xref: /openbmc/linux/net/tipc/crypto.c (revision 4b53a3c7)
1 // SPDX-License-Identifier: GPL-2.0
2 /**
3  * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
4  *
5  * Copyright (c) 2019, Ericsson AB
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the names of the copyright holders nor the names of its
17  *    contributors may be used to endorse or promote products derived from
18  *    this software without specific prior written permission.
19  *
20  * Alternatively, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") version 2 as published by the Free
22  * Software Foundation.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
28  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #include <crypto/aead.h>
38 #include <crypto/aes.h>
39 #include "crypto.h"
40 
41 #define TIPC_TX_PROBE_LIM	msecs_to_jiffies(1000) /* > 1s */
42 #define TIPC_TX_LASTING_LIM	msecs_to_jiffies(120000) /* 2 mins */
43 #define TIPC_RX_ACTIVE_LIM	msecs_to_jiffies(3000) /* 3s */
44 #define TIPC_RX_PASSIVE_LIM	msecs_to_jiffies(180000) /* 3 mins */
45 #define TIPC_MAX_TFMS_DEF	10
46 #define TIPC_MAX_TFMS_LIM	1000
47 
48 /**
49  * TIPC Key ids
50  */
51 enum {
52 	KEY_UNUSED = 0,
53 	KEY_MIN,
54 	KEY_1 = KEY_MIN,
55 	KEY_2,
56 	KEY_3,
57 	KEY_MAX = KEY_3,
58 };
59 
60 /**
61  * TIPC Crypto statistics
62  */
63 enum {
64 	STAT_OK,
65 	STAT_NOK,
66 	STAT_ASYNC,
67 	STAT_ASYNC_OK,
68 	STAT_ASYNC_NOK,
69 	STAT_BADKEYS, /* tx only */
70 	STAT_BADMSGS = STAT_BADKEYS, /* rx only */
71 	STAT_NOKEYS,
72 	STAT_SWITCHES,
73 
74 	MAX_STATS,
75 };
76 
77 /* TIPC crypto statistics' header */
78 static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
79 					"async_nok", "badmsgs", "nokeys",
80 					"switches"};
81 
82 /* Max TFMs number per key */
83 int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
84 
85 /**
86  * struct tipc_key - TIPC keys' status indicator
87  *
88  *         7     6     5     4     3     2     1     0
89  *      +-----+-----+-----+-----+-----+-----+-----+-----+
90  * key: | (reserved)|passive idx| active idx|pending idx|
91  *      +-----+-----+-----+-----+-----+-----+-----+-----+
92  */
93 struct tipc_key {
94 #define KEY_BITS (2)
95 #define KEY_MASK ((1 << KEY_BITS) - 1)
96 	union {
97 		struct {
98 #if defined(__LITTLE_ENDIAN_BITFIELD)
99 			u8 pending:2,
100 			   active:2,
101 			   passive:2, /* rx only */
102 			   reserved:2;
103 #elif defined(__BIG_ENDIAN_BITFIELD)
104 			u8 reserved:2,
105 			   passive:2, /* rx only */
106 			   active:2,
107 			   pending:2;
108 #else
109 #error  "Please fix <asm/byteorder.h>"
110 #endif
111 		} __packed;
112 		u8 keys;
113 	};
114 };
115 
116 /**
117  * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
118  */
119 struct tipc_tfm {
120 	struct crypto_aead *tfm;
121 	struct list_head list;
122 };
123 
124 /**
125  * struct tipc_aead - TIPC AEAD key structure
126  * @tfm_entry: per-cpu pointer to one entry in TFM list
127  * @crypto: TIPC crypto owns this key
128  * @cloned: reference to the source key in case cloning
129  * @users: the number of the key users (TX/RX)
130  * @salt: the key's SALT value
131  * @authsize: authentication tag size (max = 16)
132  * @mode: crypto mode is applied to the key
133  * @hint[]: a hint for user key
134  * @rcu: struct rcu_head
135  * @seqno: the key seqno (cluster scope)
136  * @refcnt: the key reference counter
137  */
138 struct tipc_aead {
139 #define TIPC_AEAD_HINT_LEN (5)
140 	struct tipc_tfm * __percpu *tfm_entry;
141 	struct tipc_crypto *crypto;
142 	struct tipc_aead *cloned;
143 	atomic_t users;
144 	u32 salt;
145 	u8 authsize;
146 	u8 mode;
147 	char hint[TIPC_AEAD_HINT_LEN + 1];
148 	struct rcu_head rcu;
149 
150 	atomic64_t seqno ____cacheline_aligned;
151 	refcount_t refcnt ____cacheline_aligned;
152 
153 } ____cacheline_aligned;
154 
155 /**
156  * struct tipc_crypto_stats - TIPC Crypto statistics
157  */
158 struct tipc_crypto_stats {
159 	unsigned int stat[MAX_STATS];
160 };
161 
162 /**
163  * struct tipc_crypto - TIPC TX/RX crypto structure
164  * @net: struct net
165  * @node: TIPC node (RX)
166  * @aead: array of pointers to AEAD keys for encryption/decryption
167  * @peer_rx_active: replicated peer RX active key index
168  * @key: the key states
169  * @working: the crypto is working or not
170  * @stats: the crypto statistics
171  * @sndnxt: the per-peer sndnxt (TX)
172  * @timer1: general timer 1 (jiffies)
173  * @timer2: general timer 1 (jiffies)
174  * @lock: tipc_key lock
175  */
176 struct tipc_crypto {
177 	struct net *net;
178 	struct tipc_node *node;
179 	struct tipc_aead __rcu *aead[KEY_MAX + 1]; /* key[0] is UNUSED */
180 	atomic_t peer_rx_active;
181 	struct tipc_key key;
182 	u8 working:1;
183 	struct tipc_crypto_stats __percpu *stats;
184 
185 	atomic64_t sndnxt ____cacheline_aligned;
186 	unsigned long timer1;
187 	unsigned long timer2;
188 	spinlock_t lock; /* crypto lock */
189 
190 } ____cacheline_aligned;
191 
192 /* struct tipc_crypto_tx_ctx - TX context for callbacks */
193 struct tipc_crypto_tx_ctx {
194 	struct tipc_aead *aead;
195 	struct tipc_bearer *bearer;
196 	struct tipc_media_addr dst;
197 };
198 
199 /* struct tipc_crypto_rx_ctx - RX context for callbacks */
200 struct tipc_crypto_rx_ctx {
201 	struct tipc_aead *aead;
202 	struct tipc_bearer *bearer;
203 };
204 
205 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
206 static inline void tipc_aead_put(struct tipc_aead *aead);
207 static void tipc_aead_free(struct rcu_head *rp);
208 static int tipc_aead_users(struct tipc_aead __rcu *aead);
209 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
210 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
211 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
212 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
213 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
214 			  u8 mode);
215 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
216 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
217 				 unsigned int crypto_ctx_size,
218 				 u8 **iv, struct aead_request **req,
219 				 struct scatterlist **sg, int nsg);
220 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
221 			     struct tipc_bearer *b,
222 			     struct tipc_media_addr *dst,
223 			     struct tipc_node *__dnode);
224 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err);
225 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
226 			     struct sk_buff *skb, struct tipc_bearer *b);
227 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err);
228 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
229 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
230 			   u8 tx_key, struct sk_buff *skb,
231 			   struct tipc_crypto *__rx);
232 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
233 					     u8 new_passive,
234 					     u8 new_active,
235 					     u8 new_pending);
236 static int tipc_crypto_key_attach(struct tipc_crypto *c,
237 				  struct tipc_aead *aead, u8 pos);
238 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
239 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
240 						 struct tipc_crypto *rx,
241 						 struct sk_buff *skb);
242 static void tipc_crypto_key_synch(struct tipc_crypto *rx, u8 new_rx_active,
243 				  struct tipc_msg *hdr);
244 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
245 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
246 				     struct tipc_bearer *b,
247 				     struct sk_buff **skb, int err);
248 static void tipc_crypto_do_cmd(struct net *net, int cmd);
249 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
250 #ifdef TIPC_CRYPTO_DEBUG
251 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
252 				  char *buf);
253 #endif
254 
255 #define key_next(cur) ((cur) % KEY_MAX + 1)
256 
257 #define tipc_aead_rcu_ptr(rcu_ptr, lock)				\
258 	rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
259 
260 #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock)			\
261 do {									\
262 	typeof(rcu_ptr) __tmp = rcu_dereference_protected((rcu_ptr),	\
263 						lockdep_is_held(lock));	\
264 	rcu_assign_pointer((rcu_ptr), (ptr));				\
265 	tipc_aead_put(__tmp);						\
266 } while (0)
267 
268 #define tipc_crypto_key_detach(rcu_ptr, lock)				\
269 	tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
270 
271 /**
272  * tipc_aead_key_validate - Validate a AEAD user key
273  */
274 int tipc_aead_key_validate(struct tipc_aead_key *ukey)
275 {
276 	int keylen;
277 
278 	/* Check if algorithm exists */
279 	if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
280 		pr_info("Not found cipher: \"%s\"!\n", ukey->alg_name);
281 		return -ENODEV;
282 	}
283 
284 	/* Currently, we only support the "gcm(aes)" cipher algorithm */
285 	if (strcmp(ukey->alg_name, "gcm(aes)"))
286 		return -ENOTSUPP;
287 
288 	/* Check if key size is correct */
289 	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
290 	if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
291 		     keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
292 		     keylen != TIPC_AES_GCM_KEY_SIZE_256))
293 		return -EINVAL;
294 
295 	return 0;
296 }
297 
298 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
299 {
300 	struct tipc_aead *tmp;
301 
302 	rcu_read_lock();
303 	tmp = rcu_dereference(aead);
304 	if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
305 		tmp = NULL;
306 	rcu_read_unlock();
307 
308 	return tmp;
309 }
310 
311 static inline void tipc_aead_put(struct tipc_aead *aead)
312 {
313 	if (aead && refcount_dec_and_test(&aead->refcnt))
314 		call_rcu(&aead->rcu, tipc_aead_free);
315 }
316 
317 /**
318  * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
319  * @rp: rcu head pointer
320  */
321 static void tipc_aead_free(struct rcu_head *rp)
322 {
323 	struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
324 	struct tipc_tfm *tfm_entry, *head, *tmp;
325 
326 	if (aead->cloned) {
327 		tipc_aead_put(aead->cloned);
328 	} else {
329 		head = *get_cpu_ptr(aead->tfm_entry);
330 		put_cpu_ptr(aead->tfm_entry);
331 		list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
332 			crypto_free_aead(tfm_entry->tfm);
333 			list_del(&tfm_entry->list);
334 			kfree(tfm_entry);
335 		}
336 		/* Free the head */
337 		crypto_free_aead(head->tfm);
338 		list_del(&head->list);
339 		kfree(head);
340 	}
341 	free_percpu(aead->tfm_entry);
342 	kfree(aead);
343 }
344 
345 static int tipc_aead_users(struct tipc_aead __rcu *aead)
346 {
347 	struct tipc_aead *tmp;
348 	int users = 0;
349 
350 	rcu_read_lock();
351 	tmp = rcu_dereference(aead);
352 	if (tmp)
353 		users = atomic_read(&tmp->users);
354 	rcu_read_unlock();
355 
356 	return users;
357 }
358 
359 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
360 {
361 	struct tipc_aead *tmp;
362 
363 	rcu_read_lock();
364 	tmp = rcu_dereference(aead);
365 	if (tmp)
366 		atomic_add_unless(&tmp->users, 1, lim);
367 	rcu_read_unlock();
368 }
369 
370 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
371 {
372 	struct tipc_aead *tmp;
373 
374 	rcu_read_lock();
375 	tmp = rcu_dereference(aead);
376 	if (tmp)
377 		atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
378 	rcu_read_unlock();
379 }
380 
381 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
382 {
383 	struct tipc_aead *tmp;
384 	int cur;
385 
386 	rcu_read_lock();
387 	tmp = rcu_dereference(aead);
388 	if (tmp) {
389 		do {
390 			cur = atomic_read(&tmp->users);
391 			if (cur == val)
392 				break;
393 		} while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
394 	}
395 	rcu_read_unlock();
396 }
397 
398 /**
399  * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
400  */
401 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
402 {
403 	struct tipc_tfm **tfm_entry;
404 	struct crypto_aead *tfm;
405 
406 	tfm_entry = get_cpu_ptr(aead->tfm_entry);
407 	*tfm_entry = list_next_entry(*tfm_entry, list);
408 	tfm = (*tfm_entry)->tfm;
409 	put_cpu_ptr(tfm_entry);
410 
411 	return tfm;
412 }
413 
414 /**
415  * tipc_aead_init - Initiate TIPC AEAD
416  * @aead: returned new TIPC AEAD key handle pointer
417  * @ukey: pointer to user key data
418  * @mode: the key mode
419  *
420  * Allocate a (list of) new cipher transformation (TFM) with the specific user
421  * key data if valid. The number of the allocated TFMs can be set via the sysfs
422  * "net/tipc/max_tfms" first.
423  * Also, all the other AEAD data are also initialized.
424  *
425  * Return: 0 if the initiation is successful, otherwise: < 0
426  */
427 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
428 			  u8 mode)
429 {
430 	struct tipc_tfm *tfm_entry, *head;
431 	struct crypto_aead *tfm;
432 	struct tipc_aead *tmp;
433 	int keylen, err, cpu;
434 	int tfm_cnt = 0;
435 
436 	if (unlikely(*aead))
437 		return -EEXIST;
438 
439 	/* Allocate a new AEAD */
440 	tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
441 	if (unlikely(!tmp))
442 		return -ENOMEM;
443 
444 	/* The key consists of two parts: [AES-KEY][SALT] */
445 	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
446 
447 	/* Allocate per-cpu TFM entry pointer */
448 	tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
449 	if (!tmp->tfm_entry) {
450 		kfree_sensitive(tmp);
451 		return -ENOMEM;
452 	}
453 
454 	/* Make a list of TFMs with the user key data */
455 	do {
456 		tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
457 		if (IS_ERR(tfm)) {
458 			err = PTR_ERR(tfm);
459 			break;
460 		}
461 
462 		if (unlikely(!tfm_cnt &&
463 			     crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
464 			crypto_free_aead(tfm);
465 			err = -ENOTSUPP;
466 			break;
467 		}
468 
469 		err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
470 		err |= crypto_aead_setkey(tfm, ukey->key, keylen);
471 		if (unlikely(err)) {
472 			crypto_free_aead(tfm);
473 			break;
474 		}
475 
476 		tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
477 		if (unlikely(!tfm_entry)) {
478 			crypto_free_aead(tfm);
479 			err = -ENOMEM;
480 			break;
481 		}
482 		INIT_LIST_HEAD(&tfm_entry->list);
483 		tfm_entry->tfm = tfm;
484 
485 		/* First entry? */
486 		if (!tfm_cnt) {
487 			head = tfm_entry;
488 			for_each_possible_cpu(cpu) {
489 				*per_cpu_ptr(tmp->tfm_entry, cpu) = head;
490 			}
491 		} else {
492 			list_add_tail(&tfm_entry->list, &head->list);
493 		}
494 
495 	} while (++tfm_cnt < sysctl_tipc_max_tfms);
496 
497 	/* Not any TFM is allocated? */
498 	if (!tfm_cnt) {
499 		free_percpu(tmp->tfm_entry);
500 		kfree_sensitive(tmp);
501 		return err;
502 	}
503 
504 	/* Copy some chars from the user key as a hint */
505 	memcpy(tmp->hint, ukey->key, TIPC_AEAD_HINT_LEN);
506 	tmp->hint[TIPC_AEAD_HINT_LEN] = '\0';
507 
508 	/* Initialize the other data */
509 	tmp->mode = mode;
510 	tmp->cloned = NULL;
511 	tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
512 	memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
513 	atomic_set(&tmp->users, 0);
514 	atomic64_set(&tmp->seqno, 0);
515 	refcount_set(&tmp->refcnt, 1);
516 
517 	*aead = tmp;
518 	return 0;
519 }
520 
521 /**
522  * tipc_aead_clone - Clone a TIPC AEAD key
523  * @dst: dest key for the cloning
524  * @src: source key to clone from
525  *
526  * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
527  * common for the keys.
528  * A reference to the source is hold in the "cloned" pointer for the later
529  * freeing purposes.
530  *
531  * Note: this must be done in cluster-key mode only!
532  * Return: 0 in case of success, otherwise < 0
533  */
534 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
535 {
536 	struct tipc_aead *aead;
537 	int cpu;
538 
539 	if (!src)
540 		return -ENOKEY;
541 
542 	if (src->mode != CLUSTER_KEY)
543 		return -EINVAL;
544 
545 	if (unlikely(*dst))
546 		return -EEXIST;
547 
548 	aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
549 	if (unlikely(!aead))
550 		return -ENOMEM;
551 
552 	aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
553 	if (unlikely(!aead->tfm_entry)) {
554 		kfree_sensitive(aead);
555 		return -ENOMEM;
556 	}
557 
558 	for_each_possible_cpu(cpu) {
559 		*per_cpu_ptr(aead->tfm_entry, cpu) =
560 				*per_cpu_ptr(src->tfm_entry, cpu);
561 	}
562 
563 	memcpy(aead->hint, src->hint, sizeof(src->hint));
564 	aead->mode = src->mode;
565 	aead->salt = src->salt;
566 	aead->authsize = src->authsize;
567 	atomic_set(&aead->users, 0);
568 	atomic64_set(&aead->seqno, 0);
569 	refcount_set(&aead->refcnt, 1);
570 
571 	WARN_ON(!refcount_inc_not_zero(&src->refcnt));
572 	aead->cloned = src;
573 
574 	*dst = aead;
575 	return 0;
576 }
577 
578 /**
579  * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
580  * @tfm: cipher handle to be registered with the request
581  * @crypto_ctx_size: size of crypto context for callback
582  * @iv: returned pointer to IV data
583  * @req: returned pointer to AEAD request data
584  * @sg: returned pointer to SG lists
585  * @nsg: number of SG lists to be allocated
586  *
587  * Allocate memory to store the crypto context data, AEAD request, IV and SG
588  * lists, the memory layout is as follows:
589  * crypto_ctx || iv || aead_req || sg[]
590  *
591  * Return: the pointer to the memory areas in case of success, otherwise NULL
592  */
593 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
594 				 unsigned int crypto_ctx_size,
595 				 u8 **iv, struct aead_request **req,
596 				 struct scatterlist **sg, int nsg)
597 {
598 	unsigned int iv_size, req_size;
599 	unsigned int len;
600 	u8 *mem;
601 
602 	iv_size = crypto_aead_ivsize(tfm);
603 	req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
604 
605 	len = crypto_ctx_size;
606 	len += iv_size;
607 	len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
608 	len = ALIGN(len, crypto_tfm_ctx_alignment());
609 	len += req_size;
610 	len = ALIGN(len, __alignof__(struct scatterlist));
611 	len += nsg * sizeof(**sg);
612 
613 	mem = kmalloc(len, GFP_ATOMIC);
614 	if (!mem)
615 		return NULL;
616 
617 	*iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
618 			      crypto_aead_alignmask(tfm) + 1);
619 	*req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
620 						crypto_tfm_ctx_alignment());
621 	*sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
622 					      __alignof__(struct scatterlist));
623 
624 	return (void *)mem;
625 }
626 
627 /**
628  * tipc_aead_encrypt - Encrypt a message
629  * @aead: TIPC AEAD key for the message encryption
630  * @skb: the input/output skb
631  * @b: TIPC bearer where the message will be delivered after the encryption
632  * @dst: the destination media address
633  * @__dnode: TIPC dest node if "known"
634  *
635  * Return:
636  * 0                   : if the encryption has completed
637  * -EINPROGRESS/-EBUSY : if a callback will be performed
638  * < 0                 : the encryption has failed
639  */
640 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
641 			     struct tipc_bearer *b,
642 			     struct tipc_media_addr *dst,
643 			     struct tipc_node *__dnode)
644 {
645 	struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
646 	struct tipc_crypto_tx_ctx *tx_ctx;
647 	struct aead_request *req;
648 	struct sk_buff *trailer;
649 	struct scatterlist *sg;
650 	struct tipc_ehdr *ehdr;
651 	int ehsz, len, tailen, nsg, rc;
652 	void *ctx;
653 	u32 salt;
654 	u8 *iv;
655 
656 	/* Make sure message len at least 4-byte aligned */
657 	len = ALIGN(skb->len, 4);
658 	tailen = len - skb->len + aead->authsize;
659 
660 	/* Expand skb tail for authentication tag:
661 	 * As for simplicity, we'd have made sure skb having enough tailroom
662 	 * for authentication tag @skb allocation. Even when skb is nonlinear
663 	 * but there is no frag_list, it should be still fine!
664 	 * Otherwise, we must cow it to be a writable buffer with the tailroom.
665 	 */
666 #ifdef TIPC_CRYPTO_DEBUG
667 	SKB_LINEAR_ASSERT(skb);
668 	if (tailen > skb_tailroom(skb)) {
669 		pr_warn("TX: skb tailroom is not enough: %d, requires: %d\n",
670 			skb_tailroom(skb), tailen);
671 	}
672 #endif
673 
674 	if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) {
675 		nsg = 1;
676 		trailer = skb;
677 	} else {
678 		/* TODO: We could avoid skb_cow_data() if skb has no frag_list
679 		 * e.g. by skb_fill_page_desc() to add another page to the skb
680 		 * with the wanted tailen... However, page skbs look not often,
681 		 * so take it easy now!
682 		 * Cloned skbs e.g. from link_xmit() seems no choice though :(
683 		 */
684 		nsg = skb_cow_data(skb, tailen, &trailer);
685 		if (unlikely(nsg < 0)) {
686 			pr_err("TX: skb_cow_data() returned %d\n", nsg);
687 			return nsg;
688 		}
689 	}
690 
691 	pskb_put(skb, trailer, tailen);
692 
693 	/* Allocate memory for the AEAD operation */
694 	ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
695 	if (unlikely(!ctx))
696 		return -ENOMEM;
697 	TIPC_SKB_CB(skb)->crypto_ctx = ctx;
698 
699 	/* Map skb to the sg lists */
700 	sg_init_table(sg, nsg);
701 	rc = skb_to_sgvec(skb, sg, 0, skb->len);
702 	if (unlikely(rc < 0)) {
703 		pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
704 		goto exit;
705 	}
706 
707 	/* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
708 	 * In case we're in cluster-key mode, SALT is varied by xor-ing with
709 	 * the source address (or w0 of id), otherwise with the dest address
710 	 * if dest is known.
711 	 */
712 	ehdr = (struct tipc_ehdr *)skb->data;
713 	salt = aead->salt;
714 	if (aead->mode == CLUSTER_KEY)
715 		salt ^= ehdr->addr; /* __be32 */
716 	else if (__dnode)
717 		salt ^= tipc_node_get_addr(__dnode);
718 	memcpy(iv, &salt, 4);
719 	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
720 
721 	/* Prepare request */
722 	ehsz = tipc_ehdr_size(ehdr);
723 	aead_request_set_tfm(req, tfm);
724 	aead_request_set_ad(req, ehsz);
725 	aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
726 
727 	/* Set callback function & data */
728 	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
729 				  tipc_aead_encrypt_done, skb);
730 	tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
731 	tx_ctx->aead = aead;
732 	tx_ctx->bearer = b;
733 	memcpy(&tx_ctx->dst, dst, sizeof(*dst));
734 
735 	/* Hold bearer */
736 	if (unlikely(!tipc_bearer_hold(b))) {
737 		rc = -ENODEV;
738 		goto exit;
739 	}
740 
741 	/* Now, do encrypt */
742 	rc = crypto_aead_encrypt(req);
743 	if (rc == -EINPROGRESS || rc == -EBUSY)
744 		return rc;
745 
746 	tipc_bearer_put(b);
747 
748 exit:
749 	kfree(ctx);
750 	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
751 	return rc;
752 }
753 
754 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err)
755 {
756 	struct sk_buff *skb = base->data;
757 	struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
758 	struct tipc_bearer *b = tx_ctx->bearer;
759 	struct tipc_aead *aead = tx_ctx->aead;
760 	struct tipc_crypto *tx = aead->crypto;
761 	struct net *net = tx->net;
762 
763 	switch (err) {
764 	case 0:
765 		this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
766 		rcu_read_lock();
767 		if (likely(test_bit(0, &b->up)))
768 			b->media->send_msg(net, skb, b, &tx_ctx->dst);
769 		else
770 			kfree_skb(skb);
771 		rcu_read_unlock();
772 		break;
773 	case -EINPROGRESS:
774 		return;
775 	default:
776 		this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
777 		kfree_skb(skb);
778 		break;
779 	}
780 
781 	kfree(tx_ctx);
782 	tipc_bearer_put(b);
783 	tipc_aead_put(aead);
784 }
785 
786 /**
787  * tipc_aead_decrypt - Decrypt an encrypted message
788  * @net: struct net
789  * @aead: TIPC AEAD for the message decryption
790  * @skb: the input/output skb
791  * @b: TIPC bearer where the message has been received
792  *
793  * Return:
794  * 0                   : if the decryption has completed
795  * -EINPROGRESS/-EBUSY : if a callback will be performed
796  * < 0                 : the decryption has failed
797  */
798 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
799 			     struct sk_buff *skb, struct tipc_bearer *b)
800 {
801 	struct tipc_crypto_rx_ctx *rx_ctx;
802 	struct aead_request *req;
803 	struct crypto_aead *tfm;
804 	struct sk_buff *unused;
805 	struct scatterlist *sg;
806 	struct tipc_ehdr *ehdr;
807 	int ehsz, nsg, rc;
808 	void *ctx;
809 	u32 salt;
810 	u8 *iv;
811 
812 	if (unlikely(!aead))
813 		return -ENOKEY;
814 
815 	/* Cow skb data if needed */
816 	if (likely(!skb_cloned(skb) &&
817 		   (!skb_is_nonlinear(skb) || !skb_has_frag_list(skb)))) {
818 		nsg = 1 + skb_shinfo(skb)->nr_frags;
819 	} else {
820 		nsg = skb_cow_data(skb, 0, &unused);
821 		if (unlikely(nsg < 0)) {
822 			pr_err("RX: skb_cow_data() returned %d\n", nsg);
823 			return nsg;
824 		}
825 	}
826 
827 	/* Allocate memory for the AEAD operation */
828 	tfm = tipc_aead_tfm_next(aead);
829 	ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
830 	if (unlikely(!ctx))
831 		return -ENOMEM;
832 	TIPC_SKB_CB(skb)->crypto_ctx = ctx;
833 
834 	/* Map skb to the sg lists */
835 	sg_init_table(sg, nsg);
836 	rc = skb_to_sgvec(skb, sg, 0, skb->len);
837 	if (unlikely(rc < 0)) {
838 		pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
839 		goto exit;
840 	}
841 
842 	/* Reconstruct IV: */
843 	ehdr = (struct tipc_ehdr *)skb->data;
844 	salt = aead->salt;
845 	if (aead->mode == CLUSTER_KEY)
846 		salt ^= ehdr->addr; /* __be32 */
847 	else if (ehdr->destined)
848 		salt ^= tipc_own_addr(net);
849 	memcpy(iv, &salt, 4);
850 	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
851 
852 	/* Prepare request */
853 	ehsz = tipc_ehdr_size(ehdr);
854 	aead_request_set_tfm(req, tfm);
855 	aead_request_set_ad(req, ehsz);
856 	aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
857 
858 	/* Set callback function & data */
859 	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
860 				  tipc_aead_decrypt_done, skb);
861 	rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
862 	rx_ctx->aead = aead;
863 	rx_ctx->bearer = b;
864 
865 	/* Hold bearer */
866 	if (unlikely(!tipc_bearer_hold(b))) {
867 		rc = -ENODEV;
868 		goto exit;
869 	}
870 
871 	/* Now, do decrypt */
872 	rc = crypto_aead_decrypt(req);
873 	if (rc == -EINPROGRESS || rc == -EBUSY)
874 		return rc;
875 
876 	tipc_bearer_put(b);
877 
878 exit:
879 	kfree(ctx);
880 	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
881 	return rc;
882 }
883 
884 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err)
885 {
886 	struct sk_buff *skb = base->data;
887 	struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
888 	struct tipc_bearer *b = rx_ctx->bearer;
889 	struct tipc_aead *aead = rx_ctx->aead;
890 	struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
891 	struct net *net = aead->crypto->net;
892 
893 	switch (err) {
894 	case 0:
895 		this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
896 		break;
897 	case -EINPROGRESS:
898 		return;
899 	default:
900 		this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
901 		break;
902 	}
903 
904 	kfree(rx_ctx);
905 	tipc_crypto_rcv_complete(net, aead, b, &skb, err);
906 	if (likely(skb)) {
907 		if (likely(test_bit(0, &b->up)))
908 			tipc_rcv(net, skb, b);
909 		else
910 			kfree_skb(skb);
911 	}
912 
913 	tipc_bearer_put(b);
914 }
915 
916 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
917 {
918 	return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
919 }
920 
921 /**
922  * tipc_ehdr_validate - Validate an encryption message
923  * @skb: the message buffer
924  *
925  * Returns "true" if this is a valid encryption message, otherwise "false"
926  */
927 bool tipc_ehdr_validate(struct sk_buff *skb)
928 {
929 	struct tipc_ehdr *ehdr;
930 	int ehsz;
931 
932 	if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
933 		return false;
934 
935 	ehdr = (struct tipc_ehdr *)skb->data;
936 	if (unlikely(ehdr->version != TIPC_EVERSION))
937 		return false;
938 	ehsz = tipc_ehdr_size(ehdr);
939 	if (unlikely(!pskb_may_pull(skb, ehsz)))
940 		return false;
941 	if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
942 		return false;
943 	if (unlikely(!ehdr->tx_key))
944 		return false;
945 
946 	return true;
947 }
948 
949 /**
950  * tipc_ehdr_build - Build TIPC encryption message header
951  * @net: struct net
952  * @aead: TX AEAD key to be used for the message encryption
953  * @tx_key: key id used for the message encryption
954  * @skb: input/output message skb
955  * @__rx: RX crypto handle if dest is "known"
956  *
957  * Return: the header size if the building is successful, otherwise < 0
958  */
959 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
960 			   u8 tx_key, struct sk_buff *skb,
961 			   struct tipc_crypto *__rx)
962 {
963 	struct tipc_msg *hdr = buf_msg(skb);
964 	struct tipc_ehdr *ehdr;
965 	u32 user = msg_user(hdr);
966 	u64 seqno;
967 	int ehsz;
968 
969 	/* Make room for encryption header */
970 	ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
971 	WARN_ON(skb_headroom(skb) < ehsz);
972 	ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
973 
974 	/* Obtain a seqno first:
975 	 * Use the key seqno (= cluster wise) if dest is unknown or we're in
976 	 * cluster key mode, otherwise it's better for a per-peer seqno!
977 	 */
978 	if (!__rx || aead->mode == CLUSTER_KEY)
979 		seqno = atomic64_inc_return(&aead->seqno);
980 	else
981 		seqno = atomic64_inc_return(&__rx->sndnxt);
982 
983 	/* Revoke the key if seqno is wrapped around */
984 	if (unlikely(!seqno))
985 		return tipc_crypto_key_revoke(net, tx_key);
986 
987 	/* Word 1-2 */
988 	ehdr->seqno = cpu_to_be64(seqno);
989 
990 	/* Words 0, 3- */
991 	ehdr->version = TIPC_EVERSION;
992 	ehdr->user = 0;
993 	ehdr->keepalive = 0;
994 	ehdr->tx_key = tx_key;
995 	ehdr->destined = (__rx) ? 1 : 0;
996 	ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
997 	ehdr->reserved_1 = 0;
998 	ehdr->reserved_2 = 0;
999 
1000 	switch (user) {
1001 	case LINK_CONFIG:
1002 		ehdr->user = LINK_CONFIG;
1003 		memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
1004 		break;
1005 	default:
1006 		if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
1007 			ehdr->user = LINK_PROTOCOL;
1008 			ehdr->keepalive = msg_is_keepalive(hdr);
1009 		}
1010 		ehdr->addr = hdr->hdr[3];
1011 		break;
1012 	}
1013 
1014 	return ehsz;
1015 }
1016 
1017 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1018 					     u8 new_passive,
1019 					     u8 new_active,
1020 					     u8 new_pending)
1021 {
1022 #ifdef TIPC_CRYPTO_DEBUG
1023 	struct tipc_key old = c->key;
1024 	char buf[32];
1025 #endif
1026 
1027 	c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1028 		      ((new_active  & KEY_MASK) << (KEY_BITS)) |
1029 		      ((new_pending & KEY_MASK));
1030 
1031 #ifdef TIPC_CRYPTO_DEBUG
1032 	pr_info("%s(%s): key changing %s ::%pS\n",
1033 		(c->node) ? "RX" : "TX",
1034 		(c->node) ? tipc_node_get_id_str(c->node) :
1035 			    tipc_own_id_string(c->net),
1036 		tipc_key_change_dump(old, c->key, buf),
1037 		__builtin_return_address(0));
1038 #endif
1039 }
1040 
1041 /**
1042  * tipc_crypto_key_init - Initiate a new user / AEAD key
1043  * @c: TIPC crypto to which new key is attached
1044  * @ukey: the user key
1045  * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1046  *
1047  * A new TIPC AEAD key will be allocated and initiated with the specified user
1048  * key, then attached to the TIPC crypto.
1049  *
1050  * Return: new key id in case of success, otherwise: < 0
1051  */
1052 int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1053 			 u8 mode)
1054 {
1055 	struct tipc_aead *aead = NULL;
1056 	int rc = 0;
1057 
1058 	/* Initiate with the new user key */
1059 	rc = tipc_aead_init(&aead, ukey, mode);
1060 
1061 	/* Attach it to the crypto */
1062 	if (likely(!rc)) {
1063 		rc = tipc_crypto_key_attach(c, aead, 0);
1064 		if (rc < 0)
1065 			tipc_aead_free(&aead->rcu);
1066 	}
1067 
1068 	pr_info("%s(%s): key initiating, rc %d!\n",
1069 		(c->node) ? "RX" : "TX",
1070 		(c->node) ? tipc_node_get_id_str(c->node) :
1071 			    tipc_own_id_string(c->net),
1072 		rc);
1073 
1074 	return rc;
1075 }
1076 
1077 /**
1078  * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1079  * @c: TIPC crypto to which the new AEAD key is attached
1080  * @aead: the new AEAD key pointer
1081  * @pos: desired slot in the crypto key array, = 0 if any!
1082  *
1083  * Return: new key id in case of success, otherwise: -EBUSY
1084  */
1085 static int tipc_crypto_key_attach(struct tipc_crypto *c,
1086 				  struct tipc_aead *aead, u8 pos)
1087 {
1088 	u8 new_pending, new_passive, new_key;
1089 	struct tipc_key key;
1090 	int rc = -EBUSY;
1091 
1092 	spin_lock_bh(&c->lock);
1093 	key = c->key;
1094 	if (key.active && key.passive)
1095 		goto exit;
1096 	if (key.passive && !tipc_aead_users(c->aead[key.passive]))
1097 		goto exit;
1098 	if (key.pending) {
1099 		if (pos)
1100 			goto exit;
1101 		if (tipc_aead_users(c->aead[key.pending]) > 0)
1102 			goto exit;
1103 		/* Replace it */
1104 		new_pending = key.pending;
1105 		new_passive = key.passive;
1106 		new_key = new_pending;
1107 	} else {
1108 		if (pos) {
1109 			if (key.active && pos != key_next(key.active)) {
1110 				new_pending = key.pending;
1111 				new_passive = pos;
1112 				new_key = new_passive;
1113 				goto attach;
1114 			} else if (!key.active && !key.passive) {
1115 				new_pending = pos;
1116 				new_passive = key.passive;
1117 				new_key = new_pending;
1118 				goto attach;
1119 			}
1120 		}
1121 		new_pending = key_next(key.active ?: key.passive);
1122 		new_passive = key.passive;
1123 		new_key = new_pending;
1124 	}
1125 
1126 attach:
1127 	aead->crypto = c;
1128 	tipc_crypto_key_set_state(c, new_passive, key.active, new_pending);
1129 	tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1130 
1131 	c->working = 1;
1132 	c->timer1 = jiffies;
1133 	c->timer2 = jiffies;
1134 	rc = new_key;
1135 
1136 exit:
1137 	spin_unlock_bh(&c->lock);
1138 	return rc;
1139 }
1140 
1141 void tipc_crypto_key_flush(struct tipc_crypto *c)
1142 {
1143 	int k;
1144 
1145 	spin_lock_bh(&c->lock);
1146 	c->working = 0;
1147 	tipc_crypto_key_set_state(c, 0, 0, 0);
1148 	for (k = KEY_MIN; k <= KEY_MAX; k++)
1149 		tipc_crypto_key_detach(c->aead[k], &c->lock);
1150 	atomic_set(&c->peer_rx_active, 0);
1151 	atomic64_set(&c->sndnxt, 0);
1152 	spin_unlock_bh(&c->lock);
1153 }
1154 
1155 /**
1156  * tipc_crypto_key_try_align - Align RX keys if possible
1157  * @rx: RX crypto handle
1158  * @new_pending: new pending slot if aligned (= TX key from peer)
1159  *
1160  * Peer has used an unknown key slot, this only happens when peer has left and
1161  * rejoned, or we are newcomer.
1162  * That means, there must be no active key but a pending key at unaligned slot.
1163  * If so, we try to move the pending key to the new slot.
1164  * Note: A potential passive key can exist, it will be shifted correspondingly!
1165  *
1166  * Return: "true" if key is successfully aligned, otherwise "false"
1167  */
1168 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1169 {
1170 	struct tipc_aead *tmp1, *tmp2 = NULL;
1171 	struct tipc_key key;
1172 	bool aligned = false;
1173 	u8 new_passive = 0;
1174 	int x;
1175 
1176 	spin_lock(&rx->lock);
1177 	key = rx->key;
1178 	if (key.pending == new_pending) {
1179 		aligned = true;
1180 		goto exit;
1181 	}
1182 	if (key.active)
1183 		goto exit;
1184 	if (!key.pending)
1185 		goto exit;
1186 	if (tipc_aead_users(rx->aead[key.pending]) > 0)
1187 		goto exit;
1188 
1189 	/* Try to "isolate" this pending key first */
1190 	tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1191 	if (!refcount_dec_if_one(&tmp1->refcnt))
1192 		goto exit;
1193 	rcu_assign_pointer(rx->aead[key.pending], NULL);
1194 
1195 	/* Move passive key if any */
1196 	if (key.passive) {
1197 		tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
1198 		x = (key.passive - key.pending + new_pending) % KEY_MAX;
1199 		new_passive = (x <= 0) ? x + KEY_MAX : x;
1200 	}
1201 
1202 	/* Re-allocate the key(s) */
1203 	tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1204 	rcu_assign_pointer(rx->aead[new_pending], tmp1);
1205 	if (new_passive)
1206 		rcu_assign_pointer(rx->aead[new_passive], tmp2);
1207 	refcount_set(&tmp1->refcnt, 1);
1208 	aligned = true;
1209 	pr_info("RX(%s): key is aligned!\n", tipc_node_get_id_str(rx->node));
1210 
1211 exit:
1212 	spin_unlock(&rx->lock);
1213 	return aligned;
1214 }
1215 
1216 /**
1217  * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1218  * @tx: TX crypto handle
1219  * @rx: RX crypto handle (can be NULL)
1220  * @skb: the message skb which will be decrypted later
1221  *
1222  * This function looks up the existing TX keys and pick one which is suitable
1223  * for the message decryption, that must be a cluster key and not used before
1224  * on the same message (i.e. recursive).
1225  *
1226  * Return: the TX AEAD key handle in case of success, otherwise NULL
1227  */
1228 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1229 						 struct tipc_crypto *rx,
1230 						 struct sk_buff *skb)
1231 {
1232 	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1233 	struct tipc_aead *aead = NULL;
1234 	struct tipc_key key = tx->key;
1235 	u8 k, i = 0;
1236 
1237 	/* Initialize data if not yet */
1238 	if (!skb_cb->tx_clone_deferred) {
1239 		skb_cb->tx_clone_deferred = 1;
1240 		memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1241 	}
1242 
1243 	skb_cb->tx_clone_ctx.rx = rx;
1244 	if (++skb_cb->tx_clone_ctx.recurs > 2)
1245 		return NULL;
1246 
1247 	/* Pick one TX key */
1248 	spin_lock(&tx->lock);
1249 	do {
1250 		k = (i == 0) ? key.pending :
1251 			((i == 1) ? key.active : key.passive);
1252 		if (!k)
1253 			continue;
1254 		aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1255 		if (!aead)
1256 			continue;
1257 		if (aead->mode != CLUSTER_KEY ||
1258 		    aead == skb_cb->tx_clone_ctx.last) {
1259 			aead = NULL;
1260 			continue;
1261 		}
1262 		/* Ok, found one cluster key */
1263 		skb_cb->tx_clone_ctx.last = aead;
1264 		WARN_ON(skb->next);
1265 		skb->next = skb_clone(skb, GFP_ATOMIC);
1266 		if (unlikely(!skb->next))
1267 			pr_warn("Failed to clone skb for next round if any\n");
1268 		WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1269 		break;
1270 	} while (++i < 3);
1271 	spin_unlock(&tx->lock);
1272 
1273 	return aead;
1274 }
1275 
1276 /**
1277  * tipc_crypto_key_synch: Synch own key data according to peer key status
1278  * @rx: RX crypto handle
1279  * @new_rx_active: latest RX active key from peer
1280  * @hdr: TIPCv2 message
1281  *
1282  * This function updates the peer node related data as the peer RX active key
1283  * has changed, so the number of TX keys' users on this node are increased and
1284  * decreased correspondingly.
1285  *
1286  * The "per-peer" sndnxt is also reset when the peer key has switched.
1287  */
1288 static void tipc_crypto_key_synch(struct tipc_crypto *rx, u8 new_rx_active,
1289 				  struct tipc_msg *hdr)
1290 {
1291 	struct net *net = rx->net;
1292 	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1293 	u8 cur_rx_active;
1294 
1295 	/* TX might be even not ready yet */
1296 	if (unlikely(!tx->key.active && !tx->key.pending))
1297 		return;
1298 
1299 	cur_rx_active = atomic_read(&rx->peer_rx_active);
1300 	if (likely(cur_rx_active == new_rx_active))
1301 		return;
1302 
1303 	/* Make sure this message destined for this node */
1304 	if (unlikely(msg_short(hdr) ||
1305 		     msg_destnode(hdr) != tipc_own_addr(net)))
1306 		return;
1307 
1308 	/* Peer RX active key has changed, try to update owns' & TX users */
1309 	if (atomic_cmpxchg(&rx->peer_rx_active,
1310 			   cur_rx_active,
1311 			   new_rx_active) == cur_rx_active) {
1312 		if (new_rx_active)
1313 			tipc_aead_users_inc(tx->aead[new_rx_active], INT_MAX);
1314 		if (cur_rx_active)
1315 			tipc_aead_users_dec(tx->aead[cur_rx_active], 0);
1316 
1317 		atomic64_set(&rx->sndnxt, 0);
1318 		/* Mark the point TX key users changed */
1319 		tx->timer1 = jiffies;
1320 
1321 #ifdef TIPC_CRYPTO_DEBUG
1322 		pr_info("TX(%s): key users changed %d-- %d++, peer RX(%s)\n",
1323 			tipc_own_id_string(net), cur_rx_active,
1324 			new_rx_active, tipc_node_get_id_str(rx->node));
1325 #endif
1326 	}
1327 }
1328 
1329 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1330 {
1331 	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1332 	struct tipc_key key;
1333 
1334 	spin_lock(&tx->lock);
1335 	key = tx->key;
1336 	WARN_ON(!key.active || tx_key != key.active);
1337 
1338 	/* Free the active key */
1339 	tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1340 	tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1341 	spin_unlock(&tx->lock);
1342 
1343 	pr_warn("TX(%s): key is revoked!\n", tipc_own_id_string(net));
1344 	return -EKEYREVOKED;
1345 }
1346 
1347 int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1348 		      struct tipc_node *node)
1349 {
1350 	struct tipc_crypto *c;
1351 
1352 	if (*crypto)
1353 		return -EEXIST;
1354 
1355 	/* Allocate crypto */
1356 	c = kzalloc(sizeof(*c), GFP_ATOMIC);
1357 	if (!c)
1358 		return -ENOMEM;
1359 
1360 	/* Allocate statistic structure */
1361 	c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1362 	if (!c->stats) {
1363 		kfree_sensitive(c);
1364 		return -ENOMEM;
1365 	}
1366 
1367 	c->working = 0;
1368 	c->net = net;
1369 	c->node = node;
1370 	tipc_crypto_key_set_state(c, 0, 0, 0);
1371 	atomic_set(&c->peer_rx_active, 0);
1372 	atomic64_set(&c->sndnxt, 0);
1373 	c->timer1 = jiffies;
1374 	c->timer2 = jiffies;
1375 	spin_lock_init(&c->lock);
1376 	*crypto = c;
1377 
1378 	return 0;
1379 }
1380 
1381 void tipc_crypto_stop(struct tipc_crypto **crypto)
1382 {
1383 	struct tipc_crypto *c, *tx, *rx;
1384 	bool is_rx;
1385 	u8 k;
1386 
1387 	if (!*crypto)
1388 		return;
1389 
1390 	rcu_read_lock();
1391 	/* RX stopping? => decrease TX key users if any */
1392 	is_rx = !!((*crypto)->node);
1393 	if (is_rx) {
1394 		rx = *crypto;
1395 		tx = tipc_net(rx->net)->crypto_tx;
1396 		k = atomic_read(&rx->peer_rx_active);
1397 		if (k) {
1398 			tipc_aead_users_dec(tx->aead[k], 0);
1399 			/* Mark the point TX key users changed */
1400 			tx->timer1 = jiffies;
1401 		}
1402 	}
1403 
1404 	/* Release AEAD keys */
1405 	c = *crypto;
1406 	for (k = KEY_MIN; k <= KEY_MAX; k++)
1407 		tipc_aead_put(rcu_dereference(c->aead[k]));
1408 	rcu_read_unlock();
1409 
1410 	pr_warn("%s(%s) has been purged, node left!\n",
1411 		(is_rx) ? "RX" : "TX",
1412 		(is_rx) ? tipc_node_get_id_str((*crypto)->node) :
1413 			  tipc_own_id_string((*crypto)->net));
1414 
1415 	/* Free this crypto statistics */
1416 	free_percpu(c->stats);
1417 
1418 	*crypto = NULL;
1419 	kfree_sensitive(c);
1420 }
1421 
1422 void tipc_crypto_timeout(struct tipc_crypto *rx)
1423 {
1424 	struct tipc_net *tn = tipc_net(rx->net);
1425 	struct tipc_crypto *tx = tn->crypto_tx;
1426 	struct tipc_key key;
1427 	u8 new_pending, new_passive;
1428 	int cmd;
1429 
1430 	/* TX key activating:
1431 	 * The pending key (users > 0) -> active
1432 	 * The active key if any (users == 0) -> free
1433 	 */
1434 	spin_lock(&tx->lock);
1435 	key = tx->key;
1436 	if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1437 		goto s1;
1438 	if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1439 		goto s1;
1440 	if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_LIM))
1441 		goto s1;
1442 
1443 	tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1444 	if (key.active)
1445 		tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1446 	this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1447 	pr_info("TX(%s): key %d is activated!\n", tipc_own_id_string(tx->net),
1448 		key.pending);
1449 
1450 s1:
1451 	spin_unlock(&tx->lock);
1452 
1453 	/* RX key activating:
1454 	 * The pending key (users > 0) -> active
1455 	 * The active key if any -> passive, freed later
1456 	 */
1457 	spin_lock(&rx->lock);
1458 	key = rx->key;
1459 	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1460 		goto s2;
1461 
1462 	new_pending = (key.passive &&
1463 		       !tipc_aead_users(rx->aead[key.passive])) ?
1464 				       key.passive : 0;
1465 	new_passive = (key.active) ?: ((new_pending) ? 0 : key.passive);
1466 	tipc_crypto_key_set_state(rx, new_passive, key.pending, new_pending);
1467 	this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1468 	pr_info("RX(%s): key %d is activated!\n",
1469 		tipc_node_get_id_str(rx->node),	key.pending);
1470 	goto s5;
1471 
1472 s2:
1473 	/* RX key "faulty" switching:
1474 	 * The faulty pending key (users < -30) -> passive
1475 	 * The passive key (users = 0) -> pending
1476 	 * Note: This only happens after RX deactivated - s3!
1477 	 */
1478 	key = rx->key;
1479 	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -30)
1480 		goto s3;
1481 	if (!key.passive || tipc_aead_users(rx->aead[key.passive]) != 0)
1482 		goto s3;
1483 
1484 	new_pending = key.passive;
1485 	new_passive = key.pending;
1486 	tipc_crypto_key_set_state(rx, new_passive, key.active, new_pending);
1487 	goto s5;
1488 
1489 s3:
1490 	/* RX key deactivating:
1491 	 * The passive key if any -> pending
1492 	 * The active key -> passive (users = 0) / pending
1493 	 * The pending key if any -> passive (users = 0)
1494 	 */
1495 	key = rx->key;
1496 	if (!key.active)
1497 		goto s4;
1498 	if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM))
1499 		goto s4;
1500 
1501 	new_pending = (key.passive) ?: key.active;
1502 	new_passive = (key.passive) ? key.active : key.pending;
1503 	tipc_aead_users_set(rx->aead[new_pending], 0);
1504 	if (new_passive)
1505 		tipc_aead_users_set(rx->aead[new_passive], 0);
1506 	tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1507 	pr_info("RX(%s): key %d is deactivated!\n",
1508 		tipc_node_get_id_str(rx->node), key.active);
1509 	goto s5;
1510 
1511 s4:
1512 	/* RX key passive -> freed: */
1513 	key = rx->key;
1514 	if (!key.passive || !tipc_aead_users(rx->aead[key.passive]))
1515 		goto s5;
1516 	if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM))
1517 		goto s5;
1518 
1519 	tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1520 	tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1521 	pr_info("RX(%s): key %d is freed!\n", tipc_node_get_id_str(rx->node),
1522 		key.passive);
1523 
1524 s5:
1525 	spin_unlock(&rx->lock);
1526 
1527 	/* Limit max_tfms & do debug commands if needed */
1528 	if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1529 		return;
1530 
1531 	cmd = sysctl_tipc_max_tfms;
1532 	sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1533 	tipc_crypto_do_cmd(rx->net, cmd);
1534 }
1535 
1536 /**
1537  * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1538  * @net: struct net
1539  * @skb: input/output message skb pointer
1540  * @b: bearer used for xmit later
1541  * @dst: destination media address
1542  * @__dnode: destination node for reference if any
1543  *
1544  * First, build an encryption message header on the top of the message, then
1545  * encrypt the original TIPC message by using the active or pending TX key.
1546  * If the encryption is successful, the encrypted skb is returned directly or
1547  * via the callback.
1548  * Otherwise, the skb is freed!
1549  *
1550  * Return:
1551  * 0                   : the encryption has succeeded (or no encryption)
1552  * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1553  * -ENOKEK             : the encryption has failed due to no key
1554  * -EKEYREVOKED        : the encryption has failed due to key revoked
1555  * -ENOMEM             : the encryption has failed due to no memory
1556  * < 0                 : the encryption has failed due to other reasons
1557  */
1558 int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1559 		     struct tipc_bearer *b, struct tipc_media_addr *dst,
1560 		     struct tipc_node *__dnode)
1561 {
1562 	struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1563 	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1564 	struct tipc_crypto_stats __percpu *stats = tx->stats;
1565 	struct tipc_key key = tx->key;
1566 	struct tipc_aead *aead = NULL;
1567 	struct sk_buff *probe;
1568 	int rc = -ENOKEY;
1569 	u8 tx_key;
1570 
1571 	/* No encryption? */
1572 	if (!tx->working)
1573 		return 0;
1574 
1575 	/* Try with the pending key if available and:
1576 	 * 1) This is the only choice (i.e. no active key) or;
1577 	 * 2) Peer has switched to this key (unicast only) or;
1578 	 * 3) It is time to do a pending key probe;
1579 	 */
1580 	if (unlikely(key.pending)) {
1581 		tx_key = key.pending;
1582 		if (!key.active)
1583 			goto encrypt;
1584 		if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1585 			goto encrypt;
1586 		if (TIPC_SKB_CB(*skb)->probe)
1587 			goto encrypt;
1588 		if (!__rx &&
1589 		    time_after(jiffies, tx->timer2 + TIPC_TX_PROBE_LIM)) {
1590 			tx->timer2 = jiffies;
1591 			probe = skb_clone(*skb, GFP_ATOMIC);
1592 			if (probe) {
1593 				TIPC_SKB_CB(probe)->probe = 1;
1594 				tipc_crypto_xmit(net, &probe, b, dst, __dnode);
1595 				if (probe)
1596 					b->media->send_msg(net, probe, b, dst);
1597 			}
1598 		}
1599 	}
1600 	/* Else, use the active key if any */
1601 	if (likely(key.active)) {
1602 		tx_key = key.active;
1603 		goto encrypt;
1604 	}
1605 	goto exit;
1606 
1607 encrypt:
1608 	aead = tipc_aead_get(tx->aead[tx_key]);
1609 	if (unlikely(!aead))
1610 		goto exit;
1611 	rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1612 	if (likely(rc > 0))
1613 		rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1614 
1615 exit:
1616 	switch (rc) {
1617 	case 0:
1618 		this_cpu_inc(stats->stat[STAT_OK]);
1619 		break;
1620 	case -EINPROGRESS:
1621 	case -EBUSY:
1622 		this_cpu_inc(stats->stat[STAT_ASYNC]);
1623 		*skb = NULL;
1624 		return rc;
1625 	default:
1626 		this_cpu_inc(stats->stat[STAT_NOK]);
1627 		if (rc == -ENOKEY)
1628 			this_cpu_inc(stats->stat[STAT_NOKEYS]);
1629 		else if (rc == -EKEYREVOKED)
1630 			this_cpu_inc(stats->stat[STAT_BADKEYS]);
1631 		kfree_skb(*skb);
1632 		*skb = NULL;
1633 		break;
1634 	}
1635 
1636 	tipc_aead_put(aead);
1637 	return rc;
1638 }
1639 
1640 /**
1641  * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1642  * @net: struct net
1643  * @rx: RX crypto handle
1644  * @skb: input/output message skb pointer
1645  * @b: bearer where the message has been received
1646  *
1647  * If the decryption is successful, the decrypted skb is returned directly or
1648  * as the callback, the encryption header and auth tag will be trimed out
1649  * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1650  * Otherwise, the skb will be freed!
1651  * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1652  * cluster key(s) can be taken for decryption (- recursive).
1653  *
1654  * Return:
1655  * 0                   : the decryption has successfully completed
1656  * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1657  * -ENOKEY             : the decryption has failed due to no key
1658  * -EBADMSG            : the decryption has failed due to bad message
1659  * -ENOMEM             : the decryption has failed due to no memory
1660  * < 0                 : the decryption has failed due to other reasons
1661  */
1662 int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1663 		    struct sk_buff **skb, struct tipc_bearer *b)
1664 {
1665 	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1666 	struct tipc_crypto_stats __percpu *stats;
1667 	struct tipc_aead *aead = NULL;
1668 	struct tipc_key key;
1669 	int rc = -ENOKEY;
1670 	u8 tx_key = 0;
1671 
1672 	/* New peer?
1673 	 * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1674 	 */
1675 	if (unlikely(!rx))
1676 		goto pick_tx;
1677 
1678 	/* Pick RX key according to TX key, three cases are possible:
1679 	 * 1) The current active key (likely) or;
1680 	 * 2) The pending (new or deactivated) key (if any) or;
1681 	 * 3) The passive or old active key (i.e. users > 0);
1682 	 */
1683 	tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1684 	key = rx->key;
1685 	if (likely(tx_key == key.active))
1686 		goto decrypt;
1687 	if (tx_key == key.pending)
1688 		goto decrypt;
1689 	if (tx_key == key.passive) {
1690 		rx->timer2 = jiffies;
1691 		if (tipc_aead_users(rx->aead[key.passive]) > 0)
1692 			goto decrypt;
1693 	}
1694 
1695 	/* Unknown key, let's try to align RX key(s) */
1696 	if (tipc_crypto_key_try_align(rx, tx_key))
1697 		goto decrypt;
1698 
1699 pick_tx:
1700 	/* No key suitable? Try to pick one from TX... */
1701 	aead = tipc_crypto_key_pick_tx(tx, rx, *skb);
1702 	if (aead)
1703 		goto decrypt;
1704 	goto exit;
1705 
1706 decrypt:
1707 	rcu_read_lock();
1708 	if (!aead)
1709 		aead = tipc_aead_get(rx->aead[tx_key]);
1710 	rc = tipc_aead_decrypt(net, aead, *skb, b);
1711 	rcu_read_unlock();
1712 
1713 exit:
1714 	stats = ((rx) ?: tx)->stats;
1715 	switch (rc) {
1716 	case 0:
1717 		this_cpu_inc(stats->stat[STAT_OK]);
1718 		break;
1719 	case -EINPROGRESS:
1720 	case -EBUSY:
1721 		this_cpu_inc(stats->stat[STAT_ASYNC]);
1722 		*skb = NULL;
1723 		return rc;
1724 	default:
1725 		this_cpu_inc(stats->stat[STAT_NOK]);
1726 		if (rc == -ENOKEY) {
1727 			kfree_skb(*skb);
1728 			*skb = NULL;
1729 			if (rx)
1730 				tipc_node_put(rx->node);
1731 			this_cpu_inc(stats->stat[STAT_NOKEYS]);
1732 			return rc;
1733 		} else if (rc == -EBADMSG) {
1734 			this_cpu_inc(stats->stat[STAT_BADMSGS]);
1735 		}
1736 		break;
1737 	}
1738 
1739 	tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1740 	return rc;
1741 }
1742 
1743 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1744 				     struct tipc_bearer *b,
1745 				     struct sk_buff **skb, int err)
1746 {
1747 	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1748 	struct tipc_crypto *rx = aead->crypto;
1749 	struct tipc_aead *tmp = NULL;
1750 	struct tipc_ehdr *ehdr;
1751 	struct tipc_node *n;
1752 	u8 rx_key_active;
1753 	bool destined;
1754 
1755 	/* Is this completed by TX? */
1756 	if (unlikely(!rx->node)) {
1757 		rx = skb_cb->tx_clone_ctx.rx;
1758 #ifdef TIPC_CRYPTO_DEBUG
1759 		pr_info("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1760 			(rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1761 			(*skb)->next, skb_cb->flags);
1762 		pr_info("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1763 			skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1764 			aead->crypto->aead[1], aead->crypto->aead[2],
1765 			aead->crypto->aead[3]);
1766 #endif
1767 		if (unlikely(err)) {
1768 			if (err == -EBADMSG && (*skb)->next)
1769 				tipc_rcv(net, (*skb)->next, b);
1770 			goto free_skb;
1771 		}
1772 
1773 		if (likely((*skb)->next)) {
1774 			kfree_skb((*skb)->next);
1775 			(*skb)->next = NULL;
1776 		}
1777 		ehdr = (struct tipc_ehdr *)(*skb)->data;
1778 		if (!rx) {
1779 			WARN_ON(ehdr->user != LINK_CONFIG);
1780 			n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1781 					     true);
1782 			rx = tipc_node_crypto_rx(n);
1783 			if (unlikely(!rx))
1784 				goto free_skb;
1785 		}
1786 
1787 		/* Skip cloning this time as we had a RX pending key */
1788 		if (rx->key.pending)
1789 			goto rcv;
1790 		if (tipc_aead_clone(&tmp, aead) < 0)
1791 			goto rcv;
1792 		if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key) < 0) {
1793 			tipc_aead_free(&tmp->rcu);
1794 			goto rcv;
1795 		}
1796 		tipc_aead_put(aead);
1797 		aead = tipc_aead_get(tmp);
1798 	}
1799 
1800 	if (unlikely(err)) {
1801 		tipc_aead_users_dec(aead, INT_MIN);
1802 		goto free_skb;
1803 	}
1804 
1805 	/* Set the RX key's user */
1806 	tipc_aead_users_set(aead, 1);
1807 
1808 rcv:
1809 	/* Mark this point, RX works */
1810 	rx->timer1 = jiffies;
1811 
1812 	/* Remove ehdr & auth. tag prior to tipc_rcv() */
1813 	ehdr = (struct tipc_ehdr *)(*skb)->data;
1814 	destined = ehdr->destined;
1815 	rx_key_active = ehdr->rx_key_active;
1816 	skb_pull(*skb, tipc_ehdr_size(ehdr));
1817 	pskb_trim(*skb, (*skb)->len - aead->authsize);
1818 
1819 	/* Validate TIPCv2 message */
1820 	if (unlikely(!tipc_msg_validate(skb))) {
1821 		pr_err_ratelimited("Packet dropped after decryption!\n");
1822 		goto free_skb;
1823 	}
1824 
1825 	/* Update peer RX active key & TX users */
1826 	if (destined)
1827 		tipc_crypto_key_synch(rx, rx_key_active, buf_msg(*skb));
1828 
1829 	/* Mark skb decrypted */
1830 	skb_cb->decrypted = 1;
1831 
1832 	/* Clear clone cxt if any */
1833 	if (likely(!skb_cb->tx_clone_deferred))
1834 		goto exit;
1835 	skb_cb->tx_clone_deferred = 0;
1836 	memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1837 	goto exit;
1838 
1839 free_skb:
1840 	kfree_skb(*skb);
1841 	*skb = NULL;
1842 
1843 exit:
1844 	tipc_aead_put(aead);
1845 	if (rx)
1846 		tipc_node_put(rx->node);
1847 }
1848 
1849 static void tipc_crypto_do_cmd(struct net *net, int cmd)
1850 {
1851 	struct tipc_net *tn = tipc_net(net);
1852 	struct tipc_crypto *tx = tn->crypto_tx, *rx;
1853 	struct list_head *p;
1854 	unsigned int stat;
1855 	int i, j, cpu;
1856 	char buf[200];
1857 
1858 	/* Currently only one command is supported */
1859 	switch (cmd) {
1860 	case 0xfff1:
1861 		goto print_stats;
1862 	default:
1863 		return;
1864 	}
1865 
1866 print_stats:
1867 	/* Print a header */
1868 	pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
1869 
1870 	/* Print key status */
1871 	pr_info("Key status:\n");
1872 	pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
1873 		tipc_crypto_key_dump(tx, buf));
1874 
1875 	rcu_read_lock();
1876 	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
1877 		rx = tipc_node_crypto_rx_by_list(p);
1878 		pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
1879 			tipc_crypto_key_dump(rx, buf));
1880 	}
1881 	rcu_read_unlock();
1882 
1883 	/* Print crypto statistics */
1884 	for (i = 0, j = 0; i < MAX_STATS; i++)
1885 		j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
1886 	pr_info("\nCounter     %s", buf);
1887 
1888 	memset(buf, '-', 115);
1889 	buf[115] = '\0';
1890 	pr_info("%s\n", buf);
1891 
1892 	j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
1893 	for_each_possible_cpu(cpu) {
1894 		for (i = 0; i < MAX_STATS; i++) {
1895 			stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
1896 			j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
1897 		}
1898 		pr_info("%s", buf);
1899 		j = scnprintf(buf, 200, "%12s", " ");
1900 	}
1901 
1902 	rcu_read_lock();
1903 	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
1904 		rx = tipc_node_crypto_rx_by_list(p);
1905 		j = scnprintf(buf, 200, "RX(%7.7s) ",
1906 			      tipc_node_get_id_str(rx->node));
1907 		for_each_possible_cpu(cpu) {
1908 			for (i = 0; i < MAX_STATS; i++) {
1909 				stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
1910 				j += scnprintf(buf + j, 200 - j, "|%11d ",
1911 					       stat);
1912 			}
1913 			pr_info("%s", buf);
1914 			j = scnprintf(buf, 200, "%12s", " ");
1915 		}
1916 	}
1917 	rcu_read_unlock();
1918 
1919 	pr_info("\n======================== Done ========================\n");
1920 }
1921 
1922 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
1923 {
1924 	struct tipc_key key = c->key;
1925 	struct tipc_aead *aead;
1926 	int k, i = 0;
1927 	char *s;
1928 
1929 	for (k = KEY_MIN; k <= KEY_MAX; k++) {
1930 		if (k == key.passive)
1931 			s = "PAS";
1932 		else if (k == key.active)
1933 			s = "ACT";
1934 		else if (k == key.pending)
1935 			s = "PEN";
1936 		else
1937 			s = "-";
1938 		i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
1939 
1940 		rcu_read_lock();
1941 		aead = rcu_dereference(c->aead[k]);
1942 		if (aead)
1943 			i += scnprintf(buf + i, 200 - i,
1944 				       "{\"%s...\", \"%s\"}/%d:%d",
1945 				       aead->hint,
1946 				       (aead->mode == CLUSTER_KEY) ? "c" : "p",
1947 				       atomic_read(&aead->users),
1948 				       refcount_read(&aead->refcnt));
1949 		rcu_read_unlock();
1950 		i += scnprintf(buf + i, 200 - i, "\n");
1951 	}
1952 
1953 	if (c->node)
1954 		i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
1955 			       atomic_read(&c->peer_rx_active));
1956 
1957 	return buf;
1958 }
1959 
1960 #ifdef TIPC_CRYPTO_DEBUG
1961 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
1962 				  char *buf)
1963 {
1964 	struct tipc_key *key = &old;
1965 	int k, i = 0;
1966 	char *s;
1967 
1968 	/* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
1969 again:
1970 	i += scnprintf(buf + i, 32 - i, "[");
1971 	for (k = KEY_MIN; k <= KEY_MAX; k++) {
1972 		if (k == key->passive)
1973 			s = "pas";
1974 		else if (k == key->active)
1975 			s = "act";
1976 		else if (k == key->pending)
1977 			s = "pen";
1978 		else
1979 			s = "-";
1980 		i += scnprintf(buf + i, 32 - i,
1981 			       (k != KEY_MAX) ? "%s " : "%s", s);
1982 	}
1983 	if (key != &new) {
1984 		i += scnprintf(buf + i, 32 - i, "] -> ");
1985 		key = &new;
1986 		goto again;
1987 	}
1988 	i += scnprintf(buf + i, 32 - i, "]");
1989 	return buf;
1990 }
1991 #endif
1992