1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption 4 * 5 * Copyright (c) 2019, Ericsson AB 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the names of the copyright holders nor the names of its 17 * contributors may be used to endorse or promote products derived from 18 * this software without specific prior written permission. 19 * 20 * Alternatively, this software may be distributed under the terms of the 21 * GNU General Public License ("GPL") version 2 as published by the Free 22 * Software Foundation. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 34 * POSSIBILITY OF SUCH DAMAGE. 35 */ 36 37 #include <crypto/aead.h> 38 #include <crypto/aes.h> 39 #include <crypto/rng.h> 40 #include "crypto.h" 41 #include "msg.h" 42 #include "bcast.h" 43 44 #define TIPC_TX_GRACE_PERIOD msecs_to_jiffies(5000) /* 5s */ 45 #define TIPC_TX_LASTING_TIME msecs_to_jiffies(10000) /* 10s */ 46 #define TIPC_RX_ACTIVE_LIM msecs_to_jiffies(3000) /* 3s */ 47 #define TIPC_RX_PASSIVE_LIM msecs_to_jiffies(15000) /* 15s */ 48 49 #define TIPC_MAX_TFMS_DEF 10 50 #define TIPC_MAX_TFMS_LIM 1000 51 52 #define TIPC_REKEYING_INTV_DEF (60 * 24) /* default: 1 day */ 53 54 /* 55 * TIPC Key ids 56 */ 57 enum { 58 KEY_MASTER = 0, 59 KEY_MIN = KEY_MASTER, 60 KEY_1 = 1, 61 KEY_2, 62 KEY_3, 63 KEY_MAX = KEY_3, 64 }; 65 66 /* 67 * TIPC Crypto statistics 68 */ 69 enum { 70 STAT_OK, 71 STAT_NOK, 72 STAT_ASYNC, 73 STAT_ASYNC_OK, 74 STAT_ASYNC_NOK, 75 STAT_BADKEYS, /* tx only */ 76 STAT_BADMSGS = STAT_BADKEYS, /* rx only */ 77 STAT_NOKEYS, 78 STAT_SWITCHES, 79 80 MAX_STATS, 81 }; 82 83 /* TIPC crypto statistics' header */ 84 static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok", 85 "async_nok", "badmsgs", "nokeys", 86 "switches"}; 87 88 /* Max TFMs number per key */ 89 int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF; 90 /* Key exchange switch, default: on */ 91 int sysctl_tipc_key_exchange_enabled __read_mostly = 1; 92 93 /* 94 * struct tipc_key - TIPC keys' status indicator 95 * 96 * 7 6 5 4 3 2 1 0 97 * +-----+-----+-----+-----+-----+-----+-----+-----+ 98 * key: | (reserved)|passive idx| active idx|pending idx| 99 * +-----+-----+-----+-----+-----+-----+-----+-----+ 100 */ 101 struct tipc_key { 102 #define KEY_BITS (2) 103 #define KEY_MASK ((1 << KEY_BITS) - 1) 104 union { 105 struct { 106 #if defined(__LITTLE_ENDIAN_BITFIELD) 107 u8 pending:2, 108 active:2, 109 passive:2, /* rx only */ 110 reserved:2; 111 #elif defined(__BIG_ENDIAN_BITFIELD) 112 u8 reserved:2, 113 passive:2, /* rx only */ 114 active:2, 115 pending:2; 116 #else 117 #error "Please fix <asm/byteorder.h>" 118 #endif 119 } __packed; 120 u8 keys; 121 }; 122 }; 123 124 /** 125 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs 126 * @tfm: cipher handle/key 127 * @list: linked list of TFMs 128 */ 129 struct tipc_tfm { 130 struct crypto_aead *tfm; 131 struct list_head list; 132 }; 133 134 /** 135 * struct tipc_aead - TIPC AEAD key structure 136 * @tfm_entry: per-cpu pointer to one entry in TFM list 137 * @crypto: TIPC crypto owns this key 138 * @cloned: reference to the source key in case cloning 139 * @users: the number of the key users (TX/RX) 140 * @salt: the key's SALT value 141 * @authsize: authentication tag size (max = 16) 142 * @mode: crypto mode is applied to the key 143 * @hint: a hint for user key 144 * @rcu: struct rcu_head 145 * @key: the aead key 146 * @gen: the key's generation 147 * @seqno: the key seqno (cluster scope) 148 * @refcnt: the key reference counter 149 */ 150 struct tipc_aead { 151 #define TIPC_AEAD_HINT_LEN (5) 152 struct tipc_tfm * __percpu *tfm_entry; 153 struct tipc_crypto *crypto; 154 struct tipc_aead *cloned; 155 atomic_t users; 156 u32 salt; 157 u8 authsize; 158 u8 mode; 159 char hint[2 * TIPC_AEAD_HINT_LEN + 1]; 160 struct rcu_head rcu; 161 struct tipc_aead_key *key; 162 u16 gen; 163 164 atomic64_t seqno ____cacheline_aligned; 165 refcount_t refcnt ____cacheline_aligned; 166 167 } ____cacheline_aligned; 168 169 /** 170 * struct tipc_crypto_stats - TIPC Crypto statistics 171 * @stat: array of crypto statistics 172 */ 173 struct tipc_crypto_stats { 174 unsigned int stat[MAX_STATS]; 175 }; 176 177 /** 178 * struct tipc_crypto - TIPC TX/RX crypto structure 179 * @net: struct net 180 * @node: TIPC node (RX) 181 * @aead: array of pointers to AEAD keys for encryption/decryption 182 * @peer_rx_active: replicated peer RX active key index 183 * @key_gen: TX/RX key generation 184 * @key: the key states 185 * @skey_mode: session key's mode 186 * @skey: received session key 187 * @wq: common workqueue on TX crypto 188 * @work: delayed work sched for TX/RX 189 * @key_distr: key distributing state 190 * @rekeying_intv: rekeying interval (in minutes) 191 * @stats: the crypto statistics 192 * @name: the crypto name 193 * @sndnxt: the per-peer sndnxt (TX) 194 * @timer1: general timer 1 (jiffies) 195 * @timer2: general timer 2 (jiffies) 196 * @working: the crypto is working or not 197 * @key_master: flag indicates if master key exists 198 * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.) 199 * @nokey: no key indication 200 * @flags: combined flags field 201 * @lock: tipc_key lock 202 */ 203 struct tipc_crypto { 204 struct net *net; 205 struct tipc_node *node; 206 struct tipc_aead __rcu *aead[KEY_MAX + 1]; 207 atomic_t peer_rx_active; 208 u16 key_gen; 209 struct tipc_key key; 210 u8 skey_mode; 211 struct tipc_aead_key *skey; 212 struct workqueue_struct *wq; 213 struct delayed_work work; 214 #define KEY_DISTR_SCHED 1 215 #define KEY_DISTR_COMPL 2 216 atomic_t key_distr; 217 u32 rekeying_intv; 218 219 struct tipc_crypto_stats __percpu *stats; 220 char name[48]; 221 222 atomic64_t sndnxt ____cacheline_aligned; 223 unsigned long timer1; 224 unsigned long timer2; 225 union { 226 struct { 227 u8 working:1; 228 u8 key_master:1; 229 u8 legacy_user:1; 230 u8 nokey: 1; 231 }; 232 u8 flags; 233 }; 234 spinlock_t lock; /* crypto lock */ 235 236 } ____cacheline_aligned; 237 238 /* struct tipc_crypto_tx_ctx - TX context for callbacks */ 239 struct tipc_crypto_tx_ctx { 240 struct tipc_aead *aead; 241 struct tipc_bearer *bearer; 242 struct tipc_media_addr dst; 243 }; 244 245 /* struct tipc_crypto_rx_ctx - RX context for callbacks */ 246 struct tipc_crypto_rx_ctx { 247 struct tipc_aead *aead; 248 struct tipc_bearer *bearer; 249 }; 250 251 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead); 252 static inline void tipc_aead_put(struct tipc_aead *aead); 253 static void tipc_aead_free(struct rcu_head *rp); 254 static int tipc_aead_users(struct tipc_aead __rcu *aead); 255 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim); 256 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim); 257 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val); 258 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead); 259 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey, 260 u8 mode); 261 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src); 262 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm, 263 unsigned int crypto_ctx_size, 264 u8 **iv, struct aead_request **req, 265 struct scatterlist **sg, int nsg); 266 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb, 267 struct tipc_bearer *b, 268 struct tipc_media_addr *dst, 269 struct tipc_node *__dnode); 270 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err); 271 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead, 272 struct sk_buff *skb, struct tipc_bearer *b); 273 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err); 274 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr); 275 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead, 276 u8 tx_key, struct sk_buff *skb, 277 struct tipc_crypto *__rx); 278 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c, 279 u8 new_passive, 280 u8 new_active, 281 u8 new_pending); 282 static int tipc_crypto_key_attach(struct tipc_crypto *c, 283 struct tipc_aead *aead, u8 pos, 284 bool master_key); 285 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending); 286 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx, 287 struct tipc_crypto *rx, 288 struct sk_buff *skb, 289 u8 tx_key); 290 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb); 291 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key); 292 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb, 293 struct tipc_bearer *b, 294 struct tipc_media_addr *dst, 295 struct tipc_node *__dnode, u8 type); 296 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead, 297 struct tipc_bearer *b, 298 struct sk_buff **skb, int err); 299 static void tipc_crypto_do_cmd(struct net *net, int cmd); 300 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf); 301 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new, 302 char *buf); 303 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey, 304 u16 gen, u8 mode, u32 dnode); 305 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr); 306 static void tipc_crypto_work_tx(struct work_struct *work); 307 static void tipc_crypto_work_rx(struct work_struct *work); 308 static int tipc_aead_key_generate(struct tipc_aead_key *skey); 309 310 #define is_tx(crypto) (!(crypto)->node) 311 #define is_rx(crypto) (!is_tx(crypto)) 312 313 #define key_next(cur) ((cur) % KEY_MAX + 1) 314 315 #define tipc_aead_rcu_ptr(rcu_ptr, lock) \ 316 rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock)) 317 318 #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock) \ 319 do { \ 320 struct tipc_aead *__tmp = rcu_dereference_protected((rcu_ptr), \ 321 lockdep_is_held(lock)); \ 322 rcu_assign_pointer((rcu_ptr), (ptr)); \ 323 tipc_aead_put(__tmp); \ 324 } while (0) 325 326 #define tipc_crypto_key_detach(rcu_ptr, lock) \ 327 tipc_aead_rcu_replace((rcu_ptr), NULL, lock) 328 329 /** 330 * tipc_aead_key_validate - Validate a AEAD user key 331 * @ukey: pointer to user key data 332 * @info: netlink info pointer 333 */ 334 int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info) 335 { 336 int keylen; 337 338 /* Check if algorithm exists */ 339 if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) { 340 GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)"); 341 return -ENODEV; 342 } 343 344 /* Currently, we only support the "gcm(aes)" cipher algorithm */ 345 if (strcmp(ukey->alg_name, "gcm(aes)")) { 346 GENL_SET_ERR_MSG(info, "not supported yet the algorithm"); 347 return -ENOTSUPP; 348 } 349 350 /* Check if key size is correct */ 351 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE; 352 if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 && 353 keylen != TIPC_AES_GCM_KEY_SIZE_192 && 354 keylen != TIPC_AES_GCM_KEY_SIZE_256)) { 355 GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)"); 356 return -EKEYREJECTED; 357 } 358 359 return 0; 360 } 361 362 /** 363 * tipc_aead_key_generate - Generate new session key 364 * @skey: input/output key with new content 365 * 366 * Return: 0 in case of success, otherwise < 0 367 */ 368 static int tipc_aead_key_generate(struct tipc_aead_key *skey) 369 { 370 int rc = 0; 371 372 /* Fill the key's content with a random value via RNG cipher */ 373 rc = crypto_get_default_rng(); 374 if (likely(!rc)) { 375 rc = crypto_rng_get_bytes(crypto_default_rng, skey->key, 376 skey->keylen); 377 crypto_put_default_rng(); 378 } 379 380 return rc; 381 } 382 383 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead) 384 { 385 struct tipc_aead *tmp; 386 387 rcu_read_lock(); 388 tmp = rcu_dereference(aead); 389 if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt))) 390 tmp = NULL; 391 rcu_read_unlock(); 392 393 return tmp; 394 } 395 396 static inline void tipc_aead_put(struct tipc_aead *aead) 397 { 398 if (aead && refcount_dec_and_test(&aead->refcnt)) 399 call_rcu(&aead->rcu, tipc_aead_free); 400 } 401 402 /** 403 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list 404 * @rp: rcu head pointer 405 */ 406 static void tipc_aead_free(struct rcu_head *rp) 407 { 408 struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu); 409 struct tipc_tfm *tfm_entry, *head, *tmp; 410 411 if (aead->cloned) { 412 tipc_aead_put(aead->cloned); 413 } else { 414 head = *get_cpu_ptr(aead->tfm_entry); 415 put_cpu_ptr(aead->tfm_entry); 416 list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) { 417 crypto_free_aead(tfm_entry->tfm); 418 list_del(&tfm_entry->list); 419 kfree(tfm_entry); 420 } 421 /* Free the head */ 422 crypto_free_aead(head->tfm); 423 list_del(&head->list); 424 kfree(head); 425 } 426 free_percpu(aead->tfm_entry); 427 kfree_sensitive(aead->key); 428 kfree(aead); 429 } 430 431 static int tipc_aead_users(struct tipc_aead __rcu *aead) 432 { 433 struct tipc_aead *tmp; 434 int users = 0; 435 436 rcu_read_lock(); 437 tmp = rcu_dereference(aead); 438 if (tmp) 439 users = atomic_read(&tmp->users); 440 rcu_read_unlock(); 441 442 return users; 443 } 444 445 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim) 446 { 447 struct tipc_aead *tmp; 448 449 rcu_read_lock(); 450 tmp = rcu_dereference(aead); 451 if (tmp) 452 atomic_add_unless(&tmp->users, 1, lim); 453 rcu_read_unlock(); 454 } 455 456 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim) 457 { 458 struct tipc_aead *tmp; 459 460 rcu_read_lock(); 461 tmp = rcu_dereference(aead); 462 if (tmp) 463 atomic_add_unless(&rcu_dereference(aead)->users, -1, lim); 464 rcu_read_unlock(); 465 } 466 467 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val) 468 { 469 struct tipc_aead *tmp; 470 int cur; 471 472 rcu_read_lock(); 473 tmp = rcu_dereference(aead); 474 if (tmp) { 475 do { 476 cur = atomic_read(&tmp->users); 477 if (cur == val) 478 break; 479 } while (atomic_cmpxchg(&tmp->users, cur, val) != cur); 480 } 481 rcu_read_unlock(); 482 } 483 484 /** 485 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it 486 * @aead: the AEAD key pointer 487 */ 488 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead) 489 { 490 struct tipc_tfm **tfm_entry; 491 struct crypto_aead *tfm; 492 493 tfm_entry = get_cpu_ptr(aead->tfm_entry); 494 *tfm_entry = list_next_entry(*tfm_entry, list); 495 tfm = (*tfm_entry)->tfm; 496 put_cpu_ptr(tfm_entry); 497 498 return tfm; 499 } 500 501 /** 502 * tipc_aead_init - Initiate TIPC AEAD 503 * @aead: returned new TIPC AEAD key handle pointer 504 * @ukey: pointer to user key data 505 * @mode: the key mode 506 * 507 * Allocate a (list of) new cipher transformation (TFM) with the specific user 508 * key data if valid. The number of the allocated TFMs can be set via the sysfs 509 * "net/tipc/max_tfms" first. 510 * Also, all the other AEAD data are also initialized. 511 * 512 * Return: 0 if the initiation is successful, otherwise: < 0 513 */ 514 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey, 515 u8 mode) 516 { 517 struct tipc_tfm *tfm_entry, *head; 518 struct crypto_aead *tfm; 519 struct tipc_aead *tmp; 520 int keylen, err, cpu; 521 int tfm_cnt = 0; 522 523 if (unlikely(*aead)) 524 return -EEXIST; 525 526 /* Allocate a new AEAD */ 527 tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC); 528 if (unlikely(!tmp)) 529 return -ENOMEM; 530 531 /* The key consists of two parts: [AES-KEY][SALT] */ 532 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE; 533 534 /* Allocate per-cpu TFM entry pointer */ 535 tmp->tfm_entry = alloc_percpu(struct tipc_tfm *); 536 if (!tmp->tfm_entry) { 537 kfree_sensitive(tmp); 538 return -ENOMEM; 539 } 540 541 /* Make a list of TFMs with the user key data */ 542 do { 543 tfm = crypto_alloc_aead(ukey->alg_name, 0, 0); 544 if (IS_ERR(tfm)) { 545 err = PTR_ERR(tfm); 546 break; 547 } 548 549 if (unlikely(!tfm_cnt && 550 crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) { 551 crypto_free_aead(tfm); 552 err = -ENOTSUPP; 553 break; 554 } 555 556 err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE); 557 err |= crypto_aead_setkey(tfm, ukey->key, keylen); 558 if (unlikely(err)) { 559 crypto_free_aead(tfm); 560 break; 561 } 562 563 tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL); 564 if (unlikely(!tfm_entry)) { 565 crypto_free_aead(tfm); 566 err = -ENOMEM; 567 break; 568 } 569 INIT_LIST_HEAD(&tfm_entry->list); 570 tfm_entry->tfm = tfm; 571 572 /* First entry? */ 573 if (!tfm_cnt) { 574 head = tfm_entry; 575 for_each_possible_cpu(cpu) { 576 *per_cpu_ptr(tmp->tfm_entry, cpu) = head; 577 } 578 } else { 579 list_add_tail(&tfm_entry->list, &head->list); 580 } 581 582 } while (++tfm_cnt < sysctl_tipc_max_tfms); 583 584 /* Not any TFM is allocated? */ 585 if (!tfm_cnt) { 586 free_percpu(tmp->tfm_entry); 587 kfree_sensitive(tmp); 588 return err; 589 } 590 591 /* Form a hex string of some last bytes as the key's hint */ 592 bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN, 593 TIPC_AEAD_HINT_LEN); 594 595 /* Initialize the other data */ 596 tmp->mode = mode; 597 tmp->cloned = NULL; 598 tmp->authsize = TIPC_AES_GCM_TAG_SIZE; 599 tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL); 600 memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE); 601 atomic_set(&tmp->users, 0); 602 atomic64_set(&tmp->seqno, 0); 603 refcount_set(&tmp->refcnt, 1); 604 605 *aead = tmp; 606 return 0; 607 } 608 609 /** 610 * tipc_aead_clone - Clone a TIPC AEAD key 611 * @dst: dest key for the cloning 612 * @src: source key to clone from 613 * 614 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is 615 * common for the keys. 616 * A reference to the source is hold in the "cloned" pointer for the later 617 * freeing purposes. 618 * 619 * Note: this must be done in cluster-key mode only! 620 * Return: 0 in case of success, otherwise < 0 621 */ 622 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src) 623 { 624 struct tipc_aead *aead; 625 int cpu; 626 627 if (!src) 628 return -ENOKEY; 629 630 if (src->mode != CLUSTER_KEY) 631 return -EINVAL; 632 633 if (unlikely(*dst)) 634 return -EEXIST; 635 636 aead = kzalloc(sizeof(*aead), GFP_ATOMIC); 637 if (unlikely(!aead)) 638 return -ENOMEM; 639 640 aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC); 641 if (unlikely(!aead->tfm_entry)) { 642 kfree_sensitive(aead); 643 return -ENOMEM; 644 } 645 646 for_each_possible_cpu(cpu) { 647 *per_cpu_ptr(aead->tfm_entry, cpu) = 648 *per_cpu_ptr(src->tfm_entry, cpu); 649 } 650 651 memcpy(aead->hint, src->hint, sizeof(src->hint)); 652 aead->mode = src->mode; 653 aead->salt = src->salt; 654 aead->authsize = src->authsize; 655 atomic_set(&aead->users, 0); 656 atomic64_set(&aead->seqno, 0); 657 refcount_set(&aead->refcnt, 1); 658 659 WARN_ON(!refcount_inc_not_zero(&src->refcnt)); 660 aead->cloned = src; 661 662 *dst = aead; 663 return 0; 664 } 665 666 /** 667 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations 668 * @tfm: cipher handle to be registered with the request 669 * @crypto_ctx_size: size of crypto context for callback 670 * @iv: returned pointer to IV data 671 * @req: returned pointer to AEAD request data 672 * @sg: returned pointer to SG lists 673 * @nsg: number of SG lists to be allocated 674 * 675 * Allocate memory to store the crypto context data, AEAD request, IV and SG 676 * lists, the memory layout is as follows: 677 * crypto_ctx || iv || aead_req || sg[] 678 * 679 * Return: the pointer to the memory areas in case of success, otherwise NULL 680 */ 681 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm, 682 unsigned int crypto_ctx_size, 683 u8 **iv, struct aead_request **req, 684 struct scatterlist **sg, int nsg) 685 { 686 unsigned int iv_size, req_size; 687 unsigned int len; 688 u8 *mem; 689 690 iv_size = crypto_aead_ivsize(tfm); 691 req_size = sizeof(**req) + crypto_aead_reqsize(tfm); 692 693 len = crypto_ctx_size; 694 len += iv_size; 695 len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1); 696 len = ALIGN(len, crypto_tfm_ctx_alignment()); 697 len += req_size; 698 len = ALIGN(len, __alignof__(struct scatterlist)); 699 len += nsg * sizeof(**sg); 700 701 mem = kmalloc(len, GFP_ATOMIC); 702 if (!mem) 703 return NULL; 704 705 *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size, 706 crypto_aead_alignmask(tfm) + 1); 707 *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size, 708 crypto_tfm_ctx_alignment()); 709 *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size, 710 __alignof__(struct scatterlist)); 711 712 return (void *)mem; 713 } 714 715 /** 716 * tipc_aead_encrypt - Encrypt a message 717 * @aead: TIPC AEAD key for the message encryption 718 * @skb: the input/output skb 719 * @b: TIPC bearer where the message will be delivered after the encryption 720 * @dst: the destination media address 721 * @__dnode: TIPC dest node if "known" 722 * 723 * Return: 724 * * 0 : if the encryption has completed 725 * * -EINPROGRESS/-EBUSY : if a callback will be performed 726 * * < 0 : the encryption has failed 727 */ 728 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb, 729 struct tipc_bearer *b, 730 struct tipc_media_addr *dst, 731 struct tipc_node *__dnode) 732 { 733 struct crypto_aead *tfm = tipc_aead_tfm_next(aead); 734 struct tipc_crypto_tx_ctx *tx_ctx; 735 struct aead_request *req; 736 struct sk_buff *trailer; 737 struct scatterlist *sg; 738 struct tipc_ehdr *ehdr; 739 int ehsz, len, tailen, nsg, rc; 740 void *ctx; 741 u32 salt; 742 u8 *iv; 743 744 /* Make sure message len at least 4-byte aligned */ 745 len = ALIGN(skb->len, 4); 746 tailen = len - skb->len + aead->authsize; 747 748 /* Expand skb tail for authentication tag: 749 * As for simplicity, we'd have made sure skb having enough tailroom 750 * for authentication tag @skb allocation. Even when skb is nonlinear 751 * but there is no frag_list, it should be still fine! 752 * Otherwise, we must cow it to be a writable buffer with the tailroom. 753 */ 754 SKB_LINEAR_ASSERT(skb); 755 if (tailen > skb_tailroom(skb)) { 756 pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n", 757 skb_tailroom(skb), tailen); 758 } 759 760 if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) { 761 nsg = 1; 762 trailer = skb; 763 } else { 764 /* TODO: We could avoid skb_cow_data() if skb has no frag_list 765 * e.g. by skb_fill_page_desc() to add another page to the skb 766 * with the wanted tailen... However, page skbs look not often, 767 * so take it easy now! 768 * Cloned skbs e.g. from link_xmit() seems no choice though :( 769 */ 770 nsg = skb_cow_data(skb, tailen, &trailer); 771 if (unlikely(nsg < 0)) { 772 pr_err("TX: skb_cow_data() returned %d\n", nsg); 773 return nsg; 774 } 775 } 776 777 pskb_put(skb, trailer, tailen); 778 779 /* Allocate memory for the AEAD operation */ 780 ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg); 781 if (unlikely(!ctx)) 782 return -ENOMEM; 783 TIPC_SKB_CB(skb)->crypto_ctx = ctx; 784 785 /* Map skb to the sg lists */ 786 sg_init_table(sg, nsg); 787 rc = skb_to_sgvec(skb, sg, 0, skb->len); 788 if (unlikely(rc < 0)) { 789 pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg); 790 goto exit; 791 } 792 793 /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)] 794 * In case we're in cluster-key mode, SALT is varied by xor-ing with 795 * the source address (or w0 of id), otherwise with the dest address 796 * if dest is known. 797 */ 798 ehdr = (struct tipc_ehdr *)skb->data; 799 salt = aead->salt; 800 if (aead->mode == CLUSTER_KEY) 801 salt ^= __be32_to_cpu(ehdr->addr); 802 else if (__dnode) 803 salt ^= tipc_node_get_addr(__dnode); 804 memcpy(iv, &salt, 4); 805 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8); 806 807 /* Prepare request */ 808 ehsz = tipc_ehdr_size(ehdr); 809 aead_request_set_tfm(req, tfm); 810 aead_request_set_ad(req, ehsz); 811 aead_request_set_crypt(req, sg, sg, len - ehsz, iv); 812 813 /* Set callback function & data */ 814 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 815 tipc_aead_encrypt_done, skb); 816 tx_ctx = (struct tipc_crypto_tx_ctx *)ctx; 817 tx_ctx->aead = aead; 818 tx_ctx->bearer = b; 819 memcpy(&tx_ctx->dst, dst, sizeof(*dst)); 820 821 /* Hold bearer */ 822 if (unlikely(!tipc_bearer_hold(b))) { 823 rc = -ENODEV; 824 goto exit; 825 } 826 827 /* Now, do encrypt */ 828 rc = crypto_aead_encrypt(req); 829 if (rc == -EINPROGRESS || rc == -EBUSY) 830 return rc; 831 832 tipc_bearer_put(b); 833 834 exit: 835 kfree(ctx); 836 TIPC_SKB_CB(skb)->crypto_ctx = NULL; 837 return rc; 838 } 839 840 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err) 841 { 842 struct sk_buff *skb = base->data; 843 struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx; 844 struct tipc_bearer *b = tx_ctx->bearer; 845 struct tipc_aead *aead = tx_ctx->aead; 846 struct tipc_crypto *tx = aead->crypto; 847 struct net *net = tx->net; 848 849 switch (err) { 850 case 0: 851 this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]); 852 rcu_read_lock(); 853 if (likely(test_bit(0, &b->up))) 854 b->media->send_msg(net, skb, b, &tx_ctx->dst); 855 else 856 kfree_skb(skb); 857 rcu_read_unlock(); 858 break; 859 case -EINPROGRESS: 860 return; 861 default: 862 this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]); 863 kfree_skb(skb); 864 break; 865 } 866 867 kfree(tx_ctx); 868 tipc_bearer_put(b); 869 tipc_aead_put(aead); 870 } 871 872 /** 873 * tipc_aead_decrypt - Decrypt an encrypted message 874 * @net: struct net 875 * @aead: TIPC AEAD for the message decryption 876 * @skb: the input/output skb 877 * @b: TIPC bearer where the message has been received 878 * 879 * Return: 880 * * 0 : if the decryption has completed 881 * * -EINPROGRESS/-EBUSY : if a callback will be performed 882 * * < 0 : the decryption has failed 883 */ 884 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead, 885 struct sk_buff *skb, struct tipc_bearer *b) 886 { 887 struct tipc_crypto_rx_ctx *rx_ctx; 888 struct aead_request *req; 889 struct crypto_aead *tfm; 890 struct sk_buff *unused; 891 struct scatterlist *sg; 892 struct tipc_ehdr *ehdr; 893 int ehsz, nsg, rc; 894 void *ctx; 895 u32 salt; 896 u8 *iv; 897 898 if (unlikely(!aead)) 899 return -ENOKEY; 900 901 /* Cow skb data if needed */ 902 if (likely(!skb_cloned(skb) && 903 (!skb_is_nonlinear(skb) || !skb_has_frag_list(skb)))) { 904 nsg = 1 + skb_shinfo(skb)->nr_frags; 905 } else { 906 nsg = skb_cow_data(skb, 0, &unused); 907 if (unlikely(nsg < 0)) { 908 pr_err("RX: skb_cow_data() returned %d\n", nsg); 909 return nsg; 910 } 911 } 912 913 /* Allocate memory for the AEAD operation */ 914 tfm = tipc_aead_tfm_next(aead); 915 ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg); 916 if (unlikely(!ctx)) 917 return -ENOMEM; 918 TIPC_SKB_CB(skb)->crypto_ctx = ctx; 919 920 /* Map skb to the sg lists */ 921 sg_init_table(sg, nsg); 922 rc = skb_to_sgvec(skb, sg, 0, skb->len); 923 if (unlikely(rc < 0)) { 924 pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg); 925 goto exit; 926 } 927 928 /* Reconstruct IV: */ 929 ehdr = (struct tipc_ehdr *)skb->data; 930 salt = aead->salt; 931 if (aead->mode == CLUSTER_KEY) 932 salt ^= __be32_to_cpu(ehdr->addr); 933 else if (ehdr->destined) 934 salt ^= tipc_own_addr(net); 935 memcpy(iv, &salt, 4); 936 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8); 937 938 /* Prepare request */ 939 ehsz = tipc_ehdr_size(ehdr); 940 aead_request_set_tfm(req, tfm); 941 aead_request_set_ad(req, ehsz); 942 aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv); 943 944 /* Set callback function & data */ 945 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 946 tipc_aead_decrypt_done, skb); 947 rx_ctx = (struct tipc_crypto_rx_ctx *)ctx; 948 rx_ctx->aead = aead; 949 rx_ctx->bearer = b; 950 951 /* Hold bearer */ 952 if (unlikely(!tipc_bearer_hold(b))) { 953 rc = -ENODEV; 954 goto exit; 955 } 956 957 /* Now, do decrypt */ 958 rc = crypto_aead_decrypt(req); 959 if (rc == -EINPROGRESS || rc == -EBUSY) 960 return rc; 961 962 tipc_bearer_put(b); 963 964 exit: 965 kfree(ctx); 966 TIPC_SKB_CB(skb)->crypto_ctx = NULL; 967 return rc; 968 } 969 970 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err) 971 { 972 struct sk_buff *skb = base->data; 973 struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx; 974 struct tipc_bearer *b = rx_ctx->bearer; 975 struct tipc_aead *aead = rx_ctx->aead; 976 struct tipc_crypto_stats __percpu *stats = aead->crypto->stats; 977 struct net *net = aead->crypto->net; 978 979 switch (err) { 980 case 0: 981 this_cpu_inc(stats->stat[STAT_ASYNC_OK]); 982 break; 983 case -EINPROGRESS: 984 return; 985 default: 986 this_cpu_inc(stats->stat[STAT_ASYNC_NOK]); 987 break; 988 } 989 990 kfree(rx_ctx); 991 tipc_crypto_rcv_complete(net, aead, b, &skb, err); 992 if (likely(skb)) { 993 if (likely(test_bit(0, &b->up))) 994 tipc_rcv(net, skb, b); 995 else 996 kfree_skb(skb); 997 } 998 999 tipc_bearer_put(b); 1000 } 1001 1002 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr) 1003 { 1004 return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE; 1005 } 1006 1007 /** 1008 * tipc_ehdr_validate - Validate an encryption message 1009 * @skb: the message buffer 1010 * 1011 * Return: "true" if this is a valid encryption message, otherwise "false" 1012 */ 1013 bool tipc_ehdr_validate(struct sk_buff *skb) 1014 { 1015 struct tipc_ehdr *ehdr; 1016 int ehsz; 1017 1018 if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE))) 1019 return false; 1020 1021 ehdr = (struct tipc_ehdr *)skb->data; 1022 if (unlikely(ehdr->version != TIPC_EVERSION)) 1023 return false; 1024 ehsz = tipc_ehdr_size(ehdr); 1025 if (unlikely(!pskb_may_pull(skb, ehsz))) 1026 return false; 1027 if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE)) 1028 return false; 1029 1030 return true; 1031 } 1032 1033 /** 1034 * tipc_ehdr_build - Build TIPC encryption message header 1035 * @net: struct net 1036 * @aead: TX AEAD key to be used for the message encryption 1037 * @tx_key: key id used for the message encryption 1038 * @skb: input/output message skb 1039 * @__rx: RX crypto handle if dest is "known" 1040 * 1041 * Return: the header size if the building is successful, otherwise < 0 1042 */ 1043 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead, 1044 u8 tx_key, struct sk_buff *skb, 1045 struct tipc_crypto *__rx) 1046 { 1047 struct tipc_msg *hdr = buf_msg(skb); 1048 struct tipc_ehdr *ehdr; 1049 u32 user = msg_user(hdr); 1050 u64 seqno; 1051 int ehsz; 1052 1053 /* Make room for encryption header */ 1054 ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE; 1055 WARN_ON(skb_headroom(skb) < ehsz); 1056 ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz); 1057 1058 /* Obtain a seqno first: 1059 * Use the key seqno (= cluster wise) if dest is unknown or we're in 1060 * cluster key mode, otherwise it's better for a per-peer seqno! 1061 */ 1062 if (!__rx || aead->mode == CLUSTER_KEY) 1063 seqno = atomic64_inc_return(&aead->seqno); 1064 else 1065 seqno = atomic64_inc_return(&__rx->sndnxt); 1066 1067 /* Revoke the key if seqno is wrapped around */ 1068 if (unlikely(!seqno)) 1069 return tipc_crypto_key_revoke(net, tx_key); 1070 1071 /* Word 1-2 */ 1072 ehdr->seqno = cpu_to_be64(seqno); 1073 1074 /* Words 0, 3- */ 1075 ehdr->version = TIPC_EVERSION; 1076 ehdr->user = 0; 1077 ehdr->keepalive = 0; 1078 ehdr->tx_key = tx_key; 1079 ehdr->destined = (__rx) ? 1 : 0; 1080 ehdr->rx_key_active = (__rx) ? __rx->key.active : 0; 1081 ehdr->rx_nokey = (__rx) ? __rx->nokey : 0; 1082 ehdr->master_key = aead->crypto->key_master; 1083 ehdr->reserved_1 = 0; 1084 ehdr->reserved_2 = 0; 1085 1086 switch (user) { 1087 case LINK_CONFIG: 1088 ehdr->user = LINK_CONFIG; 1089 memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN); 1090 break; 1091 default: 1092 if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) { 1093 ehdr->user = LINK_PROTOCOL; 1094 ehdr->keepalive = msg_is_keepalive(hdr); 1095 } 1096 ehdr->addr = hdr->hdr[3]; 1097 break; 1098 } 1099 1100 return ehsz; 1101 } 1102 1103 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c, 1104 u8 new_passive, 1105 u8 new_active, 1106 u8 new_pending) 1107 { 1108 struct tipc_key old = c->key; 1109 char buf[32]; 1110 1111 c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) | 1112 ((new_active & KEY_MASK) << (KEY_BITS)) | 1113 ((new_pending & KEY_MASK)); 1114 1115 pr_debug("%s: key changing %s ::%pS\n", c->name, 1116 tipc_key_change_dump(old, c->key, buf), 1117 __builtin_return_address(0)); 1118 } 1119 1120 /** 1121 * tipc_crypto_key_init - Initiate a new user / AEAD key 1122 * @c: TIPC crypto to which new key is attached 1123 * @ukey: the user key 1124 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY) 1125 * @master_key: specify this is a cluster master key 1126 * 1127 * A new TIPC AEAD key will be allocated and initiated with the specified user 1128 * key, then attached to the TIPC crypto. 1129 * 1130 * Return: new key id in case of success, otherwise: < 0 1131 */ 1132 int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey, 1133 u8 mode, bool master_key) 1134 { 1135 struct tipc_aead *aead = NULL; 1136 int rc = 0; 1137 1138 /* Initiate with the new user key */ 1139 rc = tipc_aead_init(&aead, ukey, mode); 1140 1141 /* Attach it to the crypto */ 1142 if (likely(!rc)) { 1143 rc = tipc_crypto_key_attach(c, aead, 0, master_key); 1144 if (rc < 0) 1145 tipc_aead_free(&aead->rcu); 1146 } 1147 1148 return rc; 1149 } 1150 1151 /** 1152 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto 1153 * @c: TIPC crypto to which the new AEAD key is attached 1154 * @aead: the new AEAD key pointer 1155 * @pos: desired slot in the crypto key array, = 0 if any! 1156 * @master_key: specify this is a cluster master key 1157 * 1158 * Return: new key id in case of success, otherwise: -EBUSY 1159 */ 1160 static int tipc_crypto_key_attach(struct tipc_crypto *c, 1161 struct tipc_aead *aead, u8 pos, 1162 bool master_key) 1163 { 1164 struct tipc_key key; 1165 int rc = -EBUSY; 1166 u8 new_key; 1167 1168 spin_lock_bh(&c->lock); 1169 key = c->key; 1170 if (master_key) { 1171 new_key = KEY_MASTER; 1172 goto attach; 1173 } 1174 if (key.active && key.passive) 1175 goto exit; 1176 if (key.pending) { 1177 if (tipc_aead_users(c->aead[key.pending]) > 0) 1178 goto exit; 1179 /* if (pos): ok with replacing, will be aligned when needed */ 1180 /* Replace it */ 1181 new_key = key.pending; 1182 } else { 1183 if (pos) { 1184 if (key.active && pos != key_next(key.active)) { 1185 key.passive = pos; 1186 new_key = pos; 1187 goto attach; 1188 } else if (!key.active && !key.passive) { 1189 key.pending = pos; 1190 new_key = pos; 1191 goto attach; 1192 } 1193 } 1194 key.pending = key_next(key.active ?: key.passive); 1195 new_key = key.pending; 1196 } 1197 1198 attach: 1199 aead->crypto = c; 1200 aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen; 1201 tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock); 1202 if (likely(c->key.keys != key.keys)) 1203 tipc_crypto_key_set_state(c, key.passive, key.active, 1204 key.pending); 1205 c->working = 1; 1206 c->nokey = 0; 1207 c->key_master |= master_key; 1208 rc = new_key; 1209 1210 exit: 1211 spin_unlock_bh(&c->lock); 1212 return rc; 1213 } 1214 1215 void tipc_crypto_key_flush(struct tipc_crypto *c) 1216 { 1217 struct tipc_crypto *tx, *rx; 1218 int k; 1219 1220 spin_lock_bh(&c->lock); 1221 if (is_rx(c)) { 1222 /* Try to cancel pending work */ 1223 rx = c; 1224 tx = tipc_net(rx->net)->crypto_tx; 1225 if (cancel_delayed_work(&rx->work)) { 1226 kfree(rx->skey); 1227 rx->skey = NULL; 1228 atomic_xchg(&rx->key_distr, 0); 1229 tipc_node_put(rx->node); 1230 } 1231 /* RX stopping => decrease TX key users if any */ 1232 k = atomic_xchg(&rx->peer_rx_active, 0); 1233 if (k) { 1234 tipc_aead_users_dec(tx->aead[k], 0); 1235 /* Mark the point TX key users changed */ 1236 tx->timer1 = jiffies; 1237 } 1238 } 1239 1240 c->flags = 0; 1241 tipc_crypto_key_set_state(c, 0, 0, 0); 1242 for (k = KEY_MIN; k <= KEY_MAX; k++) 1243 tipc_crypto_key_detach(c->aead[k], &c->lock); 1244 atomic64_set(&c->sndnxt, 0); 1245 spin_unlock_bh(&c->lock); 1246 } 1247 1248 /** 1249 * tipc_crypto_key_try_align - Align RX keys if possible 1250 * @rx: RX crypto handle 1251 * @new_pending: new pending slot if aligned (= TX key from peer) 1252 * 1253 * Peer has used an unknown key slot, this only happens when peer has left and 1254 * rejoned, or we are newcomer. 1255 * That means, there must be no active key but a pending key at unaligned slot. 1256 * If so, we try to move the pending key to the new slot. 1257 * Note: A potential passive key can exist, it will be shifted correspondingly! 1258 * 1259 * Return: "true" if key is successfully aligned, otherwise "false" 1260 */ 1261 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending) 1262 { 1263 struct tipc_aead *tmp1, *tmp2 = NULL; 1264 struct tipc_key key; 1265 bool aligned = false; 1266 u8 new_passive = 0; 1267 int x; 1268 1269 spin_lock(&rx->lock); 1270 key = rx->key; 1271 if (key.pending == new_pending) { 1272 aligned = true; 1273 goto exit; 1274 } 1275 if (key.active) 1276 goto exit; 1277 if (!key.pending) 1278 goto exit; 1279 if (tipc_aead_users(rx->aead[key.pending]) > 0) 1280 goto exit; 1281 1282 /* Try to "isolate" this pending key first */ 1283 tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock); 1284 if (!refcount_dec_if_one(&tmp1->refcnt)) 1285 goto exit; 1286 rcu_assign_pointer(rx->aead[key.pending], NULL); 1287 1288 /* Move passive key if any */ 1289 if (key.passive) { 1290 tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock)); 1291 x = (key.passive - key.pending + new_pending) % KEY_MAX; 1292 new_passive = (x <= 0) ? x + KEY_MAX : x; 1293 } 1294 1295 /* Re-allocate the key(s) */ 1296 tipc_crypto_key_set_state(rx, new_passive, 0, new_pending); 1297 rcu_assign_pointer(rx->aead[new_pending], tmp1); 1298 if (new_passive) 1299 rcu_assign_pointer(rx->aead[new_passive], tmp2); 1300 refcount_set(&tmp1->refcnt, 1); 1301 aligned = true; 1302 pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending, 1303 new_pending); 1304 1305 exit: 1306 spin_unlock(&rx->lock); 1307 return aligned; 1308 } 1309 1310 /** 1311 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption 1312 * @tx: TX crypto handle 1313 * @rx: RX crypto handle (can be NULL) 1314 * @skb: the message skb which will be decrypted later 1315 * @tx_key: peer TX key id 1316 * 1317 * This function looks up the existing TX keys and pick one which is suitable 1318 * for the message decryption, that must be a cluster key and not used before 1319 * on the same message (i.e. recursive). 1320 * 1321 * Return: the TX AEAD key handle in case of success, otherwise NULL 1322 */ 1323 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx, 1324 struct tipc_crypto *rx, 1325 struct sk_buff *skb, 1326 u8 tx_key) 1327 { 1328 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb); 1329 struct tipc_aead *aead = NULL; 1330 struct tipc_key key = tx->key; 1331 u8 k, i = 0; 1332 1333 /* Initialize data if not yet */ 1334 if (!skb_cb->tx_clone_deferred) { 1335 skb_cb->tx_clone_deferred = 1; 1336 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx)); 1337 } 1338 1339 skb_cb->tx_clone_ctx.rx = rx; 1340 if (++skb_cb->tx_clone_ctx.recurs > 2) 1341 return NULL; 1342 1343 /* Pick one TX key */ 1344 spin_lock(&tx->lock); 1345 if (tx_key == KEY_MASTER) { 1346 aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock); 1347 goto done; 1348 } 1349 do { 1350 k = (i == 0) ? key.pending : 1351 ((i == 1) ? key.active : key.passive); 1352 if (!k) 1353 continue; 1354 aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock); 1355 if (!aead) 1356 continue; 1357 if (aead->mode != CLUSTER_KEY || 1358 aead == skb_cb->tx_clone_ctx.last) { 1359 aead = NULL; 1360 continue; 1361 } 1362 /* Ok, found one cluster key */ 1363 skb_cb->tx_clone_ctx.last = aead; 1364 WARN_ON(skb->next); 1365 skb->next = skb_clone(skb, GFP_ATOMIC); 1366 if (unlikely(!skb->next)) 1367 pr_warn("Failed to clone skb for next round if any\n"); 1368 break; 1369 } while (++i < 3); 1370 1371 done: 1372 if (likely(aead)) 1373 WARN_ON(!refcount_inc_not_zero(&aead->refcnt)); 1374 spin_unlock(&tx->lock); 1375 1376 return aead; 1377 } 1378 1379 /** 1380 * tipc_crypto_key_synch: Synch own key data according to peer key status 1381 * @rx: RX crypto handle 1382 * @skb: TIPCv2 message buffer (incl. the ehdr from peer) 1383 * 1384 * This function updates the peer node related data as the peer RX active key 1385 * has changed, so the number of TX keys' users on this node are increased and 1386 * decreased correspondingly. 1387 * 1388 * It also considers if peer has no key, then we need to make own master key 1389 * (if any) taking over i.e. starting grace period and also trigger key 1390 * distributing process. 1391 * 1392 * The "per-peer" sndnxt is also reset when the peer key has switched. 1393 */ 1394 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb) 1395 { 1396 struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb); 1397 struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx; 1398 struct tipc_msg *hdr = buf_msg(skb); 1399 u32 self = tipc_own_addr(rx->net); 1400 u8 cur, new; 1401 unsigned long delay; 1402 1403 /* Update RX 'key_master' flag according to peer, also mark "legacy" if 1404 * a peer has no master key. 1405 */ 1406 rx->key_master = ehdr->master_key; 1407 if (!rx->key_master) 1408 tx->legacy_user = 1; 1409 1410 /* For later cases, apply only if message is destined to this node */ 1411 if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self) 1412 return; 1413 1414 /* Case 1: Peer has no keys, let's make master key take over */ 1415 if (ehdr->rx_nokey) { 1416 /* Set or extend grace period */ 1417 tx->timer2 = jiffies; 1418 /* Schedule key distributing for the peer if not yet */ 1419 if (tx->key.keys && 1420 !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) { 1421 get_random_bytes(&delay, 2); 1422 delay %= 5; 1423 delay = msecs_to_jiffies(500 * ++delay); 1424 if (queue_delayed_work(tx->wq, &rx->work, delay)) 1425 tipc_node_get(rx->node); 1426 } 1427 } else { 1428 /* Cancel a pending key distributing if any */ 1429 atomic_xchg(&rx->key_distr, 0); 1430 } 1431 1432 /* Case 2: Peer RX active key has changed, let's update own TX users */ 1433 cur = atomic_read(&rx->peer_rx_active); 1434 new = ehdr->rx_key_active; 1435 if (tx->key.keys && 1436 cur != new && 1437 atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) { 1438 if (new) 1439 tipc_aead_users_inc(tx->aead[new], INT_MAX); 1440 if (cur) 1441 tipc_aead_users_dec(tx->aead[cur], 0); 1442 1443 atomic64_set(&rx->sndnxt, 0); 1444 /* Mark the point TX key users changed */ 1445 tx->timer1 = jiffies; 1446 1447 pr_debug("%s: key users changed %d-- %d++, peer %s\n", 1448 tx->name, cur, new, rx->name); 1449 } 1450 } 1451 1452 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key) 1453 { 1454 struct tipc_crypto *tx = tipc_net(net)->crypto_tx; 1455 struct tipc_key key; 1456 1457 spin_lock(&tx->lock); 1458 key = tx->key; 1459 WARN_ON(!key.active || tx_key != key.active); 1460 1461 /* Free the active key */ 1462 tipc_crypto_key_set_state(tx, key.passive, 0, key.pending); 1463 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock); 1464 spin_unlock(&tx->lock); 1465 1466 pr_warn("%s: key is revoked\n", tx->name); 1467 return -EKEYREVOKED; 1468 } 1469 1470 int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net, 1471 struct tipc_node *node) 1472 { 1473 struct tipc_crypto *c; 1474 1475 if (*crypto) 1476 return -EEXIST; 1477 1478 /* Allocate crypto */ 1479 c = kzalloc(sizeof(*c), GFP_ATOMIC); 1480 if (!c) 1481 return -ENOMEM; 1482 1483 /* Allocate workqueue on TX */ 1484 if (!node) { 1485 c->wq = alloc_ordered_workqueue("tipc_crypto", 0); 1486 if (!c->wq) { 1487 kfree(c); 1488 return -ENOMEM; 1489 } 1490 } 1491 1492 /* Allocate statistic structure */ 1493 c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC); 1494 if (!c->stats) { 1495 if (c->wq) 1496 destroy_workqueue(c->wq); 1497 kfree_sensitive(c); 1498 return -ENOMEM; 1499 } 1500 1501 c->flags = 0; 1502 c->net = net; 1503 c->node = node; 1504 get_random_bytes(&c->key_gen, 2); 1505 tipc_crypto_key_set_state(c, 0, 0, 0); 1506 atomic_set(&c->key_distr, 0); 1507 atomic_set(&c->peer_rx_active, 0); 1508 atomic64_set(&c->sndnxt, 0); 1509 c->timer1 = jiffies; 1510 c->timer2 = jiffies; 1511 c->rekeying_intv = TIPC_REKEYING_INTV_DEF; 1512 spin_lock_init(&c->lock); 1513 scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX", 1514 (is_rx(c)) ? tipc_node_get_id_str(c->node) : 1515 tipc_own_id_string(c->net)); 1516 1517 if (is_rx(c)) 1518 INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx); 1519 else 1520 INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx); 1521 1522 *crypto = c; 1523 return 0; 1524 } 1525 1526 void tipc_crypto_stop(struct tipc_crypto **crypto) 1527 { 1528 struct tipc_crypto *c = *crypto; 1529 u8 k; 1530 1531 if (!c) 1532 return; 1533 1534 /* Flush any queued works & destroy wq */ 1535 if (is_tx(c)) { 1536 c->rekeying_intv = 0; 1537 cancel_delayed_work_sync(&c->work); 1538 destroy_workqueue(c->wq); 1539 } 1540 1541 /* Release AEAD keys */ 1542 rcu_read_lock(); 1543 for (k = KEY_MIN; k <= KEY_MAX; k++) 1544 tipc_aead_put(rcu_dereference(c->aead[k])); 1545 rcu_read_unlock(); 1546 pr_debug("%s: has been stopped\n", c->name); 1547 1548 /* Free this crypto statistics */ 1549 free_percpu(c->stats); 1550 1551 *crypto = NULL; 1552 kfree_sensitive(c); 1553 } 1554 1555 void tipc_crypto_timeout(struct tipc_crypto *rx) 1556 { 1557 struct tipc_net *tn = tipc_net(rx->net); 1558 struct tipc_crypto *tx = tn->crypto_tx; 1559 struct tipc_key key; 1560 int cmd; 1561 1562 /* TX pending: taking all users & stable -> active */ 1563 spin_lock(&tx->lock); 1564 key = tx->key; 1565 if (key.active && tipc_aead_users(tx->aead[key.active]) > 0) 1566 goto s1; 1567 if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0) 1568 goto s1; 1569 if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME)) 1570 goto s1; 1571 1572 tipc_crypto_key_set_state(tx, key.passive, key.pending, 0); 1573 if (key.active) 1574 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock); 1575 this_cpu_inc(tx->stats->stat[STAT_SWITCHES]); 1576 pr_info("%s: key[%d] is activated\n", tx->name, key.pending); 1577 1578 s1: 1579 spin_unlock(&tx->lock); 1580 1581 /* RX pending: having user -> active */ 1582 spin_lock(&rx->lock); 1583 key = rx->key; 1584 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0) 1585 goto s2; 1586 1587 if (key.active) 1588 key.passive = key.active; 1589 key.active = key.pending; 1590 rx->timer2 = jiffies; 1591 tipc_crypto_key_set_state(rx, key.passive, key.active, 0); 1592 this_cpu_inc(rx->stats->stat[STAT_SWITCHES]); 1593 pr_info("%s: key[%d] is activated\n", rx->name, key.pending); 1594 goto s5; 1595 1596 s2: 1597 /* RX pending: not working -> remove */ 1598 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10) 1599 goto s3; 1600 1601 tipc_crypto_key_set_state(rx, key.passive, key.active, 0); 1602 tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock); 1603 pr_debug("%s: key[%d] is removed\n", rx->name, key.pending); 1604 goto s5; 1605 1606 s3: 1607 /* RX active: timed out or no user -> pending */ 1608 if (!key.active) 1609 goto s4; 1610 if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) && 1611 tipc_aead_users(rx->aead[key.active]) > 0) 1612 goto s4; 1613 1614 if (key.pending) 1615 key.passive = key.active; 1616 else 1617 key.pending = key.active; 1618 rx->timer2 = jiffies; 1619 tipc_crypto_key_set_state(rx, key.passive, 0, key.pending); 1620 tipc_aead_users_set(rx->aead[key.pending], 0); 1621 pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active); 1622 goto s5; 1623 1624 s4: 1625 /* RX passive: outdated or not working -> free */ 1626 if (!key.passive) 1627 goto s5; 1628 if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) && 1629 tipc_aead_users(rx->aead[key.passive]) > -10) 1630 goto s5; 1631 1632 tipc_crypto_key_set_state(rx, 0, key.active, key.pending); 1633 tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock); 1634 pr_debug("%s: key[%d] is freed\n", rx->name, key.passive); 1635 1636 s5: 1637 spin_unlock(&rx->lock); 1638 1639 /* Relax it here, the flag will be set again if it really is, but only 1640 * when we are not in grace period for safety! 1641 */ 1642 if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) 1643 tx->legacy_user = 0; 1644 1645 /* Limit max_tfms & do debug commands if needed */ 1646 if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM)) 1647 return; 1648 1649 cmd = sysctl_tipc_max_tfms; 1650 sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF; 1651 tipc_crypto_do_cmd(rx->net, cmd); 1652 } 1653 1654 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb, 1655 struct tipc_bearer *b, 1656 struct tipc_media_addr *dst, 1657 struct tipc_node *__dnode, u8 type) 1658 { 1659 struct sk_buff *skb; 1660 1661 skb = skb_clone(_skb, GFP_ATOMIC); 1662 if (skb) { 1663 TIPC_SKB_CB(skb)->xmit_type = type; 1664 tipc_crypto_xmit(net, &skb, b, dst, __dnode); 1665 if (skb) 1666 b->media->send_msg(net, skb, b, dst); 1667 } 1668 } 1669 1670 /** 1671 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit 1672 * @net: struct net 1673 * @skb: input/output message skb pointer 1674 * @b: bearer used for xmit later 1675 * @dst: destination media address 1676 * @__dnode: destination node for reference if any 1677 * 1678 * First, build an encryption message header on the top of the message, then 1679 * encrypt the original TIPC message by using the pending, master or active 1680 * key with this preference order. 1681 * If the encryption is successful, the encrypted skb is returned directly or 1682 * via the callback. 1683 * Otherwise, the skb is freed! 1684 * 1685 * Return: 1686 * * 0 : the encryption has succeeded (or no encryption) 1687 * * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made 1688 * * -ENOKEK : the encryption has failed due to no key 1689 * * -EKEYREVOKED : the encryption has failed due to key revoked 1690 * * -ENOMEM : the encryption has failed due to no memory 1691 * * < 0 : the encryption has failed due to other reasons 1692 */ 1693 int tipc_crypto_xmit(struct net *net, struct sk_buff **skb, 1694 struct tipc_bearer *b, struct tipc_media_addr *dst, 1695 struct tipc_node *__dnode) 1696 { 1697 struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode); 1698 struct tipc_crypto *tx = tipc_net(net)->crypto_tx; 1699 struct tipc_crypto_stats __percpu *stats = tx->stats; 1700 struct tipc_msg *hdr = buf_msg(*skb); 1701 struct tipc_key key = tx->key; 1702 struct tipc_aead *aead = NULL; 1703 u32 user = msg_user(hdr); 1704 u32 type = msg_type(hdr); 1705 int rc = -ENOKEY; 1706 u8 tx_key = 0; 1707 1708 /* No encryption? */ 1709 if (!tx->working) 1710 return 0; 1711 1712 /* Pending key if peer has active on it or probing time */ 1713 if (unlikely(key.pending)) { 1714 tx_key = key.pending; 1715 if (!tx->key_master && !key.active) 1716 goto encrypt; 1717 if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key) 1718 goto encrypt; 1719 if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) { 1720 pr_debug("%s: probing for key[%d]\n", tx->name, 1721 key.pending); 1722 goto encrypt; 1723 } 1724 if (user == LINK_CONFIG || user == LINK_PROTOCOL) 1725 tipc_crypto_clone_msg(net, *skb, b, dst, __dnode, 1726 SKB_PROBING); 1727 } 1728 1729 /* Master key if this is a *vital* message or in grace period */ 1730 if (tx->key_master) { 1731 tx_key = KEY_MASTER; 1732 if (!key.active) 1733 goto encrypt; 1734 if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) { 1735 pr_debug("%s: gracing for msg (%d %d)\n", tx->name, 1736 user, type); 1737 goto encrypt; 1738 } 1739 if (user == LINK_CONFIG || 1740 (user == LINK_PROTOCOL && type == RESET_MSG) || 1741 (user == MSG_CRYPTO && type == KEY_DISTR_MSG) || 1742 time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) { 1743 if (__rx && __rx->key_master && 1744 !atomic_read(&__rx->peer_rx_active)) 1745 goto encrypt; 1746 if (!__rx) { 1747 if (likely(!tx->legacy_user)) 1748 goto encrypt; 1749 tipc_crypto_clone_msg(net, *skb, b, dst, 1750 __dnode, SKB_GRACING); 1751 } 1752 } 1753 } 1754 1755 /* Else, use the active key if any */ 1756 if (likely(key.active)) { 1757 tx_key = key.active; 1758 goto encrypt; 1759 } 1760 1761 goto exit; 1762 1763 encrypt: 1764 aead = tipc_aead_get(tx->aead[tx_key]); 1765 if (unlikely(!aead)) 1766 goto exit; 1767 rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx); 1768 if (likely(rc > 0)) 1769 rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode); 1770 1771 exit: 1772 switch (rc) { 1773 case 0: 1774 this_cpu_inc(stats->stat[STAT_OK]); 1775 break; 1776 case -EINPROGRESS: 1777 case -EBUSY: 1778 this_cpu_inc(stats->stat[STAT_ASYNC]); 1779 *skb = NULL; 1780 return rc; 1781 default: 1782 this_cpu_inc(stats->stat[STAT_NOK]); 1783 if (rc == -ENOKEY) 1784 this_cpu_inc(stats->stat[STAT_NOKEYS]); 1785 else if (rc == -EKEYREVOKED) 1786 this_cpu_inc(stats->stat[STAT_BADKEYS]); 1787 kfree_skb(*skb); 1788 *skb = NULL; 1789 break; 1790 } 1791 1792 tipc_aead_put(aead); 1793 return rc; 1794 } 1795 1796 /** 1797 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer 1798 * @net: struct net 1799 * @rx: RX crypto handle 1800 * @skb: input/output message skb pointer 1801 * @b: bearer where the message has been received 1802 * 1803 * If the decryption is successful, the decrypted skb is returned directly or 1804 * as the callback, the encryption header and auth tag will be trimed out 1805 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete(). 1806 * Otherwise, the skb will be freed! 1807 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX 1808 * cluster key(s) can be taken for decryption (- recursive). 1809 * 1810 * Return: 1811 * * 0 : the decryption has successfully completed 1812 * * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made 1813 * * -ENOKEY : the decryption has failed due to no key 1814 * * -EBADMSG : the decryption has failed due to bad message 1815 * * -ENOMEM : the decryption has failed due to no memory 1816 * * < 0 : the decryption has failed due to other reasons 1817 */ 1818 int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx, 1819 struct sk_buff **skb, struct tipc_bearer *b) 1820 { 1821 struct tipc_crypto *tx = tipc_net(net)->crypto_tx; 1822 struct tipc_crypto_stats __percpu *stats; 1823 struct tipc_aead *aead = NULL; 1824 struct tipc_key key; 1825 int rc = -ENOKEY; 1826 u8 tx_key, n; 1827 1828 tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key; 1829 1830 /* New peer? 1831 * Let's try with TX key (i.e. cluster mode) & verify the skb first! 1832 */ 1833 if (unlikely(!rx || tx_key == KEY_MASTER)) 1834 goto pick_tx; 1835 1836 /* Pick RX key according to TX key if any */ 1837 key = rx->key; 1838 if (tx_key == key.active || tx_key == key.pending || 1839 tx_key == key.passive) 1840 goto decrypt; 1841 1842 /* Unknown key, let's try to align RX key(s) */ 1843 if (tipc_crypto_key_try_align(rx, tx_key)) 1844 goto decrypt; 1845 1846 pick_tx: 1847 /* No key suitable? Try to pick one from TX... */ 1848 aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key); 1849 if (aead) 1850 goto decrypt; 1851 goto exit; 1852 1853 decrypt: 1854 rcu_read_lock(); 1855 if (!aead) 1856 aead = tipc_aead_get(rx->aead[tx_key]); 1857 rc = tipc_aead_decrypt(net, aead, *skb, b); 1858 rcu_read_unlock(); 1859 1860 exit: 1861 stats = ((rx) ?: tx)->stats; 1862 switch (rc) { 1863 case 0: 1864 this_cpu_inc(stats->stat[STAT_OK]); 1865 break; 1866 case -EINPROGRESS: 1867 case -EBUSY: 1868 this_cpu_inc(stats->stat[STAT_ASYNC]); 1869 *skb = NULL; 1870 return rc; 1871 default: 1872 this_cpu_inc(stats->stat[STAT_NOK]); 1873 if (rc == -ENOKEY) { 1874 kfree_skb(*skb); 1875 *skb = NULL; 1876 if (rx) { 1877 /* Mark rx->nokey only if we dont have a 1878 * pending received session key, nor a newer 1879 * one i.e. in the next slot. 1880 */ 1881 n = key_next(tx_key); 1882 rx->nokey = !(rx->skey || 1883 rcu_access_pointer(rx->aead[n])); 1884 pr_debug_ratelimited("%s: nokey %d, key %d/%x\n", 1885 rx->name, rx->nokey, 1886 tx_key, rx->key.keys); 1887 tipc_node_put(rx->node); 1888 } 1889 this_cpu_inc(stats->stat[STAT_NOKEYS]); 1890 return rc; 1891 } else if (rc == -EBADMSG) { 1892 this_cpu_inc(stats->stat[STAT_BADMSGS]); 1893 } 1894 break; 1895 } 1896 1897 tipc_crypto_rcv_complete(net, aead, b, skb, rc); 1898 return rc; 1899 } 1900 1901 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead, 1902 struct tipc_bearer *b, 1903 struct sk_buff **skb, int err) 1904 { 1905 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb); 1906 struct tipc_crypto *rx = aead->crypto; 1907 struct tipc_aead *tmp = NULL; 1908 struct tipc_ehdr *ehdr; 1909 struct tipc_node *n; 1910 1911 /* Is this completed by TX? */ 1912 if (unlikely(is_tx(aead->crypto))) { 1913 rx = skb_cb->tx_clone_ctx.rx; 1914 pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n", 1915 (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead, 1916 (*skb)->next, skb_cb->flags); 1917 pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n", 1918 skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last, 1919 aead->crypto->aead[1], aead->crypto->aead[2], 1920 aead->crypto->aead[3]); 1921 if (unlikely(err)) { 1922 if (err == -EBADMSG && (*skb)->next) 1923 tipc_rcv(net, (*skb)->next, b); 1924 goto free_skb; 1925 } 1926 1927 if (likely((*skb)->next)) { 1928 kfree_skb((*skb)->next); 1929 (*skb)->next = NULL; 1930 } 1931 ehdr = (struct tipc_ehdr *)(*skb)->data; 1932 if (!rx) { 1933 WARN_ON(ehdr->user != LINK_CONFIG); 1934 n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0, 1935 true); 1936 rx = tipc_node_crypto_rx(n); 1937 if (unlikely(!rx)) 1938 goto free_skb; 1939 } 1940 1941 /* Ignore cloning if it was TX master key */ 1942 if (ehdr->tx_key == KEY_MASTER) 1943 goto rcv; 1944 if (tipc_aead_clone(&tmp, aead) < 0) 1945 goto rcv; 1946 WARN_ON(!refcount_inc_not_zero(&tmp->refcnt)); 1947 if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) { 1948 tipc_aead_free(&tmp->rcu); 1949 goto rcv; 1950 } 1951 tipc_aead_put(aead); 1952 aead = tmp; 1953 } 1954 1955 if (unlikely(err)) { 1956 tipc_aead_users_dec((struct tipc_aead __force __rcu *)aead, INT_MIN); 1957 goto free_skb; 1958 } 1959 1960 /* Set the RX key's user */ 1961 tipc_aead_users_set((struct tipc_aead __force __rcu *)aead, 1); 1962 1963 /* Mark this point, RX works */ 1964 rx->timer1 = jiffies; 1965 1966 rcv: 1967 /* Remove ehdr & auth. tag prior to tipc_rcv() */ 1968 ehdr = (struct tipc_ehdr *)(*skb)->data; 1969 1970 /* Mark this point, RX passive still works */ 1971 if (rx->key.passive && ehdr->tx_key == rx->key.passive) 1972 rx->timer2 = jiffies; 1973 1974 skb_reset_network_header(*skb); 1975 skb_pull(*skb, tipc_ehdr_size(ehdr)); 1976 pskb_trim(*skb, (*skb)->len - aead->authsize); 1977 1978 /* Validate TIPCv2 message */ 1979 if (unlikely(!tipc_msg_validate(skb))) { 1980 pr_err_ratelimited("Packet dropped after decryption!\n"); 1981 goto free_skb; 1982 } 1983 1984 /* Ok, everything's fine, try to synch own keys according to peers' */ 1985 tipc_crypto_key_synch(rx, *skb); 1986 1987 /* Mark skb decrypted */ 1988 skb_cb->decrypted = 1; 1989 1990 /* Clear clone cxt if any */ 1991 if (likely(!skb_cb->tx_clone_deferred)) 1992 goto exit; 1993 skb_cb->tx_clone_deferred = 0; 1994 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx)); 1995 goto exit; 1996 1997 free_skb: 1998 kfree_skb(*skb); 1999 *skb = NULL; 2000 2001 exit: 2002 tipc_aead_put(aead); 2003 if (rx) 2004 tipc_node_put(rx->node); 2005 } 2006 2007 static void tipc_crypto_do_cmd(struct net *net, int cmd) 2008 { 2009 struct tipc_net *tn = tipc_net(net); 2010 struct tipc_crypto *tx = tn->crypto_tx, *rx; 2011 struct list_head *p; 2012 unsigned int stat; 2013 int i, j, cpu; 2014 char buf[200]; 2015 2016 /* Currently only one command is supported */ 2017 switch (cmd) { 2018 case 0xfff1: 2019 goto print_stats; 2020 default: 2021 return; 2022 } 2023 2024 print_stats: 2025 /* Print a header */ 2026 pr_info("\n=============== TIPC Crypto Statistics ===============\n\n"); 2027 2028 /* Print key status */ 2029 pr_info("Key status:\n"); 2030 pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net), 2031 tipc_crypto_key_dump(tx, buf)); 2032 2033 rcu_read_lock(); 2034 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) { 2035 rx = tipc_node_crypto_rx_by_list(p); 2036 pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node), 2037 tipc_crypto_key_dump(rx, buf)); 2038 } 2039 rcu_read_unlock(); 2040 2041 /* Print crypto statistics */ 2042 for (i = 0, j = 0; i < MAX_STATS; i++) 2043 j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]); 2044 pr_info("Counter %s", buf); 2045 2046 memset(buf, '-', 115); 2047 buf[115] = '\0'; 2048 pr_info("%s\n", buf); 2049 2050 j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net)); 2051 for_each_possible_cpu(cpu) { 2052 for (i = 0; i < MAX_STATS; i++) { 2053 stat = per_cpu_ptr(tx->stats, cpu)->stat[i]; 2054 j += scnprintf(buf + j, 200 - j, "|%11d ", stat); 2055 } 2056 pr_info("%s", buf); 2057 j = scnprintf(buf, 200, "%12s", " "); 2058 } 2059 2060 rcu_read_lock(); 2061 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) { 2062 rx = tipc_node_crypto_rx_by_list(p); 2063 j = scnprintf(buf, 200, "RX(%7.7s) ", 2064 tipc_node_get_id_str(rx->node)); 2065 for_each_possible_cpu(cpu) { 2066 for (i = 0; i < MAX_STATS; i++) { 2067 stat = per_cpu_ptr(rx->stats, cpu)->stat[i]; 2068 j += scnprintf(buf + j, 200 - j, "|%11d ", 2069 stat); 2070 } 2071 pr_info("%s", buf); 2072 j = scnprintf(buf, 200, "%12s", " "); 2073 } 2074 } 2075 rcu_read_unlock(); 2076 2077 pr_info("\n======================== Done ========================\n"); 2078 } 2079 2080 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf) 2081 { 2082 struct tipc_key key = c->key; 2083 struct tipc_aead *aead; 2084 int k, i = 0; 2085 char *s; 2086 2087 for (k = KEY_MIN; k <= KEY_MAX; k++) { 2088 if (k == KEY_MASTER) { 2089 if (is_rx(c)) 2090 continue; 2091 if (time_before(jiffies, 2092 c->timer2 + TIPC_TX_GRACE_PERIOD)) 2093 s = "ACT"; 2094 else 2095 s = "PAS"; 2096 } else { 2097 if (k == key.passive) 2098 s = "PAS"; 2099 else if (k == key.active) 2100 s = "ACT"; 2101 else if (k == key.pending) 2102 s = "PEN"; 2103 else 2104 s = "-"; 2105 } 2106 i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s); 2107 2108 rcu_read_lock(); 2109 aead = rcu_dereference(c->aead[k]); 2110 if (aead) 2111 i += scnprintf(buf + i, 200 - i, 2112 "{\"0x...%s\", \"%s\"}/%d:%d", 2113 aead->hint, 2114 (aead->mode == CLUSTER_KEY) ? "c" : "p", 2115 atomic_read(&aead->users), 2116 refcount_read(&aead->refcnt)); 2117 rcu_read_unlock(); 2118 i += scnprintf(buf + i, 200 - i, "\n"); 2119 } 2120 2121 if (is_rx(c)) 2122 i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n", 2123 atomic_read(&c->peer_rx_active)); 2124 2125 return buf; 2126 } 2127 2128 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new, 2129 char *buf) 2130 { 2131 struct tipc_key *key = &old; 2132 int k, i = 0; 2133 char *s; 2134 2135 /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */ 2136 again: 2137 i += scnprintf(buf + i, 32 - i, "["); 2138 for (k = KEY_1; k <= KEY_3; k++) { 2139 if (k == key->passive) 2140 s = "pas"; 2141 else if (k == key->active) 2142 s = "act"; 2143 else if (k == key->pending) 2144 s = "pen"; 2145 else 2146 s = "-"; 2147 i += scnprintf(buf + i, 32 - i, 2148 (k != KEY_3) ? "%s " : "%s", s); 2149 } 2150 if (key != &new) { 2151 i += scnprintf(buf + i, 32 - i, "] -> "); 2152 key = &new; 2153 goto again; 2154 } 2155 i += scnprintf(buf + i, 32 - i, "]"); 2156 return buf; 2157 } 2158 2159 /** 2160 * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point 2161 * @net: the struct net 2162 * @skb: the receiving message buffer 2163 */ 2164 void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb) 2165 { 2166 struct tipc_crypto *rx; 2167 struct tipc_msg *hdr; 2168 2169 if (unlikely(skb_linearize(skb))) 2170 goto exit; 2171 2172 hdr = buf_msg(skb); 2173 rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr)); 2174 if (unlikely(!rx)) 2175 goto exit; 2176 2177 switch (msg_type(hdr)) { 2178 case KEY_DISTR_MSG: 2179 if (tipc_crypto_key_rcv(rx, hdr)) 2180 goto exit; 2181 break; 2182 default: 2183 break; 2184 } 2185 2186 tipc_node_put(rx->node); 2187 2188 exit: 2189 kfree_skb(skb); 2190 } 2191 2192 /** 2193 * tipc_crypto_key_distr - Distribute a TX key 2194 * @tx: the TX crypto 2195 * @key: the key's index 2196 * @dest: the destination tipc node, = NULL if distributing to all nodes 2197 * 2198 * Return: 0 in case of success, otherwise < 0 2199 */ 2200 int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key, 2201 struct tipc_node *dest) 2202 { 2203 struct tipc_aead *aead; 2204 u32 dnode = tipc_node_get_addr(dest); 2205 int rc = -ENOKEY; 2206 2207 if (!sysctl_tipc_key_exchange_enabled) 2208 return 0; 2209 2210 if (key) { 2211 rcu_read_lock(); 2212 aead = tipc_aead_get(tx->aead[key]); 2213 if (likely(aead)) { 2214 rc = tipc_crypto_key_xmit(tx->net, aead->key, 2215 aead->gen, aead->mode, 2216 dnode); 2217 tipc_aead_put(aead); 2218 } 2219 rcu_read_unlock(); 2220 } 2221 2222 return rc; 2223 } 2224 2225 /** 2226 * tipc_crypto_key_xmit - Send a session key 2227 * @net: the struct net 2228 * @skey: the session key to be sent 2229 * @gen: the key's generation 2230 * @mode: the key's mode 2231 * @dnode: the destination node address, = 0 if broadcasting to all nodes 2232 * 2233 * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG' 2234 * as its data section, then xmit-ed through the uc/bc link. 2235 * 2236 * Return: 0 in case of success, otherwise < 0 2237 */ 2238 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey, 2239 u16 gen, u8 mode, u32 dnode) 2240 { 2241 struct sk_buff_head pkts; 2242 struct tipc_msg *hdr; 2243 struct sk_buff *skb; 2244 u16 size, cong_link_cnt; 2245 u8 *data; 2246 int rc; 2247 2248 size = tipc_aead_key_size(skey); 2249 skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC); 2250 if (!skb) 2251 return -ENOMEM; 2252 2253 hdr = buf_msg(skb); 2254 tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG, 2255 INT_H_SIZE, dnode); 2256 msg_set_size(hdr, INT_H_SIZE + size); 2257 msg_set_key_gen(hdr, gen); 2258 msg_set_key_mode(hdr, mode); 2259 2260 data = msg_data(hdr); 2261 *((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen); 2262 memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME); 2263 memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key, 2264 skey->keylen); 2265 2266 __skb_queue_head_init(&pkts); 2267 __skb_queue_tail(&pkts, skb); 2268 if (dnode) 2269 rc = tipc_node_xmit(net, &pkts, dnode, 0); 2270 else 2271 rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt); 2272 2273 return rc; 2274 } 2275 2276 /** 2277 * tipc_crypto_key_rcv - Receive a session key 2278 * @rx: the RX crypto 2279 * @hdr: the TIPC v2 message incl. the receiving session key in its data 2280 * 2281 * This function retrieves the session key in the message from peer, then 2282 * schedules a RX work to attach the key to the corresponding RX crypto. 2283 * 2284 * Return: "true" if the key has been scheduled for attaching, otherwise 2285 * "false". 2286 */ 2287 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr) 2288 { 2289 struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx; 2290 struct tipc_aead_key *skey = NULL; 2291 u16 key_gen = msg_key_gen(hdr); 2292 u16 size = msg_data_sz(hdr); 2293 u8 *data = msg_data(hdr); 2294 2295 spin_lock(&rx->lock); 2296 if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) { 2297 pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name, 2298 rx->skey, key_gen, rx->key_gen); 2299 goto exit; 2300 } 2301 2302 /* Allocate memory for the key */ 2303 skey = kmalloc(size, GFP_ATOMIC); 2304 if (unlikely(!skey)) { 2305 pr_err("%s: unable to allocate memory for skey\n", rx->name); 2306 goto exit; 2307 } 2308 2309 /* Copy key from msg data */ 2310 skey->keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME))); 2311 memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME); 2312 memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32), 2313 skey->keylen); 2314 2315 /* Sanity check */ 2316 if (unlikely(size != tipc_aead_key_size(skey))) { 2317 kfree(skey); 2318 skey = NULL; 2319 goto exit; 2320 } 2321 2322 rx->key_gen = key_gen; 2323 rx->skey_mode = msg_key_mode(hdr); 2324 rx->skey = skey; 2325 rx->nokey = 0; 2326 mb(); /* for nokey flag */ 2327 2328 exit: 2329 spin_unlock(&rx->lock); 2330 2331 /* Schedule the key attaching on this crypto */ 2332 if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0))) 2333 return true; 2334 2335 return false; 2336 } 2337 2338 /** 2339 * tipc_crypto_work_rx - Scheduled RX works handler 2340 * @work: the struct RX work 2341 * 2342 * The function processes the previous scheduled works i.e. distributing TX key 2343 * or attaching a received session key on RX crypto. 2344 */ 2345 static void tipc_crypto_work_rx(struct work_struct *work) 2346 { 2347 struct delayed_work *dwork = to_delayed_work(work); 2348 struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work); 2349 struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx; 2350 unsigned long delay = msecs_to_jiffies(5000); 2351 bool resched = false; 2352 u8 key; 2353 int rc; 2354 2355 /* Case 1: Distribute TX key to peer if scheduled */ 2356 if (atomic_cmpxchg(&rx->key_distr, 2357 KEY_DISTR_SCHED, 2358 KEY_DISTR_COMPL) == KEY_DISTR_SCHED) { 2359 /* Always pick the newest one for distributing */ 2360 key = tx->key.pending ?: tx->key.active; 2361 rc = tipc_crypto_key_distr(tx, key, rx->node); 2362 if (unlikely(rc)) 2363 pr_warn("%s: unable to distr key[%d] to %s, err %d\n", 2364 tx->name, key, tipc_node_get_id_str(rx->node), 2365 rc); 2366 2367 /* Sched for key_distr releasing */ 2368 resched = true; 2369 } else { 2370 atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0); 2371 } 2372 2373 /* Case 2: Attach a pending received session key from peer if any */ 2374 if (rx->skey) { 2375 rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false); 2376 if (unlikely(rc < 0)) 2377 pr_warn("%s: unable to attach received skey, err %d\n", 2378 rx->name, rc); 2379 switch (rc) { 2380 case -EBUSY: 2381 case -ENOMEM: 2382 /* Resched the key attaching */ 2383 resched = true; 2384 break; 2385 default: 2386 synchronize_rcu(); 2387 kfree(rx->skey); 2388 rx->skey = NULL; 2389 break; 2390 } 2391 } 2392 2393 if (resched && queue_delayed_work(tx->wq, &rx->work, delay)) 2394 return; 2395 2396 tipc_node_put(rx->node); 2397 } 2398 2399 /** 2400 * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval 2401 * @tx: TX crypto 2402 * @changed: if the rekeying needs to be rescheduled with new interval 2403 * @new_intv: new rekeying interval (when "changed" = true) 2404 */ 2405 void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed, 2406 u32 new_intv) 2407 { 2408 unsigned long delay; 2409 bool now = false; 2410 2411 if (changed) { 2412 if (new_intv == TIPC_REKEYING_NOW) 2413 now = true; 2414 else 2415 tx->rekeying_intv = new_intv; 2416 cancel_delayed_work_sync(&tx->work); 2417 } 2418 2419 if (tx->rekeying_intv || now) { 2420 delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000; 2421 queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay)); 2422 } 2423 } 2424 2425 /** 2426 * tipc_crypto_work_tx - Scheduled TX works handler 2427 * @work: the struct TX work 2428 * 2429 * The function processes the previous scheduled work, i.e. key rekeying, by 2430 * generating a new session key based on current one, then attaching it to the 2431 * TX crypto and finally distributing it to peers. It also re-schedules the 2432 * rekeying if needed. 2433 */ 2434 static void tipc_crypto_work_tx(struct work_struct *work) 2435 { 2436 struct delayed_work *dwork = to_delayed_work(work); 2437 struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work); 2438 struct tipc_aead_key *skey = NULL; 2439 struct tipc_key key = tx->key; 2440 struct tipc_aead *aead; 2441 int rc = -ENOMEM; 2442 2443 if (unlikely(key.pending)) 2444 goto resched; 2445 2446 /* Take current key as a template */ 2447 rcu_read_lock(); 2448 aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]); 2449 if (unlikely(!aead)) { 2450 rcu_read_unlock(); 2451 /* At least one key should exist for securing */ 2452 return; 2453 } 2454 2455 /* Lets duplicate it first */ 2456 skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC); 2457 rcu_read_unlock(); 2458 2459 /* Now, generate new key, initiate & distribute it */ 2460 if (likely(skey)) { 2461 rc = tipc_aead_key_generate(skey) ?: 2462 tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false); 2463 if (likely(rc > 0)) 2464 rc = tipc_crypto_key_distr(tx, rc, NULL); 2465 kfree_sensitive(skey); 2466 } 2467 2468 if (unlikely(rc)) 2469 pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc); 2470 2471 resched: 2472 /* Re-schedule rekeying if any */ 2473 tipc_crypto_rekeying_sched(tx, false, 0); 2474 } 2475