1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/net/sunrpc/xprtsock.c 4 * 5 * Client-side transport implementation for sockets. 6 * 7 * TCP callback races fixes (C) 1998 Red Hat 8 * TCP send fixes (C) 1998 Red Hat 9 * TCP NFS related read + write fixes 10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 11 * 12 * Rewrite of larges part of the code in order to stabilize TCP stuff. 13 * Fix behaviour when socket buffer is full. 14 * (C) 1999 Trond Myklebust <trond.myklebust@fys.uio.no> 15 * 16 * IP socket transport implementation, (C) 2005 Chuck Lever <cel@netapp.com> 17 * 18 * IPv6 support contributed by Gilles Quillard, Bull Open Source, 2005. 19 * <gilles.quillard@bull.net> 20 */ 21 22 #include <linux/types.h> 23 #include <linux/string.h> 24 #include <linux/slab.h> 25 #include <linux/module.h> 26 #include <linux/capability.h> 27 #include <linux/pagemap.h> 28 #include <linux/errno.h> 29 #include <linux/socket.h> 30 #include <linux/in.h> 31 #include <linux/net.h> 32 #include <linux/mm.h> 33 #include <linux/un.h> 34 #include <linux/udp.h> 35 #include <linux/tcp.h> 36 #include <linux/sunrpc/clnt.h> 37 #include <linux/sunrpc/addr.h> 38 #include <linux/sunrpc/sched.h> 39 #include <linux/sunrpc/svcsock.h> 40 #include <linux/sunrpc/xprtsock.h> 41 #include <linux/file.h> 42 #ifdef CONFIG_SUNRPC_BACKCHANNEL 43 #include <linux/sunrpc/bc_xprt.h> 44 #endif 45 46 #include <net/sock.h> 47 #include <net/checksum.h> 48 #include <net/udp.h> 49 #include <net/tcp.h> 50 51 #include <trace/events/sunrpc.h> 52 53 #include "sunrpc.h" 54 55 #define RPC_TCP_READ_CHUNK_SZ (3*512*1024) 56 57 static void xs_close(struct rpc_xprt *xprt); 58 static void xs_tcp_set_socket_timeouts(struct rpc_xprt *xprt, 59 struct socket *sock); 60 61 /* 62 * xprtsock tunables 63 */ 64 static unsigned int xprt_udp_slot_table_entries = RPC_DEF_SLOT_TABLE; 65 static unsigned int xprt_tcp_slot_table_entries = RPC_MIN_SLOT_TABLE; 66 static unsigned int xprt_max_tcp_slot_table_entries = RPC_MAX_SLOT_TABLE; 67 68 static unsigned int xprt_min_resvport = RPC_DEF_MIN_RESVPORT; 69 static unsigned int xprt_max_resvport = RPC_DEF_MAX_RESVPORT; 70 71 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 72 73 #define XS_TCP_LINGER_TO (15U * HZ) 74 static unsigned int xs_tcp_fin_timeout __read_mostly = XS_TCP_LINGER_TO; 75 76 /* 77 * We can register our own files under /proc/sys/sunrpc by 78 * calling register_sysctl_table() again. The files in that 79 * directory become the union of all files registered there. 80 * 81 * We simply need to make sure that we don't collide with 82 * someone else's file names! 83 */ 84 85 static unsigned int min_slot_table_size = RPC_MIN_SLOT_TABLE; 86 static unsigned int max_slot_table_size = RPC_MAX_SLOT_TABLE; 87 static unsigned int max_tcp_slot_table_limit = RPC_MAX_SLOT_TABLE_LIMIT; 88 static unsigned int xprt_min_resvport_limit = RPC_MIN_RESVPORT; 89 static unsigned int xprt_max_resvport_limit = RPC_MAX_RESVPORT; 90 91 static struct ctl_table_header *sunrpc_table_header; 92 93 /* 94 * FIXME: changing the UDP slot table size should also resize the UDP 95 * socket buffers for existing UDP transports 96 */ 97 static struct ctl_table xs_tunables_table[] = { 98 { 99 .procname = "udp_slot_table_entries", 100 .data = &xprt_udp_slot_table_entries, 101 .maxlen = sizeof(unsigned int), 102 .mode = 0644, 103 .proc_handler = proc_dointvec_minmax, 104 .extra1 = &min_slot_table_size, 105 .extra2 = &max_slot_table_size 106 }, 107 { 108 .procname = "tcp_slot_table_entries", 109 .data = &xprt_tcp_slot_table_entries, 110 .maxlen = sizeof(unsigned int), 111 .mode = 0644, 112 .proc_handler = proc_dointvec_minmax, 113 .extra1 = &min_slot_table_size, 114 .extra2 = &max_slot_table_size 115 }, 116 { 117 .procname = "tcp_max_slot_table_entries", 118 .data = &xprt_max_tcp_slot_table_entries, 119 .maxlen = sizeof(unsigned int), 120 .mode = 0644, 121 .proc_handler = proc_dointvec_minmax, 122 .extra1 = &min_slot_table_size, 123 .extra2 = &max_tcp_slot_table_limit 124 }, 125 { 126 .procname = "min_resvport", 127 .data = &xprt_min_resvport, 128 .maxlen = sizeof(unsigned int), 129 .mode = 0644, 130 .proc_handler = proc_dointvec_minmax, 131 .extra1 = &xprt_min_resvport_limit, 132 .extra2 = &xprt_max_resvport 133 }, 134 { 135 .procname = "max_resvport", 136 .data = &xprt_max_resvport, 137 .maxlen = sizeof(unsigned int), 138 .mode = 0644, 139 .proc_handler = proc_dointvec_minmax, 140 .extra1 = &xprt_min_resvport, 141 .extra2 = &xprt_max_resvport_limit 142 }, 143 { 144 .procname = "tcp_fin_timeout", 145 .data = &xs_tcp_fin_timeout, 146 .maxlen = sizeof(xs_tcp_fin_timeout), 147 .mode = 0644, 148 .proc_handler = proc_dointvec_jiffies, 149 }, 150 { }, 151 }; 152 153 static struct ctl_table sunrpc_table[] = { 154 { 155 .procname = "sunrpc", 156 .mode = 0555, 157 .child = xs_tunables_table 158 }, 159 { }, 160 }; 161 162 #endif 163 164 /* 165 * Wait duration for a reply from the RPC portmapper. 166 */ 167 #define XS_BIND_TO (60U * HZ) 168 169 /* 170 * Delay if a UDP socket connect error occurs. This is most likely some 171 * kind of resource problem on the local host. 172 */ 173 #define XS_UDP_REEST_TO (2U * HZ) 174 175 /* 176 * The reestablish timeout allows clients to delay for a bit before attempting 177 * to reconnect to a server that just dropped our connection. 178 * 179 * We implement an exponential backoff when trying to reestablish a TCP 180 * transport connection with the server. Some servers like to drop a TCP 181 * connection when they are overworked, so we start with a short timeout and 182 * increase over time if the server is down or not responding. 183 */ 184 #define XS_TCP_INIT_REEST_TO (3U * HZ) 185 186 /* 187 * TCP idle timeout; client drops the transport socket if it is idle 188 * for this long. Note that we also timeout UDP sockets to prevent 189 * holding port numbers when there is no RPC traffic. 190 */ 191 #define XS_IDLE_DISC_TO (5U * 60 * HZ) 192 193 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 194 # undef RPC_DEBUG_DATA 195 # define RPCDBG_FACILITY RPCDBG_TRANS 196 #endif 197 198 #ifdef RPC_DEBUG_DATA 199 static void xs_pktdump(char *msg, u32 *packet, unsigned int count) 200 { 201 u8 *buf = (u8 *) packet; 202 int j; 203 204 dprintk("RPC: %s\n", msg); 205 for (j = 0; j < count && j < 128; j += 4) { 206 if (!(j & 31)) { 207 if (j) 208 dprintk("\n"); 209 dprintk("0x%04x ", j); 210 } 211 dprintk("%02x%02x%02x%02x ", 212 buf[j], buf[j+1], buf[j+2], buf[j+3]); 213 } 214 dprintk("\n"); 215 } 216 #else 217 static inline void xs_pktdump(char *msg, u32 *packet, unsigned int count) 218 { 219 /* NOP */ 220 } 221 #endif 222 223 static inline struct rpc_xprt *xprt_from_sock(struct sock *sk) 224 { 225 return (struct rpc_xprt *) sk->sk_user_data; 226 } 227 228 static inline struct sockaddr *xs_addr(struct rpc_xprt *xprt) 229 { 230 return (struct sockaddr *) &xprt->addr; 231 } 232 233 static inline struct sockaddr_un *xs_addr_un(struct rpc_xprt *xprt) 234 { 235 return (struct sockaddr_un *) &xprt->addr; 236 } 237 238 static inline struct sockaddr_in *xs_addr_in(struct rpc_xprt *xprt) 239 { 240 return (struct sockaddr_in *) &xprt->addr; 241 } 242 243 static inline struct sockaddr_in6 *xs_addr_in6(struct rpc_xprt *xprt) 244 { 245 return (struct sockaddr_in6 *) &xprt->addr; 246 } 247 248 static void xs_format_common_peer_addresses(struct rpc_xprt *xprt) 249 { 250 struct sockaddr *sap = xs_addr(xprt); 251 struct sockaddr_in6 *sin6; 252 struct sockaddr_in *sin; 253 struct sockaddr_un *sun; 254 char buf[128]; 255 256 switch (sap->sa_family) { 257 case AF_LOCAL: 258 sun = xs_addr_un(xprt); 259 strlcpy(buf, sun->sun_path, sizeof(buf)); 260 xprt->address_strings[RPC_DISPLAY_ADDR] = 261 kstrdup(buf, GFP_KERNEL); 262 break; 263 case AF_INET: 264 (void)rpc_ntop(sap, buf, sizeof(buf)); 265 xprt->address_strings[RPC_DISPLAY_ADDR] = 266 kstrdup(buf, GFP_KERNEL); 267 sin = xs_addr_in(xprt); 268 snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr)); 269 break; 270 case AF_INET6: 271 (void)rpc_ntop(sap, buf, sizeof(buf)); 272 xprt->address_strings[RPC_DISPLAY_ADDR] = 273 kstrdup(buf, GFP_KERNEL); 274 sin6 = xs_addr_in6(xprt); 275 snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr); 276 break; 277 default: 278 BUG(); 279 } 280 281 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL); 282 } 283 284 static void xs_format_common_peer_ports(struct rpc_xprt *xprt) 285 { 286 struct sockaddr *sap = xs_addr(xprt); 287 char buf[128]; 288 289 snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap)); 290 xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL); 291 292 snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap)); 293 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL); 294 } 295 296 static void xs_format_peer_addresses(struct rpc_xprt *xprt, 297 const char *protocol, 298 const char *netid) 299 { 300 xprt->address_strings[RPC_DISPLAY_PROTO] = protocol; 301 xprt->address_strings[RPC_DISPLAY_NETID] = netid; 302 xs_format_common_peer_addresses(xprt); 303 xs_format_common_peer_ports(xprt); 304 } 305 306 static void xs_update_peer_port(struct rpc_xprt *xprt) 307 { 308 kfree(xprt->address_strings[RPC_DISPLAY_HEX_PORT]); 309 kfree(xprt->address_strings[RPC_DISPLAY_PORT]); 310 311 xs_format_common_peer_ports(xprt); 312 } 313 314 static void xs_free_peer_addresses(struct rpc_xprt *xprt) 315 { 316 unsigned int i; 317 318 for (i = 0; i < RPC_DISPLAY_MAX; i++) 319 switch (i) { 320 case RPC_DISPLAY_PROTO: 321 case RPC_DISPLAY_NETID: 322 continue; 323 default: 324 kfree(xprt->address_strings[i]); 325 } 326 } 327 328 #define XS_SENDMSG_FLAGS (MSG_DONTWAIT | MSG_NOSIGNAL) 329 330 static int xs_send_kvec(struct socket *sock, struct sockaddr *addr, int addrlen, struct kvec *vec, unsigned int base, int more) 331 { 332 struct msghdr msg = { 333 .msg_name = addr, 334 .msg_namelen = addrlen, 335 .msg_flags = XS_SENDMSG_FLAGS | (more ? MSG_MORE : 0), 336 }; 337 struct kvec iov = { 338 .iov_base = vec->iov_base + base, 339 .iov_len = vec->iov_len - base, 340 }; 341 342 if (iov.iov_len != 0) 343 return kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len); 344 return kernel_sendmsg(sock, &msg, NULL, 0, 0); 345 } 346 347 static int xs_send_pagedata(struct socket *sock, struct xdr_buf *xdr, unsigned int base, int more, bool zerocopy, int *sent_p) 348 { 349 ssize_t (*do_sendpage)(struct socket *sock, struct page *page, 350 int offset, size_t size, int flags); 351 struct page **ppage; 352 unsigned int remainder; 353 int err; 354 355 remainder = xdr->page_len - base; 356 base += xdr->page_base; 357 ppage = xdr->pages + (base >> PAGE_SHIFT); 358 base &= ~PAGE_MASK; 359 do_sendpage = sock->ops->sendpage; 360 if (!zerocopy) 361 do_sendpage = sock_no_sendpage; 362 for(;;) { 363 unsigned int len = min_t(unsigned int, PAGE_SIZE - base, remainder); 364 int flags = XS_SENDMSG_FLAGS; 365 366 remainder -= len; 367 if (more) 368 flags |= MSG_MORE; 369 if (remainder != 0) 370 flags |= MSG_SENDPAGE_NOTLAST | MSG_MORE; 371 err = do_sendpage(sock, *ppage, base, len, flags); 372 if (remainder == 0 || err != len) 373 break; 374 *sent_p += err; 375 ppage++; 376 base = 0; 377 } 378 if (err > 0) { 379 *sent_p += err; 380 err = 0; 381 } 382 return err; 383 } 384 385 /** 386 * xs_sendpages - write pages directly to a socket 387 * @sock: socket to send on 388 * @addr: UDP only -- address of destination 389 * @addrlen: UDP only -- length of destination address 390 * @xdr: buffer containing this request 391 * @base: starting position in the buffer 392 * @zerocopy: true if it is safe to use sendpage() 393 * @sent_p: return the total number of bytes successfully queued for sending 394 * 395 */ 396 static int xs_sendpages(struct socket *sock, struct sockaddr *addr, int addrlen, struct xdr_buf *xdr, unsigned int base, bool zerocopy, int *sent_p) 397 { 398 unsigned int remainder = xdr->len - base; 399 int err = 0; 400 int sent = 0; 401 402 if (unlikely(!sock)) 403 return -ENOTSOCK; 404 405 if (base != 0) { 406 addr = NULL; 407 addrlen = 0; 408 } 409 410 if (base < xdr->head[0].iov_len || addr != NULL) { 411 unsigned int len = xdr->head[0].iov_len - base; 412 remainder -= len; 413 err = xs_send_kvec(sock, addr, addrlen, &xdr->head[0], base, remainder != 0); 414 if (remainder == 0 || err != len) 415 goto out; 416 *sent_p += err; 417 base = 0; 418 } else 419 base -= xdr->head[0].iov_len; 420 421 if (base < xdr->page_len) { 422 unsigned int len = xdr->page_len - base; 423 remainder -= len; 424 err = xs_send_pagedata(sock, xdr, base, remainder != 0, zerocopy, &sent); 425 *sent_p += sent; 426 if (remainder == 0 || sent != len) 427 goto out; 428 base = 0; 429 } else 430 base -= xdr->page_len; 431 432 if (base >= xdr->tail[0].iov_len) 433 return 0; 434 err = xs_send_kvec(sock, NULL, 0, &xdr->tail[0], base, 0); 435 out: 436 if (err > 0) { 437 *sent_p += err; 438 err = 0; 439 } 440 return err; 441 } 442 443 static void xs_nospace_callback(struct rpc_task *task) 444 { 445 struct sock_xprt *transport = container_of(task->tk_rqstp->rq_xprt, struct sock_xprt, xprt); 446 447 transport->inet->sk_write_pending--; 448 } 449 450 /** 451 * xs_nospace - place task on wait queue if transmit was incomplete 452 * @task: task to put to sleep 453 * 454 */ 455 static int xs_nospace(struct rpc_task *task) 456 { 457 struct rpc_rqst *req = task->tk_rqstp; 458 struct rpc_xprt *xprt = req->rq_xprt; 459 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 460 struct sock *sk = transport->inet; 461 int ret = -EAGAIN; 462 463 dprintk("RPC: %5u xmit incomplete (%u left of %u)\n", 464 task->tk_pid, req->rq_slen - req->rq_bytes_sent, 465 req->rq_slen); 466 467 /* Protect against races with write_space */ 468 spin_lock_bh(&xprt->transport_lock); 469 470 /* Don't race with disconnect */ 471 if (xprt_connected(xprt)) { 472 /* wait for more buffer space */ 473 sk->sk_write_pending++; 474 xprt_wait_for_buffer_space(task, xs_nospace_callback); 475 } else 476 ret = -ENOTCONN; 477 478 spin_unlock_bh(&xprt->transport_lock); 479 480 /* Race breaker in case memory is freed before above code is called */ 481 if (ret == -EAGAIN) { 482 struct socket_wq *wq; 483 484 rcu_read_lock(); 485 wq = rcu_dereference(sk->sk_wq); 486 set_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags); 487 rcu_read_unlock(); 488 489 sk->sk_write_space(sk); 490 } 491 return ret; 492 } 493 494 /* 495 * Construct a stream transport record marker in @buf. 496 */ 497 static inline void xs_encode_stream_record_marker(struct xdr_buf *buf) 498 { 499 u32 reclen = buf->len - sizeof(rpc_fraghdr); 500 rpc_fraghdr *base = buf->head[0].iov_base; 501 *base = cpu_to_be32(RPC_LAST_STREAM_FRAGMENT | reclen); 502 } 503 504 /** 505 * xs_local_send_request - write an RPC request to an AF_LOCAL socket 506 * @task: RPC task that manages the state of an RPC request 507 * 508 * Return values: 509 * 0: The request has been sent 510 * EAGAIN: The socket was blocked, please call again later to 511 * complete the request 512 * ENOTCONN: Caller needs to invoke connect logic then call again 513 * other: Some other error occured, the request was not sent 514 */ 515 static int xs_local_send_request(struct rpc_task *task) 516 { 517 struct rpc_rqst *req = task->tk_rqstp; 518 struct rpc_xprt *xprt = req->rq_xprt; 519 struct sock_xprt *transport = 520 container_of(xprt, struct sock_xprt, xprt); 521 struct xdr_buf *xdr = &req->rq_snd_buf; 522 int status; 523 int sent = 0; 524 525 xs_encode_stream_record_marker(&req->rq_snd_buf); 526 527 xs_pktdump("packet data:", 528 req->rq_svec->iov_base, req->rq_svec->iov_len); 529 530 status = xs_sendpages(transport->sock, NULL, 0, xdr, req->rq_bytes_sent, 531 true, &sent); 532 dprintk("RPC: %s(%u) = %d\n", 533 __func__, xdr->len - req->rq_bytes_sent, status); 534 535 if (status == -EAGAIN && sock_writeable(transport->inet)) 536 status = -ENOBUFS; 537 538 if (likely(sent > 0) || status == 0) { 539 req->rq_bytes_sent += sent; 540 req->rq_xmit_bytes_sent += sent; 541 if (likely(req->rq_bytes_sent >= req->rq_slen)) { 542 req->rq_bytes_sent = 0; 543 return 0; 544 } 545 status = -EAGAIN; 546 } 547 548 switch (status) { 549 case -ENOBUFS: 550 break; 551 case -EAGAIN: 552 status = xs_nospace(task); 553 break; 554 default: 555 dprintk("RPC: sendmsg returned unrecognized error %d\n", 556 -status); 557 /* fall through */ 558 case -EPIPE: 559 xs_close(xprt); 560 status = -ENOTCONN; 561 } 562 563 return status; 564 } 565 566 /** 567 * xs_udp_send_request - write an RPC request to a UDP socket 568 * @task: address of RPC task that manages the state of an RPC request 569 * 570 * Return values: 571 * 0: The request has been sent 572 * EAGAIN: The socket was blocked, please call again later to 573 * complete the request 574 * ENOTCONN: Caller needs to invoke connect logic then call again 575 * other: Some other error occurred, the request was not sent 576 */ 577 static int xs_udp_send_request(struct rpc_task *task) 578 { 579 struct rpc_rqst *req = task->tk_rqstp; 580 struct rpc_xprt *xprt = req->rq_xprt; 581 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 582 struct xdr_buf *xdr = &req->rq_snd_buf; 583 int sent = 0; 584 int status; 585 586 xs_pktdump("packet data:", 587 req->rq_svec->iov_base, 588 req->rq_svec->iov_len); 589 590 if (!xprt_bound(xprt)) 591 return -ENOTCONN; 592 status = xs_sendpages(transport->sock, xs_addr(xprt), xprt->addrlen, 593 xdr, req->rq_bytes_sent, true, &sent); 594 595 dprintk("RPC: xs_udp_send_request(%u) = %d\n", 596 xdr->len - req->rq_bytes_sent, status); 597 598 /* firewall is blocking us, don't return -EAGAIN or we end up looping */ 599 if (status == -EPERM) 600 goto process_status; 601 602 if (status == -EAGAIN && sock_writeable(transport->inet)) 603 status = -ENOBUFS; 604 605 if (sent > 0 || status == 0) { 606 req->rq_xmit_bytes_sent += sent; 607 if (sent >= req->rq_slen) 608 return 0; 609 /* Still some bytes left; set up for a retry later. */ 610 status = -EAGAIN; 611 } 612 613 process_status: 614 switch (status) { 615 case -ENOTSOCK: 616 status = -ENOTCONN; 617 /* Should we call xs_close() here? */ 618 break; 619 case -EAGAIN: 620 status = xs_nospace(task); 621 break; 622 case -ENETUNREACH: 623 case -ENOBUFS: 624 case -EPIPE: 625 case -ECONNREFUSED: 626 case -EPERM: 627 /* When the server has died, an ICMP port unreachable message 628 * prompts ECONNREFUSED. */ 629 break; 630 default: 631 dprintk("RPC: sendmsg returned unrecognized error %d\n", 632 -status); 633 } 634 635 return status; 636 } 637 638 /** 639 * xs_tcp_send_request - write an RPC request to a TCP socket 640 * @task: address of RPC task that manages the state of an RPC request 641 * 642 * Return values: 643 * 0: The request has been sent 644 * EAGAIN: The socket was blocked, please call again later to 645 * complete the request 646 * ENOTCONN: Caller needs to invoke connect logic then call again 647 * other: Some other error occurred, the request was not sent 648 * 649 * XXX: In the case of soft timeouts, should we eventually give up 650 * if sendmsg is not able to make progress? 651 */ 652 static int xs_tcp_send_request(struct rpc_task *task) 653 { 654 struct rpc_rqst *req = task->tk_rqstp; 655 struct rpc_xprt *xprt = req->rq_xprt; 656 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 657 struct xdr_buf *xdr = &req->rq_snd_buf; 658 bool zerocopy = true; 659 bool vm_wait = false; 660 int status; 661 int sent; 662 663 xs_encode_stream_record_marker(&req->rq_snd_buf); 664 665 xs_pktdump("packet data:", 666 req->rq_svec->iov_base, 667 req->rq_svec->iov_len); 668 /* Don't use zero copy if this is a resend. If the RPC call 669 * completes while the socket holds a reference to the pages, 670 * then we may end up resending corrupted data. 671 */ 672 if (task->tk_flags & RPC_TASK_SENT) 673 zerocopy = false; 674 675 if (test_bit(XPRT_SOCK_UPD_TIMEOUT, &transport->sock_state)) 676 xs_tcp_set_socket_timeouts(xprt, transport->sock); 677 678 /* Continue transmitting the packet/record. We must be careful 679 * to cope with writespace callbacks arriving _after_ we have 680 * called sendmsg(). */ 681 while (1) { 682 sent = 0; 683 status = xs_sendpages(transport->sock, NULL, 0, xdr, 684 req->rq_bytes_sent, zerocopy, &sent); 685 686 dprintk("RPC: xs_tcp_send_request(%u) = %d\n", 687 xdr->len - req->rq_bytes_sent, status); 688 689 /* If we've sent the entire packet, immediately 690 * reset the count of bytes sent. */ 691 req->rq_bytes_sent += sent; 692 req->rq_xmit_bytes_sent += sent; 693 if (likely(req->rq_bytes_sent >= req->rq_slen)) { 694 req->rq_bytes_sent = 0; 695 return 0; 696 } 697 698 WARN_ON_ONCE(sent == 0 && status == 0); 699 700 if (status == -EAGAIN ) { 701 /* 702 * Return EAGAIN if we're sure we're hitting the 703 * socket send buffer limits. 704 */ 705 if (test_bit(SOCK_NOSPACE, &transport->sock->flags)) 706 break; 707 /* 708 * Did we hit a memory allocation failure? 709 */ 710 if (sent == 0) { 711 status = -ENOBUFS; 712 if (vm_wait) 713 break; 714 /* Retry, knowing now that we're below the 715 * socket send buffer limit 716 */ 717 vm_wait = true; 718 } 719 continue; 720 } 721 if (status < 0) 722 break; 723 vm_wait = false; 724 } 725 726 switch (status) { 727 case -ENOTSOCK: 728 status = -ENOTCONN; 729 /* Should we call xs_close() here? */ 730 break; 731 case -EAGAIN: 732 status = xs_nospace(task); 733 break; 734 case -ECONNRESET: 735 case -ECONNREFUSED: 736 case -ENOTCONN: 737 case -EADDRINUSE: 738 case -ENOBUFS: 739 case -EPIPE: 740 break; 741 default: 742 dprintk("RPC: sendmsg returned unrecognized error %d\n", 743 -status); 744 } 745 746 return status; 747 } 748 749 /** 750 * xs_tcp_release_xprt - clean up after a tcp transmission 751 * @xprt: transport 752 * @task: rpc task 753 * 754 * This cleans up if an error causes us to abort the transmission of a request. 755 * In this case, the socket may need to be reset in order to avoid confusing 756 * the server. 757 */ 758 static void xs_tcp_release_xprt(struct rpc_xprt *xprt, struct rpc_task *task) 759 { 760 struct rpc_rqst *req; 761 762 if (task != xprt->snd_task) 763 return; 764 if (task == NULL) 765 goto out_release; 766 req = task->tk_rqstp; 767 if (req == NULL) 768 goto out_release; 769 if (req->rq_bytes_sent == 0) 770 goto out_release; 771 if (req->rq_bytes_sent == req->rq_snd_buf.len) 772 goto out_release; 773 set_bit(XPRT_CLOSE_WAIT, &xprt->state); 774 out_release: 775 xprt_release_xprt(xprt, task); 776 } 777 778 static void xs_save_old_callbacks(struct sock_xprt *transport, struct sock *sk) 779 { 780 transport->old_data_ready = sk->sk_data_ready; 781 transport->old_state_change = sk->sk_state_change; 782 transport->old_write_space = sk->sk_write_space; 783 transport->old_error_report = sk->sk_error_report; 784 } 785 786 static void xs_restore_old_callbacks(struct sock_xprt *transport, struct sock *sk) 787 { 788 sk->sk_data_ready = transport->old_data_ready; 789 sk->sk_state_change = transport->old_state_change; 790 sk->sk_write_space = transport->old_write_space; 791 sk->sk_error_report = transport->old_error_report; 792 } 793 794 static void xs_sock_reset_state_flags(struct rpc_xprt *xprt) 795 { 796 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 797 798 clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state); 799 } 800 801 static void xs_sock_reset_connection_flags(struct rpc_xprt *xprt) 802 { 803 smp_mb__before_atomic(); 804 clear_bit(XPRT_CLOSE_WAIT, &xprt->state); 805 clear_bit(XPRT_CLOSING, &xprt->state); 806 xs_sock_reset_state_flags(xprt); 807 smp_mb__after_atomic(); 808 } 809 810 /** 811 * xs_error_report - callback to handle TCP socket state errors 812 * @sk: socket 813 * 814 * Note: we don't call sock_error() since there may be a rpc_task 815 * using the socket, and so we don't want to clear sk->sk_err. 816 */ 817 static void xs_error_report(struct sock *sk) 818 { 819 struct rpc_xprt *xprt; 820 int err; 821 822 read_lock_bh(&sk->sk_callback_lock); 823 if (!(xprt = xprt_from_sock(sk))) 824 goto out; 825 826 err = -sk->sk_err; 827 if (err == 0) 828 goto out; 829 dprintk("RPC: xs_error_report client %p, error=%d...\n", 830 xprt, -err); 831 trace_rpc_socket_error(xprt, sk->sk_socket, err); 832 xprt_wake_pending_tasks(xprt, err); 833 out: 834 read_unlock_bh(&sk->sk_callback_lock); 835 } 836 837 static void xs_reset_transport(struct sock_xprt *transport) 838 { 839 struct socket *sock = transport->sock; 840 struct sock *sk = transport->inet; 841 struct rpc_xprt *xprt = &transport->xprt; 842 843 if (sk == NULL) 844 return; 845 846 if (atomic_read(&transport->xprt.swapper)) 847 sk_clear_memalloc(sk); 848 849 kernel_sock_shutdown(sock, SHUT_RDWR); 850 851 mutex_lock(&transport->recv_mutex); 852 write_lock_bh(&sk->sk_callback_lock); 853 transport->inet = NULL; 854 transport->sock = NULL; 855 856 sk->sk_user_data = NULL; 857 858 xs_restore_old_callbacks(transport, sk); 859 xprt_clear_connected(xprt); 860 write_unlock_bh(&sk->sk_callback_lock); 861 xs_sock_reset_connection_flags(xprt); 862 mutex_unlock(&transport->recv_mutex); 863 864 trace_rpc_socket_close(xprt, sock); 865 sock_release(sock); 866 } 867 868 /** 869 * xs_close - close a socket 870 * @xprt: transport 871 * 872 * This is used when all requests are complete; ie, no DRC state remains 873 * on the server we want to save. 874 * 875 * The caller _must_ be holding XPRT_LOCKED in order to avoid issues with 876 * xs_reset_transport() zeroing the socket from underneath a writer. 877 */ 878 static void xs_close(struct rpc_xprt *xprt) 879 { 880 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 881 882 dprintk("RPC: xs_close xprt %p\n", xprt); 883 884 xs_reset_transport(transport); 885 xprt->reestablish_timeout = 0; 886 887 xprt_disconnect_done(xprt); 888 } 889 890 static void xs_inject_disconnect(struct rpc_xprt *xprt) 891 { 892 dprintk("RPC: injecting transport disconnect on xprt=%p\n", 893 xprt); 894 xprt_disconnect_done(xprt); 895 } 896 897 static void xs_xprt_free(struct rpc_xprt *xprt) 898 { 899 xs_free_peer_addresses(xprt); 900 xprt_free(xprt); 901 } 902 903 /** 904 * xs_destroy - prepare to shutdown a transport 905 * @xprt: doomed transport 906 * 907 */ 908 static void xs_destroy(struct rpc_xprt *xprt) 909 { 910 struct sock_xprt *transport = container_of(xprt, 911 struct sock_xprt, xprt); 912 dprintk("RPC: xs_destroy xprt %p\n", xprt); 913 914 cancel_delayed_work_sync(&transport->connect_worker); 915 xs_close(xprt); 916 cancel_work_sync(&transport->recv_worker); 917 xs_xprt_free(xprt); 918 module_put(THIS_MODULE); 919 } 920 921 static int xs_local_copy_to_xdr(struct xdr_buf *xdr, struct sk_buff *skb) 922 { 923 struct xdr_skb_reader desc = { 924 .skb = skb, 925 .offset = sizeof(rpc_fraghdr), 926 .count = skb->len - sizeof(rpc_fraghdr), 927 }; 928 929 if (xdr_partial_copy_from_skb(xdr, 0, &desc, xdr_skb_read_bits) < 0) 930 return -1; 931 if (desc.count) 932 return -1; 933 return 0; 934 } 935 936 /** 937 * xs_local_data_read_skb 938 * @xprt: transport 939 * @sk: socket 940 * @skb: skbuff 941 * 942 * Currently this assumes we can read the whole reply in a single gulp. 943 */ 944 static void xs_local_data_read_skb(struct rpc_xprt *xprt, 945 struct sock *sk, 946 struct sk_buff *skb) 947 { 948 struct rpc_task *task; 949 struct rpc_rqst *rovr; 950 int repsize, copied; 951 u32 _xid; 952 __be32 *xp; 953 954 repsize = skb->len - sizeof(rpc_fraghdr); 955 if (repsize < 4) { 956 dprintk("RPC: impossible RPC reply size %d\n", repsize); 957 return; 958 } 959 960 /* Copy the XID from the skb... */ 961 xp = skb_header_pointer(skb, sizeof(rpc_fraghdr), sizeof(_xid), &_xid); 962 if (xp == NULL) 963 return; 964 965 /* Look up and lock the request corresponding to the given XID */ 966 spin_lock(&xprt->recv_lock); 967 rovr = xprt_lookup_rqst(xprt, *xp); 968 if (!rovr) 969 goto out_unlock; 970 xprt_pin_rqst(rovr); 971 spin_unlock(&xprt->recv_lock); 972 task = rovr->rq_task; 973 974 copied = rovr->rq_private_buf.buflen; 975 if (copied > repsize) 976 copied = repsize; 977 978 if (xs_local_copy_to_xdr(&rovr->rq_private_buf, skb)) { 979 dprintk("RPC: sk_buff copy failed\n"); 980 spin_lock(&xprt->recv_lock); 981 goto out_unpin; 982 } 983 984 spin_lock(&xprt->recv_lock); 985 xprt_complete_rqst(task, copied); 986 out_unpin: 987 xprt_unpin_rqst(rovr); 988 out_unlock: 989 spin_unlock(&xprt->recv_lock); 990 } 991 992 static void xs_local_data_receive(struct sock_xprt *transport) 993 { 994 struct sk_buff *skb; 995 struct sock *sk; 996 int err; 997 998 restart: 999 mutex_lock(&transport->recv_mutex); 1000 sk = transport->inet; 1001 if (sk == NULL) 1002 goto out; 1003 for (;;) { 1004 skb = skb_recv_datagram(sk, 0, 1, &err); 1005 if (skb != NULL) { 1006 xs_local_data_read_skb(&transport->xprt, sk, skb); 1007 skb_free_datagram(sk, skb); 1008 continue; 1009 } 1010 if (!test_and_clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state)) 1011 break; 1012 if (need_resched()) { 1013 mutex_unlock(&transport->recv_mutex); 1014 cond_resched(); 1015 goto restart; 1016 } 1017 } 1018 out: 1019 mutex_unlock(&transport->recv_mutex); 1020 } 1021 1022 static void xs_local_data_receive_workfn(struct work_struct *work) 1023 { 1024 struct sock_xprt *transport = 1025 container_of(work, struct sock_xprt, recv_worker); 1026 xs_local_data_receive(transport); 1027 } 1028 1029 /** 1030 * xs_udp_data_read_skb - receive callback for UDP sockets 1031 * @xprt: transport 1032 * @sk: socket 1033 * @skb: skbuff 1034 * 1035 */ 1036 static void xs_udp_data_read_skb(struct rpc_xprt *xprt, 1037 struct sock *sk, 1038 struct sk_buff *skb) 1039 { 1040 struct rpc_task *task; 1041 struct rpc_rqst *rovr; 1042 int repsize, copied; 1043 u32 _xid; 1044 __be32 *xp; 1045 1046 repsize = skb->len; 1047 if (repsize < 4) { 1048 dprintk("RPC: impossible RPC reply size %d!\n", repsize); 1049 return; 1050 } 1051 1052 /* Copy the XID from the skb... */ 1053 xp = skb_header_pointer(skb, 0, sizeof(_xid), &_xid); 1054 if (xp == NULL) 1055 return; 1056 1057 /* Look up and lock the request corresponding to the given XID */ 1058 spin_lock(&xprt->recv_lock); 1059 rovr = xprt_lookup_rqst(xprt, *xp); 1060 if (!rovr) 1061 goto out_unlock; 1062 xprt_pin_rqst(rovr); 1063 spin_unlock(&xprt->recv_lock); 1064 task = rovr->rq_task; 1065 1066 if ((copied = rovr->rq_private_buf.buflen) > repsize) 1067 copied = repsize; 1068 1069 /* Suck it into the iovec, verify checksum if not done by hw. */ 1070 if (csum_partial_copy_to_xdr(&rovr->rq_private_buf, skb)) { 1071 spin_lock(&xprt->recv_lock); 1072 __UDPX_INC_STATS(sk, UDP_MIB_INERRORS); 1073 goto out_unpin; 1074 } 1075 1076 1077 spin_lock_bh(&xprt->transport_lock); 1078 xprt_adjust_cwnd(xprt, task, copied); 1079 spin_unlock_bh(&xprt->transport_lock); 1080 spin_lock(&xprt->recv_lock); 1081 xprt_complete_rqst(task, copied); 1082 __UDPX_INC_STATS(sk, UDP_MIB_INDATAGRAMS); 1083 out_unpin: 1084 xprt_unpin_rqst(rovr); 1085 out_unlock: 1086 spin_unlock(&xprt->recv_lock); 1087 } 1088 1089 static void xs_udp_data_receive(struct sock_xprt *transport) 1090 { 1091 struct sk_buff *skb; 1092 struct sock *sk; 1093 int err; 1094 1095 restart: 1096 mutex_lock(&transport->recv_mutex); 1097 sk = transport->inet; 1098 if (sk == NULL) 1099 goto out; 1100 for (;;) { 1101 skb = skb_recv_udp(sk, 0, 1, &err); 1102 if (skb != NULL) { 1103 xs_udp_data_read_skb(&transport->xprt, sk, skb); 1104 consume_skb(skb); 1105 continue; 1106 } 1107 if (!test_and_clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state)) 1108 break; 1109 if (need_resched()) { 1110 mutex_unlock(&transport->recv_mutex); 1111 cond_resched(); 1112 goto restart; 1113 } 1114 } 1115 out: 1116 mutex_unlock(&transport->recv_mutex); 1117 } 1118 1119 static void xs_udp_data_receive_workfn(struct work_struct *work) 1120 { 1121 struct sock_xprt *transport = 1122 container_of(work, struct sock_xprt, recv_worker); 1123 xs_udp_data_receive(transport); 1124 } 1125 1126 /** 1127 * xs_data_ready - "data ready" callback for UDP sockets 1128 * @sk: socket with data to read 1129 * 1130 */ 1131 static void xs_data_ready(struct sock *sk) 1132 { 1133 struct rpc_xprt *xprt; 1134 1135 read_lock_bh(&sk->sk_callback_lock); 1136 dprintk("RPC: xs_data_ready...\n"); 1137 xprt = xprt_from_sock(sk); 1138 if (xprt != NULL) { 1139 struct sock_xprt *transport = container_of(xprt, 1140 struct sock_xprt, xprt); 1141 transport->old_data_ready(sk); 1142 /* Any data means we had a useful conversation, so 1143 * then we don't need to delay the next reconnect 1144 */ 1145 if (xprt->reestablish_timeout) 1146 xprt->reestablish_timeout = 0; 1147 if (!test_and_set_bit(XPRT_SOCK_DATA_READY, &transport->sock_state)) 1148 queue_work(xprtiod_workqueue, &transport->recv_worker); 1149 } 1150 read_unlock_bh(&sk->sk_callback_lock); 1151 } 1152 1153 /* 1154 * Helper function to force a TCP close if the server is sending 1155 * junk and/or it has put us in CLOSE_WAIT 1156 */ 1157 static void xs_tcp_force_close(struct rpc_xprt *xprt) 1158 { 1159 xprt_force_disconnect(xprt); 1160 } 1161 1162 static inline void xs_tcp_read_fraghdr(struct rpc_xprt *xprt, struct xdr_skb_reader *desc) 1163 { 1164 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 1165 size_t len, used; 1166 char *p; 1167 1168 p = ((char *) &transport->tcp_fraghdr) + transport->tcp_offset; 1169 len = sizeof(transport->tcp_fraghdr) - transport->tcp_offset; 1170 used = xdr_skb_read_bits(desc, p, len); 1171 transport->tcp_offset += used; 1172 if (used != len) 1173 return; 1174 1175 transport->tcp_reclen = ntohl(transport->tcp_fraghdr); 1176 if (transport->tcp_reclen & RPC_LAST_STREAM_FRAGMENT) 1177 transport->tcp_flags |= TCP_RCV_LAST_FRAG; 1178 else 1179 transport->tcp_flags &= ~TCP_RCV_LAST_FRAG; 1180 transport->tcp_reclen &= RPC_FRAGMENT_SIZE_MASK; 1181 1182 transport->tcp_flags &= ~TCP_RCV_COPY_FRAGHDR; 1183 transport->tcp_offset = 0; 1184 1185 /* Sanity check of the record length */ 1186 if (unlikely(transport->tcp_reclen < 8)) { 1187 dprintk("RPC: invalid TCP record fragment length\n"); 1188 xs_tcp_force_close(xprt); 1189 return; 1190 } 1191 dprintk("RPC: reading TCP record fragment of length %d\n", 1192 transport->tcp_reclen); 1193 } 1194 1195 static void xs_tcp_check_fraghdr(struct sock_xprt *transport) 1196 { 1197 if (transport->tcp_offset == transport->tcp_reclen) { 1198 transport->tcp_flags |= TCP_RCV_COPY_FRAGHDR; 1199 transport->tcp_offset = 0; 1200 if (transport->tcp_flags & TCP_RCV_LAST_FRAG) { 1201 transport->tcp_flags &= ~TCP_RCV_COPY_DATA; 1202 transport->tcp_flags |= TCP_RCV_COPY_XID; 1203 transport->tcp_copied = 0; 1204 } 1205 } 1206 } 1207 1208 static inline void xs_tcp_read_xid(struct sock_xprt *transport, struct xdr_skb_reader *desc) 1209 { 1210 size_t len, used; 1211 char *p; 1212 1213 len = sizeof(transport->tcp_xid) - transport->tcp_offset; 1214 dprintk("RPC: reading XID (%zu bytes)\n", len); 1215 p = ((char *) &transport->tcp_xid) + transport->tcp_offset; 1216 used = xdr_skb_read_bits(desc, p, len); 1217 transport->tcp_offset += used; 1218 if (used != len) 1219 return; 1220 transport->tcp_flags &= ~TCP_RCV_COPY_XID; 1221 transport->tcp_flags |= TCP_RCV_READ_CALLDIR; 1222 transport->tcp_copied = 4; 1223 dprintk("RPC: reading %s XID %08x\n", 1224 (transport->tcp_flags & TCP_RPC_REPLY) ? "reply for" 1225 : "request with", 1226 ntohl(transport->tcp_xid)); 1227 xs_tcp_check_fraghdr(transport); 1228 } 1229 1230 static inline void xs_tcp_read_calldir(struct sock_xprt *transport, 1231 struct xdr_skb_reader *desc) 1232 { 1233 size_t len, used; 1234 u32 offset; 1235 char *p; 1236 1237 /* 1238 * We want transport->tcp_offset to be 8 at the end of this routine 1239 * (4 bytes for the xid and 4 bytes for the call/reply flag). 1240 * When this function is called for the first time, 1241 * transport->tcp_offset is 4 (after having already read the xid). 1242 */ 1243 offset = transport->tcp_offset - sizeof(transport->tcp_xid); 1244 len = sizeof(transport->tcp_calldir) - offset; 1245 dprintk("RPC: reading CALL/REPLY flag (%zu bytes)\n", len); 1246 p = ((char *) &transport->tcp_calldir) + offset; 1247 used = xdr_skb_read_bits(desc, p, len); 1248 transport->tcp_offset += used; 1249 if (used != len) 1250 return; 1251 transport->tcp_flags &= ~TCP_RCV_READ_CALLDIR; 1252 /* 1253 * We don't yet have the XDR buffer, so we will write the calldir 1254 * out after we get the buffer from the 'struct rpc_rqst' 1255 */ 1256 switch (ntohl(transport->tcp_calldir)) { 1257 case RPC_REPLY: 1258 transport->tcp_flags |= TCP_RCV_COPY_CALLDIR; 1259 transport->tcp_flags |= TCP_RCV_COPY_DATA; 1260 transport->tcp_flags |= TCP_RPC_REPLY; 1261 break; 1262 case RPC_CALL: 1263 transport->tcp_flags |= TCP_RCV_COPY_CALLDIR; 1264 transport->tcp_flags |= TCP_RCV_COPY_DATA; 1265 transport->tcp_flags &= ~TCP_RPC_REPLY; 1266 break; 1267 default: 1268 dprintk("RPC: invalid request message type\n"); 1269 xs_tcp_force_close(&transport->xprt); 1270 } 1271 xs_tcp_check_fraghdr(transport); 1272 } 1273 1274 static inline void xs_tcp_read_common(struct rpc_xprt *xprt, 1275 struct xdr_skb_reader *desc, 1276 struct rpc_rqst *req) 1277 { 1278 struct sock_xprt *transport = 1279 container_of(xprt, struct sock_xprt, xprt); 1280 struct xdr_buf *rcvbuf; 1281 size_t len; 1282 ssize_t r; 1283 1284 rcvbuf = &req->rq_private_buf; 1285 1286 if (transport->tcp_flags & TCP_RCV_COPY_CALLDIR) { 1287 /* 1288 * Save the RPC direction in the XDR buffer 1289 */ 1290 memcpy(rcvbuf->head[0].iov_base + transport->tcp_copied, 1291 &transport->tcp_calldir, 1292 sizeof(transport->tcp_calldir)); 1293 transport->tcp_copied += sizeof(transport->tcp_calldir); 1294 transport->tcp_flags &= ~TCP_RCV_COPY_CALLDIR; 1295 } 1296 1297 len = desc->count; 1298 if (len > transport->tcp_reclen - transport->tcp_offset) 1299 desc->count = transport->tcp_reclen - transport->tcp_offset; 1300 r = xdr_partial_copy_from_skb(rcvbuf, transport->tcp_copied, 1301 desc, xdr_skb_read_bits); 1302 1303 if (desc->count) { 1304 /* Error when copying to the receive buffer, 1305 * usually because we weren't able to allocate 1306 * additional buffer pages. All we can do now 1307 * is turn off TCP_RCV_COPY_DATA, so the request 1308 * will not receive any additional updates, 1309 * and time out. 1310 * Any remaining data from this record will 1311 * be discarded. 1312 */ 1313 transport->tcp_flags &= ~TCP_RCV_COPY_DATA; 1314 dprintk("RPC: XID %08x truncated request\n", 1315 ntohl(transport->tcp_xid)); 1316 dprintk("RPC: xprt = %p, tcp_copied = %lu, " 1317 "tcp_offset = %u, tcp_reclen = %u\n", 1318 xprt, transport->tcp_copied, 1319 transport->tcp_offset, transport->tcp_reclen); 1320 return; 1321 } 1322 1323 transport->tcp_copied += r; 1324 transport->tcp_offset += r; 1325 desc->count = len - r; 1326 1327 dprintk("RPC: XID %08x read %zd bytes\n", 1328 ntohl(transport->tcp_xid), r); 1329 dprintk("RPC: xprt = %p, tcp_copied = %lu, tcp_offset = %u, " 1330 "tcp_reclen = %u\n", xprt, transport->tcp_copied, 1331 transport->tcp_offset, transport->tcp_reclen); 1332 1333 if (transport->tcp_copied == req->rq_private_buf.buflen) 1334 transport->tcp_flags &= ~TCP_RCV_COPY_DATA; 1335 else if (transport->tcp_offset == transport->tcp_reclen) { 1336 if (transport->tcp_flags & TCP_RCV_LAST_FRAG) 1337 transport->tcp_flags &= ~TCP_RCV_COPY_DATA; 1338 } 1339 } 1340 1341 /* 1342 * Finds the request corresponding to the RPC xid and invokes the common 1343 * tcp read code to read the data. 1344 */ 1345 static inline int xs_tcp_read_reply(struct rpc_xprt *xprt, 1346 struct xdr_skb_reader *desc) 1347 { 1348 struct sock_xprt *transport = 1349 container_of(xprt, struct sock_xprt, xprt); 1350 struct rpc_rqst *req; 1351 1352 dprintk("RPC: read reply XID %08x\n", ntohl(transport->tcp_xid)); 1353 1354 /* Find and lock the request corresponding to this xid */ 1355 spin_lock(&xprt->recv_lock); 1356 req = xprt_lookup_rqst(xprt, transport->tcp_xid); 1357 if (!req) { 1358 dprintk("RPC: XID %08x request not found!\n", 1359 ntohl(transport->tcp_xid)); 1360 spin_unlock(&xprt->recv_lock); 1361 return -1; 1362 } 1363 xprt_pin_rqst(req); 1364 spin_unlock(&xprt->recv_lock); 1365 1366 xs_tcp_read_common(xprt, desc, req); 1367 1368 spin_lock(&xprt->recv_lock); 1369 if (!(transport->tcp_flags & TCP_RCV_COPY_DATA)) 1370 xprt_complete_rqst(req->rq_task, transport->tcp_copied); 1371 xprt_unpin_rqst(req); 1372 spin_unlock(&xprt->recv_lock); 1373 return 0; 1374 } 1375 1376 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1377 /* 1378 * Obtains an rpc_rqst previously allocated and invokes the common 1379 * tcp read code to read the data. The result is placed in the callback 1380 * queue. 1381 * If we're unable to obtain the rpc_rqst we schedule the closing of the 1382 * connection and return -1. 1383 */ 1384 static int xs_tcp_read_callback(struct rpc_xprt *xprt, 1385 struct xdr_skb_reader *desc) 1386 { 1387 struct sock_xprt *transport = 1388 container_of(xprt, struct sock_xprt, xprt); 1389 struct rpc_rqst *req; 1390 1391 /* Look up the request corresponding to the given XID */ 1392 req = xprt_lookup_bc_request(xprt, transport->tcp_xid); 1393 if (req == NULL) { 1394 printk(KERN_WARNING "Callback slot table overflowed\n"); 1395 xprt_force_disconnect(xprt); 1396 return -1; 1397 } 1398 1399 dprintk("RPC: read callback XID %08x\n", ntohl(req->rq_xid)); 1400 xs_tcp_read_common(xprt, desc, req); 1401 1402 if (!(transport->tcp_flags & TCP_RCV_COPY_DATA)) 1403 xprt_complete_bc_request(req, transport->tcp_copied); 1404 1405 return 0; 1406 } 1407 1408 static inline int _xs_tcp_read_data(struct rpc_xprt *xprt, 1409 struct xdr_skb_reader *desc) 1410 { 1411 struct sock_xprt *transport = 1412 container_of(xprt, struct sock_xprt, xprt); 1413 1414 return (transport->tcp_flags & TCP_RPC_REPLY) ? 1415 xs_tcp_read_reply(xprt, desc) : 1416 xs_tcp_read_callback(xprt, desc); 1417 } 1418 1419 static int xs_tcp_bc_up(struct svc_serv *serv, struct net *net) 1420 { 1421 int ret; 1422 1423 ret = svc_create_xprt(serv, "tcp-bc", net, PF_INET, 0, 1424 SVC_SOCK_ANONYMOUS); 1425 if (ret < 0) 1426 return ret; 1427 return 0; 1428 } 1429 1430 static size_t xs_tcp_bc_maxpayload(struct rpc_xprt *xprt) 1431 { 1432 return PAGE_SIZE; 1433 } 1434 #else 1435 static inline int _xs_tcp_read_data(struct rpc_xprt *xprt, 1436 struct xdr_skb_reader *desc) 1437 { 1438 return xs_tcp_read_reply(xprt, desc); 1439 } 1440 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1441 1442 /* 1443 * Read data off the transport. This can be either an RPC_CALL or an 1444 * RPC_REPLY. Relay the processing to helper functions. 1445 */ 1446 static void xs_tcp_read_data(struct rpc_xprt *xprt, 1447 struct xdr_skb_reader *desc) 1448 { 1449 struct sock_xprt *transport = 1450 container_of(xprt, struct sock_xprt, xprt); 1451 1452 if (_xs_tcp_read_data(xprt, desc) == 0) 1453 xs_tcp_check_fraghdr(transport); 1454 else { 1455 /* 1456 * The transport_lock protects the request handling. 1457 * There's no need to hold it to update the tcp_flags. 1458 */ 1459 transport->tcp_flags &= ~TCP_RCV_COPY_DATA; 1460 } 1461 } 1462 1463 static inline void xs_tcp_read_discard(struct sock_xprt *transport, struct xdr_skb_reader *desc) 1464 { 1465 size_t len; 1466 1467 len = transport->tcp_reclen - transport->tcp_offset; 1468 if (len > desc->count) 1469 len = desc->count; 1470 desc->count -= len; 1471 desc->offset += len; 1472 transport->tcp_offset += len; 1473 dprintk("RPC: discarded %zu bytes\n", len); 1474 xs_tcp_check_fraghdr(transport); 1475 } 1476 1477 static int xs_tcp_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, unsigned int offset, size_t len) 1478 { 1479 struct rpc_xprt *xprt = rd_desc->arg.data; 1480 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 1481 struct xdr_skb_reader desc = { 1482 .skb = skb, 1483 .offset = offset, 1484 .count = len, 1485 }; 1486 size_t ret; 1487 1488 dprintk("RPC: xs_tcp_data_recv started\n"); 1489 do { 1490 trace_xs_tcp_data_recv(transport); 1491 /* Read in a new fragment marker if necessary */ 1492 /* Can we ever really expect to get completely empty fragments? */ 1493 if (transport->tcp_flags & TCP_RCV_COPY_FRAGHDR) { 1494 xs_tcp_read_fraghdr(xprt, &desc); 1495 continue; 1496 } 1497 /* Read in the xid if necessary */ 1498 if (transport->tcp_flags & TCP_RCV_COPY_XID) { 1499 xs_tcp_read_xid(transport, &desc); 1500 continue; 1501 } 1502 /* Read in the call/reply flag */ 1503 if (transport->tcp_flags & TCP_RCV_READ_CALLDIR) { 1504 xs_tcp_read_calldir(transport, &desc); 1505 continue; 1506 } 1507 /* Read in the request data */ 1508 if (transport->tcp_flags & TCP_RCV_COPY_DATA) { 1509 xs_tcp_read_data(xprt, &desc); 1510 continue; 1511 } 1512 /* Skip over any trailing bytes on short reads */ 1513 xs_tcp_read_discard(transport, &desc); 1514 } while (desc.count); 1515 ret = len - desc.count; 1516 if (ret < rd_desc->count) 1517 rd_desc->count -= ret; 1518 else 1519 rd_desc->count = 0; 1520 trace_xs_tcp_data_recv(transport); 1521 dprintk("RPC: xs_tcp_data_recv done\n"); 1522 return ret; 1523 } 1524 1525 static void xs_tcp_data_receive(struct sock_xprt *transport) 1526 { 1527 struct rpc_xprt *xprt = &transport->xprt; 1528 struct sock *sk; 1529 read_descriptor_t rd_desc = { 1530 .arg.data = xprt, 1531 }; 1532 unsigned long total = 0; 1533 int read = 0; 1534 1535 restart: 1536 mutex_lock(&transport->recv_mutex); 1537 sk = transport->inet; 1538 if (sk == NULL) 1539 goto out; 1540 1541 /* We use rd_desc to pass struct xprt to xs_tcp_data_recv */ 1542 for (;;) { 1543 rd_desc.count = RPC_TCP_READ_CHUNK_SZ; 1544 lock_sock(sk); 1545 read = tcp_read_sock(sk, &rd_desc, xs_tcp_data_recv); 1546 if (rd_desc.count != 0 || read < 0) { 1547 clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state); 1548 release_sock(sk); 1549 break; 1550 } 1551 release_sock(sk); 1552 total += read; 1553 if (need_resched()) { 1554 mutex_unlock(&transport->recv_mutex); 1555 cond_resched(); 1556 goto restart; 1557 } 1558 } 1559 if (test_bit(XPRT_SOCK_DATA_READY, &transport->sock_state)) 1560 queue_work(xprtiod_workqueue, &transport->recv_worker); 1561 out: 1562 mutex_unlock(&transport->recv_mutex); 1563 trace_xs_tcp_data_ready(xprt, read, total); 1564 } 1565 1566 static void xs_tcp_data_receive_workfn(struct work_struct *work) 1567 { 1568 struct sock_xprt *transport = 1569 container_of(work, struct sock_xprt, recv_worker); 1570 xs_tcp_data_receive(transport); 1571 } 1572 1573 /** 1574 * xs_tcp_state_change - callback to handle TCP socket state changes 1575 * @sk: socket whose state has changed 1576 * 1577 */ 1578 static void xs_tcp_state_change(struct sock *sk) 1579 { 1580 struct rpc_xprt *xprt; 1581 struct sock_xprt *transport; 1582 1583 read_lock_bh(&sk->sk_callback_lock); 1584 if (!(xprt = xprt_from_sock(sk))) 1585 goto out; 1586 dprintk("RPC: xs_tcp_state_change client %p...\n", xprt); 1587 dprintk("RPC: state %x conn %d dead %d zapped %d sk_shutdown %d\n", 1588 sk->sk_state, xprt_connected(xprt), 1589 sock_flag(sk, SOCK_DEAD), 1590 sock_flag(sk, SOCK_ZAPPED), 1591 sk->sk_shutdown); 1592 1593 transport = container_of(xprt, struct sock_xprt, xprt); 1594 trace_rpc_socket_state_change(xprt, sk->sk_socket); 1595 switch (sk->sk_state) { 1596 case TCP_ESTABLISHED: 1597 spin_lock(&xprt->transport_lock); 1598 if (!xprt_test_and_set_connected(xprt)) { 1599 1600 /* Reset TCP record info */ 1601 transport->tcp_offset = 0; 1602 transport->tcp_reclen = 0; 1603 transport->tcp_copied = 0; 1604 transport->tcp_flags = 1605 TCP_RCV_COPY_FRAGHDR | TCP_RCV_COPY_XID; 1606 xprt->connect_cookie++; 1607 clear_bit(XPRT_SOCK_CONNECTING, &transport->sock_state); 1608 xprt_clear_connecting(xprt); 1609 1610 xprt_wake_pending_tasks(xprt, -EAGAIN); 1611 } 1612 spin_unlock(&xprt->transport_lock); 1613 break; 1614 case TCP_FIN_WAIT1: 1615 /* The client initiated a shutdown of the socket */ 1616 xprt->connect_cookie++; 1617 xprt->reestablish_timeout = 0; 1618 set_bit(XPRT_CLOSING, &xprt->state); 1619 smp_mb__before_atomic(); 1620 clear_bit(XPRT_CONNECTED, &xprt->state); 1621 clear_bit(XPRT_CLOSE_WAIT, &xprt->state); 1622 smp_mb__after_atomic(); 1623 break; 1624 case TCP_CLOSE_WAIT: 1625 /* The server initiated a shutdown of the socket */ 1626 xprt->connect_cookie++; 1627 clear_bit(XPRT_CONNECTED, &xprt->state); 1628 xs_tcp_force_close(xprt); 1629 /* fall through */ 1630 case TCP_CLOSING: 1631 /* 1632 * If the server closed down the connection, make sure that 1633 * we back off before reconnecting 1634 */ 1635 if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO) 1636 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 1637 break; 1638 case TCP_LAST_ACK: 1639 set_bit(XPRT_CLOSING, &xprt->state); 1640 smp_mb__before_atomic(); 1641 clear_bit(XPRT_CONNECTED, &xprt->state); 1642 smp_mb__after_atomic(); 1643 break; 1644 case TCP_CLOSE: 1645 if (test_and_clear_bit(XPRT_SOCK_CONNECTING, 1646 &transport->sock_state)) 1647 xprt_clear_connecting(xprt); 1648 clear_bit(XPRT_CLOSING, &xprt->state); 1649 if (sk->sk_err) 1650 xprt_wake_pending_tasks(xprt, -sk->sk_err); 1651 /* Trigger the socket release */ 1652 xs_tcp_force_close(xprt); 1653 } 1654 out: 1655 read_unlock_bh(&sk->sk_callback_lock); 1656 } 1657 1658 static void xs_write_space(struct sock *sk) 1659 { 1660 struct socket_wq *wq; 1661 struct rpc_xprt *xprt; 1662 1663 if (!sk->sk_socket) 1664 return; 1665 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1666 1667 if (unlikely(!(xprt = xprt_from_sock(sk)))) 1668 return; 1669 rcu_read_lock(); 1670 wq = rcu_dereference(sk->sk_wq); 1671 if (!wq || test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags) == 0) 1672 goto out; 1673 1674 xprt_write_space(xprt); 1675 out: 1676 rcu_read_unlock(); 1677 } 1678 1679 /** 1680 * xs_udp_write_space - callback invoked when socket buffer space 1681 * becomes available 1682 * @sk: socket whose state has changed 1683 * 1684 * Called when more output buffer space is available for this socket. 1685 * We try not to wake our writers until they can make "significant" 1686 * progress, otherwise we'll waste resources thrashing kernel_sendmsg 1687 * with a bunch of small requests. 1688 */ 1689 static void xs_udp_write_space(struct sock *sk) 1690 { 1691 read_lock_bh(&sk->sk_callback_lock); 1692 1693 /* from net/core/sock.c:sock_def_write_space */ 1694 if (sock_writeable(sk)) 1695 xs_write_space(sk); 1696 1697 read_unlock_bh(&sk->sk_callback_lock); 1698 } 1699 1700 /** 1701 * xs_tcp_write_space - callback invoked when socket buffer space 1702 * becomes available 1703 * @sk: socket whose state has changed 1704 * 1705 * Called when more output buffer space is available for this socket. 1706 * We try not to wake our writers until they can make "significant" 1707 * progress, otherwise we'll waste resources thrashing kernel_sendmsg 1708 * with a bunch of small requests. 1709 */ 1710 static void xs_tcp_write_space(struct sock *sk) 1711 { 1712 read_lock_bh(&sk->sk_callback_lock); 1713 1714 /* from net/core/stream.c:sk_stream_write_space */ 1715 if (sk_stream_is_writeable(sk)) 1716 xs_write_space(sk); 1717 1718 read_unlock_bh(&sk->sk_callback_lock); 1719 } 1720 1721 static void xs_udp_do_set_buffer_size(struct rpc_xprt *xprt) 1722 { 1723 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 1724 struct sock *sk = transport->inet; 1725 1726 if (transport->rcvsize) { 1727 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 1728 sk->sk_rcvbuf = transport->rcvsize * xprt->max_reqs * 2; 1729 } 1730 if (transport->sndsize) { 1731 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1732 sk->sk_sndbuf = transport->sndsize * xprt->max_reqs * 2; 1733 sk->sk_write_space(sk); 1734 } 1735 } 1736 1737 /** 1738 * xs_udp_set_buffer_size - set send and receive limits 1739 * @xprt: generic transport 1740 * @sndsize: requested size of send buffer, in bytes 1741 * @rcvsize: requested size of receive buffer, in bytes 1742 * 1743 * Set socket send and receive buffer size limits. 1744 */ 1745 static void xs_udp_set_buffer_size(struct rpc_xprt *xprt, size_t sndsize, size_t rcvsize) 1746 { 1747 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 1748 1749 transport->sndsize = 0; 1750 if (sndsize) 1751 transport->sndsize = sndsize + 1024; 1752 transport->rcvsize = 0; 1753 if (rcvsize) 1754 transport->rcvsize = rcvsize + 1024; 1755 1756 xs_udp_do_set_buffer_size(xprt); 1757 } 1758 1759 /** 1760 * xs_udp_timer - called when a retransmit timeout occurs on a UDP transport 1761 * @task: task that timed out 1762 * 1763 * Adjust the congestion window after a retransmit timeout has occurred. 1764 */ 1765 static void xs_udp_timer(struct rpc_xprt *xprt, struct rpc_task *task) 1766 { 1767 spin_lock_bh(&xprt->transport_lock); 1768 xprt_adjust_cwnd(xprt, task, -ETIMEDOUT); 1769 spin_unlock_bh(&xprt->transport_lock); 1770 } 1771 1772 static unsigned short xs_get_random_port(void) 1773 { 1774 unsigned short range = xprt_max_resvport - xprt_min_resvport + 1; 1775 unsigned short rand = (unsigned short) prandom_u32() % range; 1776 return rand + xprt_min_resvport; 1777 } 1778 1779 /** 1780 * xs_set_reuseaddr_port - set the socket's port and address reuse options 1781 * @sock: socket 1782 * 1783 * Note that this function has to be called on all sockets that share the 1784 * same port, and it must be called before binding. 1785 */ 1786 static void xs_sock_set_reuseport(struct socket *sock) 1787 { 1788 int opt = 1; 1789 1790 kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEPORT, 1791 (char *)&opt, sizeof(opt)); 1792 } 1793 1794 static unsigned short xs_sock_getport(struct socket *sock) 1795 { 1796 struct sockaddr_storage buf; 1797 unsigned short port = 0; 1798 1799 if (kernel_getsockname(sock, (struct sockaddr *)&buf) < 0) 1800 goto out; 1801 switch (buf.ss_family) { 1802 case AF_INET6: 1803 port = ntohs(((struct sockaddr_in6 *)&buf)->sin6_port); 1804 break; 1805 case AF_INET: 1806 port = ntohs(((struct sockaddr_in *)&buf)->sin_port); 1807 } 1808 out: 1809 return port; 1810 } 1811 1812 /** 1813 * xs_set_port - reset the port number in the remote endpoint address 1814 * @xprt: generic transport 1815 * @port: new port number 1816 * 1817 */ 1818 static void xs_set_port(struct rpc_xprt *xprt, unsigned short port) 1819 { 1820 dprintk("RPC: setting port for xprt %p to %u\n", xprt, port); 1821 1822 rpc_set_port(xs_addr(xprt), port); 1823 xs_update_peer_port(xprt); 1824 } 1825 1826 static void xs_set_srcport(struct sock_xprt *transport, struct socket *sock) 1827 { 1828 if (transport->srcport == 0) 1829 transport->srcport = xs_sock_getport(sock); 1830 } 1831 1832 static unsigned short xs_get_srcport(struct sock_xprt *transport) 1833 { 1834 unsigned short port = transport->srcport; 1835 1836 if (port == 0 && transport->xprt.resvport) 1837 port = xs_get_random_port(); 1838 return port; 1839 } 1840 1841 static unsigned short xs_next_srcport(struct sock_xprt *transport, unsigned short port) 1842 { 1843 if (transport->srcport != 0) 1844 transport->srcport = 0; 1845 if (!transport->xprt.resvport) 1846 return 0; 1847 if (port <= xprt_min_resvport || port > xprt_max_resvport) 1848 return xprt_max_resvport; 1849 return --port; 1850 } 1851 static int xs_bind(struct sock_xprt *transport, struct socket *sock) 1852 { 1853 struct sockaddr_storage myaddr; 1854 int err, nloop = 0; 1855 unsigned short port = xs_get_srcport(transport); 1856 unsigned short last; 1857 1858 /* 1859 * If we are asking for any ephemeral port (i.e. port == 0 && 1860 * transport->xprt.resvport == 0), don't bind. Let the local 1861 * port selection happen implicitly when the socket is used 1862 * (for example at connect time). 1863 * 1864 * This ensures that we can continue to establish TCP 1865 * connections even when all local ephemeral ports are already 1866 * a part of some TCP connection. This makes no difference 1867 * for UDP sockets, but also doens't harm them. 1868 * 1869 * If we're asking for any reserved port (i.e. port == 0 && 1870 * transport->xprt.resvport == 1) xs_get_srcport above will 1871 * ensure that port is non-zero and we will bind as needed. 1872 */ 1873 if (port == 0) 1874 return 0; 1875 1876 memcpy(&myaddr, &transport->srcaddr, transport->xprt.addrlen); 1877 do { 1878 rpc_set_port((struct sockaddr *)&myaddr, port); 1879 err = kernel_bind(sock, (struct sockaddr *)&myaddr, 1880 transport->xprt.addrlen); 1881 if (err == 0) { 1882 transport->srcport = port; 1883 break; 1884 } 1885 last = port; 1886 port = xs_next_srcport(transport, port); 1887 if (port > last) 1888 nloop++; 1889 } while (err == -EADDRINUSE && nloop != 2); 1890 1891 if (myaddr.ss_family == AF_INET) 1892 dprintk("RPC: %s %pI4:%u: %s (%d)\n", __func__, 1893 &((struct sockaddr_in *)&myaddr)->sin_addr, 1894 port, err ? "failed" : "ok", err); 1895 else 1896 dprintk("RPC: %s %pI6:%u: %s (%d)\n", __func__, 1897 &((struct sockaddr_in6 *)&myaddr)->sin6_addr, 1898 port, err ? "failed" : "ok", err); 1899 return err; 1900 } 1901 1902 /* 1903 * We don't support autobind on AF_LOCAL sockets 1904 */ 1905 static void xs_local_rpcbind(struct rpc_task *task) 1906 { 1907 xprt_set_bound(task->tk_xprt); 1908 } 1909 1910 static void xs_local_set_port(struct rpc_xprt *xprt, unsigned short port) 1911 { 1912 } 1913 1914 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1915 static struct lock_class_key xs_key[2]; 1916 static struct lock_class_key xs_slock_key[2]; 1917 1918 static inline void xs_reclassify_socketu(struct socket *sock) 1919 { 1920 struct sock *sk = sock->sk; 1921 1922 sock_lock_init_class_and_name(sk, "slock-AF_LOCAL-RPC", 1923 &xs_slock_key[1], "sk_lock-AF_LOCAL-RPC", &xs_key[1]); 1924 } 1925 1926 static inline void xs_reclassify_socket4(struct socket *sock) 1927 { 1928 struct sock *sk = sock->sk; 1929 1930 sock_lock_init_class_and_name(sk, "slock-AF_INET-RPC", 1931 &xs_slock_key[0], "sk_lock-AF_INET-RPC", &xs_key[0]); 1932 } 1933 1934 static inline void xs_reclassify_socket6(struct socket *sock) 1935 { 1936 struct sock *sk = sock->sk; 1937 1938 sock_lock_init_class_and_name(sk, "slock-AF_INET6-RPC", 1939 &xs_slock_key[1], "sk_lock-AF_INET6-RPC", &xs_key[1]); 1940 } 1941 1942 static inline void xs_reclassify_socket(int family, struct socket *sock) 1943 { 1944 if (WARN_ON_ONCE(!sock_allow_reclassification(sock->sk))) 1945 return; 1946 1947 switch (family) { 1948 case AF_LOCAL: 1949 xs_reclassify_socketu(sock); 1950 break; 1951 case AF_INET: 1952 xs_reclassify_socket4(sock); 1953 break; 1954 case AF_INET6: 1955 xs_reclassify_socket6(sock); 1956 break; 1957 } 1958 } 1959 #else 1960 static inline void xs_reclassify_socket(int family, struct socket *sock) 1961 { 1962 } 1963 #endif 1964 1965 static void xs_dummy_setup_socket(struct work_struct *work) 1966 { 1967 } 1968 1969 static struct socket *xs_create_sock(struct rpc_xprt *xprt, 1970 struct sock_xprt *transport, int family, int type, 1971 int protocol, bool reuseport) 1972 { 1973 struct socket *sock; 1974 int err; 1975 1976 err = __sock_create(xprt->xprt_net, family, type, protocol, &sock, 1); 1977 if (err < 0) { 1978 dprintk("RPC: can't create %d transport socket (%d).\n", 1979 protocol, -err); 1980 goto out; 1981 } 1982 xs_reclassify_socket(family, sock); 1983 1984 if (reuseport) 1985 xs_sock_set_reuseport(sock); 1986 1987 err = xs_bind(transport, sock); 1988 if (err) { 1989 sock_release(sock); 1990 goto out; 1991 } 1992 1993 return sock; 1994 out: 1995 return ERR_PTR(err); 1996 } 1997 1998 static int xs_local_finish_connecting(struct rpc_xprt *xprt, 1999 struct socket *sock) 2000 { 2001 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, 2002 xprt); 2003 2004 if (!transport->inet) { 2005 struct sock *sk = sock->sk; 2006 2007 write_lock_bh(&sk->sk_callback_lock); 2008 2009 xs_save_old_callbacks(transport, sk); 2010 2011 sk->sk_user_data = xprt; 2012 sk->sk_data_ready = xs_data_ready; 2013 sk->sk_write_space = xs_udp_write_space; 2014 sock_set_flag(sk, SOCK_FASYNC); 2015 sk->sk_error_report = xs_error_report; 2016 sk->sk_allocation = GFP_NOIO; 2017 2018 xprt_clear_connected(xprt); 2019 2020 /* Reset to new socket */ 2021 transport->sock = sock; 2022 transport->inet = sk; 2023 2024 write_unlock_bh(&sk->sk_callback_lock); 2025 } 2026 2027 /* Tell the socket layer to start connecting... */ 2028 xprt->stat.connect_count++; 2029 xprt->stat.connect_start = jiffies; 2030 return kernel_connect(sock, xs_addr(xprt), xprt->addrlen, 0); 2031 } 2032 2033 /** 2034 * xs_local_setup_socket - create AF_LOCAL socket, connect to a local endpoint 2035 * @transport: socket transport to connect 2036 */ 2037 static int xs_local_setup_socket(struct sock_xprt *transport) 2038 { 2039 struct rpc_xprt *xprt = &transport->xprt; 2040 struct socket *sock; 2041 int status = -EIO; 2042 2043 status = __sock_create(xprt->xprt_net, AF_LOCAL, 2044 SOCK_STREAM, 0, &sock, 1); 2045 if (status < 0) { 2046 dprintk("RPC: can't create AF_LOCAL " 2047 "transport socket (%d).\n", -status); 2048 goto out; 2049 } 2050 xs_reclassify_socket(AF_LOCAL, sock); 2051 2052 dprintk("RPC: worker connecting xprt %p via AF_LOCAL to %s\n", 2053 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); 2054 2055 status = xs_local_finish_connecting(xprt, sock); 2056 trace_rpc_socket_connect(xprt, sock, status); 2057 switch (status) { 2058 case 0: 2059 dprintk("RPC: xprt %p connected to %s\n", 2060 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); 2061 xprt_set_connected(xprt); 2062 case -ENOBUFS: 2063 break; 2064 case -ENOENT: 2065 dprintk("RPC: xprt %p: socket %s does not exist\n", 2066 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); 2067 break; 2068 case -ECONNREFUSED: 2069 dprintk("RPC: xprt %p: connection refused for %s\n", 2070 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); 2071 break; 2072 default: 2073 printk(KERN_ERR "%s: unhandled error (%d) connecting to %s\n", 2074 __func__, -status, 2075 xprt->address_strings[RPC_DISPLAY_ADDR]); 2076 } 2077 2078 out: 2079 xprt_clear_connecting(xprt); 2080 xprt_wake_pending_tasks(xprt, status); 2081 return status; 2082 } 2083 2084 static void xs_local_connect(struct rpc_xprt *xprt, struct rpc_task *task) 2085 { 2086 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2087 int ret; 2088 2089 if (RPC_IS_ASYNC(task)) { 2090 /* 2091 * We want the AF_LOCAL connect to be resolved in the 2092 * filesystem namespace of the process making the rpc 2093 * call. Thus we connect synchronously. 2094 * 2095 * If we want to support asynchronous AF_LOCAL calls, 2096 * we'll need to figure out how to pass a namespace to 2097 * connect. 2098 */ 2099 rpc_exit(task, -ENOTCONN); 2100 return; 2101 } 2102 ret = xs_local_setup_socket(transport); 2103 if (ret && !RPC_IS_SOFTCONN(task)) 2104 msleep_interruptible(15000); 2105 } 2106 2107 #if IS_ENABLED(CONFIG_SUNRPC_SWAP) 2108 /* 2109 * Note that this should be called with XPRT_LOCKED held (or when we otherwise 2110 * know that we have exclusive access to the socket), to guard against 2111 * races with xs_reset_transport. 2112 */ 2113 static void xs_set_memalloc(struct rpc_xprt *xprt) 2114 { 2115 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, 2116 xprt); 2117 2118 /* 2119 * If there's no sock, then we have nothing to set. The 2120 * reconnecting process will get it for us. 2121 */ 2122 if (!transport->inet) 2123 return; 2124 if (atomic_read(&xprt->swapper)) 2125 sk_set_memalloc(transport->inet); 2126 } 2127 2128 /** 2129 * xs_enable_swap - Tag this transport as being used for swap. 2130 * @xprt: transport to tag 2131 * 2132 * Take a reference to this transport on behalf of the rpc_clnt, and 2133 * optionally mark it for swapping if it wasn't already. 2134 */ 2135 static int 2136 xs_enable_swap(struct rpc_xprt *xprt) 2137 { 2138 struct sock_xprt *xs = container_of(xprt, struct sock_xprt, xprt); 2139 2140 if (atomic_inc_return(&xprt->swapper) != 1) 2141 return 0; 2142 if (wait_on_bit_lock(&xprt->state, XPRT_LOCKED, TASK_KILLABLE)) 2143 return -ERESTARTSYS; 2144 if (xs->inet) 2145 sk_set_memalloc(xs->inet); 2146 xprt_release_xprt(xprt, NULL); 2147 return 0; 2148 } 2149 2150 /** 2151 * xs_disable_swap - Untag this transport as being used for swap. 2152 * @xprt: transport to tag 2153 * 2154 * Drop a "swapper" reference to this xprt on behalf of the rpc_clnt. If the 2155 * swapper refcount goes to 0, untag the socket as a memalloc socket. 2156 */ 2157 static void 2158 xs_disable_swap(struct rpc_xprt *xprt) 2159 { 2160 struct sock_xprt *xs = container_of(xprt, struct sock_xprt, xprt); 2161 2162 if (!atomic_dec_and_test(&xprt->swapper)) 2163 return; 2164 if (wait_on_bit_lock(&xprt->state, XPRT_LOCKED, TASK_KILLABLE)) 2165 return; 2166 if (xs->inet) 2167 sk_clear_memalloc(xs->inet); 2168 xprt_release_xprt(xprt, NULL); 2169 } 2170 #else 2171 static void xs_set_memalloc(struct rpc_xprt *xprt) 2172 { 2173 } 2174 2175 static int 2176 xs_enable_swap(struct rpc_xprt *xprt) 2177 { 2178 return -EINVAL; 2179 } 2180 2181 static void 2182 xs_disable_swap(struct rpc_xprt *xprt) 2183 { 2184 } 2185 #endif 2186 2187 static void xs_udp_finish_connecting(struct rpc_xprt *xprt, struct socket *sock) 2188 { 2189 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2190 2191 if (!transport->inet) { 2192 struct sock *sk = sock->sk; 2193 2194 write_lock_bh(&sk->sk_callback_lock); 2195 2196 xs_save_old_callbacks(transport, sk); 2197 2198 sk->sk_user_data = xprt; 2199 sk->sk_data_ready = xs_data_ready; 2200 sk->sk_write_space = xs_udp_write_space; 2201 sock_set_flag(sk, SOCK_FASYNC); 2202 sk->sk_allocation = GFP_NOIO; 2203 2204 xprt_set_connected(xprt); 2205 2206 /* Reset to new socket */ 2207 transport->sock = sock; 2208 transport->inet = sk; 2209 2210 xs_set_memalloc(xprt); 2211 2212 write_unlock_bh(&sk->sk_callback_lock); 2213 } 2214 xs_udp_do_set_buffer_size(xprt); 2215 2216 xprt->stat.connect_start = jiffies; 2217 } 2218 2219 static void xs_udp_setup_socket(struct work_struct *work) 2220 { 2221 struct sock_xprt *transport = 2222 container_of(work, struct sock_xprt, connect_worker.work); 2223 struct rpc_xprt *xprt = &transport->xprt; 2224 struct socket *sock; 2225 int status = -EIO; 2226 2227 sock = xs_create_sock(xprt, transport, 2228 xs_addr(xprt)->sa_family, SOCK_DGRAM, 2229 IPPROTO_UDP, false); 2230 if (IS_ERR(sock)) 2231 goto out; 2232 2233 dprintk("RPC: worker connecting xprt %p via %s to " 2234 "%s (port %s)\n", xprt, 2235 xprt->address_strings[RPC_DISPLAY_PROTO], 2236 xprt->address_strings[RPC_DISPLAY_ADDR], 2237 xprt->address_strings[RPC_DISPLAY_PORT]); 2238 2239 xs_udp_finish_connecting(xprt, sock); 2240 trace_rpc_socket_connect(xprt, sock, 0); 2241 status = 0; 2242 out: 2243 xprt_unlock_connect(xprt, transport); 2244 xprt_clear_connecting(xprt); 2245 xprt_wake_pending_tasks(xprt, status); 2246 } 2247 2248 /** 2249 * xs_tcp_shutdown - gracefully shut down a TCP socket 2250 * @xprt: transport 2251 * 2252 * Initiates a graceful shutdown of the TCP socket by calling the 2253 * equivalent of shutdown(SHUT_RDWR); 2254 */ 2255 static void xs_tcp_shutdown(struct rpc_xprt *xprt) 2256 { 2257 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2258 struct socket *sock = transport->sock; 2259 int skst = transport->inet ? transport->inet->sk_state : TCP_CLOSE; 2260 2261 if (sock == NULL) 2262 return; 2263 switch (skst) { 2264 default: 2265 kernel_sock_shutdown(sock, SHUT_RDWR); 2266 trace_rpc_socket_shutdown(xprt, sock); 2267 break; 2268 case TCP_CLOSE: 2269 case TCP_TIME_WAIT: 2270 xs_reset_transport(transport); 2271 } 2272 } 2273 2274 static void xs_tcp_set_socket_timeouts(struct rpc_xprt *xprt, 2275 struct socket *sock) 2276 { 2277 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2278 unsigned int keepidle; 2279 unsigned int keepcnt; 2280 unsigned int opt_on = 1; 2281 unsigned int timeo; 2282 2283 spin_lock_bh(&xprt->transport_lock); 2284 keepidle = DIV_ROUND_UP(xprt->timeout->to_initval, HZ); 2285 keepcnt = xprt->timeout->to_retries + 1; 2286 timeo = jiffies_to_msecs(xprt->timeout->to_initval) * 2287 (xprt->timeout->to_retries + 1); 2288 clear_bit(XPRT_SOCK_UPD_TIMEOUT, &transport->sock_state); 2289 spin_unlock_bh(&xprt->transport_lock); 2290 2291 /* TCP Keepalive options */ 2292 kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE, 2293 (char *)&opt_on, sizeof(opt_on)); 2294 kernel_setsockopt(sock, SOL_TCP, TCP_KEEPIDLE, 2295 (char *)&keepidle, sizeof(keepidle)); 2296 kernel_setsockopt(sock, SOL_TCP, TCP_KEEPINTVL, 2297 (char *)&keepidle, sizeof(keepidle)); 2298 kernel_setsockopt(sock, SOL_TCP, TCP_KEEPCNT, 2299 (char *)&keepcnt, sizeof(keepcnt)); 2300 2301 /* TCP user timeout (see RFC5482) */ 2302 kernel_setsockopt(sock, SOL_TCP, TCP_USER_TIMEOUT, 2303 (char *)&timeo, sizeof(timeo)); 2304 } 2305 2306 static void xs_tcp_set_connect_timeout(struct rpc_xprt *xprt, 2307 unsigned long connect_timeout, 2308 unsigned long reconnect_timeout) 2309 { 2310 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2311 struct rpc_timeout to; 2312 unsigned long initval; 2313 2314 spin_lock_bh(&xprt->transport_lock); 2315 if (reconnect_timeout < xprt->max_reconnect_timeout) 2316 xprt->max_reconnect_timeout = reconnect_timeout; 2317 if (connect_timeout < xprt->connect_timeout) { 2318 memcpy(&to, xprt->timeout, sizeof(to)); 2319 initval = DIV_ROUND_UP(connect_timeout, to.to_retries + 1); 2320 /* Arbitrary lower limit */ 2321 if (initval < XS_TCP_INIT_REEST_TO << 1) 2322 initval = XS_TCP_INIT_REEST_TO << 1; 2323 to.to_initval = initval; 2324 to.to_maxval = initval; 2325 memcpy(&transport->tcp_timeout, &to, 2326 sizeof(transport->tcp_timeout)); 2327 xprt->timeout = &transport->tcp_timeout; 2328 xprt->connect_timeout = connect_timeout; 2329 } 2330 set_bit(XPRT_SOCK_UPD_TIMEOUT, &transport->sock_state); 2331 spin_unlock_bh(&xprt->transport_lock); 2332 } 2333 2334 static int xs_tcp_finish_connecting(struct rpc_xprt *xprt, struct socket *sock) 2335 { 2336 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2337 int ret = -ENOTCONN; 2338 2339 if (!transport->inet) { 2340 struct sock *sk = sock->sk; 2341 unsigned int addr_pref = IPV6_PREFER_SRC_PUBLIC; 2342 2343 /* Avoid temporary address, they are bad for long-lived 2344 * connections such as NFS mounts. 2345 * RFC4941, section 3.6 suggests that: 2346 * Individual applications, which have specific 2347 * knowledge about the normal duration of connections, 2348 * MAY override this as appropriate. 2349 */ 2350 kernel_setsockopt(sock, SOL_IPV6, IPV6_ADDR_PREFERENCES, 2351 (char *)&addr_pref, sizeof(addr_pref)); 2352 2353 xs_tcp_set_socket_timeouts(xprt, sock); 2354 2355 write_lock_bh(&sk->sk_callback_lock); 2356 2357 xs_save_old_callbacks(transport, sk); 2358 2359 sk->sk_user_data = xprt; 2360 sk->sk_data_ready = xs_data_ready; 2361 sk->sk_state_change = xs_tcp_state_change; 2362 sk->sk_write_space = xs_tcp_write_space; 2363 sock_set_flag(sk, SOCK_FASYNC); 2364 sk->sk_error_report = xs_error_report; 2365 sk->sk_allocation = GFP_NOIO; 2366 2367 /* socket options */ 2368 sock_reset_flag(sk, SOCK_LINGER); 2369 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF; 2370 2371 xprt_clear_connected(xprt); 2372 2373 /* Reset to new socket */ 2374 transport->sock = sock; 2375 transport->inet = sk; 2376 2377 write_unlock_bh(&sk->sk_callback_lock); 2378 } 2379 2380 if (!xprt_bound(xprt)) 2381 goto out; 2382 2383 xs_set_memalloc(xprt); 2384 2385 /* Tell the socket layer to start connecting... */ 2386 xprt->stat.connect_count++; 2387 xprt->stat.connect_start = jiffies; 2388 set_bit(XPRT_SOCK_CONNECTING, &transport->sock_state); 2389 ret = kernel_connect(sock, xs_addr(xprt), xprt->addrlen, O_NONBLOCK); 2390 switch (ret) { 2391 case 0: 2392 xs_set_srcport(transport, sock); 2393 /* fall through */ 2394 case -EINPROGRESS: 2395 /* SYN_SENT! */ 2396 if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO) 2397 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 2398 break; 2399 case -EADDRNOTAVAIL: 2400 /* Source port number is unavailable. Try a new one! */ 2401 transport->srcport = 0; 2402 } 2403 out: 2404 return ret; 2405 } 2406 2407 /** 2408 * xs_tcp_setup_socket - create a TCP socket and connect to a remote endpoint 2409 * 2410 * Invoked by a work queue tasklet. 2411 */ 2412 static void xs_tcp_setup_socket(struct work_struct *work) 2413 { 2414 struct sock_xprt *transport = 2415 container_of(work, struct sock_xprt, connect_worker.work); 2416 struct socket *sock = transport->sock; 2417 struct rpc_xprt *xprt = &transport->xprt; 2418 int status = -EIO; 2419 2420 if (!sock) { 2421 sock = xs_create_sock(xprt, transport, 2422 xs_addr(xprt)->sa_family, SOCK_STREAM, 2423 IPPROTO_TCP, true); 2424 if (IS_ERR(sock)) { 2425 status = PTR_ERR(sock); 2426 goto out; 2427 } 2428 } 2429 2430 dprintk("RPC: worker connecting xprt %p via %s to " 2431 "%s (port %s)\n", xprt, 2432 xprt->address_strings[RPC_DISPLAY_PROTO], 2433 xprt->address_strings[RPC_DISPLAY_ADDR], 2434 xprt->address_strings[RPC_DISPLAY_PORT]); 2435 2436 status = xs_tcp_finish_connecting(xprt, sock); 2437 trace_rpc_socket_connect(xprt, sock, status); 2438 dprintk("RPC: %p connect status %d connected %d sock state %d\n", 2439 xprt, -status, xprt_connected(xprt), 2440 sock->sk->sk_state); 2441 switch (status) { 2442 default: 2443 printk("%s: connect returned unhandled error %d\n", 2444 __func__, status); 2445 /* fall through */ 2446 case -EADDRNOTAVAIL: 2447 /* We're probably in TIME_WAIT. Get rid of existing socket, 2448 * and retry 2449 */ 2450 xs_tcp_force_close(xprt); 2451 break; 2452 case 0: 2453 case -EINPROGRESS: 2454 case -EALREADY: 2455 xprt_unlock_connect(xprt, transport); 2456 return; 2457 case -EINVAL: 2458 /* Happens, for instance, if the user specified a link 2459 * local IPv6 address without a scope-id. 2460 */ 2461 case -ECONNREFUSED: 2462 case -ECONNRESET: 2463 case -ENETDOWN: 2464 case -ENETUNREACH: 2465 case -EHOSTUNREACH: 2466 case -EADDRINUSE: 2467 case -ENOBUFS: 2468 /* 2469 * xs_tcp_force_close() wakes tasks with -EIO. 2470 * We need to wake them first to ensure the 2471 * correct error code. 2472 */ 2473 xprt_wake_pending_tasks(xprt, status); 2474 xs_tcp_force_close(xprt); 2475 goto out; 2476 } 2477 status = -EAGAIN; 2478 out: 2479 xprt_unlock_connect(xprt, transport); 2480 xprt_clear_connecting(xprt); 2481 xprt_wake_pending_tasks(xprt, status); 2482 } 2483 2484 static unsigned long xs_reconnect_delay(const struct rpc_xprt *xprt) 2485 { 2486 unsigned long start, now = jiffies; 2487 2488 start = xprt->stat.connect_start + xprt->reestablish_timeout; 2489 if (time_after(start, now)) 2490 return start - now; 2491 return 0; 2492 } 2493 2494 static void xs_reconnect_backoff(struct rpc_xprt *xprt) 2495 { 2496 xprt->reestablish_timeout <<= 1; 2497 if (xprt->reestablish_timeout > xprt->max_reconnect_timeout) 2498 xprt->reestablish_timeout = xprt->max_reconnect_timeout; 2499 if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO) 2500 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 2501 } 2502 2503 /** 2504 * xs_connect - connect a socket to a remote endpoint 2505 * @xprt: pointer to transport structure 2506 * @task: address of RPC task that manages state of connect request 2507 * 2508 * TCP: If the remote end dropped the connection, delay reconnecting. 2509 * 2510 * UDP socket connects are synchronous, but we use a work queue anyway 2511 * to guarantee that even unprivileged user processes can set up a 2512 * socket on a privileged port. 2513 * 2514 * If a UDP socket connect fails, the delay behavior here prevents 2515 * retry floods (hard mounts). 2516 */ 2517 static void xs_connect(struct rpc_xprt *xprt, struct rpc_task *task) 2518 { 2519 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2520 unsigned long delay = 0; 2521 2522 WARN_ON_ONCE(!xprt_lock_connect(xprt, task, transport)); 2523 2524 if (transport->sock != NULL) { 2525 dprintk("RPC: xs_connect delayed xprt %p for %lu " 2526 "seconds\n", 2527 xprt, xprt->reestablish_timeout / HZ); 2528 2529 /* Start by resetting any existing state */ 2530 xs_reset_transport(transport); 2531 2532 delay = xs_reconnect_delay(xprt); 2533 xs_reconnect_backoff(xprt); 2534 2535 } else 2536 dprintk("RPC: xs_connect scheduled xprt %p\n", xprt); 2537 2538 queue_delayed_work(xprtiod_workqueue, 2539 &transport->connect_worker, 2540 delay); 2541 } 2542 2543 /** 2544 * xs_local_print_stats - display AF_LOCAL socket-specifc stats 2545 * @xprt: rpc_xprt struct containing statistics 2546 * @seq: output file 2547 * 2548 */ 2549 static void xs_local_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 2550 { 2551 long idle_time = 0; 2552 2553 if (xprt_connected(xprt)) 2554 idle_time = (long)(jiffies - xprt->last_used) / HZ; 2555 2556 seq_printf(seq, "\txprt:\tlocal %lu %lu %lu %ld %lu %lu %lu " 2557 "%llu %llu %lu %llu %llu\n", 2558 xprt->stat.bind_count, 2559 xprt->stat.connect_count, 2560 xprt->stat.connect_time, 2561 idle_time, 2562 xprt->stat.sends, 2563 xprt->stat.recvs, 2564 xprt->stat.bad_xids, 2565 xprt->stat.req_u, 2566 xprt->stat.bklog_u, 2567 xprt->stat.max_slots, 2568 xprt->stat.sending_u, 2569 xprt->stat.pending_u); 2570 } 2571 2572 /** 2573 * xs_udp_print_stats - display UDP socket-specifc stats 2574 * @xprt: rpc_xprt struct containing statistics 2575 * @seq: output file 2576 * 2577 */ 2578 static void xs_udp_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 2579 { 2580 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2581 2582 seq_printf(seq, "\txprt:\tudp %u %lu %lu %lu %lu %llu %llu " 2583 "%lu %llu %llu\n", 2584 transport->srcport, 2585 xprt->stat.bind_count, 2586 xprt->stat.sends, 2587 xprt->stat.recvs, 2588 xprt->stat.bad_xids, 2589 xprt->stat.req_u, 2590 xprt->stat.bklog_u, 2591 xprt->stat.max_slots, 2592 xprt->stat.sending_u, 2593 xprt->stat.pending_u); 2594 } 2595 2596 /** 2597 * xs_tcp_print_stats - display TCP socket-specifc stats 2598 * @xprt: rpc_xprt struct containing statistics 2599 * @seq: output file 2600 * 2601 */ 2602 static void xs_tcp_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 2603 { 2604 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2605 long idle_time = 0; 2606 2607 if (xprt_connected(xprt)) 2608 idle_time = (long)(jiffies - xprt->last_used) / HZ; 2609 2610 seq_printf(seq, "\txprt:\ttcp %u %lu %lu %lu %ld %lu %lu %lu " 2611 "%llu %llu %lu %llu %llu\n", 2612 transport->srcport, 2613 xprt->stat.bind_count, 2614 xprt->stat.connect_count, 2615 xprt->stat.connect_time, 2616 idle_time, 2617 xprt->stat.sends, 2618 xprt->stat.recvs, 2619 xprt->stat.bad_xids, 2620 xprt->stat.req_u, 2621 xprt->stat.bklog_u, 2622 xprt->stat.max_slots, 2623 xprt->stat.sending_u, 2624 xprt->stat.pending_u); 2625 } 2626 2627 /* 2628 * Allocate a bunch of pages for a scratch buffer for the rpc code. The reason 2629 * we allocate pages instead doing a kmalloc like rpc_malloc is because we want 2630 * to use the server side send routines. 2631 */ 2632 static int bc_malloc(struct rpc_task *task) 2633 { 2634 struct rpc_rqst *rqst = task->tk_rqstp; 2635 size_t size = rqst->rq_callsize; 2636 struct page *page; 2637 struct rpc_buffer *buf; 2638 2639 if (size > PAGE_SIZE - sizeof(struct rpc_buffer)) { 2640 WARN_ONCE(1, "xprtsock: large bc buffer request (size %zu)\n", 2641 size); 2642 return -EINVAL; 2643 } 2644 2645 page = alloc_page(GFP_KERNEL); 2646 if (!page) 2647 return -ENOMEM; 2648 2649 buf = page_address(page); 2650 buf->len = PAGE_SIZE; 2651 2652 rqst->rq_buffer = buf->data; 2653 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize; 2654 return 0; 2655 } 2656 2657 /* 2658 * Free the space allocated in the bc_alloc routine 2659 */ 2660 static void bc_free(struct rpc_task *task) 2661 { 2662 void *buffer = task->tk_rqstp->rq_buffer; 2663 struct rpc_buffer *buf; 2664 2665 buf = container_of(buffer, struct rpc_buffer, data); 2666 free_page((unsigned long)buf); 2667 } 2668 2669 /* 2670 * Use the svc_sock to send the callback. Must be called with svsk->sk_mutex 2671 * held. Borrows heavily from svc_tcp_sendto and xs_tcp_send_request. 2672 */ 2673 static int bc_sendto(struct rpc_rqst *req) 2674 { 2675 int len; 2676 struct xdr_buf *xbufp = &req->rq_snd_buf; 2677 struct rpc_xprt *xprt = req->rq_xprt; 2678 struct sock_xprt *transport = 2679 container_of(xprt, struct sock_xprt, xprt); 2680 struct socket *sock = transport->sock; 2681 unsigned long headoff; 2682 unsigned long tailoff; 2683 2684 xs_encode_stream_record_marker(xbufp); 2685 2686 tailoff = (unsigned long)xbufp->tail[0].iov_base & ~PAGE_MASK; 2687 headoff = (unsigned long)xbufp->head[0].iov_base & ~PAGE_MASK; 2688 len = svc_send_common(sock, xbufp, 2689 virt_to_page(xbufp->head[0].iov_base), headoff, 2690 xbufp->tail[0].iov_base, tailoff); 2691 2692 if (len != xbufp->len) { 2693 printk(KERN_NOTICE "Error sending entire callback!\n"); 2694 len = -EAGAIN; 2695 } 2696 2697 return len; 2698 } 2699 2700 /* 2701 * The send routine. Borrows from svc_send 2702 */ 2703 static int bc_send_request(struct rpc_task *task) 2704 { 2705 struct rpc_rqst *req = task->tk_rqstp; 2706 struct svc_xprt *xprt; 2707 int len; 2708 2709 dprintk("sending request with xid: %08x\n", ntohl(req->rq_xid)); 2710 /* 2711 * Get the server socket associated with this callback xprt 2712 */ 2713 xprt = req->rq_xprt->bc_xprt; 2714 2715 /* 2716 * Grab the mutex to serialize data as the connection is shared 2717 * with the fore channel 2718 */ 2719 if (!mutex_trylock(&xprt->xpt_mutex)) { 2720 rpc_sleep_on(&xprt->xpt_bc_pending, task, NULL); 2721 if (!mutex_trylock(&xprt->xpt_mutex)) 2722 return -EAGAIN; 2723 rpc_wake_up_queued_task(&xprt->xpt_bc_pending, task); 2724 } 2725 if (test_bit(XPT_DEAD, &xprt->xpt_flags)) 2726 len = -ENOTCONN; 2727 else 2728 len = bc_sendto(req); 2729 mutex_unlock(&xprt->xpt_mutex); 2730 2731 if (len > 0) 2732 len = 0; 2733 2734 return len; 2735 } 2736 2737 /* 2738 * The close routine. Since this is client initiated, we do nothing 2739 */ 2740 2741 static void bc_close(struct rpc_xprt *xprt) 2742 { 2743 } 2744 2745 /* 2746 * The xprt destroy routine. Again, because this connection is client 2747 * initiated, we do nothing 2748 */ 2749 2750 static void bc_destroy(struct rpc_xprt *xprt) 2751 { 2752 dprintk("RPC: bc_destroy xprt %p\n", xprt); 2753 2754 xs_xprt_free(xprt); 2755 module_put(THIS_MODULE); 2756 } 2757 2758 static const struct rpc_xprt_ops xs_local_ops = { 2759 .reserve_xprt = xprt_reserve_xprt, 2760 .release_xprt = xs_tcp_release_xprt, 2761 .alloc_slot = xprt_alloc_slot, 2762 .rpcbind = xs_local_rpcbind, 2763 .set_port = xs_local_set_port, 2764 .connect = xs_local_connect, 2765 .buf_alloc = rpc_malloc, 2766 .buf_free = rpc_free, 2767 .send_request = xs_local_send_request, 2768 .set_retrans_timeout = xprt_set_retrans_timeout_def, 2769 .close = xs_close, 2770 .destroy = xs_destroy, 2771 .print_stats = xs_local_print_stats, 2772 .enable_swap = xs_enable_swap, 2773 .disable_swap = xs_disable_swap, 2774 }; 2775 2776 static const struct rpc_xprt_ops xs_udp_ops = { 2777 .set_buffer_size = xs_udp_set_buffer_size, 2778 .reserve_xprt = xprt_reserve_xprt_cong, 2779 .release_xprt = xprt_release_xprt_cong, 2780 .alloc_slot = xprt_alloc_slot, 2781 .rpcbind = rpcb_getport_async, 2782 .set_port = xs_set_port, 2783 .connect = xs_connect, 2784 .buf_alloc = rpc_malloc, 2785 .buf_free = rpc_free, 2786 .send_request = xs_udp_send_request, 2787 .set_retrans_timeout = xprt_set_retrans_timeout_rtt, 2788 .timer = xs_udp_timer, 2789 .release_request = xprt_release_rqst_cong, 2790 .close = xs_close, 2791 .destroy = xs_destroy, 2792 .print_stats = xs_udp_print_stats, 2793 .enable_swap = xs_enable_swap, 2794 .disable_swap = xs_disable_swap, 2795 .inject_disconnect = xs_inject_disconnect, 2796 }; 2797 2798 static const struct rpc_xprt_ops xs_tcp_ops = { 2799 .reserve_xprt = xprt_reserve_xprt, 2800 .release_xprt = xs_tcp_release_xprt, 2801 .alloc_slot = xprt_lock_and_alloc_slot, 2802 .rpcbind = rpcb_getport_async, 2803 .set_port = xs_set_port, 2804 .connect = xs_connect, 2805 .buf_alloc = rpc_malloc, 2806 .buf_free = rpc_free, 2807 .send_request = xs_tcp_send_request, 2808 .set_retrans_timeout = xprt_set_retrans_timeout_def, 2809 .close = xs_tcp_shutdown, 2810 .destroy = xs_destroy, 2811 .set_connect_timeout = xs_tcp_set_connect_timeout, 2812 .print_stats = xs_tcp_print_stats, 2813 .enable_swap = xs_enable_swap, 2814 .disable_swap = xs_disable_swap, 2815 .inject_disconnect = xs_inject_disconnect, 2816 #ifdef CONFIG_SUNRPC_BACKCHANNEL 2817 .bc_setup = xprt_setup_bc, 2818 .bc_up = xs_tcp_bc_up, 2819 .bc_maxpayload = xs_tcp_bc_maxpayload, 2820 .bc_free_rqst = xprt_free_bc_rqst, 2821 .bc_destroy = xprt_destroy_bc, 2822 #endif 2823 }; 2824 2825 /* 2826 * The rpc_xprt_ops for the server backchannel 2827 */ 2828 2829 static const struct rpc_xprt_ops bc_tcp_ops = { 2830 .reserve_xprt = xprt_reserve_xprt, 2831 .release_xprt = xprt_release_xprt, 2832 .alloc_slot = xprt_alloc_slot, 2833 .buf_alloc = bc_malloc, 2834 .buf_free = bc_free, 2835 .send_request = bc_send_request, 2836 .set_retrans_timeout = xprt_set_retrans_timeout_def, 2837 .close = bc_close, 2838 .destroy = bc_destroy, 2839 .print_stats = xs_tcp_print_stats, 2840 .enable_swap = xs_enable_swap, 2841 .disable_swap = xs_disable_swap, 2842 .inject_disconnect = xs_inject_disconnect, 2843 }; 2844 2845 static int xs_init_anyaddr(const int family, struct sockaddr *sap) 2846 { 2847 static const struct sockaddr_in sin = { 2848 .sin_family = AF_INET, 2849 .sin_addr.s_addr = htonl(INADDR_ANY), 2850 }; 2851 static const struct sockaddr_in6 sin6 = { 2852 .sin6_family = AF_INET6, 2853 .sin6_addr = IN6ADDR_ANY_INIT, 2854 }; 2855 2856 switch (family) { 2857 case AF_LOCAL: 2858 break; 2859 case AF_INET: 2860 memcpy(sap, &sin, sizeof(sin)); 2861 break; 2862 case AF_INET6: 2863 memcpy(sap, &sin6, sizeof(sin6)); 2864 break; 2865 default: 2866 dprintk("RPC: %s: Bad address family\n", __func__); 2867 return -EAFNOSUPPORT; 2868 } 2869 return 0; 2870 } 2871 2872 static struct rpc_xprt *xs_setup_xprt(struct xprt_create *args, 2873 unsigned int slot_table_size, 2874 unsigned int max_slot_table_size) 2875 { 2876 struct rpc_xprt *xprt; 2877 struct sock_xprt *new; 2878 2879 if (args->addrlen > sizeof(xprt->addr)) { 2880 dprintk("RPC: xs_setup_xprt: address too large\n"); 2881 return ERR_PTR(-EBADF); 2882 } 2883 2884 xprt = xprt_alloc(args->net, sizeof(*new), slot_table_size, 2885 max_slot_table_size); 2886 if (xprt == NULL) { 2887 dprintk("RPC: xs_setup_xprt: couldn't allocate " 2888 "rpc_xprt\n"); 2889 return ERR_PTR(-ENOMEM); 2890 } 2891 2892 new = container_of(xprt, struct sock_xprt, xprt); 2893 mutex_init(&new->recv_mutex); 2894 memcpy(&xprt->addr, args->dstaddr, args->addrlen); 2895 xprt->addrlen = args->addrlen; 2896 if (args->srcaddr) 2897 memcpy(&new->srcaddr, args->srcaddr, args->addrlen); 2898 else { 2899 int err; 2900 err = xs_init_anyaddr(args->dstaddr->sa_family, 2901 (struct sockaddr *)&new->srcaddr); 2902 if (err != 0) { 2903 xprt_free(xprt); 2904 return ERR_PTR(err); 2905 } 2906 } 2907 2908 return xprt; 2909 } 2910 2911 static const struct rpc_timeout xs_local_default_timeout = { 2912 .to_initval = 10 * HZ, 2913 .to_maxval = 10 * HZ, 2914 .to_retries = 2, 2915 }; 2916 2917 /** 2918 * xs_setup_local - Set up transport to use an AF_LOCAL socket 2919 * @args: rpc transport creation arguments 2920 * 2921 * AF_LOCAL is a "tpi_cots_ord" transport, just like TCP 2922 */ 2923 static struct rpc_xprt *xs_setup_local(struct xprt_create *args) 2924 { 2925 struct sockaddr_un *sun = (struct sockaddr_un *)args->dstaddr; 2926 struct sock_xprt *transport; 2927 struct rpc_xprt *xprt; 2928 struct rpc_xprt *ret; 2929 2930 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries, 2931 xprt_max_tcp_slot_table_entries); 2932 if (IS_ERR(xprt)) 2933 return xprt; 2934 transport = container_of(xprt, struct sock_xprt, xprt); 2935 2936 xprt->prot = 0; 2937 xprt->tsh_size = sizeof(rpc_fraghdr) / sizeof(u32); 2938 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE; 2939 2940 xprt->bind_timeout = XS_BIND_TO; 2941 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 2942 xprt->idle_timeout = XS_IDLE_DISC_TO; 2943 2944 xprt->ops = &xs_local_ops; 2945 xprt->timeout = &xs_local_default_timeout; 2946 2947 INIT_WORK(&transport->recv_worker, xs_local_data_receive_workfn); 2948 INIT_DELAYED_WORK(&transport->connect_worker, 2949 xs_dummy_setup_socket); 2950 2951 switch (sun->sun_family) { 2952 case AF_LOCAL: 2953 if (sun->sun_path[0] != '/') { 2954 dprintk("RPC: bad AF_LOCAL address: %s\n", 2955 sun->sun_path); 2956 ret = ERR_PTR(-EINVAL); 2957 goto out_err; 2958 } 2959 xprt_set_bound(xprt); 2960 xs_format_peer_addresses(xprt, "local", RPCBIND_NETID_LOCAL); 2961 ret = ERR_PTR(xs_local_setup_socket(transport)); 2962 if (ret) 2963 goto out_err; 2964 break; 2965 default: 2966 ret = ERR_PTR(-EAFNOSUPPORT); 2967 goto out_err; 2968 } 2969 2970 dprintk("RPC: set up xprt to %s via AF_LOCAL\n", 2971 xprt->address_strings[RPC_DISPLAY_ADDR]); 2972 2973 if (try_module_get(THIS_MODULE)) 2974 return xprt; 2975 ret = ERR_PTR(-EINVAL); 2976 out_err: 2977 xs_xprt_free(xprt); 2978 return ret; 2979 } 2980 2981 static const struct rpc_timeout xs_udp_default_timeout = { 2982 .to_initval = 5 * HZ, 2983 .to_maxval = 30 * HZ, 2984 .to_increment = 5 * HZ, 2985 .to_retries = 5, 2986 }; 2987 2988 /** 2989 * xs_setup_udp - Set up transport to use a UDP socket 2990 * @args: rpc transport creation arguments 2991 * 2992 */ 2993 static struct rpc_xprt *xs_setup_udp(struct xprt_create *args) 2994 { 2995 struct sockaddr *addr = args->dstaddr; 2996 struct rpc_xprt *xprt; 2997 struct sock_xprt *transport; 2998 struct rpc_xprt *ret; 2999 3000 xprt = xs_setup_xprt(args, xprt_udp_slot_table_entries, 3001 xprt_udp_slot_table_entries); 3002 if (IS_ERR(xprt)) 3003 return xprt; 3004 transport = container_of(xprt, struct sock_xprt, xprt); 3005 3006 xprt->prot = IPPROTO_UDP; 3007 xprt->tsh_size = 0; 3008 /* XXX: header size can vary due to auth type, IPv6, etc. */ 3009 xprt->max_payload = (1U << 16) - (MAX_HEADER << 3); 3010 3011 xprt->bind_timeout = XS_BIND_TO; 3012 xprt->reestablish_timeout = XS_UDP_REEST_TO; 3013 xprt->idle_timeout = XS_IDLE_DISC_TO; 3014 3015 xprt->ops = &xs_udp_ops; 3016 3017 xprt->timeout = &xs_udp_default_timeout; 3018 3019 INIT_WORK(&transport->recv_worker, xs_udp_data_receive_workfn); 3020 INIT_DELAYED_WORK(&transport->connect_worker, xs_udp_setup_socket); 3021 3022 switch (addr->sa_family) { 3023 case AF_INET: 3024 if (((struct sockaddr_in *)addr)->sin_port != htons(0)) 3025 xprt_set_bound(xprt); 3026 3027 xs_format_peer_addresses(xprt, "udp", RPCBIND_NETID_UDP); 3028 break; 3029 case AF_INET6: 3030 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0)) 3031 xprt_set_bound(xprt); 3032 3033 xs_format_peer_addresses(xprt, "udp", RPCBIND_NETID_UDP6); 3034 break; 3035 default: 3036 ret = ERR_PTR(-EAFNOSUPPORT); 3037 goto out_err; 3038 } 3039 3040 if (xprt_bound(xprt)) 3041 dprintk("RPC: set up xprt to %s (port %s) via %s\n", 3042 xprt->address_strings[RPC_DISPLAY_ADDR], 3043 xprt->address_strings[RPC_DISPLAY_PORT], 3044 xprt->address_strings[RPC_DISPLAY_PROTO]); 3045 else 3046 dprintk("RPC: set up xprt to %s (autobind) via %s\n", 3047 xprt->address_strings[RPC_DISPLAY_ADDR], 3048 xprt->address_strings[RPC_DISPLAY_PROTO]); 3049 3050 if (try_module_get(THIS_MODULE)) 3051 return xprt; 3052 ret = ERR_PTR(-EINVAL); 3053 out_err: 3054 xs_xprt_free(xprt); 3055 return ret; 3056 } 3057 3058 static const struct rpc_timeout xs_tcp_default_timeout = { 3059 .to_initval = 60 * HZ, 3060 .to_maxval = 60 * HZ, 3061 .to_retries = 2, 3062 }; 3063 3064 /** 3065 * xs_setup_tcp - Set up transport to use a TCP socket 3066 * @args: rpc transport creation arguments 3067 * 3068 */ 3069 static struct rpc_xprt *xs_setup_tcp(struct xprt_create *args) 3070 { 3071 struct sockaddr *addr = args->dstaddr; 3072 struct rpc_xprt *xprt; 3073 struct sock_xprt *transport; 3074 struct rpc_xprt *ret; 3075 unsigned int max_slot_table_size = xprt_max_tcp_slot_table_entries; 3076 3077 if (args->flags & XPRT_CREATE_INFINITE_SLOTS) 3078 max_slot_table_size = RPC_MAX_SLOT_TABLE_LIMIT; 3079 3080 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries, 3081 max_slot_table_size); 3082 if (IS_ERR(xprt)) 3083 return xprt; 3084 transport = container_of(xprt, struct sock_xprt, xprt); 3085 3086 xprt->prot = IPPROTO_TCP; 3087 xprt->tsh_size = sizeof(rpc_fraghdr) / sizeof(u32); 3088 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE; 3089 3090 xprt->bind_timeout = XS_BIND_TO; 3091 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 3092 xprt->idle_timeout = XS_IDLE_DISC_TO; 3093 3094 xprt->ops = &xs_tcp_ops; 3095 xprt->timeout = &xs_tcp_default_timeout; 3096 3097 xprt->max_reconnect_timeout = xprt->timeout->to_maxval; 3098 xprt->connect_timeout = xprt->timeout->to_initval * 3099 (xprt->timeout->to_retries + 1); 3100 3101 INIT_WORK(&transport->recv_worker, xs_tcp_data_receive_workfn); 3102 INIT_DELAYED_WORK(&transport->connect_worker, xs_tcp_setup_socket); 3103 3104 switch (addr->sa_family) { 3105 case AF_INET: 3106 if (((struct sockaddr_in *)addr)->sin_port != htons(0)) 3107 xprt_set_bound(xprt); 3108 3109 xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP); 3110 break; 3111 case AF_INET6: 3112 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0)) 3113 xprt_set_bound(xprt); 3114 3115 xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP6); 3116 break; 3117 default: 3118 ret = ERR_PTR(-EAFNOSUPPORT); 3119 goto out_err; 3120 } 3121 3122 if (xprt_bound(xprt)) 3123 dprintk("RPC: set up xprt to %s (port %s) via %s\n", 3124 xprt->address_strings[RPC_DISPLAY_ADDR], 3125 xprt->address_strings[RPC_DISPLAY_PORT], 3126 xprt->address_strings[RPC_DISPLAY_PROTO]); 3127 else 3128 dprintk("RPC: set up xprt to %s (autobind) via %s\n", 3129 xprt->address_strings[RPC_DISPLAY_ADDR], 3130 xprt->address_strings[RPC_DISPLAY_PROTO]); 3131 3132 if (try_module_get(THIS_MODULE)) 3133 return xprt; 3134 ret = ERR_PTR(-EINVAL); 3135 out_err: 3136 xs_xprt_free(xprt); 3137 return ret; 3138 } 3139 3140 /** 3141 * xs_setup_bc_tcp - Set up transport to use a TCP backchannel socket 3142 * @args: rpc transport creation arguments 3143 * 3144 */ 3145 static struct rpc_xprt *xs_setup_bc_tcp(struct xprt_create *args) 3146 { 3147 struct sockaddr *addr = args->dstaddr; 3148 struct rpc_xprt *xprt; 3149 struct sock_xprt *transport; 3150 struct svc_sock *bc_sock; 3151 struct rpc_xprt *ret; 3152 3153 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries, 3154 xprt_tcp_slot_table_entries); 3155 if (IS_ERR(xprt)) 3156 return xprt; 3157 transport = container_of(xprt, struct sock_xprt, xprt); 3158 3159 xprt->prot = IPPROTO_TCP; 3160 xprt->tsh_size = sizeof(rpc_fraghdr) / sizeof(u32); 3161 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE; 3162 xprt->timeout = &xs_tcp_default_timeout; 3163 3164 /* backchannel */ 3165 xprt_set_bound(xprt); 3166 xprt->bind_timeout = 0; 3167 xprt->reestablish_timeout = 0; 3168 xprt->idle_timeout = 0; 3169 3170 xprt->ops = &bc_tcp_ops; 3171 3172 switch (addr->sa_family) { 3173 case AF_INET: 3174 xs_format_peer_addresses(xprt, "tcp", 3175 RPCBIND_NETID_TCP); 3176 break; 3177 case AF_INET6: 3178 xs_format_peer_addresses(xprt, "tcp", 3179 RPCBIND_NETID_TCP6); 3180 break; 3181 default: 3182 ret = ERR_PTR(-EAFNOSUPPORT); 3183 goto out_err; 3184 } 3185 3186 dprintk("RPC: set up xprt to %s (port %s) via %s\n", 3187 xprt->address_strings[RPC_DISPLAY_ADDR], 3188 xprt->address_strings[RPC_DISPLAY_PORT], 3189 xprt->address_strings[RPC_DISPLAY_PROTO]); 3190 3191 /* 3192 * Once we've associated a backchannel xprt with a connection, 3193 * we want to keep it around as long as the connection lasts, 3194 * in case we need to start using it for a backchannel again; 3195 * this reference won't be dropped until bc_xprt is destroyed. 3196 */ 3197 xprt_get(xprt); 3198 args->bc_xprt->xpt_bc_xprt = xprt; 3199 xprt->bc_xprt = args->bc_xprt; 3200 bc_sock = container_of(args->bc_xprt, struct svc_sock, sk_xprt); 3201 transport->sock = bc_sock->sk_sock; 3202 transport->inet = bc_sock->sk_sk; 3203 3204 /* 3205 * Since we don't want connections for the backchannel, we set 3206 * the xprt status to connected 3207 */ 3208 xprt_set_connected(xprt); 3209 3210 if (try_module_get(THIS_MODULE)) 3211 return xprt; 3212 3213 args->bc_xprt->xpt_bc_xprt = NULL; 3214 args->bc_xprt->xpt_bc_xps = NULL; 3215 xprt_put(xprt); 3216 ret = ERR_PTR(-EINVAL); 3217 out_err: 3218 xs_xprt_free(xprt); 3219 return ret; 3220 } 3221 3222 static struct xprt_class xs_local_transport = { 3223 .list = LIST_HEAD_INIT(xs_local_transport.list), 3224 .name = "named UNIX socket", 3225 .owner = THIS_MODULE, 3226 .ident = XPRT_TRANSPORT_LOCAL, 3227 .setup = xs_setup_local, 3228 }; 3229 3230 static struct xprt_class xs_udp_transport = { 3231 .list = LIST_HEAD_INIT(xs_udp_transport.list), 3232 .name = "udp", 3233 .owner = THIS_MODULE, 3234 .ident = XPRT_TRANSPORT_UDP, 3235 .setup = xs_setup_udp, 3236 }; 3237 3238 static struct xprt_class xs_tcp_transport = { 3239 .list = LIST_HEAD_INIT(xs_tcp_transport.list), 3240 .name = "tcp", 3241 .owner = THIS_MODULE, 3242 .ident = XPRT_TRANSPORT_TCP, 3243 .setup = xs_setup_tcp, 3244 }; 3245 3246 static struct xprt_class xs_bc_tcp_transport = { 3247 .list = LIST_HEAD_INIT(xs_bc_tcp_transport.list), 3248 .name = "tcp NFSv4.1 backchannel", 3249 .owner = THIS_MODULE, 3250 .ident = XPRT_TRANSPORT_BC_TCP, 3251 .setup = xs_setup_bc_tcp, 3252 }; 3253 3254 /** 3255 * init_socket_xprt - set up xprtsock's sysctls, register with RPC client 3256 * 3257 */ 3258 int init_socket_xprt(void) 3259 { 3260 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 3261 if (!sunrpc_table_header) 3262 sunrpc_table_header = register_sysctl_table(sunrpc_table); 3263 #endif 3264 3265 xprt_register_transport(&xs_local_transport); 3266 xprt_register_transport(&xs_udp_transport); 3267 xprt_register_transport(&xs_tcp_transport); 3268 xprt_register_transport(&xs_bc_tcp_transport); 3269 3270 return 0; 3271 } 3272 3273 /** 3274 * cleanup_socket_xprt - remove xprtsock's sysctls, unregister 3275 * 3276 */ 3277 void cleanup_socket_xprt(void) 3278 { 3279 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 3280 if (sunrpc_table_header) { 3281 unregister_sysctl_table(sunrpc_table_header); 3282 sunrpc_table_header = NULL; 3283 } 3284 #endif 3285 3286 xprt_unregister_transport(&xs_local_transport); 3287 xprt_unregister_transport(&xs_udp_transport); 3288 xprt_unregister_transport(&xs_tcp_transport); 3289 xprt_unregister_transport(&xs_bc_tcp_transport); 3290 } 3291 3292 static int param_set_uint_minmax(const char *val, 3293 const struct kernel_param *kp, 3294 unsigned int min, unsigned int max) 3295 { 3296 unsigned int num; 3297 int ret; 3298 3299 if (!val) 3300 return -EINVAL; 3301 ret = kstrtouint(val, 0, &num); 3302 if (ret) 3303 return ret; 3304 if (num < min || num > max) 3305 return -EINVAL; 3306 *((unsigned int *)kp->arg) = num; 3307 return 0; 3308 } 3309 3310 static int param_set_portnr(const char *val, const struct kernel_param *kp) 3311 { 3312 if (kp->arg == &xprt_min_resvport) 3313 return param_set_uint_minmax(val, kp, 3314 RPC_MIN_RESVPORT, 3315 xprt_max_resvport); 3316 return param_set_uint_minmax(val, kp, 3317 xprt_min_resvport, 3318 RPC_MAX_RESVPORT); 3319 } 3320 3321 static const struct kernel_param_ops param_ops_portnr = { 3322 .set = param_set_portnr, 3323 .get = param_get_uint, 3324 }; 3325 3326 #define param_check_portnr(name, p) \ 3327 __param_check(name, p, unsigned int); 3328 3329 module_param_named(min_resvport, xprt_min_resvport, portnr, 0644); 3330 module_param_named(max_resvport, xprt_max_resvport, portnr, 0644); 3331 3332 static int param_set_slot_table_size(const char *val, 3333 const struct kernel_param *kp) 3334 { 3335 return param_set_uint_minmax(val, kp, 3336 RPC_MIN_SLOT_TABLE, 3337 RPC_MAX_SLOT_TABLE); 3338 } 3339 3340 static const struct kernel_param_ops param_ops_slot_table_size = { 3341 .set = param_set_slot_table_size, 3342 .get = param_get_uint, 3343 }; 3344 3345 #define param_check_slot_table_size(name, p) \ 3346 __param_check(name, p, unsigned int); 3347 3348 static int param_set_max_slot_table_size(const char *val, 3349 const struct kernel_param *kp) 3350 { 3351 return param_set_uint_minmax(val, kp, 3352 RPC_MIN_SLOT_TABLE, 3353 RPC_MAX_SLOT_TABLE_LIMIT); 3354 } 3355 3356 static const struct kernel_param_ops param_ops_max_slot_table_size = { 3357 .set = param_set_max_slot_table_size, 3358 .get = param_get_uint, 3359 }; 3360 3361 #define param_check_max_slot_table_size(name, p) \ 3362 __param_check(name, p, unsigned int); 3363 3364 module_param_named(tcp_slot_table_entries, xprt_tcp_slot_table_entries, 3365 slot_table_size, 0644); 3366 module_param_named(tcp_max_slot_table_entries, xprt_max_tcp_slot_table_entries, 3367 max_slot_table_size, 0644); 3368 module_param_named(udp_slot_table_entries, xprt_udp_slot_table_entries, 3369 slot_table_size, 0644); 3370 3371