xref: /openbmc/linux/net/tipc/crypto.c (revision b625fe69)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
4  *
5  * Copyright (c) 2019, Ericsson AB
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the names of the copyright holders nor the names of its
17  *    contributors may be used to endorse or promote products derived from
18  *    this software without specific prior written permission.
19  *
20  * Alternatively, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") version 2 as published by the Free
22  * Software Foundation.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
28  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #include <crypto/aead.h>
38 #include <crypto/aes.h>
39 #include <crypto/rng.h>
40 #include "crypto.h"
41 #include "msg.h"
42 #include "bcast.h"
43 
44 #define TIPC_TX_GRACE_PERIOD	msecs_to_jiffies(5000) /* 5s */
45 #define TIPC_TX_LASTING_TIME	msecs_to_jiffies(10000) /* 10s */
46 #define TIPC_RX_ACTIVE_LIM	msecs_to_jiffies(3000) /* 3s */
47 #define TIPC_RX_PASSIVE_LIM	msecs_to_jiffies(15000) /* 15s */
48 
49 #define TIPC_MAX_TFMS_DEF	10
50 #define TIPC_MAX_TFMS_LIM	1000
51 
52 #define TIPC_REKEYING_INTV_DEF	(60 * 24) /* default: 1 day */
53 
54 /*
55  * TIPC Key ids
56  */
57 enum {
58 	KEY_MASTER = 0,
59 	KEY_MIN = KEY_MASTER,
60 	KEY_1 = 1,
61 	KEY_2,
62 	KEY_3,
63 	KEY_MAX = KEY_3,
64 };
65 
66 /*
67  * TIPC Crypto statistics
68  */
69 enum {
70 	STAT_OK,
71 	STAT_NOK,
72 	STAT_ASYNC,
73 	STAT_ASYNC_OK,
74 	STAT_ASYNC_NOK,
75 	STAT_BADKEYS, /* tx only */
76 	STAT_BADMSGS = STAT_BADKEYS, /* rx only */
77 	STAT_NOKEYS,
78 	STAT_SWITCHES,
79 
80 	MAX_STATS,
81 };
82 
83 /* TIPC crypto statistics' header */
84 static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
85 					"async_nok", "badmsgs", "nokeys",
86 					"switches"};
87 
88 /* Max TFMs number per key */
89 int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
90 /* Key exchange switch, default: on */
91 int sysctl_tipc_key_exchange_enabled __read_mostly = 1;
92 
93 /*
94  * struct tipc_key - TIPC keys' status indicator
95  *
96  *         7     6     5     4     3     2     1     0
97  *      +-----+-----+-----+-----+-----+-----+-----+-----+
98  * key: | (reserved)|passive idx| active idx|pending idx|
99  *      +-----+-----+-----+-----+-----+-----+-----+-----+
100  */
101 struct tipc_key {
102 #define KEY_BITS (2)
103 #define KEY_MASK ((1 << KEY_BITS) - 1)
104 	union {
105 		struct {
106 #if defined(__LITTLE_ENDIAN_BITFIELD)
107 			u8 pending:2,
108 			   active:2,
109 			   passive:2, /* rx only */
110 			   reserved:2;
111 #elif defined(__BIG_ENDIAN_BITFIELD)
112 			u8 reserved:2,
113 			   passive:2, /* rx only */
114 			   active:2,
115 			   pending:2;
116 #else
117 #error  "Please fix <asm/byteorder.h>"
118 #endif
119 		} __packed;
120 		u8 keys;
121 	};
122 };
123 
124 /**
125  * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
126  * @tfm: cipher handle/key
127  * @list: linked list of TFMs
128  */
129 struct tipc_tfm {
130 	struct crypto_aead *tfm;
131 	struct list_head list;
132 };
133 
134 /**
135  * struct tipc_aead - TIPC AEAD key structure
136  * @tfm_entry: per-cpu pointer to one entry in TFM list
137  * @crypto: TIPC crypto owns this key
138  * @cloned: reference to the source key in case cloning
139  * @users: the number of the key users (TX/RX)
140  * @salt: the key's SALT value
141  * @authsize: authentication tag size (max = 16)
142  * @mode: crypto mode is applied to the key
143  * @hint: a hint for user key
144  * @rcu: struct rcu_head
145  * @key: the aead key
146  * @gen: the key's generation
147  * @seqno: the key seqno (cluster scope)
148  * @refcnt: the key reference counter
149  */
150 struct tipc_aead {
151 #define TIPC_AEAD_HINT_LEN (5)
152 	struct tipc_tfm * __percpu *tfm_entry;
153 	struct tipc_crypto *crypto;
154 	struct tipc_aead *cloned;
155 	atomic_t users;
156 	u32 salt;
157 	u8 authsize;
158 	u8 mode;
159 	char hint[2 * TIPC_AEAD_HINT_LEN + 1];
160 	struct rcu_head rcu;
161 	struct tipc_aead_key *key;
162 	u16 gen;
163 
164 	atomic64_t seqno ____cacheline_aligned;
165 	refcount_t refcnt ____cacheline_aligned;
166 
167 } ____cacheline_aligned;
168 
169 /**
170  * struct tipc_crypto_stats - TIPC Crypto statistics
171  * @stat: array of crypto statistics
172  */
173 struct tipc_crypto_stats {
174 	unsigned int stat[MAX_STATS];
175 };
176 
177 /**
178  * struct tipc_crypto - TIPC TX/RX crypto structure
179  * @net: struct net
180  * @node: TIPC node (RX)
181  * @aead: array of pointers to AEAD keys for encryption/decryption
182  * @peer_rx_active: replicated peer RX active key index
183  * @key_gen: TX/RX key generation
184  * @key: the key states
185  * @skey_mode: session key's mode
186  * @skey: received session key
187  * @wq: common workqueue on TX crypto
188  * @work: delayed work sched for TX/RX
189  * @key_distr: key distributing state
190  * @rekeying_intv: rekeying interval (in minutes)
191  * @stats: the crypto statistics
192  * @name: the crypto name
193  * @sndnxt: the per-peer sndnxt (TX)
194  * @timer1: general timer 1 (jiffies)
195  * @timer2: general timer 2 (jiffies)
196  * @working: the crypto is working or not
197  * @key_master: flag indicates if master key exists
198  * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.)
199  * @nokey: no key indication
200  * @flags: combined flags field
201  * @lock: tipc_key lock
202  */
203 struct tipc_crypto {
204 	struct net *net;
205 	struct tipc_node *node;
206 	struct tipc_aead __rcu *aead[KEY_MAX + 1];
207 	atomic_t peer_rx_active;
208 	u16 key_gen;
209 	struct tipc_key key;
210 	u8 skey_mode;
211 	struct tipc_aead_key *skey;
212 	struct workqueue_struct *wq;
213 	struct delayed_work work;
214 #define KEY_DISTR_SCHED		1
215 #define KEY_DISTR_COMPL		2
216 	atomic_t key_distr;
217 	u32 rekeying_intv;
218 
219 	struct tipc_crypto_stats __percpu *stats;
220 	char name[48];
221 
222 	atomic64_t sndnxt ____cacheline_aligned;
223 	unsigned long timer1;
224 	unsigned long timer2;
225 	union {
226 		struct {
227 			u8 working:1;
228 			u8 key_master:1;
229 			u8 legacy_user:1;
230 			u8 nokey: 1;
231 		};
232 		u8 flags;
233 	};
234 	spinlock_t lock; /* crypto lock */
235 
236 } ____cacheline_aligned;
237 
238 /* struct tipc_crypto_tx_ctx - TX context for callbacks */
239 struct tipc_crypto_tx_ctx {
240 	struct tipc_aead *aead;
241 	struct tipc_bearer *bearer;
242 	struct tipc_media_addr dst;
243 };
244 
245 /* struct tipc_crypto_rx_ctx - RX context for callbacks */
246 struct tipc_crypto_rx_ctx {
247 	struct tipc_aead *aead;
248 	struct tipc_bearer *bearer;
249 };
250 
251 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
252 static inline void tipc_aead_put(struct tipc_aead *aead);
253 static void tipc_aead_free(struct rcu_head *rp);
254 static int tipc_aead_users(struct tipc_aead __rcu *aead);
255 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
256 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
257 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
258 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
259 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
260 			  u8 mode);
261 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
262 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
263 				 unsigned int crypto_ctx_size,
264 				 u8 **iv, struct aead_request **req,
265 				 struct scatterlist **sg, int nsg);
266 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
267 			     struct tipc_bearer *b,
268 			     struct tipc_media_addr *dst,
269 			     struct tipc_node *__dnode);
270 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err);
271 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
272 			     struct sk_buff *skb, struct tipc_bearer *b);
273 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err);
274 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
275 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
276 			   u8 tx_key, struct sk_buff *skb,
277 			   struct tipc_crypto *__rx);
278 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
279 					     u8 new_passive,
280 					     u8 new_active,
281 					     u8 new_pending);
282 static int tipc_crypto_key_attach(struct tipc_crypto *c,
283 				  struct tipc_aead *aead, u8 pos,
284 				  bool master_key);
285 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
286 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
287 						 struct tipc_crypto *rx,
288 						 struct sk_buff *skb,
289 						 u8 tx_key);
290 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb);
291 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
292 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
293 					 struct tipc_bearer *b,
294 					 struct tipc_media_addr *dst,
295 					 struct tipc_node *__dnode, u8 type);
296 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
297 				     struct tipc_bearer *b,
298 				     struct sk_buff **skb, int err);
299 static void tipc_crypto_do_cmd(struct net *net, int cmd);
300 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
301 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
302 				  char *buf);
303 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
304 				u16 gen, u8 mode, u32 dnode);
305 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr);
306 static void tipc_crypto_work_tx(struct work_struct *work);
307 static void tipc_crypto_work_rx(struct work_struct *work);
308 static int tipc_aead_key_generate(struct tipc_aead_key *skey);
309 
310 #define is_tx(crypto) (!(crypto)->node)
311 #define is_rx(crypto) (!is_tx(crypto))
312 
313 #define key_next(cur) ((cur) % KEY_MAX + 1)
314 
315 #define tipc_aead_rcu_ptr(rcu_ptr, lock)				\
316 	rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
317 
318 #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock)			\
319 do {									\
320 	struct tipc_aead *__tmp = rcu_dereference_protected((rcu_ptr),	\
321 						lockdep_is_held(lock));	\
322 	rcu_assign_pointer((rcu_ptr), (ptr));				\
323 	tipc_aead_put(__tmp);						\
324 } while (0)
325 
326 #define tipc_crypto_key_detach(rcu_ptr, lock)				\
327 	tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
328 
329 /**
330  * tipc_aead_key_validate - Validate a AEAD user key
331  * @ukey: pointer to user key data
332  * @info: netlink info pointer
333  */
334 int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info)
335 {
336 	int keylen;
337 
338 	/* Check if algorithm exists */
339 	if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
340 		GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)");
341 		return -ENODEV;
342 	}
343 
344 	/* Currently, we only support the "gcm(aes)" cipher algorithm */
345 	if (strcmp(ukey->alg_name, "gcm(aes)")) {
346 		GENL_SET_ERR_MSG(info, "not supported yet the algorithm");
347 		return -ENOTSUPP;
348 	}
349 
350 	/* Check if key size is correct */
351 	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
352 	if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
353 		     keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
354 		     keylen != TIPC_AES_GCM_KEY_SIZE_256)) {
355 		GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)");
356 		return -EKEYREJECTED;
357 	}
358 
359 	return 0;
360 }
361 
362 /**
363  * tipc_aead_key_generate - Generate new session key
364  * @skey: input/output key with new content
365  *
366  * Return: 0 in case of success, otherwise < 0
367  */
368 static int tipc_aead_key_generate(struct tipc_aead_key *skey)
369 {
370 	int rc = 0;
371 
372 	/* Fill the key's content with a random value via RNG cipher */
373 	rc = crypto_get_default_rng();
374 	if (likely(!rc)) {
375 		rc = crypto_rng_get_bytes(crypto_default_rng, skey->key,
376 					  skey->keylen);
377 		crypto_put_default_rng();
378 	}
379 
380 	return rc;
381 }
382 
383 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
384 {
385 	struct tipc_aead *tmp;
386 
387 	rcu_read_lock();
388 	tmp = rcu_dereference(aead);
389 	if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
390 		tmp = NULL;
391 	rcu_read_unlock();
392 
393 	return tmp;
394 }
395 
396 static inline void tipc_aead_put(struct tipc_aead *aead)
397 {
398 	if (aead && refcount_dec_and_test(&aead->refcnt))
399 		call_rcu(&aead->rcu, tipc_aead_free);
400 }
401 
402 /**
403  * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
404  * @rp: rcu head pointer
405  */
406 static void tipc_aead_free(struct rcu_head *rp)
407 {
408 	struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
409 	struct tipc_tfm *tfm_entry, *head, *tmp;
410 
411 	if (aead->cloned) {
412 		tipc_aead_put(aead->cloned);
413 	} else {
414 		head = *get_cpu_ptr(aead->tfm_entry);
415 		put_cpu_ptr(aead->tfm_entry);
416 		list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
417 			crypto_free_aead(tfm_entry->tfm);
418 			list_del(&tfm_entry->list);
419 			kfree(tfm_entry);
420 		}
421 		/* Free the head */
422 		crypto_free_aead(head->tfm);
423 		list_del(&head->list);
424 		kfree(head);
425 	}
426 	free_percpu(aead->tfm_entry);
427 	kfree_sensitive(aead->key);
428 	kfree(aead);
429 }
430 
431 static int tipc_aead_users(struct tipc_aead __rcu *aead)
432 {
433 	struct tipc_aead *tmp;
434 	int users = 0;
435 
436 	rcu_read_lock();
437 	tmp = rcu_dereference(aead);
438 	if (tmp)
439 		users = atomic_read(&tmp->users);
440 	rcu_read_unlock();
441 
442 	return users;
443 }
444 
445 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
446 {
447 	struct tipc_aead *tmp;
448 
449 	rcu_read_lock();
450 	tmp = rcu_dereference(aead);
451 	if (tmp)
452 		atomic_add_unless(&tmp->users, 1, lim);
453 	rcu_read_unlock();
454 }
455 
456 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
457 {
458 	struct tipc_aead *tmp;
459 
460 	rcu_read_lock();
461 	tmp = rcu_dereference(aead);
462 	if (tmp)
463 		atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
464 	rcu_read_unlock();
465 }
466 
467 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
468 {
469 	struct tipc_aead *tmp;
470 	int cur;
471 
472 	rcu_read_lock();
473 	tmp = rcu_dereference(aead);
474 	if (tmp) {
475 		do {
476 			cur = atomic_read(&tmp->users);
477 			if (cur == val)
478 				break;
479 		} while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
480 	}
481 	rcu_read_unlock();
482 }
483 
484 /**
485  * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
486  * @aead: the AEAD key pointer
487  */
488 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
489 {
490 	struct tipc_tfm **tfm_entry;
491 	struct crypto_aead *tfm;
492 
493 	tfm_entry = get_cpu_ptr(aead->tfm_entry);
494 	*tfm_entry = list_next_entry(*tfm_entry, list);
495 	tfm = (*tfm_entry)->tfm;
496 	put_cpu_ptr(tfm_entry);
497 
498 	return tfm;
499 }
500 
501 /**
502  * tipc_aead_init - Initiate TIPC AEAD
503  * @aead: returned new TIPC AEAD key handle pointer
504  * @ukey: pointer to user key data
505  * @mode: the key mode
506  *
507  * Allocate a (list of) new cipher transformation (TFM) with the specific user
508  * key data if valid. The number of the allocated TFMs can be set via the sysfs
509  * "net/tipc/max_tfms" first.
510  * Also, all the other AEAD data are also initialized.
511  *
512  * Return: 0 if the initiation is successful, otherwise: < 0
513  */
514 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
515 			  u8 mode)
516 {
517 	struct tipc_tfm *tfm_entry, *head;
518 	struct crypto_aead *tfm;
519 	struct tipc_aead *tmp;
520 	int keylen, err, cpu;
521 	int tfm_cnt = 0;
522 
523 	if (unlikely(*aead))
524 		return -EEXIST;
525 
526 	/* Allocate a new AEAD */
527 	tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
528 	if (unlikely(!tmp))
529 		return -ENOMEM;
530 
531 	/* The key consists of two parts: [AES-KEY][SALT] */
532 	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
533 
534 	/* Allocate per-cpu TFM entry pointer */
535 	tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
536 	if (!tmp->tfm_entry) {
537 		kfree_sensitive(tmp);
538 		return -ENOMEM;
539 	}
540 
541 	/* Make a list of TFMs with the user key data */
542 	do {
543 		tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
544 		if (IS_ERR(tfm)) {
545 			err = PTR_ERR(tfm);
546 			break;
547 		}
548 
549 		if (unlikely(!tfm_cnt &&
550 			     crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
551 			crypto_free_aead(tfm);
552 			err = -ENOTSUPP;
553 			break;
554 		}
555 
556 		err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
557 		err |= crypto_aead_setkey(tfm, ukey->key, keylen);
558 		if (unlikely(err)) {
559 			crypto_free_aead(tfm);
560 			break;
561 		}
562 
563 		tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
564 		if (unlikely(!tfm_entry)) {
565 			crypto_free_aead(tfm);
566 			err = -ENOMEM;
567 			break;
568 		}
569 		INIT_LIST_HEAD(&tfm_entry->list);
570 		tfm_entry->tfm = tfm;
571 
572 		/* First entry? */
573 		if (!tfm_cnt) {
574 			head = tfm_entry;
575 			for_each_possible_cpu(cpu) {
576 				*per_cpu_ptr(tmp->tfm_entry, cpu) = head;
577 			}
578 		} else {
579 			list_add_tail(&tfm_entry->list, &head->list);
580 		}
581 
582 	} while (++tfm_cnt < sysctl_tipc_max_tfms);
583 
584 	/* Not any TFM is allocated? */
585 	if (!tfm_cnt) {
586 		free_percpu(tmp->tfm_entry);
587 		kfree_sensitive(tmp);
588 		return err;
589 	}
590 
591 	/* Form a hex string of some last bytes as the key's hint */
592 	bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN,
593 		TIPC_AEAD_HINT_LEN);
594 
595 	/* Initialize the other data */
596 	tmp->mode = mode;
597 	tmp->cloned = NULL;
598 	tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
599 	tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL);
600 	if (!tmp->key) {
601 		tipc_aead_free(&tmp->rcu);
602 		return -ENOMEM;
603 	}
604 	memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
605 	atomic_set(&tmp->users, 0);
606 	atomic64_set(&tmp->seqno, 0);
607 	refcount_set(&tmp->refcnt, 1);
608 
609 	*aead = tmp;
610 	return 0;
611 }
612 
613 /**
614  * tipc_aead_clone - Clone a TIPC AEAD key
615  * @dst: dest key for the cloning
616  * @src: source key to clone from
617  *
618  * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
619  * common for the keys.
620  * A reference to the source is hold in the "cloned" pointer for the later
621  * freeing purposes.
622  *
623  * Note: this must be done in cluster-key mode only!
624  * Return: 0 in case of success, otherwise < 0
625  */
626 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
627 {
628 	struct tipc_aead *aead;
629 	int cpu;
630 
631 	if (!src)
632 		return -ENOKEY;
633 
634 	if (src->mode != CLUSTER_KEY)
635 		return -EINVAL;
636 
637 	if (unlikely(*dst))
638 		return -EEXIST;
639 
640 	aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
641 	if (unlikely(!aead))
642 		return -ENOMEM;
643 
644 	aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
645 	if (unlikely(!aead->tfm_entry)) {
646 		kfree_sensitive(aead);
647 		return -ENOMEM;
648 	}
649 
650 	for_each_possible_cpu(cpu) {
651 		*per_cpu_ptr(aead->tfm_entry, cpu) =
652 				*per_cpu_ptr(src->tfm_entry, cpu);
653 	}
654 
655 	memcpy(aead->hint, src->hint, sizeof(src->hint));
656 	aead->mode = src->mode;
657 	aead->salt = src->salt;
658 	aead->authsize = src->authsize;
659 	atomic_set(&aead->users, 0);
660 	atomic64_set(&aead->seqno, 0);
661 	refcount_set(&aead->refcnt, 1);
662 
663 	WARN_ON(!refcount_inc_not_zero(&src->refcnt));
664 	aead->cloned = src;
665 
666 	*dst = aead;
667 	return 0;
668 }
669 
670 /**
671  * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
672  * @tfm: cipher handle to be registered with the request
673  * @crypto_ctx_size: size of crypto context for callback
674  * @iv: returned pointer to IV data
675  * @req: returned pointer to AEAD request data
676  * @sg: returned pointer to SG lists
677  * @nsg: number of SG lists to be allocated
678  *
679  * Allocate memory to store the crypto context data, AEAD request, IV and SG
680  * lists, the memory layout is as follows:
681  * crypto_ctx || iv || aead_req || sg[]
682  *
683  * Return: the pointer to the memory areas in case of success, otherwise NULL
684  */
685 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
686 				 unsigned int crypto_ctx_size,
687 				 u8 **iv, struct aead_request **req,
688 				 struct scatterlist **sg, int nsg)
689 {
690 	unsigned int iv_size, req_size;
691 	unsigned int len;
692 	u8 *mem;
693 
694 	iv_size = crypto_aead_ivsize(tfm);
695 	req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
696 
697 	len = crypto_ctx_size;
698 	len += iv_size;
699 	len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
700 	len = ALIGN(len, crypto_tfm_ctx_alignment());
701 	len += req_size;
702 	len = ALIGN(len, __alignof__(struct scatterlist));
703 	len += nsg * sizeof(**sg);
704 
705 	mem = kmalloc(len, GFP_ATOMIC);
706 	if (!mem)
707 		return NULL;
708 
709 	*iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
710 			      crypto_aead_alignmask(tfm) + 1);
711 	*req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
712 						crypto_tfm_ctx_alignment());
713 	*sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
714 					      __alignof__(struct scatterlist));
715 
716 	return (void *)mem;
717 }
718 
719 /**
720  * tipc_aead_encrypt - Encrypt a message
721  * @aead: TIPC AEAD key for the message encryption
722  * @skb: the input/output skb
723  * @b: TIPC bearer where the message will be delivered after the encryption
724  * @dst: the destination media address
725  * @__dnode: TIPC dest node if "known"
726  *
727  * Return:
728  * * 0                   : if the encryption has completed
729  * * -EINPROGRESS/-EBUSY : if a callback will be performed
730  * * < 0                 : the encryption has failed
731  */
732 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
733 			     struct tipc_bearer *b,
734 			     struct tipc_media_addr *dst,
735 			     struct tipc_node *__dnode)
736 {
737 	struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
738 	struct tipc_crypto_tx_ctx *tx_ctx;
739 	struct aead_request *req;
740 	struct sk_buff *trailer;
741 	struct scatterlist *sg;
742 	struct tipc_ehdr *ehdr;
743 	int ehsz, len, tailen, nsg, rc;
744 	void *ctx;
745 	u32 salt;
746 	u8 *iv;
747 
748 	/* Make sure message len at least 4-byte aligned */
749 	len = ALIGN(skb->len, 4);
750 	tailen = len - skb->len + aead->authsize;
751 
752 	/* Expand skb tail for authentication tag:
753 	 * As for simplicity, we'd have made sure skb having enough tailroom
754 	 * for authentication tag @skb allocation. Even when skb is nonlinear
755 	 * but there is no frag_list, it should be still fine!
756 	 * Otherwise, we must cow it to be a writable buffer with the tailroom.
757 	 */
758 	SKB_LINEAR_ASSERT(skb);
759 	if (tailen > skb_tailroom(skb)) {
760 		pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n",
761 			 skb_tailroom(skb), tailen);
762 	}
763 
764 	nsg = skb_cow_data(skb, tailen, &trailer);
765 	if (unlikely(nsg < 0)) {
766 		pr_err("TX: skb_cow_data() returned %d\n", nsg);
767 		return nsg;
768 	}
769 
770 	pskb_put(skb, trailer, tailen);
771 
772 	/* Allocate memory for the AEAD operation */
773 	ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
774 	if (unlikely(!ctx))
775 		return -ENOMEM;
776 	TIPC_SKB_CB(skb)->crypto_ctx = ctx;
777 
778 	/* Map skb to the sg lists */
779 	sg_init_table(sg, nsg);
780 	rc = skb_to_sgvec(skb, sg, 0, skb->len);
781 	if (unlikely(rc < 0)) {
782 		pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
783 		goto exit;
784 	}
785 
786 	/* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
787 	 * In case we're in cluster-key mode, SALT is varied by xor-ing with
788 	 * the source address (or w0 of id), otherwise with the dest address
789 	 * if dest is known.
790 	 */
791 	ehdr = (struct tipc_ehdr *)skb->data;
792 	salt = aead->salt;
793 	if (aead->mode == CLUSTER_KEY)
794 		salt ^= __be32_to_cpu(ehdr->addr);
795 	else if (__dnode)
796 		salt ^= tipc_node_get_addr(__dnode);
797 	memcpy(iv, &salt, 4);
798 	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
799 
800 	/* Prepare request */
801 	ehsz = tipc_ehdr_size(ehdr);
802 	aead_request_set_tfm(req, tfm);
803 	aead_request_set_ad(req, ehsz);
804 	aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
805 
806 	/* Set callback function & data */
807 	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
808 				  tipc_aead_encrypt_done, skb);
809 	tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
810 	tx_ctx->aead = aead;
811 	tx_ctx->bearer = b;
812 	memcpy(&tx_ctx->dst, dst, sizeof(*dst));
813 
814 	/* Hold bearer */
815 	if (unlikely(!tipc_bearer_hold(b))) {
816 		rc = -ENODEV;
817 		goto exit;
818 	}
819 
820 	/* Now, do encrypt */
821 	rc = crypto_aead_encrypt(req);
822 	if (rc == -EINPROGRESS || rc == -EBUSY)
823 		return rc;
824 
825 	tipc_bearer_put(b);
826 
827 exit:
828 	kfree(ctx);
829 	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
830 	return rc;
831 }
832 
833 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err)
834 {
835 	struct sk_buff *skb = base->data;
836 	struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
837 	struct tipc_bearer *b = tx_ctx->bearer;
838 	struct tipc_aead *aead = tx_ctx->aead;
839 	struct tipc_crypto *tx = aead->crypto;
840 	struct net *net = tx->net;
841 
842 	switch (err) {
843 	case 0:
844 		this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
845 		rcu_read_lock();
846 		if (likely(test_bit(0, &b->up)))
847 			b->media->send_msg(net, skb, b, &tx_ctx->dst);
848 		else
849 			kfree_skb(skb);
850 		rcu_read_unlock();
851 		break;
852 	case -EINPROGRESS:
853 		return;
854 	default:
855 		this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
856 		kfree_skb(skb);
857 		break;
858 	}
859 
860 	kfree(tx_ctx);
861 	tipc_bearer_put(b);
862 	tipc_aead_put(aead);
863 }
864 
865 /**
866  * tipc_aead_decrypt - Decrypt an encrypted message
867  * @net: struct net
868  * @aead: TIPC AEAD for the message decryption
869  * @skb: the input/output skb
870  * @b: TIPC bearer where the message has been received
871  *
872  * Return:
873  * * 0                   : if the decryption has completed
874  * * -EINPROGRESS/-EBUSY : if a callback will be performed
875  * * < 0                 : the decryption has failed
876  */
877 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
878 			     struct sk_buff *skb, struct tipc_bearer *b)
879 {
880 	struct tipc_crypto_rx_ctx *rx_ctx;
881 	struct aead_request *req;
882 	struct crypto_aead *tfm;
883 	struct sk_buff *unused;
884 	struct scatterlist *sg;
885 	struct tipc_ehdr *ehdr;
886 	int ehsz, nsg, rc;
887 	void *ctx;
888 	u32 salt;
889 	u8 *iv;
890 
891 	if (unlikely(!aead))
892 		return -ENOKEY;
893 
894 	nsg = skb_cow_data(skb, 0, &unused);
895 	if (unlikely(nsg < 0)) {
896 		pr_err("RX: skb_cow_data() returned %d\n", nsg);
897 		return nsg;
898 	}
899 
900 	/* Allocate memory for the AEAD operation */
901 	tfm = tipc_aead_tfm_next(aead);
902 	ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
903 	if (unlikely(!ctx))
904 		return -ENOMEM;
905 	TIPC_SKB_CB(skb)->crypto_ctx = ctx;
906 
907 	/* Map skb to the sg lists */
908 	sg_init_table(sg, nsg);
909 	rc = skb_to_sgvec(skb, sg, 0, skb->len);
910 	if (unlikely(rc < 0)) {
911 		pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
912 		goto exit;
913 	}
914 
915 	/* Reconstruct IV: */
916 	ehdr = (struct tipc_ehdr *)skb->data;
917 	salt = aead->salt;
918 	if (aead->mode == CLUSTER_KEY)
919 		salt ^= __be32_to_cpu(ehdr->addr);
920 	else if (ehdr->destined)
921 		salt ^= tipc_own_addr(net);
922 	memcpy(iv, &salt, 4);
923 	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
924 
925 	/* Prepare request */
926 	ehsz = tipc_ehdr_size(ehdr);
927 	aead_request_set_tfm(req, tfm);
928 	aead_request_set_ad(req, ehsz);
929 	aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
930 
931 	/* Set callback function & data */
932 	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
933 				  tipc_aead_decrypt_done, skb);
934 	rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
935 	rx_ctx->aead = aead;
936 	rx_ctx->bearer = b;
937 
938 	/* Hold bearer */
939 	if (unlikely(!tipc_bearer_hold(b))) {
940 		rc = -ENODEV;
941 		goto exit;
942 	}
943 
944 	/* Now, do decrypt */
945 	rc = crypto_aead_decrypt(req);
946 	if (rc == -EINPROGRESS || rc == -EBUSY)
947 		return rc;
948 
949 	tipc_bearer_put(b);
950 
951 exit:
952 	kfree(ctx);
953 	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
954 	return rc;
955 }
956 
957 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err)
958 {
959 	struct sk_buff *skb = base->data;
960 	struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
961 	struct tipc_bearer *b = rx_ctx->bearer;
962 	struct tipc_aead *aead = rx_ctx->aead;
963 	struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
964 	struct net *net = aead->crypto->net;
965 
966 	switch (err) {
967 	case 0:
968 		this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
969 		break;
970 	case -EINPROGRESS:
971 		return;
972 	default:
973 		this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
974 		break;
975 	}
976 
977 	kfree(rx_ctx);
978 	tipc_crypto_rcv_complete(net, aead, b, &skb, err);
979 	if (likely(skb)) {
980 		if (likely(test_bit(0, &b->up)))
981 			tipc_rcv(net, skb, b);
982 		else
983 			kfree_skb(skb);
984 	}
985 
986 	tipc_bearer_put(b);
987 }
988 
989 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
990 {
991 	return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
992 }
993 
994 /**
995  * tipc_ehdr_validate - Validate an encryption message
996  * @skb: the message buffer
997  *
998  * Return: "true" if this is a valid encryption message, otherwise "false"
999  */
1000 bool tipc_ehdr_validate(struct sk_buff *skb)
1001 {
1002 	struct tipc_ehdr *ehdr;
1003 	int ehsz;
1004 
1005 	if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
1006 		return false;
1007 
1008 	ehdr = (struct tipc_ehdr *)skb->data;
1009 	if (unlikely(ehdr->version != TIPC_EVERSION))
1010 		return false;
1011 	ehsz = tipc_ehdr_size(ehdr);
1012 	if (unlikely(!pskb_may_pull(skb, ehsz)))
1013 		return false;
1014 	if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
1015 		return false;
1016 
1017 	return true;
1018 }
1019 
1020 /**
1021  * tipc_ehdr_build - Build TIPC encryption message header
1022  * @net: struct net
1023  * @aead: TX AEAD key to be used for the message encryption
1024  * @tx_key: key id used for the message encryption
1025  * @skb: input/output message skb
1026  * @__rx: RX crypto handle if dest is "known"
1027  *
1028  * Return: the header size if the building is successful, otherwise < 0
1029  */
1030 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
1031 			   u8 tx_key, struct sk_buff *skb,
1032 			   struct tipc_crypto *__rx)
1033 {
1034 	struct tipc_msg *hdr = buf_msg(skb);
1035 	struct tipc_ehdr *ehdr;
1036 	u32 user = msg_user(hdr);
1037 	u64 seqno;
1038 	int ehsz;
1039 
1040 	/* Make room for encryption header */
1041 	ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
1042 	WARN_ON(skb_headroom(skb) < ehsz);
1043 	ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
1044 
1045 	/* Obtain a seqno first:
1046 	 * Use the key seqno (= cluster wise) if dest is unknown or we're in
1047 	 * cluster key mode, otherwise it's better for a per-peer seqno!
1048 	 */
1049 	if (!__rx || aead->mode == CLUSTER_KEY)
1050 		seqno = atomic64_inc_return(&aead->seqno);
1051 	else
1052 		seqno = atomic64_inc_return(&__rx->sndnxt);
1053 
1054 	/* Revoke the key if seqno is wrapped around */
1055 	if (unlikely(!seqno))
1056 		return tipc_crypto_key_revoke(net, tx_key);
1057 
1058 	/* Word 1-2 */
1059 	ehdr->seqno = cpu_to_be64(seqno);
1060 
1061 	/* Words 0, 3- */
1062 	ehdr->version = TIPC_EVERSION;
1063 	ehdr->user = 0;
1064 	ehdr->keepalive = 0;
1065 	ehdr->tx_key = tx_key;
1066 	ehdr->destined = (__rx) ? 1 : 0;
1067 	ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
1068 	ehdr->rx_nokey = (__rx) ? __rx->nokey : 0;
1069 	ehdr->master_key = aead->crypto->key_master;
1070 	ehdr->reserved_1 = 0;
1071 	ehdr->reserved_2 = 0;
1072 
1073 	switch (user) {
1074 	case LINK_CONFIG:
1075 		ehdr->user = LINK_CONFIG;
1076 		memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
1077 		break;
1078 	default:
1079 		if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
1080 			ehdr->user = LINK_PROTOCOL;
1081 			ehdr->keepalive = msg_is_keepalive(hdr);
1082 		}
1083 		ehdr->addr = hdr->hdr[3];
1084 		break;
1085 	}
1086 
1087 	return ehsz;
1088 }
1089 
1090 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1091 					     u8 new_passive,
1092 					     u8 new_active,
1093 					     u8 new_pending)
1094 {
1095 	struct tipc_key old = c->key;
1096 	char buf[32];
1097 
1098 	c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1099 		      ((new_active  & KEY_MASK) << (KEY_BITS)) |
1100 		      ((new_pending & KEY_MASK));
1101 
1102 	pr_debug("%s: key changing %s ::%pS\n", c->name,
1103 		 tipc_key_change_dump(old, c->key, buf),
1104 		 __builtin_return_address(0));
1105 }
1106 
1107 /**
1108  * tipc_crypto_key_init - Initiate a new user / AEAD key
1109  * @c: TIPC crypto to which new key is attached
1110  * @ukey: the user key
1111  * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1112  * @master_key: specify this is a cluster master key
1113  *
1114  * A new TIPC AEAD key will be allocated and initiated with the specified user
1115  * key, then attached to the TIPC crypto.
1116  *
1117  * Return: new key id in case of success, otherwise: < 0
1118  */
1119 int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1120 			 u8 mode, bool master_key)
1121 {
1122 	struct tipc_aead *aead = NULL;
1123 	int rc = 0;
1124 
1125 	/* Initiate with the new user key */
1126 	rc = tipc_aead_init(&aead, ukey, mode);
1127 
1128 	/* Attach it to the crypto */
1129 	if (likely(!rc)) {
1130 		rc = tipc_crypto_key_attach(c, aead, 0, master_key);
1131 		if (rc < 0)
1132 			tipc_aead_free(&aead->rcu);
1133 	}
1134 
1135 	return rc;
1136 }
1137 
1138 /**
1139  * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1140  * @c: TIPC crypto to which the new AEAD key is attached
1141  * @aead: the new AEAD key pointer
1142  * @pos: desired slot in the crypto key array, = 0 if any!
1143  * @master_key: specify this is a cluster master key
1144  *
1145  * Return: new key id in case of success, otherwise: -EBUSY
1146  */
1147 static int tipc_crypto_key_attach(struct tipc_crypto *c,
1148 				  struct tipc_aead *aead, u8 pos,
1149 				  bool master_key)
1150 {
1151 	struct tipc_key key;
1152 	int rc = -EBUSY;
1153 	u8 new_key;
1154 
1155 	spin_lock_bh(&c->lock);
1156 	key = c->key;
1157 	if (master_key) {
1158 		new_key = KEY_MASTER;
1159 		goto attach;
1160 	}
1161 	if (key.active && key.passive)
1162 		goto exit;
1163 	if (key.pending) {
1164 		if (tipc_aead_users(c->aead[key.pending]) > 0)
1165 			goto exit;
1166 		/* if (pos): ok with replacing, will be aligned when needed */
1167 		/* Replace it */
1168 		new_key = key.pending;
1169 	} else {
1170 		if (pos) {
1171 			if (key.active && pos != key_next(key.active)) {
1172 				key.passive = pos;
1173 				new_key = pos;
1174 				goto attach;
1175 			} else if (!key.active && !key.passive) {
1176 				key.pending = pos;
1177 				new_key = pos;
1178 				goto attach;
1179 			}
1180 		}
1181 		key.pending = key_next(key.active ?: key.passive);
1182 		new_key = key.pending;
1183 	}
1184 
1185 attach:
1186 	aead->crypto = c;
1187 	aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen;
1188 	tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1189 	if (likely(c->key.keys != key.keys))
1190 		tipc_crypto_key_set_state(c, key.passive, key.active,
1191 					  key.pending);
1192 	c->working = 1;
1193 	c->nokey = 0;
1194 	c->key_master |= master_key;
1195 	rc = new_key;
1196 
1197 exit:
1198 	spin_unlock_bh(&c->lock);
1199 	return rc;
1200 }
1201 
1202 void tipc_crypto_key_flush(struct tipc_crypto *c)
1203 {
1204 	struct tipc_crypto *tx, *rx;
1205 	int k;
1206 
1207 	spin_lock_bh(&c->lock);
1208 	if (is_rx(c)) {
1209 		/* Try to cancel pending work */
1210 		rx = c;
1211 		tx = tipc_net(rx->net)->crypto_tx;
1212 		if (cancel_delayed_work(&rx->work)) {
1213 			kfree(rx->skey);
1214 			rx->skey = NULL;
1215 			atomic_xchg(&rx->key_distr, 0);
1216 			tipc_node_put(rx->node);
1217 		}
1218 		/* RX stopping => decrease TX key users if any */
1219 		k = atomic_xchg(&rx->peer_rx_active, 0);
1220 		if (k) {
1221 			tipc_aead_users_dec(tx->aead[k], 0);
1222 			/* Mark the point TX key users changed */
1223 			tx->timer1 = jiffies;
1224 		}
1225 	}
1226 
1227 	c->flags = 0;
1228 	tipc_crypto_key_set_state(c, 0, 0, 0);
1229 	for (k = KEY_MIN; k <= KEY_MAX; k++)
1230 		tipc_crypto_key_detach(c->aead[k], &c->lock);
1231 	atomic64_set(&c->sndnxt, 0);
1232 	spin_unlock_bh(&c->lock);
1233 }
1234 
1235 /**
1236  * tipc_crypto_key_try_align - Align RX keys if possible
1237  * @rx: RX crypto handle
1238  * @new_pending: new pending slot if aligned (= TX key from peer)
1239  *
1240  * Peer has used an unknown key slot, this only happens when peer has left and
1241  * rejoned, or we are newcomer.
1242  * That means, there must be no active key but a pending key at unaligned slot.
1243  * If so, we try to move the pending key to the new slot.
1244  * Note: A potential passive key can exist, it will be shifted correspondingly!
1245  *
1246  * Return: "true" if key is successfully aligned, otherwise "false"
1247  */
1248 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1249 {
1250 	struct tipc_aead *tmp1, *tmp2 = NULL;
1251 	struct tipc_key key;
1252 	bool aligned = false;
1253 	u8 new_passive = 0;
1254 	int x;
1255 
1256 	spin_lock(&rx->lock);
1257 	key = rx->key;
1258 	if (key.pending == new_pending) {
1259 		aligned = true;
1260 		goto exit;
1261 	}
1262 	if (key.active)
1263 		goto exit;
1264 	if (!key.pending)
1265 		goto exit;
1266 	if (tipc_aead_users(rx->aead[key.pending]) > 0)
1267 		goto exit;
1268 
1269 	/* Try to "isolate" this pending key first */
1270 	tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1271 	if (!refcount_dec_if_one(&tmp1->refcnt))
1272 		goto exit;
1273 	rcu_assign_pointer(rx->aead[key.pending], NULL);
1274 
1275 	/* Move passive key if any */
1276 	if (key.passive) {
1277 		tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
1278 		x = (key.passive - key.pending + new_pending) % KEY_MAX;
1279 		new_passive = (x <= 0) ? x + KEY_MAX : x;
1280 	}
1281 
1282 	/* Re-allocate the key(s) */
1283 	tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1284 	rcu_assign_pointer(rx->aead[new_pending], tmp1);
1285 	if (new_passive)
1286 		rcu_assign_pointer(rx->aead[new_passive], tmp2);
1287 	refcount_set(&tmp1->refcnt, 1);
1288 	aligned = true;
1289 	pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending,
1290 			    new_pending);
1291 
1292 exit:
1293 	spin_unlock(&rx->lock);
1294 	return aligned;
1295 }
1296 
1297 /**
1298  * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1299  * @tx: TX crypto handle
1300  * @rx: RX crypto handle (can be NULL)
1301  * @skb: the message skb which will be decrypted later
1302  * @tx_key: peer TX key id
1303  *
1304  * This function looks up the existing TX keys and pick one which is suitable
1305  * for the message decryption, that must be a cluster key and not used before
1306  * on the same message (i.e. recursive).
1307  *
1308  * Return: the TX AEAD key handle in case of success, otherwise NULL
1309  */
1310 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1311 						 struct tipc_crypto *rx,
1312 						 struct sk_buff *skb,
1313 						 u8 tx_key)
1314 {
1315 	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1316 	struct tipc_aead *aead = NULL;
1317 	struct tipc_key key = tx->key;
1318 	u8 k, i = 0;
1319 
1320 	/* Initialize data if not yet */
1321 	if (!skb_cb->tx_clone_deferred) {
1322 		skb_cb->tx_clone_deferred = 1;
1323 		memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1324 	}
1325 
1326 	skb_cb->tx_clone_ctx.rx = rx;
1327 	if (++skb_cb->tx_clone_ctx.recurs > 2)
1328 		return NULL;
1329 
1330 	/* Pick one TX key */
1331 	spin_lock(&tx->lock);
1332 	if (tx_key == KEY_MASTER) {
1333 		aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock);
1334 		goto done;
1335 	}
1336 	do {
1337 		k = (i == 0) ? key.pending :
1338 			((i == 1) ? key.active : key.passive);
1339 		if (!k)
1340 			continue;
1341 		aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1342 		if (!aead)
1343 			continue;
1344 		if (aead->mode != CLUSTER_KEY ||
1345 		    aead == skb_cb->tx_clone_ctx.last) {
1346 			aead = NULL;
1347 			continue;
1348 		}
1349 		/* Ok, found one cluster key */
1350 		skb_cb->tx_clone_ctx.last = aead;
1351 		WARN_ON(skb->next);
1352 		skb->next = skb_clone(skb, GFP_ATOMIC);
1353 		if (unlikely(!skb->next))
1354 			pr_warn("Failed to clone skb for next round if any\n");
1355 		break;
1356 	} while (++i < 3);
1357 
1358 done:
1359 	if (likely(aead))
1360 		WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1361 	spin_unlock(&tx->lock);
1362 
1363 	return aead;
1364 }
1365 
1366 /**
1367  * tipc_crypto_key_synch: Synch own key data according to peer key status
1368  * @rx: RX crypto handle
1369  * @skb: TIPCv2 message buffer (incl. the ehdr from peer)
1370  *
1371  * This function updates the peer node related data as the peer RX active key
1372  * has changed, so the number of TX keys' users on this node are increased and
1373  * decreased correspondingly.
1374  *
1375  * It also considers if peer has no key, then we need to make own master key
1376  * (if any) taking over i.e. starting grace period and also trigger key
1377  * distributing process.
1378  *
1379  * The "per-peer" sndnxt is also reset when the peer key has switched.
1380  */
1381 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb)
1382 {
1383 	struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb);
1384 	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
1385 	struct tipc_msg *hdr = buf_msg(skb);
1386 	u32 self = tipc_own_addr(rx->net);
1387 	u8 cur, new;
1388 	unsigned long delay;
1389 
1390 	/* Update RX 'key_master' flag according to peer, also mark "legacy" if
1391 	 * a peer has no master key.
1392 	 */
1393 	rx->key_master = ehdr->master_key;
1394 	if (!rx->key_master)
1395 		tx->legacy_user = 1;
1396 
1397 	/* For later cases, apply only if message is destined to this node */
1398 	if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self)
1399 		return;
1400 
1401 	/* Case 1: Peer has no keys, let's make master key take over */
1402 	if (ehdr->rx_nokey) {
1403 		/* Set or extend grace period */
1404 		tx->timer2 = jiffies;
1405 		/* Schedule key distributing for the peer if not yet */
1406 		if (tx->key.keys &&
1407 		    !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) {
1408 			get_random_bytes(&delay, 2);
1409 			delay %= 5;
1410 			delay = msecs_to_jiffies(500 * ++delay);
1411 			if (queue_delayed_work(tx->wq, &rx->work, delay))
1412 				tipc_node_get(rx->node);
1413 		}
1414 	} else {
1415 		/* Cancel a pending key distributing if any */
1416 		atomic_xchg(&rx->key_distr, 0);
1417 	}
1418 
1419 	/* Case 2: Peer RX active key has changed, let's update own TX users */
1420 	cur = atomic_read(&rx->peer_rx_active);
1421 	new = ehdr->rx_key_active;
1422 	if (tx->key.keys &&
1423 	    cur != new &&
1424 	    atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) {
1425 		if (new)
1426 			tipc_aead_users_inc(tx->aead[new], INT_MAX);
1427 		if (cur)
1428 			tipc_aead_users_dec(tx->aead[cur], 0);
1429 
1430 		atomic64_set(&rx->sndnxt, 0);
1431 		/* Mark the point TX key users changed */
1432 		tx->timer1 = jiffies;
1433 
1434 		pr_debug("%s: key users changed %d-- %d++, peer %s\n",
1435 			 tx->name, cur, new, rx->name);
1436 	}
1437 }
1438 
1439 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1440 {
1441 	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1442 	struct tipc_key key;
1443 
1444 	spin_lock(&tx->lock);
1445 	key = tx->key;
1446 	WARN_ON(!key.active || tx_key != key.active);
1447 
1448 	/* Free the active key */
1449 	tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1450 	tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1451 	spin_unlock(&tx->lock);
1452 
1453 	pr_warn("%s: key is revoked\n", tx->name);
1454 	return -EKEYREVOKED;
1455 }
1456 
1457 int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1458 		      struct tipc_node *node)
1459 {
1460 	struct tipc_crypto *c;
1461 
1462 	if (*crypto)
1463 		return -EEXIST;
1464 
1465 	/* Allocate crypto */
1466 	c = kzalloc(sizeof(*c), GFP_ATOMIC);
1467 	if (!c)
1468 		return -ENOMEM;
1469 
1470 	/* Allocate workqueue on TX */
1471 	if (!node) {
1472 		c->wq = alloc_ordered_workqueue("tipc_crypto", 0);
1473 		if (!c->wq) {
1474 			kfree(c);
1475 			return -ENOMEM;
1476 		}
1477 	}
1478 
1479 	/* Allocate statistic structure */
1480 	c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1481 	if (!c->stats) {
1482 		if (c->wq)
1483 			destroy_workqueue(c->wq);
1484 		kfree_sensitive(c);
1485 		return -ENOMEM;
1486 	}
1487 
1488 	c->flags = 0;
1489 	c->net = net;
1490 	c->node = node;
1491 	get_random_bytes(&c->key_gen, 2);
1492 	tipc_crypto_key_set_state(c, 0, 0, 0);
1493 	atomic_set(&c->key_distr, 0);
1494 	atomic_set(&c->peer_rx_active, 0);
1495 	atomic64_set(&c->sndnxt, 0);
1496 	c->timer1 = jiffies;
1497 	c->timer2 = jiffies;
1498 	c->rekeying_intv = TIPC_REKEYING_INTV_DEF;
1499 	spin_lock_init(&c->lock);
1500 	scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX",
1501 		  (is_rx(c)) ? tipc_node_get_id_str(c->node) :
1502 			       tipc_own_id_string(c->net));
1503 
1504 	if (is_rx(c))
1505 		INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx);
1506 	else
1507 		INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx);
1508 
1509 	*crypto = c;
1510 	return 0;
1511 }
1512 
1513 void tipc_crypto_stop(struct tipc_crypto **crypto)
1514 {
1515 	struct tipc_crypto *c = *crypto;
1516 	u8 k;
1517 
1518 	if (!c)
1519 		return;
1520 
1521 	/* Flush any queued works & destroy wq */
1522 	if (is_tx(c)) {
1523 		c->rekeying_intv = 0;
1524 		cancel_delayed_work_sync(&c->work);
1525 		destroy_workqueue(c->wq);
1526 	}
1527 
1528 	/* Release AEAD keys */
1529 	rcu_read_lock();
1530 	for (k = KEY_MIN; k <= KEY_MAX; k++)
1531 		tipc_aead_put(rcu_dereference(c->aead[k]));
1532 	rcu_read_unlock();
1533 	pr_debug("%s: has been stopped\n", c->name);
1534 
1535 	/* Free this crypto statistics */
1536 	free_percpu(c->stats);
1537 
1538 	*crypto = NULL;
1539 	kfree_sensitive(c);
1540 }
1541 
1542 void tipc_crypto_timeout(struct tipc_crypto *rx)
1543 {
1544 	struct tipc_net *tn = tipc_net(rx->net);
1545 	struct tipc_crypto *tx = tn->crypto_tx;
1546 	struct tipc_key key;
1547 	int cmd;
1548 
1549 	/* TX pending: taking all users & stable -> active */
1550 	spin_lock(&tx->lock);
1551 	key = tx->key;
1552 	if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1553 		goto s1;
1554 	if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1555 		goto s1;
1556 	if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME))
1557 		goto s1;
1558 
1559 	tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1560 	if (key.active)
1561 		tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1562 	this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1563 	pr_info("%s: key[%d] is activated\n", tx->name, key.pending);
1564 
1565 s1:
1566 	spin_unlock(&tx->lock);
1567 
1568 	/* RX pending: having user -> active */
1569 	spin_lock(&rx->lock);
1570 	key = rx->key;
1571 	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1572 		goto s2;
1573 
1574 	if (key.active)
1575 		key.passive = key.active;
1576 	key.active = key.pending;
1577 	rx->timer2 = jiffies;
1578 	tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1579 	this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1580 	pr_info("%s: key[%d] is activated\n", rx->name, key.pending);
1581 	goto s5;
1582 
1583 s2:
1584 	/* RX pending: not working -> remove */
1585 	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10)
1586 		goto s3;
1587 
1588 	tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1589 	tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock);
1590 	pr_debug("%s: key[%d] is removed\n", rx->name, key.pending);
1591 	goto s5;
1592 
1593 s3:
1594 	/* RX active: timed out or no user -> pending */
1595 	if (!key.active)
1596 		goto s4;
1597 	if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) &&
1598 	    tipc_aead_users(rx->aead[key.active]) > 0)
1599 		goto s4;
1600 
1601 	if (key.pending)
1602 		key.passive = key.active;
1603 	else
1604 		key.pending = key.active;
1605 	rx->timer2 = jiffies;
1606 	tipc_crypto_key_set_state(rx, key.passive, 0, key.pending);
1607 	tipc_aead_users_set(rx->aead[key.pending], 0);
1608 	pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active);
1609 	goto s5;
1610 
1611 s4:
1612 	/* RX passive: outdated or not working -> free */
1613 	if (!key.passive)
1614 		goto s5;
1615 	if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) &&
1616 	    tipc_aead_users(rx->aead[key.passive]) > -10)
1617 		goto s5;
1618 
1619 	tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1620 	tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1621 	pr_debug("%s: key[%d] is freed\n", rx->name, key.passive);
1622 
1623 s5:
1624 	spin_unlock(&rx->lock);
1625 
1626 	/* Relax it here, the flag will be set again if it really is, but only
1627 	 * when we are not in grace period for safety!
1628 	 */
1629 	if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD))
1630 		tx->legacy_user = 0;
1631 
1632 	/* Limit max_tfms & do debug commands if needed */
1633 	if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1634 		return;
1635 
1636 	cmd = sysctl_tipc_max_tfms;
1637 	sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1638 	tipc_crypto_do_cmd(rx->net, cmd);
1639 }
1640 
1641 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
1642 					 struct tipc_bearer *b,
1643 					 struct tipc_media_addr *dst,
1644 					 struct tipc_node *__dnode, u8 type)
1645 {
1646 	struct sk_buff *skb;
1647 
1648 	skb = skb_clone(_skb, GFP_ATOMIC);
1649 	if (skb) {
1650 		TIPC_SKB_CB(skb)->xmit_type = type;
1651 		tipc_crypto_xmit(net, &skb, b, dst, __dnode);
1652 		if (skb)
1653 			b->media->send_msg(net, skb, b, dst);
1654 	}
1655 }
1656 
1657 /**
1658  * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1659  * @net: struct net
1660  * @skb: input/output message skb pointer
1661  * @b: bearer used for xmit later
1662  * @dst: destination media address
1663  * @__dnode: destination node for reference if any
1664  *
1665  * First, build an encryption message header on the top of the message, then
1666  * encrypt the original TIPC message by using the pending, master or active
1667  * key with this preference order.
1668  * If the encryption is successful, the encrypted skb is returned directly or
1669  * via the callback.
1670  * Otherwise, the skb is freed!
1671  *
1672  * Return:
1673  * * 0                   : the encryption has succeeded (or no encryption)
1674  * * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1675  * * -ENOKEK             : the encryption has failed due to no key
1676  * * -EKEYREVOKED        : the encryption has failed due to key revoked
1677  * * -ENOMEM             : the encryption has failed due to no memory
1678  * * < 0                 : the encryption has failed due to other reasons
1679  */
1680 int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1681 		     struct tipc_bearer *b, struct tipc_media_addr *dst,
1682 		     struct tipc_node *__dnode)
1683 {
1684 	struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1685 	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1686 	struct tipc_crypto_stats __percpu *stats = tx->stats;
1687 	struct tipc_msg *hdr = buf_msg(*skb);
1688 	struct tipc_key key = tx->key;
1689 	struct tipc_aead *aead = NULL;
1690 	u32 user = msg_user(hdr);
1691 	u32 type = msg_type(hdr);
1692 	int rc = -ENOKEY;
1693 	u8 tx_key = 0;
1694 
1695 	/* No encryption? */
1696 	if (!tx->working)
1697 		return 0;
1698 
1699 	/* Pending key if peer has active on it or probing time */
1700 	if (unlikely(key.pending)) {
1701 		tx_key = key.pending;
1702 		if (!tx->key_master && !key.active)
1703 			goto encrypt;
1704 		if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1705 			goto encrypt;
1706 		if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) {
1707 			pr_debug("%s: probing for key[%d]\n", tx->name,
1708 				 key.pending);
1709 			goto encrypt;
1710 		}
1711 		if (user == LINK_CONFIG || user == LINK_PROTOCOL)
1712 			tipc_crypto_clone_msg(net, *skb, b, dst, __dnode,
1713 					      SKB_PROBING);
1714 	}
1715 
1716 	/* Master key if this is a *vital* message or in grace period */
1717 	if (tx->key_master) {
1718 		tx_key = KEY_MASTER;
1719 		if (!key.active)
1720 			goto encrypt;
1721 		if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) {
1722 			pr_debug("%s: gracing for msg (%d %d)\n", tx->name,
1723 				 user, type);
1724 			goto encrypt;
1725 		}
1726 		if (user == LINK_CONFIG ||
1727 		    (user == LINK_PROTOCOL && type == RESET_MSG) ||
1728 		    (user == MSG_CRYPTO && type == KEY_DISTR_MSG) ||
1729 		    time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) {
1730 			if (__rx && __rx->key_master &&
1731 			    !atomic_read(&__rx->peer_rx_active))
1732 				goto encrypt;
1733 			if (!__rx) {
1734 				if (likely(!tx->legacy_user))
1735 					goto encrypt;
1736 				tipc_crypto_clone_msg(net, *skb, b, dst,
1737 						      __dnode, SKB_GRACING);
1738 			}
1739 		}
1740 	}
1741 
1742 	/* Else, use the active key if any */
1743 	if (likely(key.active)) {
1744 		tx_key = key.active;
1745 		goto encrypt;
1746 	}
1747 
1748 	goto exit;
1749 
1750 encrypt:
1751 	aead = tipc_aead_get(tx->aead[tx_key]);
1752 	if (unlikely(!aead))
1753 		goto exit;
1754 	rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1755 	if (likely(rc > 0))
1756 		rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1757 
1758 exit:
1759 	switch (rc) {
1760 	case 0:
1761 		this_cpu_inc(stats->stat[STAT_OK]);
1762 		break;
1763 	case -EINPROGRESS:
1764 	case -EBUSY:
1765 		this_cpu_inc(stats->stat[STAT_ASYNC]);
1766 		*skb = NULL;
1767 		return rc;
1768 	default:
1769 		this_cpu_inc(stats->stat[STAT_NOK]);
1770 		if (rc == -ENOKEY)
1771 			this_cpu_inc(stats->stat[STAT_NOKEYS]);
1772 		else if (rc == -EKEYREVOKED)
1773 			this_cpu_inc(stats->stat[STAT_BADKEYS]);
1774 		kfree_skb(*skb);
1775 		*skb = NULL;
1776 		break;
1777 	}
1778 
1779 	tipc_aead_put(aead);
1780 	return rc;
1781 }
1782 
1783 /**
1784  * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1785  * @net: struct net
1786  * @rx: RX crypto handle
1787  * @skb: input/output message skb pointer
1788  * @b: bearer where the message has been received
1789  *
1790  * If the decryption is successful, the decrypted skb is returned directly or
1791  * as the callback, the encryption header and auth tag will be trimed out
1792  * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1793  * Otherwise, the skb will be freed!
1794  * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1795  * cluster key(s) can be taken for decryption (- recursive).
1796  *
1797  * Return:
1798  * * 0                   : the decryption has successfully completed
1799  * * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1800  * * -ENOKEY             : the decryption has failed due to no key
1801  * * -EBADMSG            : the decryption has failed due to bad message
1802  * * -ENOMEM             : the decryption has failed due to no memory
1803  * * < 0                 : the decryption has failed due to other reasons
1804  */
1805 int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1806 		    struct sk_buff **skb, struct tipc_bearer *b)
1807 {
1808 	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1809 	struct tipc_crypto_stats __percpu *stats;
1810 	struct tipc_aead *aead = NULL;
1811 	struct tipc_key key;
1812 	int rc = -ENOKEY;
1813 	u8 tx_key, n;
1814 
1815 	tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1816 
1817 	/* New peer?
1818 	 * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1819 	 */
1820 	if (unlikely(!rx || tx_key == KEY_MASTER))
1821 		goto pick_tx;
1822 
1823 	/* Pick RX key according to TX key if any */
1824 	key = rx->key;
1825 	if (tx_key == key.active || tx_key == key.pending ||
1826 	    tx_key == key.passive)
1827 		goto decrypt;
1828 
1829 	/* Unknown key, let's try to align RX key(s) */
1830 	if (tipc_crypto_key_try_align(rx, tx_key))
1831 		goto decrypt;
1832 
1833 pick_tx:
1834 	/* No key suitable? Try to pick one from TX... */
1835 	aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key);
1836 	if (aead)
1837 		goto decrypt;
1838 	goto exit;
1839 
1840 decrypt:
1841 	rcu_read_lock();
1842 	if (!aead)
1843 		aead = tipc_aead_get(rx->aead[tx_key]);
1844 	rc = tipc_aead_decrypt(net, aead, *skb, b);
1845 	rcu_read_unlock();
1846 
1847 exit:
1848 	stats = ((rx) ?: tx)->stats;
1849 	switch (rc) {
1850 	case 0:
1851 		this_cpu_inc(stats->stat[STAT_OK]);
1852 		break;
1853 	case -EINPROGRESS:
1854 	case -EBUSY:
1855 		this_cpu_inc(stats->stat[STAT_ASYNC]);
1856 		*skb = NULL;
1857 		return rc;
1858 	default:
1859 		this_cpu_inc(stats->stat[STAT_NOK]);
1860 		if (rc == -ENOKEY) {
1861 			kfree_skb(*skb);
1862 			*skb = NULL;
1863 			if (rx) {
1864 				/* Mark rx->nokey only if we dont have a
1865 				 * pending received session key, nor a newer
1866 				 * one i.e. in the next slot.
1867 				 */
1868 				n = key_next(tx_key);
1869 				rx->nokey = !(rx->skey ||
1870 					      rcu_access_pointer(rx->aead[n]));
1871 				pr_debug_ratelimited("%s: nokey %d, key %d/%x\n",
1872 						     rx->name, rx->nokey,
1873 						     tx_key, rx->key.keys);
1874 				tipc_node_put(rx->node);
1875 			}
1876 			this_cpu_inc(stats->stat[STAT_NOKEYS]);
1877 			return rc;
1878 		} else if (rc == -EBADMSG) {
1879 			this_cpu_inc(stats->stat[STAT_BADMSGS]);
1880 		}
1881 		break;
1882 	}
1883 
1884 	tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1885 	return rc;
1886 }
1887 
1888 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1889 				     struct tipc_bearer *b,
1890 				     struct sk_buff **skb, int err)
1891 {
1892 	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1893 	struct tipc_crypto *rx = aead->crypto;
1894 	struct tipc_aead *tmp = NULL;
1895 	struct tipc_ehdr *ehdr;
1896 	struct tipc_node *n;
1897 
1898 	/* Is this completed by TX? */
1899 	if (unlikely(is_tx(aead->crypto))) {
1900 		rx = skb_cb->tx_clone_ctx.rx;
1901 		pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1902 			 (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1903 			 (*skb)->next, skb_cb->flags);
1904 		pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1905 			 skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1906 			 aead->crypto->aead[1], aead->crypto->aead[2],
1907 			 aead->crypto->aead[3]);
1908 		if (unlikely(err)) {
1909 			if (err == -EBADMSG && (*skb)->next)
1910 				tipc_rcv(net, (*skb)->next, b);
1911 			goto free_skb;
1912 		}
1913 
1914 		if (likely((*skb)->next)) {
1915 			kfree_skb((*skb)->next);
1916 			(*skb)->next = NULL;
1917 		}
1918 		ehdr = (struct tipc_ehdr *)(*skb)->data;
1919 		if (!rx) {
1920 			WARN_ON(ehdr->user != LINK_CONFIG);
1921 			n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1922 					     true);
1923 			rx = tipc_node_crypto_rx(n);
1924 			if (unlikely(!rx))
1925 				goto free_skb;
1926 		}
1927 
1928 		/* Ignore cloning if it was TX master key */
1929 		if (ehdr->tx_key == KEY_MASTER)
1930 			goto rcv;
1931 		if (tipc_aead_clone(&tmp, aead) < 0)
1932 			goto rcv;
1933 		WARN_ON(!refcount_inc_not_zero(&tmp->refcnt));
1934 		if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) {
1935 			tipc_aead_free(&tmp->rcu);
1936 			goto rcv;
1937 		}
1938 		tipc_aead_put(aead);
1939 		aead = tmp;
1940 	}
1941 
1942 	if (unlikely(err)) {
1943 		tipc_aead_users_dec((struct tipc_aead __force __rcu *)aead, INT_MIN);
1944 		goto free_skb;
1945 	}
1946 
1947 	/* Set the RX key's user */
1948 	tipc_aead_users_set((struct tipc_aead __force __rcu *)aead, 1);
1949 
1950 	/* Mark this point, RX works */
1951 	rx->timer1 = jiffies;
1952 
1953 rcv:
1954 	/* Remove ehdr & auth. tag prior to tipc_rcv() */
1955 	ehdr = (struct tipc_ehdr *)(*skb)->data;
1956 
1957 	/* Mark this point, RX passive still works */
1958 	if (rx->key.passive && ehdr->tx_key == rx->key.passive)
1959 		rx->timer2 = jiffies;
1960 
1961 	skb_reset_network_header(*skb);
1962 	skb_pull(*skb, tipc_ehdr_size(ehdr));
1963 	pskb_trim(*skb, (*skb)->len - aead->authsize);
1964 
1965 	/* Validate TIPCv2 message */
1966 	if (unlikely(!tipc_msg_validate(skb))) {
1967 		pr_err_ratelimited("Packet dropped after decryption!\n");
1968 		goto free_skb;
1969 	}
1970 
1971 	/* Ok, everything's fine, try to synch own keys according to peers' */
1972 	tipc_crypto_key_synch(rx, *skb);
1973 
1974 	/* Mark skb decrypted */
1975 	skb_cb->decrypted = 1;
1976 
1977 	/* Clear clone cxt if any */
1978 	if (likely(!skb_cb->tx_clone_deferred))
1979 		goto exit;
1980 	skb_cb->tx_clone_deferred = 0;
1981 	memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1982 	goto exit;
1983 
1984 free_skb:
1985 	kfree_skb(*skb);
1986 	*skb = NULL;
1987 
1988 exit:
1989 	tipc_aead_put(aead);
1990 	if (rx)
1991 		tipc_node_put(rx->node);
1992 }
1993 
1994 static void tipc_crypto_do_cmd(struct net *net, int cmd)
1995 {
1996 	struct tipc_net *tn = tipc_net(net);
1997 	struct tipc_crypto *tx = tn->crypto_tx, *rx;
1998 	struct list_head *p;
1999 	unsigned int stat;
2000 	int i, j, cpu;
2001 	char buf[200];
2002 
2003 	/* Currently only one command is supported */
2004 	switch (cmd) {
2005 	case 0xfff1:
2006 		goto print_stats;
2007 	default:
2008 		return;
2009 	}
2010 
2011 print_stats:
2012 	/* Print a header */
2013 	pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
2014 
2015 	/* Print key status */
2016 	pr_info("Key status:\n");
2017 	pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
2018 		tipc_crypto_key_dump(tx, buf));
2019 
2020 	rcu_read_lock();
2021 	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2022 		rx = tipc_node_crypto_rx_by_list(p);
2023 		pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
2024 			tipc_crypto_key_dump(rx, buf));
2025 	}
2026 	rcu_read_unlock();
2027 
2028 	/* Print crypto statistics */
2029 	for (i = 0, j = 0; i < MAX_STATS; i++)
2030 		j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
2031 	pr_info("Counter     %s", buf);
2032 
2033 	memset(buf, '-', 115);
2034 	buf[115] = '\0';
2035 	pr_info("%s\n", buf);
2036 
2037 	j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
2038 	for_each_possible_cpu(cpu) {
2039 		for (i = 0; i < MAX_STATS; i++) {
2040 			stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
2041 			j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
2042 		}
2043 		pr_info("%s", buf);
2044 		j = scnprintf(buf, 200, "%12s", " ");
2045 	}
2046 
2047 	rcu_read_lock();
2048 	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2049 		rx = tipc_node_crypto_rx_by_list(p);
2050 		j = scnprintf(buf, 200, "RX(%7.7s) ",
2051 			      tipc_node_get_id_str(rx->node));
2052 		for_each_possible_cpu(cpu) {
2053 			for (i = 0; i < MAX_STATS; i++) {
2054 				stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
2055 				j += scnprintf(buf + j, 200 - j, "|%11d ",
2056 					       stat);
2057 			}
2058 			pr_info("%s", buf);
2059 			j = scnprintf(buf, 200, "%12s", " ");
2060 		}
2061 	}
2062 	rcu_read_unlock();
2063 
2064 	pr_info("\n======================== Done ========================\n");
2065 }
2066 
2067 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
2068 {
2069 	struct tipc_key key = c->key;
2070 	struct tipc_aead *aead;
2071 	int k, i = 0;
2072 	char *s;
2073 
2074 	for (k = KEY_MIN; k <= KEY_MAX; k++) {
2075 		if (k == KEY_MASTER) {
2076 			if (is_rx(c))
2077 				continue;
2078 			if (time_before(jiffies,
2079 					c->timer2 + TIPC_TX_GRACE_PERIOD))
2080 				s = "ACT";
2081 			else
2082 				s = "PAS";
2083 		} else {
2084 			if (k == key.passive)
2085 				s = "PAS";
2086 			else if (k == key.active)
2087 				s = "ACT";
2088 			else if (k == key.pending)
2089 				s = "PEN";
2090 			else
2091 				s = "-";
2092 		}
2093 		i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
2094 
2095 		rcu_read_lock();
2096 		aead = rcu_dereference(c->aead[k]);
2097 		if (aead)
2098 			i += scnprintf(buf + i, 200 - i,
2099 				       "{\"0x...%s\", \"%s\"}/%d:%d",
2100 				       aead->hint,
2101 				       (aead->mode == CLUSTER_KEY) ? "c" : "p",
2102 				       atomic_read(&aead->users),
2103 				       refcount_read(&aead->refcnt));
2104 		rcu_read_unlock();
2105 		i += scnprintf(buf + i, 200 - i, "\n");
2106 	}
2107 
2108 	if (is_rx(c))
2109 		i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
2110 			       atomic_read(&c->peer_rx_active));
2111 
2112 	return buf;
2113 }
2114 
2115 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
2116 				  char *buf)
2117 {
2118 	struct tipc_key *key = &old;
2119 	int k, i = 0;
2120 	char *s;
2121 
2122 	/* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
2123 again:
2124 	i += scnprintf(buf + i, 32 - i, "[");
2125 	for (k = KEY_1; k <= KEY_3; k++) {
2126 		if (k == key->passive)
2127 			s = "pas";
2128 		else if (k == key->active)
2129 			s = "act";
2130 		else if (k == key->pending)
2131 			s = "pen";
2132 		else
2133 			s = "-";
2134 		i += scnprintf(buf + i, 32 - i,
2135 			       (k != KEY_3) ? "%s " : "%s", s);
2136 	}
2137 	if (key != &new) {
2138 		i += scnprintf(buf + i, 32 - i, "] -> ");
2139 		key = &new;
2140 		goto again;
2141 	}
2142 	i += scnprintf(buf + i, 32 - i, "]");
2143 	return buf;
2144 }
2145 
2146 /**
2147  * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point
2148  * @net: the struct net
2149  * @skb: the receiving message buffer
2150  */
2151 void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb)
2152 {
2153 	struct tipc_crypto *rx;
2154 	struct tipc_msg *hdr;
2155 
2156 	if (unlikely(skb_linearize(skb)))
2157 		goto exit;
2158 
2159 	hdr = buf_msg(skb);
2160 	rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr));
2161 	if (unlikely(!rx))
2162 		goto exit;
2163 
2164 	switch (msg_type(hdr)) {
2165 	case KEY_DISTR_MSG:
2166 		if (tipc_crypto_key_rcv(rx, hdr))
2167 			goto exit;
2168 		break;
2169 	default:
2170 		break;
2171 	}
2172 
2173 	tipc_node_put(rx->node);
2174 
2175 exit:
2176 	kfree_skb(skb);
2177 }
2178 
2179 /**
2180  * tipc_crypto_key_distr - Distribute a TX key
2181  * @tx: the TX crypto
2182  * @key: the key's index
2183  * @dest: the destination tipc node, = NULL if distributing to all nodes
2184  *
2185  * Return: 0 in case of success, otherwise < 0
2186  */
2187 int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key,
2188 			  struct tipc_node *dest)
2189 {
2190 	struct tipc_aead *aead;
2191 	u32 dnode = tipc_node_get_addr(dest);
2192 	int rc = -ENOKEY;
2193 
2194 	if (!sysctl_tipc_key_exchange_enabled)
2195 		return 0;
2196 
2197 	if (key) {
2198 		rcu_read_lock();
2199 		aead = tipc_aead_get(tx->aead[key]);
2200 		if (likely(aead)) {
2201 			rc = tipc_crypto_key_xmit(tx->net, aead->key,
2202 						  aead->gen, aead->mode,
2203 						  dnode);
2204 			tipc_aead_put(aead);
2205 		}
2206 		rcu_read_unlock();
2207 	}
2208 
2209 	return rc;
2210 }
2211 
2212 /**
2213  * tipc_crypto_key_xmit - Send a session key
2214  * @net: the struct net
2215  * @skey: the session key to be sent
2216  * @gen: the key's generation
2217  * @mode: the key's mode
2218  * @dnode: the destination node address, = 0 if broadcasting to all nodes
2219  *
2220  * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG'
2221  * as its data section, then xmit-ed through the uc/bc link.
2222  *
2223  * Return: 0 in case of success, otherwise < 0
2224  */
2225 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
2226 				u16 gen, u8 mode, u32 dnode)
2227 {
2228 	struct sk_buff_head pkts;
2229 	struct tipc_msg *hdr;
2230 	struct sk_buff *skb;
2231 	u16 size, cong_link_cnt;
2232 	u8 *data;
2233 	int rc;
2234 
2235 	size = tipc_aead_key_size(skey);
2236 	skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC);
2237 	if (!skb)
2238 		return -ENOMEM;
2239 
2240 	hdr = buf_msg(skb);
2241 	tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG,
2242 		      INT_H_SIZE, dnode);
2243 	msg_set_size(hdr, INT_H_SIZE + size);
2244 	msg_set_key_gen(hdr, gen);
2245 	msg_set_key_mode(hdr, mode);
2246 
2247 	data = msg_data(hdr);
2248 	*((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen);
2249 	memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME);
2250 	memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key,
2251 	       skey->keylen);
2252 
2253 	__skb_queue_head_init(&pkts);
2254 	__skb_queue_tail(&pkts, skb);
2255 	if (dnode)
2256 		rc = tipc_node_xmit(net, &pkts, dnode, 0);
2257 	else
2258 		rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt);
2259 
2260 	return rc;
2261 }
2262 
2263 /**
2264  * tipc_crypto_key_rcv - Receive a session key
2265  * @rx: the RX crypto
2266  * @hdr: the TIPC v2 message incl. the receiving session key in its data
2267  *
2268  * This function retrieves the session key in the message from peer, then
2269  * schedules a RX work to attach the key to the corresponding RX crypto.
2270  *
2271  * Return: "true" if the key has been scheduled for attaching, otherwise
2272  * "false".
2273  */
2274 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
2275 {
2276 	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2277 	struct tipc_aead_key *skey = NULL;
2278 	u16 key_gen = msg_key_gen(hdr);
2279 	u32 size = msg_data_sz(hdr);
2280 	u8 *data = msg_data(hdr);
2281 	unsigned int keylen;
2282 
2283 	/* Verify whether the size can exist in the packet */
2284 	if (unlikely(size < sizeof(struct tipc_aead_key) + TIPC_AEAD_KEYLEN_MIN)) {
2285 		pr_debug("%s: message data size is too small\n", rx->name);
2286 		goto exit;
2287 	}
2288 
2289 	keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
2290 
2291 	/* Verify the supplied size values */
2292 	if (unlikely(size != keylen + sizeof(struct tipc_aead_key) ||
2293 		     keylen > TIPC_AEAD_KEY_SIZE_MAX)) {
2294 		pr_debug("%s: invalid MSG_CRYPTO key size\n", rx->name);
2295 		goto exit;
2296 	}
2297 
2298 	spin_lock(&rx->lock);
2299 	if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) {
2300 		pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name,
2301 		       rx->skey, key_gen, rx->key_gen);
2302 		goto exit_unlock;
2303 	}
2304 
2305 	/* Allocate memory for the key */
2306 	skey = kmalloc(size, GFP_ATOMIC);
2307 	if (unlikely(!skey)) {
2308 		pr_err("%s: unable to allocate memory for skey\n", rx->name);
2309 		goto exit_unlock;
2310 	}
2311 
2312 	/* Copy key from msg data */
2313 	skey->keylen = keylen;
2314 	memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME);
2315 	memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32),
2316 	       skey->keylen);
2317 
2318 	rx->key_gen = key_gen;
2319 	rx->skey_mode = msg_key_mode(hdr);
2320 	rx->skey = skey;
2321 	rx->nokey = 0;
2322 	mb(); /* for nokey flag */
2323 
2324 exit_unlock:
2325 	spin_unlock(&rx->lock);
2326 
2327 exit:
2328 	/* Schedule the key attaching on this crypto */
2329 	if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0)))
2330 		return true;
2331 
2332 	return false;
2333 }
2334 
2335 /**
2336  * tipc_crypto_work_rx - Scheduled RX works handler
2337  * @work: the struct RX work
2338  *
2339  * The function processes the previous scheduled works i.e. distributing TX key
2340  * or attaching a received session key on RX crypto.
2341  */
2342 static void tipc_crypto_work_rx(struct work_struct *work)
2343 {
2344 	struct delayed_work *dwork = to_delayed_work(work);
2345 	struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work);
2346 	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2347 	unsigned long delay = msecs_to_jiffies(5000);
2348 	bool resched = false;
2349 	u8 key;
2350 	int rc;
2351 
2352 	/* Case 1: Distribute TX key to peer if scheduled */
2353 	if (atomic_cmpxchg(&rx->key_distr,
2354 			   KEY_DISTR_SCHED,
2355 			   KEY_DISTR_COMPL) == KEY_DISTR_SCHED) {
2356 		/* Always pick the newest one for distributing */
2357 		key = tx->key.pending ?: tx->key.active;
2358 		rc = tipc_crypto_key_distr(tx, key, rx->node);
2359 		if (unlikely(rc))
2360 			pr_warn("%s: unable to distr key[%d] to %s, err %d\n",
2361 				tx->name, key, tipc_node_get_id_str(rx->node),
2362 				rc);
2363 
2364 		/* Sched for key_distr releasing */
2365 		resched = true;
2366 	} else {
2367 		atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0);
2368 	}
2369 
2370 	/* Case 2: Attach a pending received session key from peer if any */
2371 	if (rx->skey) {
2372 		rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false);
2373 		if (unlikely(rc < 0))
2374 			pr_warn("%s: unable to attach received skey, err %d\n",
2375 				rx->name, rc);
2376 		switch (rc) {
2377 		case -EBUSY:
2378 		case -ENOMEM:
2379 			/* Resched the key attaching */
2380 			resched = true;
2381 			break;
2382 		default:
2383 			synchronize_rcu();
2384 			kfree(rx->skey);
2385 			rx->skey = NULL;
2386 			break;
2387 		}
2388 	}
2389 
2390 	if (resched && queue_delayed_work(tx->wq, &rx->work, delay))
2391 		return;
2392 
2393 	tipc_node_put(rx->node);
2394 }
2395 
2396 /**
2397  * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval
2398  * @tx: TX crypto
2399  * @changed: if the rekeying needs to be rescheduled with new interval
2400  * @new_intv: new rekeying interval (when "changed" = true)
2401  */
2402 void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed,
2403 				u32 new_intv)
2404 {
2405 	unsigned long delay;
2406 	bool now = false;
2407 
2408 	if (changed) {
2409 		if (new_intv == TIPC_REKEYING_NOW)
2410 			now = true;
2411 		else
2412 			tx->rekeying_intv = new_intv;
2413 		cancel_delayed_work_sync(&tx->work);
2414 	}
2415 
2416 	if (tx->rekeying_intv || now) {
2417 		delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000;
2418 		queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay));
2419 	}
2420 }
2421 
2422 /**
2423  * tipc_crypto_work_tx - Scheduled TX works handler
2424  * @work: the struct TX work
2425  *
2426  * The function processes the previous scheduled work, i.e. key rekeying, by
2427  * generating a new session key based on current one, then attaching it to the
2428  * TX crypto and finally distributing it to peers. It also re-schedules the
2429  * rekeying if needed.
2430  */
2431 static void tipc_crypto_work_tx(struct work_struct *work)
2432 {
2433 	struct delayed_work *dwork = to_delayed_work(work);
2434 	struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work);
2435 	struct tipc_aead_key *skey = NULL;
2436 	struct tipc_key key = tx->key;
2437 	struct tipc_aead *aead;
2438 	int rc = -ENOMEM;
2439 
2440 	if (unlikely(key.pending))
2441 		goto resched;
2442 
2443 	/* Take current key as a template */
2444 	rcu_read_lock();
2445 	aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]);
2446 	if (unlikely(!aead)) {
2447 		rcu_read_unlock();
2448 		/* At least one key should exist for securing */
2449 		return;
2450 	}
2451 
2452 	/* Lets duplicate it first */
2453 	skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC);
2454 	rcu_read_unlock();
2455 
2456 	/* Now, generate new key, initiate & distribute it */
2457 	if (likely(skey)) {
2458 		rc = tipc_aead_key_generate(skey) ?:
2459 		     tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false);
2460 		if (likely(rc > 0))
2461 			rc = tipc_crypto_key_distr(tx, rc, NULL);
2462 		kfree_sensitive(skey);
2463 	}
2464 
2465 	if (unlikely(rc))
2466 		pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc);
2467 
2468 resched:
2469 	/* Re-schedule rekeying if any */
2470 	tipc_crypto_rekeying_sched(tx, false, 0);
2471 }
2472