1 /* 2 * linux/net/sunrpc/xprtsock.c 3 * 4 * Client-side transport implementation for sockets. 5 * 6 * TCP callback races fixes (C) 1998 Red Hat 7 * TCP send fixes (C) 1998 Red Hat 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 * 11 * Rewrite of larges part of the code in order to stabilize TCP stuff. 12 * Fix behaviour when socket buffer is full. 13 * (C) 1999 Trond Myklebust <trond.myklebust@fys.uio.no> 14 * 15 * IP socket transport implementation, (C) 2005 Chuck Lever <cel@netapp.com> 16 * 17 * IPv6 support contributed by Gilles Quillard, Bull Open Source, 2005. 18 * <gilles.quillard@bull.net> 19 */ 20 21 #include <linux/types.h> 22 #include <linux/string.h> 23 #include <linux/slab.h> 24 #include <linux/module.h> 25 #include <linux/capability.h> 26 #include <linux/pagemap.h> 27 #include <linux/errno.h> 28 #include <linux/socket.h> 29 #include <linux/in.h> 30 #include <linux/net.h> 31 #include <linux/mm.h> 32 #include <linux/un.h> 33 #include <linux/udp.h> 34 #include <linux/tcp.h> 35 #include <linux/sunrpc/clnt.h> 36 #include <linux/sunrpc/addr.h> 37 #include <linux/sunrpc/sched.h> 38 #include <linux/sunrpc/svcsock.h> 39 #include <linux/sunrpc/xprtsock.h> 40 #include <linux/file.h> 41 #ifdef CONFIG_SUNRPC_BACKCHANNEL 42 #include <linux/sunrpc/bc_xprt.h> 43 #endif 44 45 #include <net/sock.h> 46 #include <net/checksum.h> 47 #include <net/udp.h> 48 #include <net/tcp.h> 49 50 #include <trace/events/sunrpc.h> 51 52 #include "sunrpc.h" 53 54 static void xs_close(struct rpc_xprt *xprt); 55 static void xs_tcp_set_socket_timeouts(struct rpc_xprt *xprt, 56 struct socket *sock); 57 58 /* 59 * xprtsock tunables 60 */ 61 static unsigned int xprt_udp_slot_table_entries = RPC_DEF_SLOT_TABLE; 62 static unsigned int xprt_tcp_slot_table_entries = RPC_MIN_SLOT_TABLE; 63 static unsigned int xprt_max_tcp_slot_table_entries = RPC_MAX_SLOT_TABLE; 64 65 static unsigned int xprt_min_resvport = RPC_DEF_MIN_RESVPORT; 66 static unsigned int xprt_max_resvport = RPC_DEF_MAX_RESVPORT; 67 68 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 69 70 #define XS_TCP_LINGER_TO (15U * HZ) 71 static unsigned int xs_tcp_fin_timeout __read_mostly = XS_TCP_LINGER_TO; 72 73 /* 74 * We can register our own files under /proc/sys/sunrpc by 75 * calling register_sysctl_table() again. The files in that 76 * directory become the union of all files registered there. 77 * 78 * We simply need to make sure that we don't collide with 79 * someone else's file names! 80 */ 81 82 static unsigned int min_slot_table_size = RPC_MIN_SLOT_TABLE; 83 static unsigned int max_slot_table_size = RPC_MAX_SLOT_TABLE; 84 static unsigned int max_tcp_slot_table_limit = RPC_MAX_SLOT_TABLE_LIMIT; 85 static unsigned int xprt_min_resvport_limit = RPC_MIN_RESVPORT; 86 static unsigned int xprt_max_resvport_limit = RPC_MAX_RESVPORT; 87 88 static struct ctl_table_header *sunrpc_table_header; 89 90 /* 91 * FIXME: changing the UDP slot table size should also resize the UDP 92 * socket buffers for existing UDP transports 93 */ 94 static struct ctl_table xs_tunables_table[] = { 95 { 96 .procname = "udp_slot_table_entries", 97 .data = &xprt_udp_slot_table_entries, 98 .maxlen = sizeof(unsigned int), 99 .mode = 0644, 100 .proc_handler = proc_dointvec_minmax, 101 .extra1 = &min_slot_table_size, 102 .extra2 = &max_slot_table_size 103 }, 104 { 105 .procname = "tcp_slot_table_entries", 106 .data = &xprt_tcp_slot_table_entries, 107 .maxlen = sizeof(unsigned int), 108 .mode = 0644, 109 .proc_handler = proc_dointvec_minmax, 110 .extra1 = &min_slot_table_size, 111 .extra2 = &max_slot_table_size 112 }, 113 { 114 .procname = "tcp_max_slot_table_entries", 115 .data = &xprt_max_tcp_slot_table_entries, 116 .maxlen = sizeof(unsigned int), 117 .mode = 0644, 118 .proc_handler = proc_dointvec_minmax, 119 .extra1 = &min_slot_table_size, 120 .extra2 = &max_tcp_slot_table_limit 121 }, 122 { 123 .procname = "min_resvport", 124 .data = &xprt_min_resvport, 125 .maxlen = sizeof(unsigned int), 126 .mode = 0644, 127 .proc_handler = proc_dointvec_minmax, 128 .extra1 = &xprt_min_resvport_limit, 129 .extra2 = &xprt_max_resvport 130 }, 131 { 132 .procname = "max_resvport", 133 .data = &xprt_max_resvport, 134 .maxlen = sizeof(unsigned int), 135 .mode = 0644, 136 .proc_handler = proc_dointvec_minmax, 137 .extra1 = &xprt_min_resvport, 138 .extra2 = &xprt_max_resvport_limit 139 }, 140 { 141 .procname = "tcp_fin_timeout", 142 .data = &xs_tcp_fin_timeout, 143 .maxlen = sizeof(xs_tcp_fin_timeout), 144 .mode = 0644, 145 .proc_handler = proc_dointvec_jiffies, 146 }, 147 { }, 148 }; 149 150 static struct ctl_table sunrpc_table[] = { 151 { 152 .procname = "sunrpc", 153 .mode = 0555, 154 .child = xs_tunables_table 155 }, 156 { }, 157 }; 158 159 #endif 160 161 /* 162 * Wait duration for a reply from the RPC portmapper. 163 */ 164 #define XS_BIND_TO (60U * HZ) 165 166 /* 167 * Delay if a UDP socket connect error occurs. This is most likely some 168 * kind of resource problem on the local host. 169 */ 170 #define XS_UDP_REEST_TO (2U * HZ) 171 172 /* 173 * The reestablish timeout allows clients to delay for a bit before attempting 174 * to reconnect to a server that just dropped our connection. 175 * 176 * We implement an exponential backoff when trying to reestablish a TCP 177 * transport connection with the server. Some servers like to drop a TCP 178 * connection when they are overworked, so we start with a short timeout and 179 * increase over time if the server is down or not responding. 180 */ 181 #define XS_TCP_INIT_REEST_TO (3U * HZ) 182 183 /* 184 * TCP idle timeout; client drops the transport socket if it is idle 185 * for this long. Note that we also timeout UDP sockets to prevent 186 * holding port numbers when there is no RPC traffic. 187 */ 188 #define XS_IDLE_DISC_TO (5U * 60 * HZ) 189 190 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 191 # undef RPC_DEBUG_DATA 192 # define RPCDBG_FACILITY RPCDBG_TRANS 193 #endif 194 195 #ifdef RPC_DEBUG_DATA 196 static void xs_pktdump(char *msg, u32 *packet, unsigned int count) 197 { 198 u8 *buf = (u8 *) packet; 199 int j; 200 201 dprintk("RPC: %s\n", msg); 202 for (j = 0; j < count && j < 128; j += 4) { 203 if (!(j & 31)) { 204 if (j) 205 dprintk("\n"); 206 dprintk("0x%04x ", j); 207 } 208 dprintk("%02x%02x%02x%02x ", 209 buf[j], buf[j+1], buf[j+2], buf[j+3]); 210 } 211 dprintk("\n"); 212 } 213 #else 214 static inline void xs_pktdump(char *msg, u32 *packet, unsigned int count) 215 { 216 /* NOP */ 217 } 218 #endif 219 220 static inline struct rpc_xprt *xprt_from_sock(struct sock *sk) 221 { 222 return (struct rpc_xprt *) sk->sk_user_data; 223 } 224 225 static inline struct sockaddr *xs_addr(struct rpc_xprt *xprt) 226 { 227 return (struct sockaddr *) &xprt->addr; 228 } 229 230 static inline struct sockaddr_un *xs_addr_un(struct rpc_xprt *xprt) 231 { 232 return (struct sockaddr_un *) &xprt->addr; 233 } 234 235 static inline struct sockaddr_in *xs_addr_in(struct rpc_xprt *xprt) 236 { 237 return (struct sockaddr_in *) &xprt->addr; 238 } 239 240 static inline struct sockaddr_in6 *xs_addr_in6(struct rpc_xprt *xprt) 241 { 242 return (struct sockaddr_in6 *) &xprt->addr; 243 } 244 245 static void xs_format_common_peer_addresses(struct rpc_xprt *xprt) 246 { 247 struct sockaddr *sap = xs_addr(xprt); 248 struct sockaddr_in6 *sin6; 249 struct sockaddr_in *sin; 250 struct sockaddr_un *sun; 251 char buf[128]; 252 253 switch (sap->sa_family) { 254 case AF_LOCAL: 255 sun = xs_addr_un(xprt); 256 strlcpy(buf, sun->sun_path, sizeof(buf)); 257 xprt->address_strings[RPC_DISPLAY_ADDR] = 258 kstrdup(buf, GFP_KERNEL); 259 break; 260 case AF_INET: 261 (void)rpc_ntop(sap, buf, sizeof(buf)); 262 xprt->address_strings[RPC_DISPLAY_ADDR] = 263 kstrdup(buf, GFP_KERNEL); 264 sin = xs_addr_in(xprt); 265 snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr)); 266 break; 267 case AF_INET6: 268 (void)rpc_ntop(sap, buf, sizeof(buf)); 269 xprt->address_strings[RPC_DISPLAY_ADDR] = 270 kstrdup(buf, GFP_KERNEL); 271 sin6 = xs_addr_in6(xprt); 272 snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr); 273 break; 274 default: 275 BUG(); 276 } 277 278 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL); 279 } 280 281 static void xs_format_common_peer_ports(struct rpc_xprt *xprt) 282 { 283 struct sockaddr *sap = xs_addr(xprt); 284 char buf[128]; 285 286 snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap)); 287 xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL); 288 289 snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap)); 290 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL); 291 } 292 293 static void xs_format_peer_addresses(struct rpc_xprt *xprt, 294 const char *protocol, 295 const char *netid) 296 { 297 xprt->address_strings[RPC_DISPLAY_PROTO] = protocol; 298 xprt->address_strings[RPC_DISPLAY_NETID] = netid; 299 xs_format_common_peer_addresses(xprt); 300 xs_format_common_peer_ports(xprt); 301 } 302 303 static void xs_update_peer_port(struct rpc_xprt *xprt) 304 { 305 kfree(xprt->address_strings[RPC_DISPLAY_HEX_PORT]); 306 kfree(xprt->address_strings[RPC_DISPLAY_PORT]); 307 308 xs_format_common_peer_ports(xprt); 309 } 310 311 static void xs_free_peer_addresses(struct rpc_xprt *xprt) 312 { 313 unsigned int i; 314 315 for (i = 0; i < RPC_DISPLAY_MAX; i++) 316 switch (i) { 317 case RPC_DISPLAY_PROTO: 318 case RPC_DISPLAY_NETID: 319 continue; 320 default: 321 kfree(xprt->address_strings[i]); 322 } 323 } 324 325 #define XS_SENDMSG_FLAGS (MSG_DONTWAIT | MSG_NOSIGNAL) 326 327 static int xs_send_kvec(struct socket *sock, struct sockaddr *addr, int addrlen, struct kvec *vec, unsigned int base, int more) 328 { 329 struct msghdr msg = { 330 .msg_name = addr, 331 .msg_namelen = addrlen, 332 .msg_flags = XS_SENDMSG_FLAGS | (more ? MSG_MORE : 0), 333 }; 334 struct kvec iov = { 335 .iov_base = vec->iov_base + base, 336 .iov_len = vec->iov_len - base, 337 }; 338 339 if (iov.iov_len != 0) 340 return kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len); 341 return kernel_sendmsg(sock, &msg, NULL, 0, 0); 342 } 343 344 static int xs_send_pagedata(struct socket *sock, struct xdr_buf *xdr, unsigned int base, int more, bool zerocopy, int *sent_p) 345 { 346 ssize_t (*do_sendpage)(struct socket *sock, struct page *page, 347 int offset, size_t size, int flags); 348 struct page **ppage; 349 unsigned int remainder; 350 int err; 351 352 remainder = xdr->page_len - base; 353 base += xdr->page_base; 354 ppage = xdr->pages + (base >> PAGE_SHIFT); 355 base &= ~PAGE_MASK; 356 do_sendpage = sock->ops->sendpage; 357 if (!zerocopy) 358 do_sendpage = sock_no_sendpage; 359 for(;;) { 360 unsigned int len = min_t(unsigned int, PAGE_SIZE - base, remainder); 361 int flags = XS_SENDMSG_FLAGS; 362 363 remainder -= len; 364 if (more) 365 flags |= MSG_MORE; 366 if (remainder != 0) 367 flags |= MSG_SENDPAGE_NOTLAST | MSG_MORE; 368 err = do_sendpage(sock, *ppage, base, len, flags); 369 if (remainder == 0 || err != len) 370 break; 371 *sent_p += err; 372 ppage++; 373 base = 0; 374 } 375 if (err > 0) { 376 *sent_p += err; 377 err = 0; 378 } 379 return err; 380 } 381 382 /** 383 * xs_sendpages - write pages directly to a socket 384 * @sock: socket to send on 385 * @addr: UDP only -- address of destination 386 * @addrlen: UDP only -- length of destination address 387 * @xdr: buffer containing this request 388 * @base: starting position in the buffer 389 * @zerocopy: true if it is safe to use sendpage() 390 * @sent_p: return the total number of bytes successfully queued for sending 391 * 392 */ 393 static int xs_sendpages(struct socket *sock, struct sockaddr *addr, int addrlen, struct xdr_buf *xdr, unsigned int base, bool zerocopy, int *sent_p) 394 { 395 unsigned int remainder = xdr->len - base; 396 int err = 0; 397 int sent = 0; 398 399 if (unlikely(!sock)) 400 return -ENOTSOCK; 401 402 if (base != 0) { 403 addr = NULL; 404 addrlen = 0; 405 } 406 407 if (base < xdr->head[0].iov_len || addr != NULL) { 408 unsigned int len = xdr->head[0].iov_len - base; 409 remainder -= len; 410 err = xs_send_kvec(sock, addr, addrlen, &xdr->head[0], base, remainder != 0); 411 if (remainder == 0 || err != len) 412 goto out; 413 *sent_p += err; 414 base = 0; 415 } else 416 base -= xdr->head[0].iov_len; 417 418 if (base < xdr->page_len) { 419 unsigned int len = xdr->page_len - base; 420 remainder -= len; 421 err = xs_send_pagedata(sock, xdr, base, remainder != 0, zerocopy, &sent); 422 *sent_p += sent; 423 if (remainder == 0 || sent != len) 424 goto out; 425 base = 0; 426 } else 427 base -= xdr->page_len; 428 429 if (base >= xdr->tail[0].iov_len) 430 return 0; 431 err = xs_send_kvec(sock, NULL, 0, &xdr->tail[0], base, 0); 432 out: 433 if (err > 0) { 434 *sent_p += err; 435 err = 0; 436 } 437 return err; 438 } 439 440 static void xs_nospace_callback(struct rpc_task *task) 441 { 442 struct sock_xprt *transport = container_of(task->tk_rqstp->rq_xprt, struct sock_xprt, xprt); 443 444 transport->inet->sk_write_pending--; 445 } 446 447 /** 448 * xs_nospace - place task on wait queue if transmit was incomplete 449 * @task: task to put to sleep 450 * 451 */ 452 static int xs_nospace(struct rpc_task *task) 453 { 454 struct rpc_rqst *req = task->tk_rqstp; 455 struct rpc_xprt *xprt = req->rq_xprt; 456 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 457 struct sock *sk = transport->inet; 458 int ret = -EAGAIN; 459 460 dprintk("RPC: %5u xmit incomplete (%u left of %u)\n", 461 task->tk_pid, req->rq_slen - req->rq_bytes_sent, 462 req->rq_slen); 463 464 /* Protect against races with write_space */ 465 spin_lock_bh(&xprt->transport_lock); 466 467 /* Don't race with disconnect */ 468 if (xprt_connected(xprt)) { 469 /* wait for more buffer space */ 470 sk->sk_write_pending++; 471 xprt_wait_for_buffer_space(task, xs_nospace_callback); 472 } else 473 ret = -ENOTCONN; 474 475 spin_unlock_bh(&xprt->transport_lock); 476 477 /* Race breaker in case memory is freed before above code is called */ 478 if (ret == -EAGAIN) { 479 struct socket_wq *wq; 480 481 rcu_read_lock(); 482 wq = rcu_dereference(sk->sk_wq); 483 set_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags); 484 rcu_read_unlock(); 485 486 sk->sk_write_space(sk); 487 } 488 return ret; 489 } 490 491 /* 492 * Construct a stream transport record marker in @buf. 493 */ 494 static inline void xs_encode_stream_record_marker(struct xdr_buf *buf) 495 { 496 u32 reclen = buf->len - sizeof(rpc_fraghdr); 497 rpc_fraghdr *base = buf->head[0].iov_base; 498 *base = cpu_to_be32(RPC_LAST_STREAM_FRAGMENT | reclen); 499 } 500 501 /** 502 * xs_local_send_request - write an RPC request to an AF_LOCAL socket 503 * @task: RPC task that manages the state of an RPC request 504 * 505 * Return values: 506 * 0: The request has been sent 507 * EAGAIN: The socket was blocked, please call again later to 508 * complete the request 509 * ENOTCONN: Caller needs to invoke connect logic then call again 510 * other: Some other error occured, the request was not sent 511 */ 512 static int xs_local_send_request(struct rpc_task *task) 513 { 514 struct rpc_rqst *req = task->tk_rqstp; 515 struct rpc_xprt *xprt = req->rq_xprt; 516 struct sock_xprt *transport = 517 container_of(xprt, struct sock_xprt, xprt); 518 struct xdr_buf *xdr = &req->rq_snd_buf; 519 int status; 520 int sent = 0; 521 522 xs_encode_stream_record_marker(&req->rq_snd_buf); 523 524 xs_pktdump("packet data:", 525 req->rq_svec->iov_base, req->rq_svec->iov_len); 526 527 status = xs_sendpages(transport->sock, NULL, 0, xdr, req->rq_bytes_sent, 528 true, &sent); 529 dprintk("RPC: %s(%u) = %d\n", 530 __func__, xdr->len - req->rq_bytes_sent, status); 531 532 if (status == -EAGAIN && sock_writeable(transport->inet)) 533 status = -ENOBUFS; 534 535 if (likely(sent > 0) || status == 0) { 536 req->rq_bytes_sent += sent; 537 req->rq_xmit_bytes_sent += sent; 538 if (likely(req->rq_bytes_sent >= req->rq_slen)) { 539 req->rq_bytes_sent = 0; 540 return 0; 541 } 542 status = -EAGAIN; 543 } 544 545 switch (status) { 546 case -ENOBUFS: 547 break; 548 case -EAGAIN: 549 status = xs_nospace(task); 550 break; 551 default: 552 dprintk("RPC: sendmsg returned unrecognized error %d\n", 553 -status); 554 case -EPIPE: 555 xs_close(xprt); 556 status = -ENOTCONN; 557 } 558 559 return status; 560 } 561 562 /** 563 * xs_udp_send_request - write an RPC request to a UDP socket 564 * @task: address of RPC task that manages the state of an RPC request 565 * 566 * Return values: 567 * 0: The request has been sent 568 * EAGAIN: The socket was blocked, please call again later to 569 * complete the request 570 * ENOTCONN: Caller needs to invoke connect logic then call again 571 * other: Some other error occurred, the request was not sent 572 */ 573 static int xs_udp_send_request(struct rpc_task *task) 574 { 575 struct rpc_rqst *req = task->tk_rqstp; 576 struct rpc_xprt *xprt = req->rq_xprt; 577 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 578 struct xdr_buf *xdr = &req->rq_snd_buf; 579 int sent = 0; 580 int status; 581 582 xs_pktdump("packet data:", 583 req->rq_svec->iov_base, 584 req->rq_svec->iov_len); 585 586 if (!xprt_bound(xprt)) 587 return -ENOTCONN; 588 status = xs_sendpages(transport->sock, xs_addr(xprt), xprt->addrlen, 589 xdr, req->rq_bytes_sent, true, &sent); 590 591 dprintk("RPC: xs_udp_send_request(%u) = %d\n", 592 xdr->len - req->rq_bytes_sent, status); 593 594 /* firewall is blocking us, don't return -EAGAIN or we end up looping */ 595 if (status == -EPERM) 596 goto process_status; 597 598 if (status == -EAGAIN && sock_writeable(transport->inet)) 599 status = -ENOBUFS; 600 601 if (sent > 0 || status == 0) { 602 req->rq_xmit_bytes_sent += sent; 603 if (sent >= req->rq_slen) 604 return 0; 605 /* Still some bytes left; set up for a retry later. */ 606 status = -EAGAIN; 607 } 608 609 process_status: 610 switch (status) { 611 case -ENOTSOCK: 612 status = -ENOTCONN; 613 /* Should we call xs_close() here? */ 614 break; 615 case -EAGAIN: 616 status = xs_nospace(task); 617 break; 618 case -ENETUNREACH: 619 case -ENOBUFS: 620 case -EPIPE: 621 case -ECONNREFUSED: 622 case -EPERM: 623 /* When the server has died, an ICMP port unreachable message 624 * prompts ECONNREFUSED. */ 625 break; 626 default: 627 dprintk("RPC: sendmsg returned unrecognized error %d\n", 628 -status); 629 } 630 631 return status; 632 } 633 634 /** 635 * xs_tcp_send_request - write an RPC request to a TCP socket 636 * @task: address of RPC task that manages the state of an RPC request 637 * 638 * Return values: 639 * 0: The request has been sent 640 * EAGAIN: The socket was blocked, please call again later to 641 * complete the request 642 * ENOTCONN: Caller needs to invoke connect logic then call again 643 * other: Some other error occurred, the request was not sent 644 * 645 * XXX: In the case of soft timeouts, should we eventually give up 646 * if sendmsg is not able to make progress? 647 */ 648 static int xs_tcp_send_request(struct rpc_task *task) 649 { 650 struct rpc_rqst *req = task->tk_rqstp; 651 struct rpc_xprt *xprt = req->rq_xprt; 652 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 653 struct xdr_buf *xdr = &req->rq_snd_buf; 654 bool zerocopy = true; 655 bool vm_wait = false; 656 int status; 657 int sent; 658 659 xs_encode_stream_record_marker(&req->rq_snd_buf); 660 661 xs_pktdump("packet data:", 662 req->rq_svec->iov_base, 663 req->rq_svec->iov_len); 664 /* Don't use zero copy if this is a resend. If the RPC call 665 * completes while the socket holds a reference to the pages, 666 * then we may end up resending corrupted data. 667 */ 668 if (task->tk_flags & RPC_TASK_SENT) 669 zerocopy = false; 670 671 if (test_bit(XPRT_SOCK_UPD_TIMEOUT, &transport->sock_state)) 672 xs_tcp_set_socket_timeouts(xprt, transport->sock); 673 674 /* Continue transmitting the packet/record. We must be careful 675 * to cope with writespace callbacks arriving _after_ we have 676 * called sendmsg(). */ 677 while (1) { 678 sent = 0; 679 status = xs_sendpages(transport->sock, NULL, 0, xdr, 680 req->rq_bytes_sent, zerocopy, &sent); 681 682 dprintk("RPC: xs_tcp_send_request(%u) = %d\n", 683 xdr->len - req->rq_bytes_sent, status); 684 685 /* If we've sent the entire packet, immediately 686 * reset the count of bytes sent. */ 687 req->rq_bytes_sent += sent; 688 req->rq_xmit_bytes_sent += sent; 689 if (likely(req->rq_bytes_sent >= req->rq_slen)) { 690 req->rq_bytes_sent = 0; 691 return 0; 692 } 693 694 WARN_ON_ONCE(sent == 0 && status == 0); 695 696 if (status == -EAGAIN ) { 697 /* 698 * Return EAGAIN if we're sure we're hitting the 699 * socket send buffer limits. 700 */ 701 if (test_bit(SOCK_NOSPACE, &transport->sock->flags)) 702 break; 703 /* 704 * Did we hit a memory allocation failure? 705 */ 706 if (sent == 0) { 707 status = -ENOBUFS; 708 if (vm_wait) 709 break; 710 /* Retry, knowing now that we're below the 711 * socket send buffer limit 712 */ 713 vm_wait = true; 714 } 715 continue; 716 } 717 if (status < 0) 718 break; 719 vm_wait = false; 720 } 721 722 switch (status) { 723 case -ENOTSOCK: 724 status = -ENOTCONN; 725 /* Should we call xs_close() here? */ 726 break; 727 case -EAGAIN: 728 status = xs_nospace(task); 729 break; 730 case -ECONNRESET: 731 case -ECONNREFUSED: 732 case -ENOTCONN: 733 case -EADDRINUSE: 734 case -ENOBUFS: 735 case -EPIPE: 736 break; 737 default: 738 dprintk("RPC: sendmsg returned unrecognized error %d\n", 739 -status); 740 } 741 742 return status; 743 } 744 745 /** 746 * xs_tcp_release_xprt - clean up after a tcp transmission 747 * @xprt: transport 748 * @task: rpc task 749 * 750 * This cleans up if an error causes us to abort the transmission of a request. 751 * In this case, the socket may need to be reset in order to avoid confusing 752 * the server. 753 */ 754 static void xs_tcp_release_xprt(struct rpc_xprt *xprt, struct rpc_task *task) 755 { 756 struct rpc_rqst *req; 757 758 if (task != xprt->snd_task) 759 return; 760 if (task == NULL) 761 goto out_release; 762 req = task->tk_rqstp; 763 if (req == NULL) 764 goto out_release; 765 if (req->rq_bytes_sent == 0) 766 goto out_release; 767 if (req->rq_bytes_sent == req->rq_snd_buf.len) 768 goto out_release; 769 set_bit(XPRT_CLOSE_WAIT, &xprt->state); 770 out_release: 771 xprt_release_xprt(xprt, task); 772 } 773 774 static void xs_save_old_callbacks(struct sock_xprt *transport, struct sock *sk) 775 { 776 transport->old_data_ready = sk->sk_data_ready; 777 transport->old_state_change = sk->sk_state_change; 778 transport->old_write_space = sk->sk_write_space; 779 transport->old_error_report = sk->sk_error_report; 780 } 781 782 static void xs_restore_old_callbacks(struct sock_xprt *transport, struct sock *sk) 783 { 784 sk->sk_data_ready = transport->old_data_ready; 785 sk->sk_state_change = transport->old_state_change; 786 sk->sk_write_space = transport->old_write_space; 787 sk->sk_error_report = transport->old_error_report; 788 } 789 790 static void xs_sock_reset_state_flags(struct rpc_xprt *xprt) 791 { 792 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 793 794 clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state); 795 } 796 797 static void xs_sock_reset_connection_flags(struct rpc_xprt *xprt) 798 { 799 smp_mb__before_atomic(); 800 clear_bit(XPRT_CLOSE_WAIT, &xprt->state); 801 clear_bit(XPRT_CLOSING, &xprt->state); 802 xs_sock_reset_state_flags(xprt); 803 smp_mb__after_atomic(); 804 } 805 806 static void xs_sock_mark_closed(struct rpc_xprt *xprt) 807 { 808 xs_sock_reset_connection_flags(xprt); 809 /* Mark transport as closed and wake up all pending tasks */ 810 xprt_disconnect_done(xprt); 811 } 812 813 /** 814 * xs_error_report - callback to handle TCP socket state errors 815 * @sk: socket 816 * 817 * Note: we don't call sock_error() since there may be a rpc_task 818 * using the socket, and so we don't want to clear sk->sk_err. 819 */ 820 static void xs_error_report(struct sock *sk) 821 { 822 struct rpc_xprt *xprt; 823 int err; 824 825 read_lock_bh(&sk->sk_callback_lock); 826 if (!(xprt = xprt_from_sock(sk))) 827 goto out; 828 829 err = -sk->sk_err; 830 if (err == 0) 831 goto out; 832 /* Is this a reset event? */ 833 if (sk->sk_state == TCP_CLOSE) 834 xs_sock_mark_closed(xprt); 835 dprintk("RPC: xs_error_report client %p, error=%d...\n", 836 xprt, -err); 837 trace_rpc_socket_error(xprt, sk->sk_socket, err); 838 xprt_wake_pending_tasks(xprt, err); 839 out: 840 read_unlock_bh(&sk->sk_callback_lock); 841 } 842 843 static void xs_reset_transport(struct sock_xprt *transport) 844 { 845 struct socket *sock = transport->sock; 846 struct sock *sk = transport->inet; 847 struct rpc_xprt *xprt = &transport->xprt; 848 849 if (sk == NULL) 850 return; 851 852 if (atomic_read(&transport->xprt.swapper)) 853 sk_clear_memalloc(sk); 854 855 kernel_sock_shutdown(sock, SHUT_RDWR); 856 857 mutex_lock(&transport->recv_mutex); 858 write_lock_bh(&sk->sk_callback_lock); 859 transport->inet = NULL; 860 transport->sock = NULL; 861 862 sk->sk_user_data = NULL; 863 864 xs_restore_old_callbacks(transport, sk); 865 xprt_clear_connected(xprt); 866 write_unlock_bh(&sk->sk_callback_lock); 867 xs_sock_reset_connection_flags(xprt); 868 mutex_unlock(&transport->recv_mutex); 869 870 trace_rpc_socket_close(xprt, sock); 871 sock_release(sock); 872 } 873 874 /** 875 * xs_close - close a socket 876 * @xprt: transport 877 * 878 * This is used when all requests are complete; ie, no DRC state remains 879 * on the server we want to save. 880 * 881 * The caller _must_ be holding XPRT_LOCKED in order to avoid issues with 882 * xs_reset_transport() zeroing the socket from underneath a writer. 883 */ 884 static void xs_close(struct rpc_xprt *xprt) 885 { 886 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 887 888 dprintk("RPC: xs_close xprt %p\n", xprt); 889 890 xs_reset_transport(transport); 891 xprt->reestablish_timeout = 0; 892 893 xprt_disconnect_done(xprt); 894 } 895 896 static void xs_inject_disconnect(struct rpc_xprt *xprt) 897 { 898 dprintk("RPC: injecting transport disconnect on xprt=%p\n", 899 xprt); 900 xprt_disconnect_done(xprt); 901 } 902 903 static void xs_xprt_free(struct rpc_xprt *xprt) 904 { 905 xs_free_peer_addresses(xprt); 906 xprt_free(xprt); 907 } 908 909 /** 910 * xs_destroy - prepare to shutdown a transport 911 * @xprt: doomed transport 912 * 913 */ 914 static void xs_destroy(struct rpc_xprt *xprt) 915 { 916 struct sock_xprt *transport = container_of(xprt, 917 struct sock_xprt, xprt); 918 dprintk("RPC: xs_destroy xprt %p\n", xprt); 919 920 cancel_delayed_work_sync(&transport->connect_worker); 921 xs_close(xprt); 922 cancel_work_sync(&transport->recv_worker); 923 xs_xprt_free(xprt); 924 module_put(THIS_MODULE); 925 } 926 927 static int xs_local_copy_to_xdr(struct xdr_buf *xdr, struct sk_buff *skb) 928 { 929 struct xdr_skb_reader desc = { 930 .skb = skb, 931 .offset = sizeof(rpc_fraghdr), 932 .count = skb->len - sizeof(rpc_fraghdr), 933 }; 934 935 if (xdr_partial_copy_from_skb(xdr, 0, &desc, xdr_skb_read_bits) < 0) 936 return -1; 937 if (desc.count) 938 return -1; 939 return 0; 940 } 941 942 /** 943 * xs_local_data_read_skb 944 * @xprt: transport 945 * @sk: socket 946 * @skb: skbuff 947 * 948 * Currently this assumes we can read the whole reply in a single gulp. 949 */ 950 static void xs_local_data_read_skb(struct rpc_xprt *xprt, 951 struct sock *sk, 952 struct sk_buff *skb) 953 { 954 struct rpc_task *task; 955 struct rpc_rqst *rovr; 956 int repsize, copied; 957 u32 _xid; 958 __be32 *xp; 959 960 repsize = skb->len - sizeof(rpc_fraghdr); 961 if (repsize < 4) { 962 dprintk("RPC: impossible RPC reply size %d\n", repsize); 963 return; 964 } 965 966 /* Copy the XID from the skb... */ 967 xp = skb_header_pointer(skb, sizeof(rpc_fraghdr), sizeof(_xid), &_xid); 968 if (xp == NULL) 969 return; 970 971 /* Look up and lock the request corresponding to the given XID */ 972 spin_lock(&xprt->recv_lock); 973 rovr = xprt_lookup_rqst(xprt, *xp); 974 if (!rovr) 975 goto out_unlock; 976 xprt_pin_rqst(rovr); 977 spin_unlock(&xprt->recv_lock); 978 task = rovr->rq_task; 979 980 copied = rovr->rq_private_buf.buflen; 981 if (copied > repsize) 982 copied = repsize; 983 984 if (xs_local_copy_to_xdr(&rovr->rq_private_buf, skb)) { 985 dprintk("RPC: sk_buff copy failed\n"); 986 spin_lock(&xprt->recv_lock); 987 goto out_unpin; 988 } 989 990 spin_lock(&xprt->recv_lock); 991 xprt_complete_rqst(task, copied); 992 out_unpin: 993 xprt_unpin_rqst(rovr); 994 out_unlock: 995 spin_unlock(&xprt->recv_lock); 996 } 997 998 static void xs_local_data_receive(struct sock_xprt *transport) 999 { 1000 struct sk_buff *skb; 1001 struct sock *sk; 1002 int err; 1003 1004 mutex_lock(&transport->recv_mutex); 1005 sk = transport->inet; 1006 if (sk == NULL) 1007 goto out; 1008 for (;;) { 1009 skb = skb_recv_datagram(sk, 0, 1, &err); 1010 if (skb != NULL) { 1011 xs_local_data_read_skb(&transport->xprt, sk, skb); 1012 skb_free_datagram(sk, skb); 1013 continue; 1014 } 1015 if (!test_and_clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state)) 1016 break; 1017 } 1018 out: 1019 mutex_unlock(&transport->recv_mutex); 1020 } 1021 1022 static void xs_local_data_receive_workfn(struct work_struct *work) 1023 { 1024 struct sock_xprt *transport = 1025 container_of(work, struct sock_xprt, recv_worker); 1026 xs_local_data_receive(transport); 1027 } 1028 1029 /** 1030 * xs_udp_data_read_skb - receive callback for UDP sockets 1031 * @xprt: transport 1032 * @sk: socket 1033 * @skb: skbuff 1034 * 1035 */ 1036 static void xs_udp_data_read_skb(struct rpc_xprt *xprt, 1037 struct sock *sk, 1038 struct sk_buff *skb) 1039 { 1040 struct rpc_task *task; 1041 struct rpc_rqst *rovr; 1042 int repsize, copied; 1043 u32 _xid; 1044 __be32 *xp; 1045 1046 repsize = skb->len; 1047 if (repsize < 4) { 1048 dprintk("RPC: impossible RPC reply size %d!\n", repsize); 1049 return; 1050 } 1051 1052 /* Copy the XID from the skb... */ 1053 xp = skb_header_pointer(skb, 0, sizeof(_xid), &_xid); 1054 if (xp == NULL) 1055 return; 1056 1057 /* Look up and lock the request corresponding to the given XID */ 1058 spin_lock(&xprt->recv_lock); 1059 rovr = xprt_lookup_rqst(xprt, *xp); 1060 if (!rovr) 1061 goto out_unlock; 1062 xprt_pin_rqst(rovr); 1063 spin_unlock(&xprt->recv_lock); 1064 task = rovr->rq_task; 1065 1066 if ((copied = rovr->rq_private_buf.buflen) > repsize) 1067 copied = repsize; 1068 1069 /* Suck it into the iovec, verify checksum if not done by hw. */ 1070 if (csum_partial_copy_to_xdr(&rovr->rq_private_buf, skb)) { 1071 __UDPX_INC_STATS(sk, UDP_MIB_INERRORS); 1072 spin_lock(&xprt->recv_lock); 1073 goto out_unpin; 1074 } 1075 1076 __UDPX_INC_STATS(sk, UDP_MIB_INDATAGRAMS); 1077 1078 spin_lock_bh(&xprt->transport_lock); 1079 xprt_adjust_cwnd(xprt, task, copied); 1080 spin_unlock_bh(&xprt->transport_lock); 1081 spin_lock(&xprt->recv_lock); 1082 xprt_complete_rqst(task, copied); 1083 out_unpin: 1084 xprt_unpin_rqst(rovr); 1085 out_unlock: 1086 spin_unlock(&xprt->recv_lock); 1087 } 1088 1089 static void xs_udp_data_receive(struct sock_xprt *transport) 1090 { 1091 struct sk_buff *skb; 1092 struct sock *sk; 1093 int err; 1094 1095 mutex_lock(&transport->recv_mutex); 1096 sk = transport->inet; 1097 if (sk == NULL) 1098 goto out; 1099 for (;;) { 1100 skb = skb_recv_udp(sk, 0, 1, &err); 1101 if (skb != NULL) { 1102 xs_udp_data_read_skb(&transport->xprt, sk, skb); 1103 consume_skb(skb); 1104 continue; 1105 } 1106 if (!test_and_clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state)) 1107 break; 1108 } 1109 out: 1110 mutex_unlock(&transport->recv_mutex); 1111 } 1112 1113 static void xs_udp_data_receive_workfn(struct work_struct *work) 1114 { 1115 struct sock_xprt *transport = 1116 container_of(work, struct sock_xprt, recv_worker); 1117 xs_udp_data_receive(transport); 1118 } 1119 1120 /** 1121 * xs_data_ready - "data ready" callback for UDP sockets 1122 * @sk: socket with data to read 1123 * 1124 */ 1125 static void xs_data_ready(struct sock *sk) 1126 { 1127 struct rpc_xprt *xprt; 1128 1129 read_lock_bh(&sk->sk_callback_lock); 1130 dprintk("RPC: xs_data_ready...\n"); 1131 xprt = xprt_from_sock(sk); 1132 if (xprt != NULL) { 1133 struct sock_xprt *transport = container_of(xprt, 1134 struct sock_xprt, xprt); 1135 transport->old_data_ready(sk); 1136 /* Any data means we had a useful conversation, so 1137 * then we don't need to delay the next reconnect 1138 */ 1139 if (xprt->reestablish_timeout) 1140 xprt->reestablish_timeout = 0; 1141 if (!test_and_set_bit(XPRT_SOCK_DATA_READY, &transport->sock_state)) 1142 queue_work(xprtiod_workqueue, &transport->recv_worker); 1143 } 1144 read_unlock_bh(&sk->sk_callback_lock); 1145 } 1146 1147 /* 1148 * Helper function to force a TCP close if the server is sending 1149 * junk and/or it has put us in CLOSE_WAIT 1150 */ 1151 static void xs_tcp_force_close(struct rpc_xprt *xprt) 1152 { 1153 xprt_force_disconnect(xprt); 1154 } 1155 1156 static inline void xs_tcp_read_fraghdr(struct rpc_xprt *xprt, struct xdr_skb_reader *desc) 1157 { 1158 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 1159 size_t len, used; 1160 char *p; 1161 1162 p = ((char *) &transport->tcp_fraghdr) + transport->tcp_offset; 1163 len = sizeof(transport->tcp_fraghdr) - transport->tcp_offset; 1164 used = xdr_skb_read_bits(desc, p, len); 1165 transport->tcp_offset += used; 1166 if (used != len) 1167 return; 1168 1169 transport->tcp_reclen = ntohl(transport->tcp_fraghdr); 1170 if (transport->tcp_reclen & RPC_LAST_STREAM_FRAGMENT) 1171 transport->tcp_flags |= TCP_RCV_LAST_FRAG; 1172 else 1173 transport->tcp_flags &= ~TCP_RCV_LAST_FRAG; 1174 transport->tcp_reclen &= RPC_FRAGMENT_SIZE_MASK; 1175 1176 transport->tcp_flags &= ~TCP_RCV_COPY_FRAGHDR; 1177 transport->tcp_offset = 0; 1178 1179 /* Sanity check of the record length */ 1180 if (unlikely(transport->tcp_reclen < 8)) { 1181 dprintk("RPC: invalid TCP record fragment length\n"); 1182 xs_tcp_force_close(xprt); 1183 return; 1184 } 1185 dprintk("RPC: reading TCP record fragment of length %d\n", 1186 transport->tcp_reclen); 1187 } 1188 1189 static void xs_tcp_check_fraghdr(struct sock_xprt *transport) 1190 { 1191 if (transport->tcp_offset == transport->tcp_reclen) { 1192 transport->tcp_flags |= TCP_RCV_COPY_FRAGHDR; 1193 transport->tcp_offset = 0; 1194 if (transport->tcp_flags & TCP_RCV_LAST_FRAG) { 1195 transport->tcp_flags &= ~TCP_RCV_COPY_DATA; 1196 transport->tcp_flags |= TCP_RCV_COPY_XID; 1197 transport->tcp_copied = 0; 1198 } 1199 } 1200 } 1201 1202 static inline void xs_tcp_read_xid(struct sock_xprt *transport, struct xdr_skb_reader *desc) 1203 { 1204 size_t len, used; 1205 char *p; 1206 1207 len = sizeof(transport->tcp_xid) - transport->tcp_offset; 1208 dprintk("RPC: reading XID (%zu bytes)\n", len); 1209 p = ((char *) &transport->tcp_xid) + transport->tcp_offset; 1210 used = xdr_skb_read_bits(desc, p, len); 1211 transport->tcp_offset += used; 1212 if (used != len) 1213 return; 1214 transport->tcp_flags &= ~TCP_RCV_COPY_XID; 1215 transport->tcp_flags |= TCP_RCV_READ_CALLDIR; 1216 transport->tcp_copied = 4; 1217 dprintk("RPC: reading %s XID %08x\n", 1218 (transport->tcp_flags & TCP_RPC_REPLY) ? "reply for" 1219 : "request with", 1220 ntohl(transport->tcp_xid)); 1221 xs_tcp_check_fraghdr(transport); 1222 } 1223 1224 static inline void xs_tcp_read_calldir(struct sock_xprt *transport, 1225 struct xdr_skb_reader *desc) 1226 { 1227 size_t len, used; 1228 u32 offset; 1229 char *p; 1230 1231 /* 1232 * We want transport->tcp_offset to be 8 at the end of this routine 1233 * (4 bytes for the xid and 4 bytes for the call/reply flag). 1234 * When this function is called for the first time, 1235 * transport->tcp_offset is 4 (after having already read the xid). 1236 */ 1237 offset = transport->tcp_offset - sizeof(transport->tcp_xid); 1238 len = sizeof(transport->tcp_calldir) - offset; 1239 dprintk("RPC: reading CALL/REPLY flag (%zu bytes)\n", len); 1240 p = ((char *) &transport->tcp_calldir) + offset; 1241 used = xdr_skb_read_bits(desc, p, len); 1242 transport->tcp_offset += used; 1243 if (used != len) 1244 return; 1245 transport->tcp_flags &= ~TCP_RCV_READ_CALLDIR; 1246 /* 1247 * We don't yet have the XDR buffer, so we will write the calldir 1248 * out after we get the buffer from the 'struct rpc_rqst' 1249 */ 1250 switch (ntohl(transport->tcp_calldir)) { 1251 case RPC_REPLY: 1252 transport->tcp_flags |= TCP_RCV_COPY_CALLDIR; 1253 transport->tcp_flags |= TCP_RCV_COPY_DATA; 1254 transport->tcp_flags |= TCP_RPC_REPLY; 1255 break; 1256 case RPC_CALL: 1257 transport->tcp_flags |= TCP_RCV_COPY_CALLDIR; 1258 transport->tcp_flags |= TCP_RCV_COPY_DATA; 1259 transport->tcp_flags &= ~TCP_RPC_REPLY; 1260 break; 1261 default: 1262 dprintk("RPC: invalid request message type\n"); 1263 xs_tcp_force_close(&transport->xprt); 1264 } 1265 xs_tcp_check_fraghdr(transport); 1266 } 1267 1268 static inline void xs_tcp_read_common(struct rpc_xprt *xprt, 1269 struct xdr_skb_reader *desc, 1270 struct rpc_rqst *req) 1271 { 1272 struct sock_xprt *transport = 1273 container_of(xprt, struct sock_xprt, xprt); 1274 struct xdr_buf *rcvbuf; 1275 size_t len; 1276 ssize_t r; 1277 1278 rcvbuf = &req->rq_private_buf; 1279 1280 if (transport->tcp_flags & TCP_RCV_COPY_CALLDIR) { 1281 /* 1282 * Save the RPC direction in the XDR buffer 1283 */ 1284 memcpy(rcvbuf->head[0].iov_base + transport->tcp_copied, 1285 &transport->tcp_calldir, 1286 sizeof(transport->tcp_calldir)); 1287 transport->tcp_copied += sizeof(transport->tcp_calldir); 1288 transport->tcp_flags &= ~TCP_RCV_COPY_CALLDIR; 1289 } 1290 1291 len = desc->count; 1292 if (len > transport->tcp_reclen - transport->tcp_offset) 1293 desc->count = transport->tcp_reclen - transport->tcp_offset; 1294 r = xdr_partial_copy_from_skb(rcvbuf, transport->tcp_copied, 1295 desc, xdr_skb_read_bits); 1296 1297 if (desc->count) { 1298 /* Error when copying to the receive buffer, 1299 * usually because we weren't able to allocate 1300 * additional buffer pages. All we can do now 1301 * is turn off TCP_RCV_COPY_DATA, so the request 1302 * will not receive any additional updates, 1303 * and time out. 1304 * Any remaining data from this record will 1305 * be discarded. 1306 */ 1307 transport->tcp_flags &= ~TCP_RCV_COPY_DATA; 1308 dprintk("RPC: XID %08x truncated request\n", 1309 ntohl(transport->tcp_xid)); 1310 dprintk("RPC: xprt = %p, tcp_copied = %lu, " 1311 "tcp_offset = %u, tcp_reclen = %u\n", 1312 xprt, transport->tcp_copied, 1313 transport->tcp_offset, transport->tcp_reclen); 1314 return; 1315 } 1316 1317 transport->tcp_copied += r; 1318 transport->tcp_offset += r; 1319 desc->count = len - r; 1320 1321 dprintk("RPC: XID %08x read %zd bytes\n", 1322 ntohl(transport->tcp_xid), r); 1323 dprintk("RPC: xprt = %p, tcp_copied = %lu, tcp_offset = %u, " 1324 "tcp_reclen = %u\n", xprt, transport->tcp_copied, 1325 transport->tcp_offset, transport->tcp_reclen); 1326 1327 if (transport->tcp_copied == req->rq_private_buf.buflen) 1328 transport->tcp_flags &= ~TCP_RCV_COPY_DATA; 1329 else if (transport->tcp_offset == transport->tcp_reclen) { 1330 if (transport->tcp_flags & TCP_RCV_LAST_FRAG) 1331 transport->tcp_flags &= ~TCP_RCV_COPY_DATA; 1332 } 1333 } 1334 1335 /* 1336 * Finds the request corresponding to the RPC xid and invokes the common 1337 * tcp read code to read the data. 1338 */ 1339 static inline int xs_tcp_read_reply(struct rpc_xprt *xprt, 1340 struct xdr_skb_reader *desc) 1341 { 1342 struct sock_xprt *transport = 1343 container_of(xprt, struct sock_xprt, xprt); 1344 struct rpc_rqst *req; 1345 1346 dprintk("RPC: read reply XID %08x\n", ntohl(transport->tcp_xid)); 1347 1348 /* Find and lock the request corresponding to this xid */ 1349 spin_lock(&xprt->recv_lock); 1350 req = xprt_lookup_rqst(xprt, transport->tcp_xid); 1351 if (!req) { 1352 dprintk("RPC: XID %08x request not found!\n", 1353 ntohl(transport->tcp_xid)); 1354 spin_unlock(&xprt->recv_lock); 1355 return -1; 1356 } 1357 xprt_pin_rqst(req); 1358 spin_unlock(&xprt->recv_lock); 1359 1360 xs_tcp_read_common(xprt, desc, req); 1361 1362 spin_lock(&xprt->recv_lock); 1363 if (!(transport->tcp_flags & TCP_RCV_COPY_DATA)) 1364 xprt_complete_rqst(req->rq_task, transport->tcp_copied); 1365 xprt_unpin_rqst(req); 1366 spin_unlock(&xprt->recv_lock); 1367 return 0; 1368 } 1369 1370 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1371 /* 1372 * Obtains an rpc_rqst previously allocated and invokes the common 1373 * tcp read code to read the data. The result is placed in the callback 1374 * queue. 1375 * If we're unable to obtain the rpc_rqst we schedule the closing of the 1376 * connection and return -1. 1377 */ 1378 static int xs_tcp_read_callback(struct rpc_xprt *xprt, 1379 struct xdr_skb_reader *desc) 1380 { 1381 struct sock_xprt *transport = 1382 container_of(xprt, struct sock_xprt, xprt); 1383 struct rpc_rqst *req; 1384 1385 /* Look up the request corresponding to the given XID */ 1386 req = xprt_lookup_bc_request(xprt, transport->tcp_xid); 1387 if (req == NULL) { 1388 printk(KERN_WARNING "Callback slot table overflowed\n"); 1389 xprt_force_disconnect(xprt); 1390 return -1; 1391 } 1392 1393 dprintk("RPC: read callback XID %08x\n", ntohl(req->rq_xid)); 1394 xs_tcp_read_common(xprt, desc, req); 1395 1396 if (!(transport->tcp_flags & TCP_RCV_COPY_DATA)) 1397 xprt_complete_bc_request(req, transport->tcp_copied); 1398 1399 return 0; 1400 } 1401 1402 static inline int _xs_tcp_read_data(struct rpc_xprt *xprt, 1403 struct xdr_skb_reader *desc) 1404 { 1405 struct sock_xprt *transport = 1406 container_of(xprt, struct sock_xprt, xprt); 1407 1408 return (transport->tcp_flags & TCP_RPC_REPLY) ? 1409 xs_tcp_read_reply(xprt, desc) : 1410 xs_tcp_read_callback(xprt, desc); 1411 } 1412 1413 static int xs_tcp_bc_up(struct svc_serv *serv, struct net *net) 1414 { 1415 int ret; 1416 1417 ret = svc_create_xprt(serv, "tcp-bc", net, PF_INET, 0, 1418 SVC_SOCK_ANONYMOUS); 1419 if (ret < 0) 1420 return ret; 1421 return 0; 1422 } 1423 1424 static size_t xs_tcp_bc_maxpayload(struct rpc_xprt *xprt) 1425 { 1426 return PAGE_SIZE; 1427 } 1428 #else 1429 static inline int _xs_tcp_read_data(struct rpc_xprt *xprt, 1430 struct xdr_skb_reader *desc) 1431 { 1432 return xs_tcp_read_reply(xprt, desc); 1433 } 1434 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1435 1436 /* 1437 * Read data off the transport. This can be either an RPC_CALL or an 1438 * RPC_REPLY. Relay the processing to helper functions. 1439 */ 1440 static void xs_tcp_read_data(struct rpc_xprt *xprt, 1441 struct xdr_skb_reader *desc) 1442 { 1443 struct sock_xprt *transport = 1444 container_of(xprt, struct sock_xprt, xprt); 1445 1446 if (_xs_tcp_read_data(xprt, desc) == 0) 1447 xs_tcp_check_fraghdr(transport); 1448 else { 1449 /* 1450 * The transport_lock protects the request handling. 1451 * There's no need to hold it to update the tcp_flags. 1452 */ 1453 transport->tcp_flags &= ~TCP_RCV_COPY_DATA; 1454 } 1455 } 1456 1457 static inline void xs_tcp_read_discard(struct sock_xprt *transport, struct xdr_skb_reader *desc) 1458 { 1459 size_t len; 1460 1461 len = transport->tcp_reclen - transport->tcp_offset; 1462 if (len > desc->count) 1463 len = desc->count; 1464 desc->count -= len; 1465 desc->offset += len; 1466 transport->tcp_offset += len; 1467 dprintk("RPC: discarded %zu bytes\n", len); 1468 xs_tcp_check_fraghdr(transport); 1469 } 1470 1471 static int xs_tcp_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, unsigned int offset, size_t len) 1472 { 1473 struct rpc_xprt *xprt = rd_desc->arg.data; 1474 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 1475 struct xdr_skb_reader desc = { 1476 .skb = skb, 1477 .offset = offset, 1478 .count = len, 1479 }; 1480 1481 dprintk("RPC: xs_tcp_data_recv started\n"); 1482 do { 1483 trace_xs_tcp_data_recv(transport); 1484 /* Read in a new fragment marker if necessary */ 1485 /* Can we ever really expect to get completely empty fragments? */ 1486 if (transport->tcp_flags & TCP_RCV_COPY_FRAGHDR) { 1487 xs_tcp_read_fraghdr(xprt, &desc); 1488 continue; 1489 } 1490 /* Read in the xid if necessary */ 1491 if (transport->tcp_flags & TCP_RCV_COPY_XID) { 1492 xs_tcp_read_xid(transport, &desc); 1493 continue; 1494 } 1495 /* Read in the call/reply flag */ 1496 if (transport->tcp_flags & TCP_RCV_READ_CALLDIR) { 1497 xs_tcp_read_calldir(transport, &desc); 1498 continue; 1499 } 1500 /* Read in the request data */ 1501 if (transport->tcp_flags & TCP_RCV_COPY_DATA) { 1502 xs_tcp_read_data(xprt, &desc); 1503 continue; 1504 } 1505 /* Skip over any trailing bytes on short reads */ 1506 xs_tcp_read_discard(transport, &desc); 1507 } while (desc.count); 1508 trace_xs_tcp_data_recv(transport); 1509 dprintk("RPC: xs_tcp_data_recv done\n"); 1510 return len - desc.count; 1511 } 1512 1513 static void xs_tcp_data_receive(struct sock_xprt *transport) 1514 { 1515 struct rpc_xprt *xprt = &transport->xprt; 1516 struct sock *sk; 1517 read_descriptor_t rd_desc = { 1518 .count = 2*1024*1024, 1519 .arg.data = xprt, 1520 }; 1521 unsigned long total = 0; 1522 int loop; 1523 int read = 0; 1524 1525 mutex_lock(&transport->recv_mutex); 1526 sk = transport->inet; 1527 if (sk == NULL) 1528 goto out; 1529 1530 /* We use rd_desc to pass struct xprt to xs_tcp_data_recv */ 1531 for (loop = 0; loop < 64; loop++) { 1532 lock_sock(sk); 1533 read = tcp_read_sock(sk, &rd_desc, xs_tcp_data_recv); 1534 if (read <= 0) { 1535 clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state); 1536 release_sock(sk); 1537 break; 1538 } 1539 release_sock(sk); 1540 total += read; 1541 rd_desc.count = 65536; 1542 } 1543 if (test_bit(XPRT_SOCK_DATA_READY, &transport->sock_state)) 1544 queue_work(xprtiod_workqueue, &transport->recv_worker); 1545 out: 1546 mutex_unlock(&transport->recv_mutex); 1547 trace_xs_tcp_data_ready(xprt, read, total); 1548 } 1549 1550 static void xs_tcp_data_receive_workfn(struct work_struct *work) 1551 { 1552 struct sock_xprt *transport = 1553 container_of(work, struct sock_xprt, recv_worker); 1554 xs_tcp_data_receive(transport); 1555 } 1556 1557 /** 1558 * xs_tcp_state_change - callback to handle TCP socket state changes 1559 * @sk: socket whose state has changed 1560 * 1561 */ 1562 static void xs_tcp_state_change(struct sock *sk) 1563 { 1564 struct rpc_xprt *xprt; 1565 struct sock_xprt *transport; 1566 1567 read_lock_bh(&sk->sk_callback_lock); 1568 if (!(xprt = xprt_from_sock(sk))) 1569 goto out; 1570 dprintk("RPC: xs_tcp_state_change client %p...\n", xprt); 1571 dprintk("RPC: state %x conn %d dead %d zapped %d sk_shutdown %d\n", 1572 sk->sk_state, xprt_connected(xprt), 1573 sock_flag(sk, SOCK_DEAD), 1574 sock_flag(sk, SOCK_ZAPPED), 1575 sk->sk_shutdown); 1576 1577 transport = container_of(xprt, struct sock_xprt, xprt); 1578 trace_rpc_socket_state_change(xprt, sk->sk_socket); 1579 switch (sk->sk_state) { 1580 case TCP_ESTABLISHED: 1581 spin_lock(&xprt->transport_lock); 1582 if (!xprt_test_and_set_connected(xprt)) { 1583 1584 /* Reset TCP record info */ 1585 transport->tcp_offset = 0; 1586 transport->tcp_reclen = 0; 1587 transport->tcp_copied = 0; 1588 transport->tcp_flags = 1589 TCP_RCV_COPY_FRAGHDR | TCP_RCV_COPY_XID; 1590 xprt->connect_cookie++; 1591 clear_bit(XPRT_SOCK_CONNECTING, &transport->sock_state); 1592 xprt_clear_connecting(xprt); 1593 1594 xprt_wake_pending_tasks(xprt, -EAGAIN); 1595 } 1596 spin_unlock(&xprt->transport_lock); 1597 break; 1598 case TCP_FIN_WAIT1: 1599 /* The client initiated a shutdown of the socket */ 1600 xprt->connect_cookie++; 1601 xprt->reestablish_timeout = 0; 1602 set_bit(XPRT_CLOSING, &xprt->state); 1603 smp_mb__before_atomic(); 1604 clear_bit(XPRT_CONNECTED, &xprt->state); 1605 clear_bit(XPRT_CLOSE_WAIT, &xprt->state); 1606 smp_mb__after_atomic(); 1607 break; 1608 case TCP_CLOSE_WAIT: 1609 /* The server initiated a shutdown of the socket */ 1610 xprt->connect_cookie++; 1611 clear_bit(XPRT_CONNECTED, &xprt->state); 1612 xs_tcp_force_close(xprt); 1613 case TCP_CLOSING: 1614 /* 1615 * If the server closed down the connection, make sure that 1616 * we back off before reconnecting 1617 */ 1618 if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO) 1619 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 1620 break; 1621 case TCP_LAST_ACK: 1622 set_bit(XPRT_CLOSING, &xprt->state); 1623 smp_mb__before_atomic(); 1624 clear_bit(XPRT_CONNECTED, &xprt->state); 1625 smp_mb__after_atomic(); 1626 break; 1627 case TCP_CLOSE: 1628 if (test_and_clear_bit(XPRT_SOCK_CONNECTING, 1629 &transport->sock_state)) 1630 xprt_clear_connecting(xprt); 1631 if (sk->sk_err) 1632 xprt_wake_pending_tasks(xprt, -sk->sk_err); 1633 xs_sock_mark_closed(xprt); 1634 } 1635 out: 1636 read_unlock_bh(&sk->sk_callback_lock); 1637 } 1638 1639 static void xs_write_space(struct sock *sk) 1640 { 1641 struct socket_wq *wq; 1642 struct rpc_xprt *xprt; 1643 1644 if (!sk->sk_socket) 1645 return; 1646 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1647 1648 if (unlikely(!(xprt = xprt_from_sock(sk)))) 1649 return; 1650 rcu_read_lock(); 1651 wq = rcu_dereference(sk->sk_wq); 1652 if (!wq || test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags) == 0) 1653 goto out; 1654 1655 xprt_write_space(xprt); 1656 out: 1657 rcu_read_unlock(); 1658 } 1659 1660 /** 1661 * xs_udp_write_space - callback invoked when socket buffer space 1662 * becomes available 1663 * @sk: socket whose state has changed 1664 * 1665 * Called when more output buffer space is available for this socket. 1666 * We try not to wake our writers until they can make "significant" 1667 * progress, otherwise we'll waste resources thrashing kernel_sendmsg 1668 * with a bunch of small requests. 1669 */ 1670 static void xs_udp_write_space(struct sock *sk) 1671 { 1672 read_lock_bh(&sk->sk_callback_lock); 1673 1674 /* from net/core/sock.c:sock_def_write_space */ 1675 if (sock_writeable(sk)) 1676 xs_write_space(sk); 1677 1678 read_unlock_bh(&sk->sk_callback_lock); 1679 } 1680 1681 /** 1682 * xs_tcp_write_space - callback invoked when socket buffer space 1683 * becomes available 1684 * @sk: socket whose state has changed 1685 * 1686 * Called when more output buffer space is available for this socket. 1687 * We try not to wake our writers until they can make "significant" 1688 * progress, otherwise we'll waste resources thrashing kernel_sendmsg 1689 * with a bunch of small requests. 1690 */ 1691 static void xs_tcp_write_space(struct sock *sk) 1692 { 1693 read_lock_bh(&sk->sk_callback_lock); 1694 1695 /* from net/core/stream.c:sk_stream_write_space */ 1696 if (sk_stream_is_writeable(sk)) 1697 xs_write_space(sk); 1698 1699 read_unlock_bh(&sk->sk_callback_lock); 1700 } 1701 1702 static void xs_udp_do_set_buffer_size(struct rpc_xprt *xprt) 1703 { 1704 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 1705 struct sock *sk = transport->inet; 1706 1707 if (transport->rcvsize) { 1708 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 1709 sk->sk_rcvbuf = transport->rcvsize * xprt->max_reqs * 2; 1710 } 1711 if (transport->sndsize) { 1712 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1713 sk->sk_sndbuf = transport->sndsize * xprt->max_reqs * 2; 1714 sk->sk_write_space(sk); 1715 } 1716 } 1717 1718 /** 1719 * xs_udp_set_buffer_size - set send and receive limits 1720 * @xprt: generic transport 1721 * @sndsize: requested size of send buffer, in bytes 1722 * @rcvsize: requested size of receive buffer, in bytes 1723 * 1724 * Set socket send and receive buffer size limits. 1725 */ 1726 static void xs_udp_set_buffer_size(struct rpc_xprt *xprt, size_t sndsize, size_t rcvsize) 1727 { 1728 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 1729 1730 transport->sndsize = 0; 1731 if (sndsize) 1732 transport->sndsize = sndsize + 1024; 1733 transport->rcvsize = 0; 1734 if (rcvsize) 1735 transport->rcvsize = rcvsize + 1024; 1736 1737 xs_udp_do_set_buffer_size(xprt); 1738 } 1739 1740 /** 1741 * xs_udp_timer - called when a retransmit timeout occurs on a UDP transport 1742 * @task: task that timed out 1743 * 1744 * Adjust the congestion window after a retransmit timeout has occurred. 1745 */ 1746 static void xs_udp_timer(struct rpc_xprt *xprt, struct rpc_task *task) 1747 { 1748 spin_lock_bh(&xprt->transport_lock); 1749 xprt_adjust_cwnd(xprt, task, -ETIMEDOUT); 1750 spin_unlock_bh(&xprt->transport_lock); 1751 } 1752 1753 static unsigned short xs_get_random_port(void) 1754 { 1755 unsigned short range = xprt_max_resvport - xprt_min_resvport + 1; 1756 unsigned short rand = (unsigned short) prandom_u32() % range; 1757 return rand + xprt_min_resvport; 1758 } 1759 1760 /** 1761 * xs_set_reuseaddr_port - set the socket's port and address reuse options 1762 * @sock: socket 1763 * 1764 * Note that this function has to be called on all sockets that share the 1765 * same port, and it must be called before binding. 1766 */ 1767 static void xs_sock_set_reuseport(struct socket *sock) 1768 { 1769 int opt = 1; 1770 1771 kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEPORT, 1772 (char *)&opt, sizeof(opt)); 1773 } 1774 1775 static unsigned short xs_sock_getport(struct socket *sock) 1776 { 1777 struct sockaddr_storage buf; 1778 int buflen; 1779 unsigned short port = 0; 1780 1781 if (kernel_getsockname(sock, (struct sockaddr *)&buf, &buflen) < 0) 1782 goto out; 1783 switch (buf.ss_family) { 1784 case AF_INET6: 1785 port = ntohs(((struct sockaddr_in6 *)&buf)->sin6_port); 1786 break; 1787 case AF_INET: 1788 port = ntohs(((struct sockaddr_in *)&buf)->sin_port); 1789 } 1790 out: 1791 return port; 1792 } 1793 1794 /** 1795 * xs_set_port - reset the port number in the remote endpoint address 1796 * @xprt: generic transport 1797 * @port: new port number 1798 * 1799 */ 1800 static void xs_set_port(struct rpc_xprt *xprt, unsigned short port) 1801 { 1802 dprintk("RPC: setting port for xprt %p to %u\n", xprt, port); 1803 1804 rpc_set_port(xs_addr(xprt), port); 1805 xs_update_peer_port(xprt); 1806 } 1807 1808 static void xs_set_srcport(struct sock_xprt *transport, struct socket *sock) 1809 { 1810 if (transport->srcport == 0) 1811 transport->srcport = xs_sock_getport(sock); 1812 } 1813 1814 static unsigned short xs_get_srcport(struct sock_xprt *transport) 1815 { 1816 unsigned short port = transport->srcport; 1817 1818 if (port == 0 && transport->xprt.resvport) 1819 port = xs_get_random_port(); 1820 return port; 1821 } 1822 1823 static unsigned short xs_next_srcport(struct sock_xprt *transport, unsigned short port) 1824 { 1825 if (transport->srcport != 0) 1826 transport->srcport = 0; 1827 if (!transport->xprt.resvport) 1828 return 0; 1829 if (port <= xprt_min_resvport || port > xprt_max_resvport) 1830 return xprt_max_resvport; 1831 return --port; 1832 } 1833 static int xs_bind(struct sock_xprt *transport, struct socket *sock) 1834 { 1835 struct sockaddr_storage myaddr; 1836 int err, nloop = 0; 1837 unsigned short port = xs_get_srcport(transport); 1838 unsigned short last; 1839 1840 /* 1841 * If we are asking for any ephemeral port (i.e. port == 0 && 1842 * transport->xprt.resvport == 0), don't bind. Let the local 1843 * port selection happen implicitly when the socket is used 1844 * (for example at connect time). 1845 * 1846 * This ensures that we can continue to establish TCP 1847 * connections even when all local ephemeral ports are already 1848 * a part of some TCP connection. This makes no difference 1849 * for UDP sockets, but also doens't harm them. 1850 * 1851 * If we're asking for any reserved port (i.e. port == 0 && 1852 * transport->xprt.resvport == 1) xs_get_srcport above will 1853 * ensure that port is non-zero and we will bind as needed. 1854 */ 1855 if (port == 0) 1856 return 0; 1857 1858 memcpy(&myaddr, &transport->srcaddr, transport->xprt.addrlen); 1859 do { 1860 rpc_set_port((struct sockaddr *)&myaddr, port); 1861 err = kernel_bind(sock, (struct sockaddr *)&myaddr, 1862 transport->xprt.addrlen); 1863 if (err == 0) { 1864 transport->srcport = port; 1865 break; 1866 } 1867 last = port; 1868 port = xs_next_srcport(transport, port); 1869 if (port > last) 1870 nloop++; 1871 } while (err == -EADDRINUSE && nloop != 2); 1872 1873 if (myaddr.ss_family == AF_INET) 1874 dprintk("RPC: %s %pI4:%u: %s (%d)\n", __func__, 1875 &((struct sockaddr_in *)&myaddr)->sin_addr, 1876 port, err ? "failed" : "ok", err); 1877 else 1878 dprintk("RPC: %s %pI6:%u: %s (%d)\n", __func__, 1879 &((struct sockaddr_in6 *)&myaddr)->sin6_addr, 1880 port, err ? "failed" : "ok", err); 1881 return err; 1882 } 1883 1884 /* 1885 * We don't support autobind on AF_LOCAL sockets 1886 */ 1887 static void xs_local_rpcbind(struct rpc_task *task) 1888 { 1889 xprt_set_bound(task->tk_xprt); 1890 } 1891 1892 static void xs_local_set_port(struct rpc_xprt *xprt, unsigned short port) 1893 { 1894 } 1895 1896 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1897 static struct lock_class_key xs_key[2]; 1898 static struct lock_class_key xs_slock_key[2]; 1899 1900 static inline void xs_reclassify_socketu(struct socket *sock) 1901 { 1902 struct sock *sk = sock->sk; 1903 1904 sock_lock_init_class_and_name(sk, "slock-AF_LOCAL-RPC", 1905 &xs_slock_key[1], "sk_lock-AF_LOCAL-RPC", &xs_key[1]); 1906 } 1907 1908 static inline void xs_reclassify_socket4(struct socket *sock) 1909 { 1910 struct sock *sk = sock->sk; 1911 1912 sock_lock_init_class_and_name(sk, "slock-AF_INET-RPC", 1913 &xs_slock_key[0], "sk_lock-AF_INET-RPC", &xs_key[0]); 1914 } 1915 1916 static inline void xs_reclassify_socket6(struct socket *sock) 1917 { 1918 struct sock *sk = sock->sk; 1919 1920 sock_lock_init_class_and_name(sk, "slock-AF_INET6-RPC", 1921 &xs_slock_key[1], "sk_lock-AF_INET6-RPC", &xs_key[1]); 1922 } 1923 1924 static inline void xs_reclassify_socket(int family, struct socket *sock) 1925 { 1926 if (WARN_ON_ONCE(!sock_allow_reclassification(sock->sk))) 1927 return; 1928 1929 switch (family) { 1930 case AF_LOCAL: 1931 xs_reclassify_socketu(sock); 1932 break; 1933 case AF_INET: 1934 xs_reclassify_socket4(sock); 1935 break; 1936 case AF_INET6: 1937 xs_reclassify_socket6(sock); 1938 break; 1939 } 1940 } 1941 #else 1942 static inline void xs_reclassify_socket(int family, struct socket *sock) 1943 { 1944 } 1945 #endif 1946 1947 static void xs_dummy_setup_socket(struct work_struct *work) 1948 { 1949 } 1950 1951 static struct socket *xs_create_sock(struct rpc_xprt *xprt, 1952 struct sock_xprt *transport, int family, int type, 1953 int protocol, bool reuseport) 1954 { 1955 struct socket *sock; 1956 int err; 1957 1958 err = __sock_create(xprt->xprt_net, family, type, protocol, &sock, 1); 1959 if (err < 0) { 1960 dprintk("RPC: can't create %d transport socket (%d).\n", 1961 protocol, -err); 1962 goto out; 1963 } 1964 xs_reclassify_socket(family, sock); 1965 1966 if (reuseport) 1967 xs_sock_set_reuseport(sock); 1968 1969 err = xs_bind(transport, sock); 1970 if (err) { 1971 sock_release(sock); 1972 goto out; 1973 } 1974 1975 return sock; 1976 out: 1977 return ERR_PTR(err); 1978 } 1979 1980 static int xs_local_finish_connecting(struct rpc_xprt *xprt, 1981 struct socket *sock) 1982 { 1983 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, 1984 xprt); 1985 1986 if (!transport->inet) { 1987 struct sock *sk = sock->sk; 1988 1989 write_lock_bh(&sk->sk_callback_lock); 1990 1991 xs_save_old_callbacks(transport, sk); 1992 1993 sk->sk_user_data = xprt; 1994 sk->sk_data_ready = xs_data_ready; 1995 sk->sk_write_space = xs_udp_write_space; 1996 sock_set_flag(sk, SOCK_FASYNC); 1997 sk->sk_error_report = xs_error_report; 1998 sk->sk_allocation = GFP_NOIO; 1999 2000 xprt_clear_connected(xprt); 2001 2002 /* Reset to new socket */ 2003 transport->sock = sock; 2004 transport->inet = sk; 2005 2006 write_unlock_bh(&sk->sk_callback_lock); 2007 } 2008 2009 /* Tell the socket layer to start connecting... */ 2010 xprt->stat.connect_count++; 2011 xprt->stat.connect_start = jiffies; 2012 return kernel_connect(sock, xs_addr(xprt), xprt->addrlen, 0); 2013 } 2014 2015 /** 2016 * xs_local_setup_socket - create AF_LOCAL socket, connect to a local endpoint 2017 * @transport: socket transport to connect 2018 */ 2019 static int xs_local_setup_socket(struct sock_xprt *transport) 2020 { 2021 struct rpc_xprt *xprt = &transport->xprt; 2022 struct socket *sock; 2023 int status = -EIO; 2024 2025 status = __sock_create(xprt->xprt_net, AF_LOCAL, 2026 SOCK_STREAM, 0, &sock, 1); 2027 if (status < 0) { 2028 dprintk("RPC: can't create AF_LOCAL " 2029 "transport socket (%d).\n", -status); 2030 goto out; 2031 } 2032 xs_reclassify_socket(AF_LOCAL, sock); 2033 2034 dprintk("RPC: worker connecting xprt %p via AF_LOCAL to %s\n", 2035 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); 2036 2037 status = xs_local_finish_connecting(xprt, sock); 2038 trace_rpc_socket_connect(xprt, sock, status); 2039 switch (status) { 2040 case 0: 2041 dprintk("RPC: xprt %p connected to %s\n", 2042 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); 2043 xprt_set_connected(xprt); 2044 case -ENOBUFS: 2045 break; 2046 case -ENOENT: 2047 dprintk("RPC: xprt %p: socket %s does not exist\n", 2048 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); 2049 break; 2050 case -ECONNREFUSED: 2051 dprintk("RPC: xprt %p: connection refused for %s\n", 2052 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); 2053 break; 2054 default: 2055 printk(KERN_ERR "%s: unhandled error (%d) connecting to %s\n", 2056 __func__, -status, 2057 xprt->address_strings[RPC_DISPLAY_ADDR]); 2058 } 2059 2060 out: 2061 xprt_clear_connecting(xprt); 2062 xprt_wake_pending_tasks(xprt, status); 2063 return status; 2064 } 2065 2066 static void xs_local_connect(struct rpc_xprt *xprt, struct rpc_task *task) 2067 { 2068 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2069 int ret; 2070 2071 if (RPC_IS_ASYNC(task)) { 2072 /* 2073 * We want the AF_LOCAL connect to be resolved in the 2074 * filesystem namespace of the process making the rpc 2075 * call. Thus we connect synchronously. 2076 * 2077 * If we want to support asynchronous AF_LOCAL calls, 2078 * we'll need to figure out how to pass a namespace to 2079 * connect. 2080 */ 2081 rpc_exit(task, -ENOTCONN); 2082 return; 2083 } 2084 ret = xs_local_setup_socket(transport); 2085 if (ret && !RPC_IS_SOFTCONN(task)) 2086 msleep_interruptible(15000); 2087 } 2088 2089 #if IS_ENABLED(CONFIG_SUNRPC_SWAP) 2090 /* 2091 * Note that this should be called with XPRT_LOCKED held (or when we otherwise 2092 * know that we have exclusive access to the socket), to guard against 2093 * races with xs_reset_transport. 2094 */ 2095 static void xs_set_memalloc(struct rpc_xprt *xprt) 2096 { 2097 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, 2098 xprt); 2099 2100 /* 2101 * If there's no sock, then we have nothing to set. The 2102 * reconnecting process will get it for us. 2103 */ 2104 if (!transport->inet) 2105 return; 2106 if (atomic_read(&xprt->swapper)) 2107 sk_set_memalloc(transport->inet); 2108 } 2109 2110 /** 2111 * xs_enable_swap - Tag this transport as being used for swap. 2112 * @xprt: transport to tag 2113 * 2114 * Take a reference to this transport on behalf of the rpc_clnt, and 2115 * optionally mark it for swapping if it wasn't already. 2116 */ 2117 static int 2118 xs_enable_swap(struct rpc_xprt *xprt) 2119 { 2120 struct sock_xprt *xs = container_of(xprt, struct sock_xprt, xprt); 2121 2122 if (atomic_inc_return(&xprt->swapper) != 1) 2123 return 0; 2124 if (wait_on_bit_lock(&xprt->state, XPRT_LOCKED, TASK_KILLABLE)) 2125 return -ERESTARTSYS; 2126 if (xs->inet) 2127 sk_set_memalloc(xs->inet); 2128 xprt_release_xprt(xprt, NULL); 2129 return 0; 2130 } 2131 2132 /** 2133 * xs_disable_swap - Untag this transport as being used for swap. 2134 * @xprt: transport to tag 2135 * 2136 * Drop a "swapper" reference to this xprt on behalf of the rpc_clnt. If the 2137 * swapper refcount goes to 0, untag the socket as a memalloc socket. 2138 */ 2139 static void 2140 xs_disable_swap(struct rpc_xprt *xprt) 2141 { 2142 struct sock_xprt *xs = container_of(xprt, struct sock_xprt, xprt); 2143 2144 if (!atomic_dec_and_test(&xprt->swapper)) 2145 return; 2146 if (wait_on_bit_lock(&xprt->state, XPRT_LOCKED, TASK_KILLABLE)) 2147 return; 2148 if (xs->inet) 2149 sk_clear_memalloc(xs->inet); 2150 xprt_release_xprt(xprt, NULL); 2151 } 2152 #else 2153 static void xs_set_memalloc(struct rpc_xprt *xprt) 2154 { 2155 } 2156 2157 static int 2158 xs_enable_swap(struct rpc_xprt *xprt) 2159 { 2160 return -EINVAL; 2161 } 2162 2163 static void 2164 xs_disable_swap(struct rpc_xprt *xprt) 2165 { 2166 } 2167 #endif 2168 2169 static void xs_udp_finish_connecting(struct rpc_xprt *xprt, struct socket *sock) 2170 { 2171 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2172 2173 if (!transport->inet) { 2174 struct sock *sk = sock->sk; 2175 2176 write_lock_bh(&sk->sk_callback_lock); 2177 2178 xs_save_old_callbacks(transport, sk); 2179 2180 sk->sk_user_data = xprt; 2181 sk->sk_data_ready = xs_data_ready; 2182 sk->sk_write_space = xs_udp_write_space; 2183 sock_set_flag(sk, SOCK_FASYNC); 2184 sk->sk_allocation = GFP_NOIO; 2185 2186 xprt_set_connected(xprt); 2187 2188 /* Reset to new socket */ 2189 transport->sock = sock; 2190 transport->inet = sk; 2191 2192 xs_set_memalloc(xprt); 2193 2194 write_unlock_bh(&sk->sk_callback_lock); 2195 } 2196 xs_udp_do_set_buffer_size(xprt); 2197 2198 xprt->stat.connect_start = jiffies; 2199 } 2200 2201 static void xs_udp_setup_socket(struct work_struct *work) 2202 { 2203 struct sock_xprt *transport = 2204 container_of(work, struct sock_xprt, connect_worker.work); 2205 struct rpc_xprt *xprt = &transport->xprt; 2206 struct socket *sock = transport->sock; 2207 int status = -EIO; 2208 2209 sock = xs_create_sock(xprt, transport, 2210 xs_addr(xprt)->sa_family, SOCK_DGRAM, 2211 IPPROTO_UDP, false); 2212 if (IS_ERR(sock)) 2213 goto out; 2214 2215 dprintk("RPC: worker connecting xprt %p via %s to " 2216 "%s (port %s)\n", xprt, 2217 xprt->address_strings[RPC_DISPLAY_PROTO], 2218 xprt->address_strings[RPC_DISPLAY_ADDR], 2219 xprt->address_strings[RPC_DISPLAY_PORT]); 2220 2221 xs_udp_finish_connecting(xprt, sock); 2222 trace_rpc_socket_connect(xprt, sock, 0); 2223 status = 0; 2224 out: 2225 xprt_unlock_connect(xprt, transport); 2226 xprt_clear_connecting(xprt); 2227 xprt_wake_pending_tasks(xprt, status); 2228 } 2229 2230 /** 2231 * xs_tcp_shutdown - gracefully shut down a TCP socket 2232 * @xprt: transport 2233 * 2234 * Initiates a graceful shutdown of the TCP socket by calling the 2235 * equivalent of shutdown(SHUT_RDWR); 2236 */ 2237 static void xs_tcp_shutdown(struct rpc_xprt *xprt) 2238 { 2239 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2240 struct socket *sock = transport->sock; 2241 2242 if (sock == NULL) 2243 return; 2244 if (xprt_connected(xprt)) { 2245 kernel_sock_shutdown(sock, SHUT_RDWR); 2246 trace_rpc_socket_shutdown(xprt, sock); 2247 } else 2248 xs_reset_transport(transport); 2249 } 2250 2251 static void xs_tcp_set_socket_timeouts(struct rpc_xprt *xprt, 2252 struct socket *sock) 2253 { 2254 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2255 unsigned int keepidle; 2256 unsigned int keepcnt; 2257 unsigned int opt_on = 1; 2258 unsigned int timeo; 2259 2260 spin_lock_bh(&xprt->transport_lock); 2261 keepidle = DIV_ROUND_UP(xprt->timeout->to_initval, HZ); 2262 keepcnt = xprt->timeout->to_retries + 1; 2263 timeo = jiffies_to_msecs(xprt->timeout->to_initval) * 2264 (xprt->timeout->to_retries + 1); 2265 clear_bit(XPRT_SOCK_UPD_TIMEOUT, &transport->sock_state); 2266 spin_unlock_bh(&xprt->transport_lock); 2267 2268 /* TCP Keepalive options */ 2269 kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE, 2270 (char *)&opt_on, sizeof(opt_on)); 2271 kernel_setsockopt(sock, SOL_TCP, TCP_KEEPIDLE, 2272 (char *)&keepidle, sizeof(keepidle)); 2273 kernel_setsockopt(sock, SOL_TCP, TCP_KEEPINTVL, 2274 (char *)&keepidle, sizeof(keepidle)); 2275 kernel_setsockopt(sock, SOL_TCP, TCP_KEEPCNT, 2276 (char *)&keepcnt, sizeof(keepcnt)); 2277 2278 /* TCP user timeout (see RFC5482) */ 2279 kernel_setsockopt(sock, SOL_TCP, TCP_USER_TIMEOUT, 2280 (char *)&timeo, sizeof(timeo)); 2281 } 2282 2283 static void xs_tcp_set_connect_timeout(struct rpc_xprt *xprt, 2284 unsigned long connect_timeout, 2285 unsigned long reconnect_timeout) 2286 { 2287 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2288 struct rpc_timeout to; 2289 unsigned long initval; 2290 2291 spin_lock_bh(&xprt->transport_lock); 2292 if (reconnect_timeout < xprt->max_reconnect_timeout) 2293 xprt->max_reconnect_timeout = reconnect_timeout; 2294 if (connect_timeout < xprt->connect_timeout) { 2295 memcpy(&to, xprt->timeout, sizeof(to)); 2296 initval = DIV_ROUND_UP(connect_timeout, to.to_retries + 1); 2297 /* Arbitrary lower limit */ 2298 if (initval < XS_TCP_INIT_REEST_TO << 1) 2299 initval = XS_TCP_INIT_REEST_TO << 1; 2300 to.to_initval = initval; 2301 to.to_maxval = initval; 2302 memcpy(&transport->tcp_timeout, &to, 2303 sizeof(transport->tcp_timeout)); 2304 xprt->timeout = &transport->tcp_timeout; 2305 xprt->connect_timeout = connect_timeout; 2306 } 2307 set_bit(XPRT_SOCK_UPD_TIMEOUT, &transport->sock_state); 2308 spin_unlock_bh(&xprt->transport_lock); 2309 } 2310 2311 static int xs_tcp_finish_connecting(struct rpc_xprt *xprt, struct socket *sock) 2312 { 2313 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2314 int ret = -ENOTCONN; 2315 2316 if (!transport->inet) { 2317 struct sock *sk = sock->sk; 2318 unsigned int addr_pref = IPV6_PREFER_SRC_PUBLIC; 2319 2320 /* Avoid temporary address, they are bad for long-lived 2321 * connections such as NFS mounts. 2322 * RFC4941, section 3.6 suggests that: 2323 * Individual applications, which have specific 2324 * knowledge about the normal duration of connections, 2325 * MAY override this as appropriate. 2326 */ 2327 kernel_setsockopt(sock, SOL_IPV6, IPV6_ADDR_PREFERENCES, 2328 (char *)&addr_pref, sizeof(addr_pref)); 2329 2330 xs_tcp_set_socket_timeouts(xprt, sock); 2331 2332 write_lock_bh(&sk->sk_callback_lock); 2333 2334 xs_save_old_callbacks(transport, sk); 2335 2336 sk->sk_user_data = xprt; 2337 sk->sk_data_ready = xs_data_ready; 2338 sk->sk_state_change = xs_tcp_state_change; 2339 sk->sk_write_space = xs_tcp_write_space; 2340 sock_set_flag(sk, SOCK_FASYNC); 2341 sk->sk_error_report = xs_error_report; 2342 sk->sk_allocation = GFP_NOIO; 2343 2344 /* socket options */ 2345 sock_reset_flag(sk, SOCK_LINGER); 2346 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF; 2347 2348 xprt_clear_connected(xprt); 2349 2350 /* Reset to new socket */ 2351 transport->sock = sock; 2352 transport->inet = sk; 2353 2354 write_unlock_bh(&sk->sk_callback_lock); 2355 } 2356 2357 if (!xprt_bound(xprt)) 2358 goto out; 2359 2360 xs_set_memalloc(xprt); 2361 2362 /* Tell the socket layer to start connecting... */ 2363 xprt->stat.connect_count++; 2364 xprt->stat.connect_start = jiffies; 2365 set_bit(XPRT_SOCK_CONNECTING, &transport->sock_state); 2366 ret = kernel_connect(sock, xs_addr(xprt), xprt->addrlen, O_NONBLOCK); 2367 switch (ret) { 2368 case 0: 2369 xs_set_srcport(transport, sock); 2370 case -EINPROGRESS: 2371 /* SYN_SENT! */ 2372 if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO) 2373 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 2374 break; 2375 case -EADDRNOTAVAIL: 2376 /* Source port number is unavailable. Try a new one! */ 2377 transport->srcport = 0; 2378 } 2379 out: 2380 return ret; 2381 } 2382 2383 /** 2384 * xs_tcp_setup_socket - create a TCP socket and connect to a remote endpoint 2385 * 2386 * Invoked by a work queue tasklet. 2387 */ 2388 static void xs_tcp_setup_socket(struct work_struct *work) 2389 { 2390 struct sock_xprt *transport = 2391 container_of(work, struct sock_xprt, connect_worker.work); 2392 struct socket *sock = transport->sock; 2393 struct rpc_xprt *xprt = &transport->xprt; 2394 int status = -EIO; 2395 2396 if (!sock) { 2397 sock = xs_create_sock(xprt, transport, 2398 xs_addr(xprt)->sa_family, SOCK_STREAM, 2399 IPPROTO_TCP, true); 2400 if (IS_ERR(sock)) { 2401 status = PTR_ERR(sock); 2402 goto out; 2403 } 2404 } 2405 2406 dprintk("RPC: worker connecting xprt %p via %s to " 2407 "%s (port %s)\n", xprt, 2408 xprt->address_strings[RPC_DISPLAY_PROTO], 2409 xprt->address_strings[RPC_DISPLAY_ADDR], 2410 xprt->address_strings[RPC_DISPLAY_PORT]); 2411 2412 status = xs_tcp_finish_connecting(xprt, sock); 2413 trace_rpc_socket_connect(xprt, sock, status); 2414 dprintk("RPC: %p connect status %d connected %d sock state %d\n", 2415 xprt, -status, xprt_connected(xprt), 2416 sock->sk->sk_state); 2417 switch (status) { 2418 default: 2419 printk("%s: connect returned unhandled error %d\n", 2420 __func__, status); 2421 case -EADDRNOTAVAIL: 2422 /* We're probably in TIME_WAIT. Get rid of existing socket, 2423 * and retry 2424 */ 2425 xs_tcp_force_close(xprt); 2426 break; 2427 case 0: 2428 case -EINPROGRESS: 2429 case -EALREADY: 2430 xprt_unlock_connect(xprt, transport); 2431 return; 2432 case -EINVAL: 2433 /* Happens, for instance, if the user specified a link 2434 * local IPv6 address without a scope-id. 2435 */ 2436 case -ECONNREFUSED: 2437 case -ECONNRESET: 2438 case -ENETUNREACH: 2439 case -EADDRINUSE: 2440 case -ENOBUFS: 2441 /* 2442 * xs_tcp_force_close() wakes tasks with -EIO. 2443 * We need to wake them first to ensure the 2444 * correct error code. 2445 */ 2446 xprt_wake_pending_tasks(xprt, status); 2447 xs_tcp_force_close(xprt); 2448 goto out; 2449 } 2450 status = -EAGAIN; 2451 out: 2452 xprt_unlock_connect(xprt, transport); 2453 xprt_clear_connecting(xprt); 2454 xprt_wake_pending_tasks(xprt, status); 2455 } 2456 2457 static unsigned long xs_reconnect_delay(const struct rpc_xprt *xprt) 2458 { 2459 unsigned long start, now = jiffies; 2460 2461 start = xprt->stat.connect_start + xprt->reestablish_timeout; 2462 if (time_after(start, now)) 2463 return start - now; 2464 return 0; 2465 } 2466 2467 static void xs_reconnect_backoff(struct rpc_xprt *xprt) 2468 { 2469 xprt->reestablish_timeout <<= 1; 2470 if (xprt->reestablish_timeout > xprt->max_reconnect_timeout) 2471 xprt->reestablish_timeout = xprt->max_reconnect_timeout; 2472 if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO) 2473 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 2474 } 2475 2476 /** 2477 * xs_connect - connect a socket to a remote endpoint 2478 * @xprt: pointer to transport structure 2479 * @task: address of RPC task that manages state of connect request 2480 * 2481 * TCP: If the remote end dropped the connection, delay reconnecting. 2482 * 2483 * UDP socket connects are synchronous, but we use a work queue anyway 2484 * to guarantee that even unprivileged user processes can set up a 2485 * socket on a privileged port. 2486 * 2487 * If a UDP socket connect fails, the delay behavior here prevents 2488 * retry floods (hard mounts). 2489 */ 2490 static void xs_connect(struct rpc_xprt *xprt, struct rpc_task *task) 2491 { 2492 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2493 unsigned long delay = 0; 2494 2495 WARN_ON_ONCE(!xprt_lock_connect(xprt, task, transport)); 2496 2497 if (transport->sock != NULL) { 2498 dprintk("RPC: xs_connect delayed xprt %p for %lu " 2499 "seconds\n", 2500 xprt, xprt->reestablish_timeout / HZ); 2501 2502 /* Start by resetting any existing state */ 2503 xs_reset_transport(transport); 2504 2505 delay = xs_reconnect_delay(xprt); 2506 xs_reconnect_backoff(xprt); 2507 2508 } else 2509 dprintk("RPC: xs_connect scheduled xprt %p\n", xprt); 2510 2511 queue_delayed_work(xprtiod_workqueue, 2512 &transport->connect_worker, 2513 delay); 2514 } 2515 2516 /** 2517 * xs_local_print_stats - display AF_LOCAL socket-specifc stats 2518 * @xprt: rpc_xprt struct containing statistics 2519 * @seq: output file 2520 * 2521 */ 2522 static void xs_local_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 2523 { 2524 long idle_time = 0; 2525 2526 if (xprt_connected(xprt)) 2527 idle_time = (long)(jiffies - xprt->last_used) / HZ; 2528 2529 seq_printf(seq, "\txprt:\tlocal %lu %lu %lu %ld %lu %lu %lu " 2530 "%llu %llu %lu %llu %llu\n", 2531 xprt->stat.bind_count, 2532 xprt->stat.connect_count, 2533 xprt->stat.connect_time, 2534 idle_time, 2535 xprt->stat.sends, 2536 xprt->stat.recvs, 2537 xprt->stat.bad_xids, 2538 xprt->stat.req_u, 2539 xprt->stat.bklog_u, 2540 xprt->stat.max_slots, 2541 xprt->stat.sending_u, 2542 xprt->stat.pending_u); 2543 } 2544 2545 /** 2546 * xs_udp_print_stats - display UDP socket-specifc stats 2547 * @xprt: rpc_xprt struct containing statistics 2548 * @seq: output file 2549 * 2550 */ 2551 static void xs_udp_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 2552 { 2553 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2554 2555 seq_printf(seq, "\txprt:\tudp %u %lu %lu %lu %lu %llu %llu " 2556 "%lu %llu %llu\n", 2557 transport->srcport, 2558 xprt->stat.bind_count, 2559 xprt->stat.sends, 2560 xprt->stat.recvs, 2561 xprt->stat.bad_xids, 2562 xprt->stat.req_u, 2563 xprt->stat.bklog_u, 2564 xprt->stat.max_slots, 2565 xprt->stat.sending_u, 2566 xprt->stat.pending_u); 2567 } 2568 2569 /** 2570 * xs_tcp_print_stats - display TCP socket-specifc stats 2571 * @xprt: rpc_xprt struct containing statistics 2572 * @seq: output file 2573 * 2574 */ 2575 static void xs_tcp_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 2576 { 2577 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2578 long idle_time = 0; 2579 2580 if (xprt_connected(xprt)) 2581 idle_time = (long)(jiffies - xprt->last_used) / HZ; 2582 2583 seq_printf(seq, "\txprt:\ttcp %u %lu %lu %lu %ld %lu %lu %lu " 2584 "%llu %llu %lu %llu %llu\n", 2585 transport->srcport, 2586 xprt->stat.bind_count, 2587 xprt->stat.connect_count, 2588 xprt->stat.connect_time, 2589 idle_time, 2590 xprt->stat.sends, 2591 xprt->stat.recvs, 2592 xprt->stat.bad_xids, 2593 xprt->stat.req_u, 2594 xprt->stat.bklog_u, 2595 xprt->stat.max_slots, 2596 xprt->stat.sending_u, 2597 xprt->stat.pending_u); 2598 } 2599 2600 /* 2601 * Allocate a bunch of pages for a scratch buffer for the rpc code. The reason 2602 * we allocate pages instead doing a kmalloc like rpc_malloc is because we want 2603 * to use the server side send routines. 2604 */ 2605 static int bc_malloc(struct rpc_task *task) 2606 { 2607 struct rpc_rqst *rqst = task->tk_rqstp; 2608 size_t size = rqst->rq_callsize; 2609 struct page *page; 2610 struct rpc_buffer *buf; 2611 2612 if (size > PAGE_SIZE - sizeof(struct rpc_buffer)) { 2613 WARN_ONCE(1, "xprtsock: large bc buffer request (size %zu)\n", 2614 size); 2615 return -EINVAL; 2616 } 2617 2618 page = alloc_page(GFP_KERNEL); 2619 if (!page) 2620 return -ENOMEM; 2621 2622 buf = page_address(page); 2623 buf->len = PAGE_SIZE; 2624 2625 rqst->rq_buffer = buf->data; 2626 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize; 2627 return 0; 2628 } 2629 2630 /* 2631 * Free the space allocated in the bc_alloc routine 2632 */ 2633 static void bc_free(struct rpc_task *task) 2634 { 2635 void *buffer = task->tk_rqstp->rq_buffer; 2636 struct rpc_buffer *buf; 2637 2638 buf = container_of(buffer, struct rpc_buffer, data); 2639 free_page((unsigned long)buf); 2640 } 2641 2642 /* 2643 * Use the svc_sock to send the callback. Must be called with svsk->sk_mutex 2644 * held. Borrows heavily from svc_tcp_sendto and xs_tcp_send_request. 2645 */ 2646 static int bc_sendto(struct rpc_rqst *req) 2647 { 2648 int len; 2649 struct xdr_buf *xbufp = &req->rq_snd_buf; 2650 struct rpc_xprt *xprt = req->rq_xprt; 2651 struct sock_xprt *transport = 2652 container_of(xprt, struct sock_xprt, xprt); 2653 struct socket *sock = transport->sock; 2654 unsigned long headoff; 2655 unsigned long tailoff; 2656 2657 xs_encode_stream_record_marker(xbufp); 2658 2659 tailoff = (unsigned long)xbufp->tail[0].iov_base & ~PAGE_MASK; 2660 headoff = (unsigned long)xbufp->head[0].iov_base & ~PAGE_MASK; 2661 len = svc_send_common(sock, xbufp, 2662 virt_to_page(xbufp->head[0].iov_base), headoff, 2663 xbufp->tail[0].iov_base, tailoff); 2664 2665 if (len != xbufp->len) { 2666 printk(KERN_NOTICE "Error sending entire callback!\n"); 2667 len = -EAGAIN; 2668 } 2669 2670 return len; 2671 } 2672 2673 /* 2674 * The send routine. Borrows from svc_send 2675 */ 2676 static int bc_send_request(struct rpc_task *task) 2677 { 2678 struct rpc_rqst *req = task->tk_rqstp; 2679 struct svc_xprt *xprt; 2680 int len; 2681 2682 dprintk("sending request with xid: %08x\n", ntohl(req->rq_xid)); 2683 /* 2684 * Get the server socket associated with this callback xprt 2685 */ 2686 xprt = req->rq_xprt->bc_xprt; 2687 2688 /* 2689 * Grab the mutex to serialize data as the connection is shared 2690 * with the fore channel 2691 */ 2692 if (!mutex_trylock(&xprt->xpt_mutex)) { 2693 rpc_sleep_on(&xprt->xpt_bc_pending, task, NULL); 2694 if (!mutex_trylock(&xprt->xpt_mutex)) 2695 return -EAGAIN; 2696 rpc_wake_up_queued_task(&xprt->xpt_bc_pending, task); 2697 } 2698 if (test_bit(XPT_DEAD, &xprt->xpt_flags)) 2699 len = -ENOTCONN; 2700 else 2701 len = bc_sendto(req); 2702 mutex_unlock(&xprt->xpt_mutex); 2703 2704 if (len > 0) 2705 len = 0; 2706 2707 return len; 2708 } 2709 2710 /* 2711 * The close routine. Since this is client initiated, we do nothing 2712 */ 2713 2714 static void bc_close(struct rpc_xprt *xprt) 2715 { 2716 } 2717 2718 /* 2719 * The xprt destroy routine. Again, because this connection is client 2720 * initiated, we do nothing 2721 */ 2722 2723 static void bc_destroy(struct rpc_xprt *xprt) 2724 { 2725 dprintk("RPC: bc_destroy xprt %p\n", xprt); 2726 2727 xs_xprt_free(xprt); 2728 module_put(THIS_MODULE); 2729 } 2730 2731 static const struct rpc_xprt_ops xs_local_ops = { 2732 .reserve_xprt = xprt_reserve_xprt, 2733 .release_xprt = xs_tcp_release_xprt, 2734 .alloc_slot = xprt_alloc_slot, 2735 .rpcbind = xs_local_rpcbind, 2736 .set_port = xs_local_set_port, 2737 .connect = xs_local_connect, 2738 .buf_alloc = rpc_malloc, 2739 .buf_free = rpc_free, 2740 .send_request = xs_local_send_request, 2741 .set_retrans_timeout = xprt_set_retrans_timeout_def, 2742 .close = xs_close, 2743 .destroy = xs_destroy, 2744 .print_stats = xs_local_print_stats, 2745 .enable_swap = xs_enable_swap, 2746 .disable_swap = xs_disable_swap, 2747 }; 2748 2749 static const struct rpc_xprt_ops xs_udp_ops = { 2750 .set_buffer_size = xs_udp_set_buffer_size, 2751 .reserve_xprt = xprt_reserve_xprt_cong, 2752 .release_xprt = xprt_release_xprt_cong, 2753 .alloc_slot = xprt_alloc_slot, 2754 .rpcbind = rpcb_getport_async, 2755 .set_port = xs_set_port, 2756 .connect = xs_connect, 2757 .buf_alloc = rpc_malloc, 2758 .buf_free = rpc_free, 2759 .send_request = xs_udp_send_request, 2760 .set_retrans_timeout = xprt_set_retrans_timeout_rtt, 2761 .timer = xs_udp_timer, 2762 .release_request = xprt_release_rqst_cong, 2763 .close = xs_close, 2764 .destroy = xs_destroy, 2765 .print_stats = xs_udp_print_stats, 2766 .enable_swap = xs_enable_swap, 2767 .disable_swap = xs_disable_swap, 2768 .inject_disconnect = xs_inject_disconnect, 2769 }; 2770 2771 static const struct rpc_xprt_ops xs_tcp_ops = { 2772 .reserve_xprt = xprt_reserve_xprt, 2773 .release_xprt = xs_tcp_release_xprt, 2774 .alloc_slot = xprt_lock_and_alloc_slot, 2775 .rpcbind = rpcb_getport_async, 2776 .set_port = xs_set_port, 2777 .connect = xs_connect, 2778 .buf_alloc = rpc_malloc, 2779 .buf_free = rpc_free, 2780 .send_request = xs_tcp_send_request, 2781 .set_retrans_timeout = xprt_set_retrans_timeout_def, 2782 .close = xs_tcp_shutdown, 2783 .destroy = xs_destroy, 2784 .set_connect_timeout = xs_tcp_set_connect_timeout, 2785 .print_stats = xs_tcp_print_stats, 2786 .enable_swap = xs_enable_swap, 2787 .disable_swap = xs_disable_swap, 2788 .inject_disconnect = xs_inject_disconnect, 2789 #ifdef CONFIG_SUNRPC_BACKCHANNEL 2790 .bc_setup = xprt_setup_bc, 2791 .bc_up = xs_tcp_bc_up, 2792 .bc_maxpayload = xs_tcp_bc_maxpayload, 2793 .bc_free_rqst = xprt_free_bc_rqst, 2794 .bc_destroy = xprt_destroy_bc, 2795 #endif 2796 }; 2797 2798 /* 2799 * The rpc_xprt_ops for the server backchannel 2800 */ 2801 2802 static const struct rpc_xprt_ops bc_tcp_ops = { 2803 .reserve_xprt = xprt_reserve_xprt, 2804 .release_xprt = xprt_release_xprt, 2805 .alloc_slot = xprt_alloc_slot, 2806 .buf_alloc = bc_malloc, 2807 .buf_free = bc_free, 2808 .send_request = bc_send_request, 2809 .set_retrans_timeout = xprt_set_retrans_timeout_def, 2810 .close = bc_close, 2811 .destroy = bc_destroy, 2812 .print_stats = xs_tcp_print_stats, 2813 .enable_swap = xs_enable_swap, 2814 .disable_swap = xs_disable_swap, 2815 .inject_disconnect = xs_inject_disconnect, 2816 }; 2817 2818 static int xs_init_anyaddr(const int family, struct sockaddr *sap) 2819 { 2820 static const struct sockaddr_in sin = { 2821 .sin_family = AF_INET, 2822 .sin_addr.s_addr = htonl(INADDR_ANY), 2823 }; 2824 static const struct sockaddr_in6 sin6 = { 2825 .sin6_family = AF_INET6, 2826 .sin6_addr = IN6ADDR_ANY_INIT, 2827 }; 2828 2829 switch (family) { 2830 case AF_LOCAL: 2831 break; 2832 case AF_INET: 2833 memcpy(sap, &sin, sizeof(sin)); 2834 break; 2835 case AF_INET6: 2836 memcpy(sap, &sin6, sizeof(sin6)); 2837 break; 2838 default: 2839 dprintk("RPC: %s: Bad address family\n", __func__); 2840 return -EAFNOSUPPORT; 2841 } 2842 return 0; 2843 } 2844 2845 static struct rpc_xprt *xs_setup_xprt(struct xprt_create *args, 2846 unsigned int slot_table_size, 2847 unsigned int max_slot_table_size) 2848 { 2849 struct rpc_xprt *xprt; 2850 struct sock_xprt *new; 2851 2852 if (args->addrlen > sizeof(xprt->addr)) { 2853 dprintk("RPC: xs_setup_xprt: address too large\n"); 2854 return ERR_PTR(-EBADF); 2855 } 2856 2857 xprt = xprt_alloc(args->net, sizeof(*new), slot_table_size, 2858 max_slot_table_size); 2859 if (xprt == NULL) { 2860 dprintk("RPC: xs_setup_xprt: couldn't allocate " 2861 "rpc_xprt\n"); 2862 return ERR_PTR(-ENOMEM); 2863 } 2864 2865 new = container_of(xprt, struct sock_xprt, xprt); 2866 mutex_init(&new->recv_mutex); 2867 memcpy(&xprt->addr, args->dstaddr, args->addrlen); 2868 xprt->addrlen = args->addrlen; 2869 if (args->srcaddr) 2870 memcpy(&new->srcaddr, args->srcaddr, args->addrlen); 2871 else { 2872 int err; 2873 err = xs_init_anyaddr(args->dstaddr->sa_family, 2874 (struct sockaddr *)&new->srcaddr); 2875 if (err != 0) { 2876 xprt_free(xprt); 2877 return ERR_PTR(err); 2878 } 2879 } 2880 2881 return xprt; 2882 } 2883 2884 static const struct rpc_timeout xs_local_default_timeout = { 2885 .to_initval = 10 * HZ, 2886 .to_maxval = 10 * HZ, 2887 .to_retries = 2, 2888 }; 2889 2890 /** 2891 * xs_setup_local - Set up transport to use an AF_LOCAL socket 2892 * @args: rpc transport creation arguments 2893 * 2894 * AF_LOCAL is a "tpi_cots_ord" transport, just like TCP 2895 */ 2896 static struct rpc_xprt *xs_setup_local(struct xprt_create *args) 2897 { 2898 struct sockaddr_un *sun = (struct sockaddr_un *)args->dstaddr; 2899 struct sock_xprt *transport; 2900 struct rpc_xprt *xprt; 2901 struct rpc_xprt *ret; 2902 2903 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries, 2904 xprt_max_tcp_slot_table_entries); 2905 if (IS_ERR(xprt)) 2906 return xprt; 2907 transport = container_of(xprt, struct sock_xprt, xprt); 2908 2909 xprt->prot = 0; 2910 xprt->tsh_size = sizeof(rpc_fraghdr) / sizeof(u32); 2911 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE; 2912 2913 xprt->bind_timeout = XS_BIND_TO; 2914 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 2915 xprt->idle_timeout = XS_IDLE_DISC_TO; 2916 2917 xprt->ops = &xs_local_ops; 2918 xprt->timeout = &xs_local_default_timeout; 2919 2920 INIT_WORK(&transport->recv_worker, xs_local_data_receive_workfn); 2921 INIT_DELAYED_WORK(&transport->connect_worker, 2922 xs_dummy_setup_socket); 2923 2924 switch (sun->sun_family) { 2925 case AF_LOCAL: 2926 if (sun->sun_path[0] != '/') { 2927 dprintk("RPC: bad AF_LOCAL address: %s\n", 2928 sun->sun_path); 2929 ret = ERR_PTR(-EINVAL); 2930 goto out_err; 2931 } 2932 xprt_set_bound(xprt); 2933 xs_format_peer_addresses(xprt, "local", RPCBIND_NETID_LOCAL); 2934 ret = ERR_PTR(xs_local_setup_socket(transport)); 2935 if (ret) 2936 goto out_err; 2937 break; 2938 default: 2939 ret = ERR_PTR(-EAFNOSUPPORT); 2940 goto out_err; 2941 } 2942 2943 dprintk("RPC: set up xprt to %s via AF_LOCAL\n", 2944 xprt->address_strings[RPC_DISPLAY_ADDR]); 2945 2946 if (try_module_get(THIS_MODULE)) 2947 return xprt; 2948 ret = ERR_PTR(-EINVAL); 2949 out_err: 2950 xs_xprt_free(xprt); 2951 return ret; 2952 } 2953 2954 static const struct rpc_timeout xs_udp_default_timeout = { 2955 .to_initval = 5 * HZ, 2956 .to_maxval = 30 * HZ, 2957 .to_increment = 5 * HZ, 2958 .to_retries = 5, 2959 }; 2960 2961 /** 2962 * xs_setup_udp - Set up transport to use a UDP socket 2963 * @args: rpc transport creation arguments 2964 * 2965 */ 2966 static struct rpc_xprt *xs_setup_udp(struct xprt_create *args) 2967 { 2968 struct sockaddr *addr = args->dstaddr; 2969 struct rpc_xprt *xprt; 2970 struct sock_xprt *transport; 2971 struct rpc_xprt *ret; 2972 2973 xprt = xs_setup_xprt(args, xprt_udp_slot_table_entries, 2974 xprt_udp_slot_table_entries); 2975 if (IS_ERR(xprt)) 2976 return xprt; 2977 transport = container_of(xprt, struct sock_xprt, xprt); 2978 2979 xprt->prot = IPPROTO_UDP; 2980 xprt->tsh_size = 0; 2981 /* XXX: header size can vary due to auth type, IPv6, etc. */ 2982 xprt->max_payload = (1U << 16) - (MAX_HEADER << 3); 2983 2984 xprt->bind_timeout = XS_BIND_TO; 2985 xprt->reestablish_timeout = XS_UDP_REEST_TO; 2986 xprt->idle_timeout = XS_IDLE_DISC_TO; 2987 2988 xprt->ops = &xs_udp_ops; 2989 2990 xprt->timeout = &xs_udp_default_timeout; 2991 2992 INIT_WORK(&transport->recv_worker, xs_udp_data_receive_workfn); 2993 INIT_DELAYED_WORK(&transport->connect_worker, xs_udp_setup_socket); 2994 2995 switch (addr->sa_family) { 2996 case AF_INET: 2997 if (((struct sockaddr_in *)addr)->sin_port != htons(0)) 2998 xprt_set_bound(xprt); 2999 3000 xs_format_peer_addresses(xprt, "udp", RPCBIND_NETID_UDP); 3001 break; 3002 case AF_INET6: 3003 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0)) 3004 xprt_set_bound(xprt); 3005 3006 xs_format_peer_addresses(xprt, "udp", RPCBIND_NETID_UDP6); 3007 break; 3008 default: 3009 ret = ERR_PTR(-EAFNOSUPPORT); 3010 goto out_err; 3011 } 3012 3013 if (xprt_bound(xprt)) 3014 dprintk("RPC: set up xprt to %s (port %s) via %s\n", 3015 xprt->address_strings[RPC_DISPLAY_ADDR], 3016 xprt->address_strings[RPC_DISPLAY_PORT], 3017 xprt->address_strings[RPC_DISPLAY_PROTO]); 3018 else 3019 dprintk("RPC: set up xprt to %s (autobind) via %s\n", 3020 xprt->address_strings[RPC_DISPLAY_ADDR], 3021 xprt->address_strings[RPC_DISPLAY_PROTO]); 3022 3023 if (try_module_get(THIS_MODULE)) 3024 return xprt; 3025 ret = ERR_PTR(-EINVAL); 3026 out_err: 3027 xs_xprt_free(xprt); 3028 return ret; 3029 } 3030 3031 static const struct rpc_timeout xs_tcp_default_timeout = { 3032 .to_initval = 60 * HZ, 3033 .to_maxval = 60 * HZ, 3034 .to_retries = 2, 3035 }; 3036 3037 /** 3038 * xs_setup_tcp - Set up transport to use a TCP socket 3039 * @args: rpc transport creation arguments 3040 * 3041 */ 3042 static struct rpc_xprt *xs_setup_tcp(struct xprt_create *args) 3043 { 3044 struct sockaddr *addr = args->dstaddr; 3045 struct rpc_xprt *xprt; 3046 struct sock_xprt *transport; 3047 struct rpc_xprt *ret; 3048 unsigned int max_slot_table_size = xprt_max_tcp_slot_table_entries; 3049 3050 if (args->flags & XPRT_CREATE_INFINITE_SLOTS) 3051 max_slot_table_size = RPC_MAX_SLOT_TABLE_LIMIT; 3052 3053 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries, 3054 max_slot_table_size); 3055 if (IS_ERR(xprt)) 3056 return xprt; 3057 transport = container_of(xprt, struct sock_xprt, xprt); 3058 3059 xprt->prot = IPPROTO_TCP; 3060 xprt->tsh_size = sizeof(rpc_fraghdr) / sizeof(u32); 3061 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE; 3062 3063 xprt->bind_timeout = XS_BIND_TO; 3064 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 3065 xprt->idle_timeout = XS_IDLE_DISC_TO; 3066 3067 xprt->ops = &xs_tcp_ops; 3068 xprt->timeout = &xs_tcp_default_timeout; 3069 3070 xprt->max_reconnect_timeout = xprt->timeout->to_maxval; 3071 xprt->connect_timeout = xprt->timeout->to_initval * 3072 (xprt->timeout->to_retries + 1); 3073 3074 INIT_WORK(&transport->recv_worker, xs_tcp_data_receive_workfn); 3075 INIT_DELAYED_WORK(&transport->connect_worker, xs_tcp_setup_socket); 3076 3077 switch (addr->sa_family) { 3078 case AF_INET: 3079 if (((struct sockaddr_in *)addr)->sin_port != htons(0)) 3080 xprt_set_bound(xprt); 3081 3082 xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP); 3083 break; 3084 case AF_INET6: 3085 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0)) 3086 xprt_set_bound(xprt); 3087 3088 xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP6); 3089 break; 3090 default: 3091 ret = ERR_PTR(-EAFNOSUPPORT); 3092 goto out_err; 3093 } 3094 3095 if (xprt_bound(xprt)) 3096 dprintk("RPC: set up xprt to %s (port %s) via %s\n", 3097 xprt->address_strings[RPC_DISPLAY_ADDR], 3098 xprt->address_strings[RPC_DISPLAY_PORT], 3099 xprt->address_strings[RPC_DISPLAY_PROTO]); 3100 else 3101 dprintk("RPC: set up xprt to %s (autobind) via %s\n", 3102 xprt->address_strings[RPC_DISPLAY_ADDR], 3103 xprt->address_strings[RPC_DISPLAY_PROTO]); 3104 3105 if (try_module_get(THIS_MODULE)) 3106 return xprt; 3107 ret = ERR_PTR(-EINVAL); 3108 out_err: 3109 xs_xprt_free(xprt); 3110 return ret; 3111 } 3112 3113 /** 3114 * xs_setup_bc_tcp - Set up transport to use a TCP backchannel socket 3115 * @args: rpc transport creation arguments 3116 * 3117 */ 3118 static struct rpc_xprt *xs_setup_bc_tcp(struct xprt_create *args) 3119 { 3120 struct sockaddr *addr = args->dstaddr; 3121 struct rpc_xprt *xprt; 3122 struct sock_xprt *transport; 3123 struct svc_sock *bc_sock; 3124 struct rpc_xprt *ret; 3125 3126 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries, 3127 xprt_tcp_slot_table_entries); 3128 if (IS_ERR(xprt)) 3129 return xprt; 3130 transport = container_of(xprt, struct sock_xprt, xprt); 3131 3132 xprt->prot = IPPROTO_TCP; 3133 xprt->tsh_size = sizeof(rpc_fraghdr) / sizeof(u32); 3134 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE; 3135 xprt->timeout = &xs_tcp_default_timeout; 3136 3137 /* backchannel */ 3138 xprt_set_bound(xprt); 3139 xprt->bind_timeout = 0; 3140 xprt->reestablish_timeout = 0; 3141 xprt->idle_timeout = 0; 3142 3143 xprt->ops = &bc_tcp_ops; 3144 3145 switch (addr->sa_family) { 3146 case AF_INET: 3147 xs_format_peer_addresses(xprt, "tcp", 3148 RPCBIND_NETID_TCP); 3149 break; 3150 case AF_INET6: 3151 xs_format_peer_addresses(xprt, "tcp", 3152 RPCBIND_NETID_TCP6); 3153 break; 3154 default: 3155 ret = ERR_PTR(-EAFNOSUPPORT); 3156 goto out_err; 3157 } 3158 3159 dprintk("RPC: set up xprt to %s (port %s) via %s\n", 3160 xprt->address_strings[RPC_DISPLAY_ADDR], 3161 xprt->address_strings[RPC_DISPLAY_PORT], 3162 xprt->address_strings[RPC_DISPLAY_PROTO]); 3163 3164 /* 3165 * Once we've associated a backchannel xprt with a connection, 3166 * we want to keep it around as long as the connection lasts, 3167 * in case we need to start using it for a backchannel again; 3168 * this reference won't be dropped until bc_xprt is destroyed. 3169 */ 3170 xprt_get(xprt); 3171 args->bc_xprt->xpt_bc_xprt = xprt; 3172 xprt->bc_xprt = args->bc_xprt; 3173 bc_sock = container_of(args->bc_xprt, struct svc_sock, sk_xprt); 3174 transport->sock = bc_sock->sk_sock; 3175 transport->inet = bc_sock->sk_sk; 3176 3177 /* 3178 * Since we don't want connections for the backchannel, we set 3179 * the xprt status to connected 3180 */ 3181 xprt_set_connected(xprt); 3182 3183 if (try_module_get(THIS_MODULE)) 3184 return xprt; 3185 3186 args->bc_xprt->xpt_bc_xprt = NULL; 3187 args->bc_xprt->xpt_bc_xps = NULL; 3188 xprt_put(xprt); 3189 ret = ERR_PTR(-EINVAL); 3190 out_err: 3191 xs_xprt_free(xprt); 3192 return ret; 3193 } 3194 3195 static struct xprt_class xs_local_transport = { 3196 .list = LIST_HEAD_INIT(xs_local_transport.list), 3197 .name = "named UNIX socket", 3198 .owner = THIS_MODULE, 3199 .ident = XPRT_TRANSPORT_LOCAL, 3200 .setup = xs_setup_local, 3201 }; 3202 3203 static struct xprt_class xs_udp_transport = { 3204 .list = LIST_HEAD_INIT(xs_udp_transport.list), 3205 .name = "udp", 3206 .owner = THIS_MODULE, 3207 .ident = XPRT_TRANSPORT_UDP, 3208 .setup = xs_setup_udp, 3209 }; 3210 3211 static struct xprt_class xs_tcp_transport = { 3212 .list = LIST_HEAD_INIT(xs_tcp_transport.list), 3213 .name = "tcp", 3214 .owner = THIS_MODULE, 3215 .ident = XPRT_TRANSPORT_TCP, 3216 .setup = xs_setup_tcp, 3217 }; 3218 3219 static struct xprt_class xs_bc_tcp_transport = { 3220 .list = LIST_HEAD_INIT(xs_bc_tcp_transport.list), 3221 .name = "tcp NFSv4.1 backchannel", 3222 .owner = THIS_MODULE, 3223 .ident = XPRT_TRANSPORT_BC_TCP, 3224 .setup = xs_setup_bc_tcp, 3225 }; 3226 3227 /** 3228 * init_socket_xprt - set up xprtsock's sysctls, register with RPC client 3229 * 3230 */ 3231 int init_socket_xprt(void) 3232 { 3233 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 3234 if (!sunrpc_table_header) 3235 sunrpc_table_header = register_sysctl_table(sunrpc_table); 3236 #endif 3237 3238 xprt_register_transport(&xs_local_transport); 3239 xprt_register_transport(&xs_udp_transport); 3240 xprt_register_transport(&xs_tcp_transport); 3241 xprt_register_transport(&xs_bc_tcp_transport); 3242 3243 return 0; 3244 } 3245 3246 /** 3247 * cleanup_socket_xprt - remove xprtsock's sysctls, unregister 3248 * 3249 */ 3250 void cleanup_socket_xprt(void) 3251 { 3252 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 3253 if (sunrpc_table_header) { 3254 unregister_sysctl_table(sunrpc_table_header); 3255 sunrpc_table_header = NULL; 3256 } 3257 #endif 3258 3259 xprt_unregister_transport(&xs_local_transport); 3260 xprt_unregister_transport(&xs_udp_transport); 3261 xprt_unregister_transport(&xs_tcp_transport); 3262 xprt_unregister_transport(&xs_bc_tcp_transport); 3263 } 3264 3265 static int param_set_uint_minmax(const char *val, 3266 const struct kernel_param *kp, 3267 unsigned int min, unsigned int max) 3268 { 3269 unsigned int num; 3270 int ret; 3271 3272 if (!val) 3273 return -EINVAL; 3274 ret = kstrtouint(val, 0, &num); 3275 if (ret) 3276 return ret; 3277 if (num < min || num > max) 3278 return -EINVAL; 3279 *((unsigned int *)kp->arg) = num; 3280 return 0; 3281 } 3282 3283 static int param_set_portnr(const char *val, const struct kernel_param *kp) 3284 { 3285 if (kp->arg == &xprt_min_resvport) 3286 return param_set_uint_minmax(val, kp, 3287 RPC_MIN_RESVPORT, 3288 xprt_max_resvport); 3289 return param_set_uint_minmax(val, kp, 3290 xprt_min_resvport, 3291 RPC_MAX_RESVPORT); 3292 } 3293 3294 static const struct kernel_param_ops param_ops_portnr = { 3295 .set = param_set_portnr, 3296 .get = param_get_uint, 3297 }; 3298 3299 #define param_check_portnr(name, p) \ 3300 __param_check(name, p, unsigned int); 3301 3302 module_param_named(min_resvport, xprt_min_resvport, portnr, 0644); 3303 module_param_named(max_resvport, xprt_max_resvport, portnr, 0644); 3304 3305 static int param_set_slot_table_size(const char *val, 3306 const struct kernel_param *kp) 3307 { 3308 return param_set_uint_minmax(val, kp, 3309 RPC_MIN_SLOT_TABLE, 3310 RPC_MAX_SLOT_TABLE); 3311 } 3312 3313 static const struct kernel_param_ops param_ops_slot_table_size = { 3314 .set = param_set_slot_table_size, 3315 .get = param_get_uint, 3316 }; 3317 3318 #define param_check_slot_table_size(name, p) \ 3319 __param_check(name, p, unsigned int); 3320 3321 static int param_set_max_slot_table_size(const char *val, 3322 const struct kernel_param *kp) 3323 { 3324 return param_set_uint_minmax(val, kp, 3325 RPC_MIN_SLOT_TABLE, 3326 RPC_MAX_SLOT_TABLE_LIMIT); 3327 } 3328 3329 static const struct kernel_param_ops param_ops_max_slot_table_size = { 3330 .set = param_set_max_slot_table_size, 3331 .get = param_get_uint, 3332 }; 3333 3334 #define param_check_max_slot_table_size(name, p) \ 3335 __param_check(name, p, unsigned int); 3336 3337 module_param_named(tcp_slot_table_entries, xprt_tcp_slot_table_entries, 3338 slot_table_size, 0644); 3339 module_param_named(tcp_max_slot_table_entries, xprt_max_tcp_slot_table_entries, 3340 max_slot_table_size, 0644); 3341 module_param_named(udp_slot_table_entries, xprt_udp_slot_table_entries, 3342 slot_table_size, 0644); 3343 3344