skb)->xmit_type = type;
1662 		tipc_crypto_xmit(net, &skb, b, dst, __dnode);
1663 		if (skb)
1664 			b->media->send_msg(net, skb, b, dst);
1665 	}
1666 }
1667 
1668 /**
1669  * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1670  * @net: struct net
1671  * @skb: input/output message skb pointer
1672  * @b: bearer used for xmit later
1673  * @dst: destination media address
1674  * @__dnode: destination node for reference if any
1675  *
1676  * First, build an encryption message header on the top of the message, then
1677  * encrypt the original TIPC message by using the pending, master or active
1678  * key with this preference order.
1679  * If the encryption is successful, the encrypted skb is returned directly or
1680  * via the callback.
1681  * Otherwise, the skb is freed!
1682  *
1683  * Return:
1684  * * 0                   : the encryption has succeeded (or no encryption)
1685  * * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1686  * * -ENOKEK             : the encryption has failed due to no key
1687  * * -EKEYREVOKED        : the encryption has failed due to key revoked
1688  * * -ENOMEM             : the encryption has failed due to no memory
1689  * * < 0                 : the encryption has failed due to other reasons
1690  */
1691 int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1692 		     struct tipc_bearer *b, struct tipc_media_addr *dst,
1693 		     struct tipc_node *__dnode)
1694 {
1695 	struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1696 	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1697 	struct tipc_crypto_stats __percpu *stats = tx->stats;
1698 	struct tipc_msg *hdr = buf_msg(*skb);
1699 	struct tipc_key key = tx->key;
1700 	struct tipc_aead *aead = NULL;
1701 	u32 user = msg_user(hdr);
1702 	u32 type = msg_type(hdr);
1703 	int rc = -ENOKEY;
1704 	u8 tx_key = 0;
1705 
1706 	/* No encryption? */
1707 	if (!tx->working)
1708 		return 0;
1709 
1710 	/* Pending key if peer has active on it or probing time */
1711 	if (unlikely(key.pending)) {
1712 		tx_key = key.pending;
1713 		if (!tx->key_master && !key.active)
1714 			goto encrypt;
1715 		if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1716 			goto encrypt;
1717 		if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) {
1718 			pr_debug("%s: probing for key[%d]\n", tx->name,
1719 				 key.pending);
1720 			goto encrypt;
1721 		}
1722 		if (user == LINK_CONFIG || user == LINK_PROTOCOL)
1723 			tipc_crypto_clone_msg(net, *skb, b, dst, __dnode,
1724 					      SKB_PROBING);
1725 	}
1726 
1727 	/* Master key if this is a *vital* message or in grace period */
1728 	if (tx->key_master) {
1729 		tx_key = KEY_MASTER;
1730 		if (!key.active)
1731 			goto encrypt;
1732 		if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) {
1733 			pr_debug("%s: gracing for msg (%d %d)\n", tx->name,
1734 				 user, type);
1735 			goto encrypt;
1736 		}
1737 		if (user == LINK_CONFIG ||
1738 		    (user == LINK_PROTOCOL && type == RESET_MSG) ||
1739 		    (user == MSG_CRYPTO && type == KEY_DISTR_MSG) ||
1740 		    time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) {
1741 			if (__rx && __rx->key_master &&
1742 			    !atomic_read(&__rx->peer_rx_active))
1743 				goto encrypt;
1744 			if (!__rx) {
1745 				if (likely(!tx->legacy_user))
1746 					goto encrypt;
1747 				tipc_crypto_clone_msg(net, *skb, b, dst,
1748 						      __dnode, SKB_GRACING);
1749 			}
1750 		}
1751 	}
1752 
1753 	/* Else, use the active key if any */
1754 	if (likely(key.active)) {
1755 		tx_key = key.active;
1756 		goto encrypt;
1757 	}
1758 
1759 	goto exit;
1760 
1761 encrypt:
1762 	aead = tipc_aead_get(tx->aead[tx_key]);
1763 	if (unlikely(!aead))
1764 		goto exit;
1765 	rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1766 	if (likely(rc > 0))
1767 		rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1768 
1769 exit:
1770 	switch (rc) {
1771 	case 0:
1772 		this_cpu_inc(stats->stat[STAT_OK]);
1773 		break;
1774 	case -EINPROGRESS:
1775 	case -EBUSY:
1776 		this_cpu_inc(stats->stat[STAT_ASYNC]);
1777 		*skb = NULL;
1778 		return rc;
1779 	default:
1780 		this_cpu_inc(stats->stat[STAT_NOK]);
1781 		if (rc == -ENOKEY)
1782 			this_cpu_inc(stats->stat[STAT_NOKEYS]);
1783 		else if (rc == -EKEYREVOKED)
1784 			this_cpu_inc(stats->stat[STAT_BADKEYS]);
1785 		kfree_skb(*skb);
1786 		*skb = NULL;
1787 		break;
1788 	}
1789 
1790 	tipc_aead_put(aead);
1791 	return rc;
1792 }
1793 
1794 /**
1795  * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1796  * @net: struct net
1797  * @rx: RX crypto handle
1798  * @skb: input/output message skb pointer
1799  * @b: bearer where the message has been received
1800  *
1801  * If the decryption is successful, the decrypted skb is returned directly or
1802  * as the callback, the encryption header and auth tag will be trimed out
1803  * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1804  * Otherwise, the skb will be freed!
1805  * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1806  * cluster key(s) can be taken for decryption (- recursive).
1807  *
1808  * Return:
1809  * * 0                   : the decryption has successfully completed
1810  * * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1811  * * -ENOKEY             : the decryption has failed due to no key
1812  * * -EBADMSG            : the decryption has failed due to bad message
1813  * * -ENOMEM             : the decryption has failed due to no memory
1814  * * < 0                 : the decryption has failed due to other reasons
1815  */
1816 int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1817 		    struct sk_buff **skb, struct tipc_bearer *b)
1818 {
1819 	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1820 	struct tipc_crypto_stats __percpu *stats;
1821 	struct tipc_aead *aead = NULL;
1822 	struct tipc_key key;
1823 	int rc = -ENOKEY;
1824 	u8 tx_key, n;
1825 
1826 	tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1827 
1828 	/* New peer?
1829 	 * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1830 	 */
1831 	if (unlikely(!rx || tx_key == KEY_MASTER))
1832 		goto pick_tx;
1833 
1834 	/* Pick RX key according to TX key if any */
1835 	key = rx->key;
1836 	if (tx_key == key.active || tx_key == key.pending ||
1837 	    tx_key == key.passive)
1838 		goto decrypt;
1839 
1840 	/* Unknown key, let's try to align RX key(s) */
1841 	if (tipc_crypto_key_try_align(rx, tx_key))
1842 		goto decrypt;
1843 
1844 pick_tx:
1845 	/* No key suitable? Try to pick one from TX... */
1846 	aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key);
1847 	if (aead)
1848 		goto decrypt;
1849 	goto exit;
1850 
1851 decrypt:
1852 	rcu_read_lock();
1853 	if (!aead)
1854 		aead = tipc_aead_get(rx->aead[tx_key]);
1855 	rc = tipc_aead_decrypt(net, aead, *skb, b);
1856 	rcu_read_unlock();
1857 
1858 exit:
1859 	stats = ((rx) ?: tx)->stats;
1860 	switch (rc) {
1861 	case 0:
1862 		this_cpu_inc(stats->stat[STAT_OK]);
1863 		break;
1864 	case -EINPROGRESS:
1865 	case -EBUSY:
1866 		this_cpu_inc(stats->stat[STAT_ASYNC]);
1867 		*skb = NULL;
1868 		return rc;
1869 	default:
1870 		this_cpu_inc(stats->stat[STAT_NOK]);
1871 		if (rc == -ENOKEY) {
1872 			kfree_skb(*skb);
1873 			*skb = NULL;
1874 			if (rx) {
1875 				/* Mark rx->nokey only if we dont have a
1876 				 * pending received session key, nor a newer
1877 				 * one i.e. in the next slot.
1878 				 */
1879 				n = key_next(tx_key);
1880 				rx->nokey = !(rx->skey ||
1881 					      rcu_access_pointer(rx->aead[n]));
1882 				pr_debug_ratelimited("%s: nokey %d, key %d/%x\n",
1883 						     rx->name, rx->nokey,
1884 						     tx_key, rx->key.keys);
1885 				tipc_node_put(rx->node);
1886 			}
1887 			this_cpu_inc(stats->stat[STAT_NOKEYS]);
1888 			return rc;
1889 		} else if (rc == -EBADMSG) {
1890 			this_cpu_inc(stats->stat[STAT_BADMSGS]);
1891 		}
1892 		break;
1893 	}
1894 
1895 	tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1896 	return rc;
1897 }
1898 
1899 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1900 				     struct tipc_bearer *b,
1901 				     struct sk_buff **skb, int err)
1902 {
1903 	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1904 	struct tipc_crypto *rx = aead->crypto;
1905 	struct tipc_aead *tmp = NULL;
1906 	struct tipc_ehdr *ehdr;
1907 	struct tipc_node *n;
1908 
1909 	/* Is this completed by TX? */
1910 	if (unlikely(is_tx(aead->crypto))) {
1911 		rx = skb_cb->tx_clone_ctx.rx;
1912 		pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1913 			 (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1914 			 (*skb)->next, skb_cb->flags);
1915 		pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1916 			 skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1917 			 aead->crypto->aead[1], aead->crypto->aead[2],
1918 			 aead->crypto->aead[3]);
1919 		if (unlikely(err)) {
1920 			if (err == -EBADMSG && (*skb)->next)
1921 				tipc_rcv(net, (*skb)->next, b);
1922 			goto free_skb;
1923 		}
1924 
1925 		if (likely((*skb)->next)) {
1926 			kfree_skb((*skb)->next);
1927 			(*skb)->next = NULL;
1928 		}
1929 		ehdr = (struct tipc_ehdr *)(*skb)->data;
1930 		if (!rx) {
1931 			WARN_ON(ehdr->user != LINK_CONFIG);
1932 			n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1933 					     true);
1934 			rx = tipc_node_crypto_rx(n);
1935 			if (unlikely(!rx))
1936 				goto free_skb;
1937 		}
1938 
1939 		/* Ignore cloning if it was TX master key */
1940 		if (ehdr->tx_key == KEY_MASTER)
1941 			goto rcv;
1942 		if (tipc_aead_clone(&tmp, aead) < 0)
1943 			goto rcv;
1944 		if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) {
1945 			tipc_aead_free(&tmp->rcu);
1946 			goto rcv;
1947 		}
1948 		tipc_aead_put(aead);
1949 		aead = tipc_aead_get(tmp);
1950 	}
1951 
1952 	if (unlikely(err)) {
1953 		tipc_aead_users_dec(aead, INT_MIN);
1954 		goto free_skb;
1955 	}
1956 
1957 	/* Set the RX key's user */
1958 	tipc_aead_users_set(aead, 1);
1959 
1960 	/* Mark this point, RX works */
1961 	rx->timer1 = jiffies;
1962 
1963 rcv:
1964 	/* Remove ehdr & auth. tag prior to tipc_rcv() */
1965 	ehdr = (struct tipc_ehdr *)(*skb)->data;
1966 
1967 	/* Mark this point, RX passive still works */
1968 	if (rx->key.passive && ehdr->tx_key == rx->key.passive)
1969 		rx->timer2 = jiffies;
1970 
1971 	skb_reset_network_header(*skb);
1972 	skb_pull(*skb, tipc_ehdr_size(ehdr));
1973 	pskb_trim(*skb, (*skb)->len - aead->authsize);
1974 
1975 	/* Validate TIPCv2 message */
1976 	if (unlikely(!tipc_msg_validate(skb))) {
1977 		pr_err_ratelimited("Packet dropped after decryption!\n");
1978 		goto free_skb;
1979 	}
1980 
1981 	/* Ok, everything's fine, try to synch own keys according to peers' */
1982 	tipc_crypto_key_synch(rx, *skb);
1983 
1984 	/* Mark skb decrypted */
1985 	skb_cb->decrypted = 1;
1986 
1987 	/* Clear clone cxt if any */
1988 	if (likely(!skb_cb->tx_clone_deferred))
1989 		goto exit;
1990 	skb_cb->tx_clone_deferred = 0;
1991 	memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1992 	goto exit;
1993 
1994 free_skb:
1995 	kfree_skb(*skb);
1996 	*skb = NULL;
1997 
1998 exit:
1999 	tipc_aead_put(aead);
2000 	if (rx)
2001 		tipc_node_put(rx->node);
2002 }
2003 
2004 static void tipc_crypto_do_cmd(struct net *net, int cmd)
2005 {
2006 	struct tipc_net *tn = tipc_net(net);
2007 	struct tipc_crypto *tx = tn->crypto_tx, *rx;
2008 	struct list_head *p;
2009 	unsigned int stat;
2010 	int i, j, cpu;
2011 	char buf[200];
2012 
2013 	/* Currently only one command is supported */
2014 	switch (cmd) {
2015 	case 0xfff1:
2016 		goto print_stats;
2017 	default:
2018 		return;
2019 	}
2020 
2021 print_stats:
2022 	/* Print a header */
2023 	pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
2024 
2025 	/* Print key status */
2026 	pr_info("Key status:\n");
2027 	pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
2028 		tipc_crypto_key_dump(tx, buf));
2029 
2030 	rcu_read_lock();
2031 	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2032 		rx = tipc_node_crypto_rx_by_list(p);
2033 		pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
2034 			tipc_crypto_key_dump(rx, buf));
2035 	}
2036 	rcu_read_unlock();
2037 
2038 	/* Print crypto statistics */
2039 	for (i = 0, j = 0; i < MAX_STATS; i++)
2040 		j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
2041 	pr_info("Counter     %s", buf);
2042 
2043 	memset(buf, '-', 115);
2044 	buf[115] = '\0';
2045 	pr_info("%s\n", buf);
2046 
2047 	j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
2048 	for_each_possible_cpu(cpu) {
2049 		for (i = 0; i < MAX_STATS; i++) {
2050 			stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
2051 			j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
2052 		}
2053 		pr_info("%s", buf);
2054 		j = scnprintf(buf, 200, "%12s", " ");
2055 	}
2056 
2057 	rcu_read_lock();
2058 	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2059 		rx = tipc_node_crypto_rx_by_list(p);
2060 		j = scnprintf(buf, 200, "RX(%7.7s) ",
2061 			      tipc_node_get_id_str(rx->node));
2062 		for_each_possible_cpu(cpu) {
2063 			for (i = 0; i < MAX_STATS; i++) {
2064 				stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
2065 				j += scnprintf(buf + j, 200 - j, "|%11d ",
2066 					       stat);
2067 			}
2068 			pr_info("%s", buf);
2069 			j = scnprintf(buf, 200, "%12s", " ");
2070 		}
2071 	}
2072 	rcu_read_unlock();
2073 
2074 	pr_info("\n======================== Done ========================\n");
2075 }
2076 
2077 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
2078 {
2079 	struct tipc_key key = c->key;
2080 	struct tipc_aead *aead;
2081 	int k, i = 0;
2082 	char *s;
2083 
2084 	for (k = KEY_MIN; k <= KEY_MAX; k++) {
2085 		if (k == KEY_MASTER) {
2086 			if (is_rx(c))
2087 				continue;
2088 			if (time_before(jiffies,
2089 					c->timer2 + TIPC_TX_GRACE_PERIOD))
2090 				s = "ACT";
2091 			else
2092 				s = "PAS";
2093 		} else {
2094 			if (k == key.passive)
2095 				s = "PAS";
2096 			else if (k == key.active)
2097 				s = "ACT";
2098 			else if (k == key.pending)
2099 				s = "PEN";
2100 			else
2101 				s = "-";
2102 		}
2103 		i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
2104 
2105 		rcu_read_lock();
2106 		aead = rcu_dereference(c->aead[k]);
2107 		if (aead)
2108 			i += scnprintf(buf + i, 200 - i,
2109 				       "{\"0x...%s\", \"%s\"}/%d:%d",
2110 				       aead->hint,
2111 				       (aead->mode == CLUSTER_KEY) ? "c" : "p",
2112 				       atomic_read(&aead->users),
2113 				       refcount_read(&aead->refcnt));
2114 		rcu_read_unlock();
2115 		i += scnprintf(buf + i, 200 - i, "\n");
2116 	}
2117 
2118 	if (is_rx(c))
2119 		i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
2120 			       atomic_read(&c->peer_rx_active));
2121 
2122 	return buf;
2123 }
2124 
2125 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
2126 				  char *buf)
2127 {
2128 	struct tipc_key *key = &old;
2129 	int k, i = 0;
2130 	char *s;
2131 
2132 	/* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
2133 again:
2134 	i += scnprintf(buf + i, 32 - i, "[");
2135 	for (k = KEY_1; k <= KEY_3; k++) {
2136 		if (k == key->passive)
2137 			s = "pas";
2138 		else if (k == key->active)
2139 			s = "act";
2140 		else if (k == key->pending)
2141 			s = "pen";
2142 		else
2143 			s = "-";
2144 		i += scnprintf(buf + i, 32 - i,
2145 			       (k != KEY_3) ? "%s " : "%s", s);
2146 	}
2147 	if (key != &new) {
2148 		i += scnprintf(buf + i, 32 - i, "] -> ");
2149 		key = &new;
2150 		goto again;
2151 	}
2152 	i += scnprintf(buf + i, 32 - i, "]");
2153 	return buf;
2154 }
2155 
2156 /**
2157  * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point
2158  * @net: the struct net
2159  * @skb: the receiving message buffer
2160  */
2161 void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb)
2162 {
2163 	struct tipc_crypto *rx;
2164 	struct tipc_msg *hdr;
2165 
2166 	if (unlikely(skb_linearize(skb)))
2167 		goto exit;
2168 
2169 	hdr = buf_msg(skb);
2170 	rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr));
2171 	if (unlikely(!rx))
2172 		goto exit;
2173 
2174 	switch (msg_type(hdr)) {
2175 	case KEY_DISTR_MSG:
2176 		if (tipc_crypto_key_rcv(rx, hdr))
2177 			goto exit;
2178 		break;
2179 	default:
2180 		break;
2181 	}
2182 
2183 	tipc_node_put(rx->node);
2184 
2185 exit:
2186 	kfree_skb(skb);
2187 }
2188 
2189 /**
2190  * tipc_crypto_key_distr - Distribute a TX key
2191  * @tx: the TX crypto
2192  * @key: the key's index
2193  * @dest: the destination tipc node, = NULL if distributing to all nodes
2194  *
2195  * Return: 0 in case of success, otherwise < 0
2196  */
2197 int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key,
2198 			  struct tipc_node *dest)
2199 {
2200 	struct tipc_aead *aead;
2201 	u32 dnode = tipc_node_get_addr(dest);
2202 	int rc = -ENOKEY;
2203 
2204 	if (!sysctl_tipc_key_exchange_enabled)
2205 		return 0;
2206 
2207 	if (key) {
2208 		rcu_read_lock();
2209 		aead = tipc_aead_get(tx->aead[key]);
2210 		if (likely(aead)) {
2211 			rc = tipc_crypto_key_xmit(tx->net, aead->key,
2212 						  aead->gen, aead->mode,
2213 						  dnode);
2214 			tipc_aead_put(aead);
2215 		}
2216 		rcu_read_unlock();
2217 	}
2218 
2219 	return rc;
2220 }
2221 
2222 /**
2223  * tipc_crypto_key_xmit - Send a session key
2224  * @net: the struct net
2225  * @skey: the session key to be sent
2226  * @gen: the key's generation
2227  * @mode: the key's mode
2228  * @dnode: the destination node address, = 0 if broadcasting to all nodes
2229  *
2230  * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG'
2231  * as its data section, then xmit-ed through the uc/bc link.
2232  *
2233  * Return: 0 in case of success, otherwise < 0
2234  */
2235 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
2236 				u16 gen, u8 mode, u32 dnode)
2237 {
2238 	struct sk_buff_head pkts;
2239 	struct tipc_msg *hdr;
2240 	struct sk_buff *skb;
2241 	u16 size, cong_link_cnt;
2242 	u8 *data;
2243 	int rc;
2244 
2245 	size = tipc_aead_key_size(skey);
2246 	skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC);
2247 	if (!skb)
2248 		return -ENOMEM;
2249 
2250 	hdr = buf_msg(skb);
2251 	tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG,
2252 		      INT_H_SIZE, dnode);
2253 	msg_set_size(hdr, INT_H_SIZE + size);
2254 	msg_set_key_gen(hdr, gen);
2255 	msg_set_key_mode(hdr, mode);
2256 
2257 	data = msg_data(hdr);
2258 	*((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen);
2259 	memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME);
2260 	memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key,
2261 	       skey->keylen);
2262 
2263 	__skb_queue_head_init(&pkts);
2264 	__skb_queue_tail(&pkts, skb);
2265 	if (dnode)
2266 		rc = tipc_node_xmit(net, &pkts, dnode, 0);
2267 	else
2268 		rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt);
2269 
2270 	return rc;
2271 }
2272 
2273 /**
2274  * tipc_crypto_key_rcv - Receive a session key
2275  * @rx: the RX crypto
2276  * @hdr: the TIPC v2 message incl. the receiving session key in its data
2277  *
2278  * This function retrieves the session key in the message from peer, then
2279  * schedules a RX work to attach the key to the corresponding RX crypto.
2280  *
2281  * Return: "true" if the key has been scheduled for attaching, otherwise
2282  * "false".
2283  */
2284 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
2285 {
2286 	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2287 	struct tipc_aead_key *skey = NULL;
2288 	u16 key_gen = msg_key_gen(hdr);
2289 	u16 size = msg_data_sz(hdr);
2290 	u8 *data = msg_data(hdr);
2291 
2292 	spin_lock(&rx->lock);
2293 	if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) {
2294 		pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name,
2295 		       rx->skey, key_gen, rx->key_gen);
2296 		goto exit;
2297 	}
2298 
2299 	/* Allocate memory for the key */
2300 	skey = kmalloc(size, GFP_ATOMIC);
2301 	if (unlikely(!skey)) {
2302 		pr_err("%s: unable to allocate memory for skey\n", rx->name);
2303 		goto exit;
2304 	}
2305 
2306 	/* Copy key from msg data */
2307 	skey->keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
2308 	memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME);
2309 	memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32),
2310 	       skey->keylen);
2311 
2312 	/* Sanity check */
2313 	if (unlikely(size != tipc_aead_key_size(skey))) {
2314 		kfree(skey);
2315 		skey = NULL;
2316 		goto exit;
2317 	}
2318 
2319 	rx->key_gen = key_gen;
2320 	rx->skey_mode = msg_key_mode(hdr);
2321 	rx->skey = skey;
2322 	rx->nokey = 0;
2323 	mb(); /* for nokey flag */
2324 
2325 exit:
2326 	spin_unlock(&rx->lock);
2327 
2328 	/* Schedule the key attaching on this crypto */
2329 	if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0)))
2330 		return true;
2331 
2332 	return false;
2333 }
2334 
2335 /**
2336  * tipc_crypto_work_rx - Scheduled RX works handler
2337  * @work: the struct RX work
2338  *
2339  * The function processes the previous scheduled works i.e. distributing TX key
2340  * or attaching a received session key on RX crypto.
2341  */
2342 static void tipc_crypto_work_rx(struct work_struct *work)
2343 {
2344 	struct delayed_work *dwork = to_delayed_work(work);
2345 	struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work);
2346 	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2347 	unsigned long delay = msecs_to_jiffies(5000);
2348 	bool resched = false;
2349 	u8 key;
2350 	int rc;
2351 
2352 	/* Case 1: Distribute TX key to peer if scheduled */
2353 	if (atomic_cmpxchg(&rx->key_distr,
2354 			   KEY_DISTR_SCHED,
2355 			   KEY_DISTR_COMPL) == KEY_DISTR_SCHED) {
2356 		/* Always pick the newest one for distributing */
2357 		key = tx->key.pending ?: tx->key.active;
2358 		rc = tipc_crypto_key_distr(tx, key, rx->node);
2359 		if (unlikely(rc))
2360 			pr_warn("%s: unable to distr key[%d] to %s, err %d\n",
2361 				tx->name, key, tipc_node_get_id_str(rx->node),
2362 				rc);
2363 
2364 		/* Sched for key_distr releasing */
2365 		resched = true;
2366 	} else {
2367 		atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0);
2368 	}
2369 
2370 	/* Case 2: Attach a pending received session key from peer if any */
2371 	if (rx->skey) {
2372 		rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false);
2373 		if (unlikely(rc < 0))
2374 			pr_warn("%s: unable to attach received skey, err %d\n",
2375 				rx->name, rc);
2376 		switch (rc) {
2377 		case -EBUSY:
2378 		case -ENOMEM:
2379 			/* Resched the key attaching */
2380 			resched = true;
2381 			break;
2382 		default:
2383 			synchronize_rcu();
2384 			kfree(rx->skey);
2385 			rx->skey = NULL;
2386 			break;
2387 		}
2388 	}
2389 
2390 	if (resched && queue_delayed_work(tx->wq, &rx->work, delay))
2391 		return;
2392 
2393 	tipc_node_put(rx->node);
2394 }
2395 
2396 /**
2397  * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval
2398  * @tx: TX crypto
2399  * @changed: if the rekeying needs to be rescheduled with new interval
2400  * @new_intv: new rekeying interval (when "changed" = true)
2401  */
2402 void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed,
2403 				u32 new_intv)
2404 {
2405 	unsigned long delay;
2406 	bool now = false;
2407 
2408 	if (changed) {
2409 		if (new_intv == TIPC_REKEYING_NOW)
2410 			now = true;
2411 		else
2412 			tx->rekeying_intv = new_intv;
2413 		cancel_delayed_work_sync(&tx->work);
2414 	}
2415 
2416 	if (tx->rekeying_intv || now) {
2417 		delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000;
2418 		queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay));
2419 	}
2420 }
2421 
2422 /**
2423  * tipc_crypto_work_tx - Scheduled TX works handler
2424  * @work: the struct TX work
2425  *
2426  * The function processes the previous scheduled work, i.e. key rekeying, by
2427  * generating a new session key based on current one, then attaching it to the
2428  * TX crypto and finally distributing it to peers. It also re-schedules the
2429  * rekeying if needed.
2430  */
2431 static void tipc_crypto_work_tx(struct work_struct *work)
2432 {
2433 	struct delayed_work *dwork = to_delayed_work(work);
2434 	struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work);
2435 	struct tipc_aead_key *skey = NULL;
2436 	struct tipc_key key = tx->key;
2437 	struct tipc_aead *aead;
2438 	int rc = -ENOMEM;
2439 
2440 	if (unlikely(key.pending))
2441 		goto resched;
2442 
2443 	/* Take current key as a template */
2444 	rcu_read_lock();
2445 	aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]);
2446 	if (unlikely(!aead)) {
2447 		rcu_read_unlock();
2448 		/* At least one key should exist for securing */
2449 		return;
2450 	}
2451 
2452 	/* Lets duplicate it first */
2453 	skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC);
2454 	rcu_read_unlock();
2455 
2456 	/* Now, generate new key, initiate & distribute it */
2457 	if (likely(skey)) {
2458 		rc = tipc_aead_key_generate(skey) ?:
2459 		     tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false);
2460 		if (likely(rc > 0))
2461 			rc = tipc_crypto_key_distr(tx, rc, NULL);
2462 		kfree_sensitive(skey);
2463 	}
2464 
2465 	if (unlikely(rc))
2466 		pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc);
2467 
2468 resched:
2469 	/* Re-schedule rekeying if any */
2470 	tipc_crypto_rekeying_sched(tx, false, 0);
2471 }
2472