1 /* 2 * linux/net/sunrpc/xprtsock.c 3 * 4 * Client-side transport implementation for sockets. 5 * 6 * TCP callback races fixes (C) 1998 Red Hat 7 * TCP send fixes (C) 1998 Red Hat 8 * TCP NFS related read + write fixes 9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 10 * 11 * Rewrite of larges part of the code in order to stabilize TCP stuff. 12 * Fix behaviour when socket buffer is full. 13 * (C) 1999 Trond Myklebust <trond.myklebust@fys.uio.no> 14 * 15 * IP socket transport implementation, (C) 2005 Chuck Lever <cel@netapp.com> 16 * 17 * IPv6 support contributed by Gilles Quillard, Bull Open Source, 2005. 18 * <gilles.quillard@bull.net> 19 */ 20 21 #include <linux/types.h> 22 #include <linux/string.h> 23 #include <linux/slab.h> 24 #include <linux/module.h> 25 #include <linux/capability.h> 26 #include <linux/pagemap.h> 27 #include <linux/errno.h> 28 #include <linux/socket.h> 29 #include <linux/in.h> 30 #include <linux/net.h> 31 #include <linux/mm.h> 32 #include <linux/un.h> 33 #include <linux/udp.h> 34 #include <linux/tcp.h> 35 #include <linux/sunrpc/clnt.h> 36 #include <linux/sunrpc/addr.h> 37 #include <linux/sunrpc/sched.h> 38 #include <linux/sunrpc/svcsock.h> 39 #include <linux/sunrpc/xprtsock.h> 40 #include <linux/file.h> 41 #ifdef CONFIG_SUNRPC_BACKCHANNEL 42 #include <linux/sunrpc/bc_xprt.h> 43 #endif 44 45 #include <net/sock.h> 46 #include <net/checksum.h> 47 #include <net/udp.h> 48 #include <net/tcp.h> 49 50 #include <trace/events/sunrpc.h> 51 52 #include "sunrpc.h" 53 54 static void xs_close(struct rpc_xprt *xprt); 55 56 /* 57 * xprtsock tunables 58 */ 59 static unsigned int xprt_udp_slot_table_entries = RPC_DEF_SLOT_TABLE; 60 static unsigned int xprt_tcp_slot_table_entries = RPC_MIN_SLOT_TABLE; 61 static unsigned int xprt_max_tcp_slot_table_entries = RPC_MAX_SLOT_TABLE; 62 63 static unsigned int xprt_min_resvport = RPC_DEF_MIN_RESVPORT; 64 static unsigned int xprt_max_resvport = RPC_DEF_MAX_RESVPORT; 65 66 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 67 68 #define XS_TCP_LINGER_TO (15U * HZ) 69 static unsigned int xs_tcp_fin_timeout __read_mostly = XS_TCP_LINGER_TO; 70 71 /* 72 * We can register our own files under /proc/sys/sunrpc by 73 * calling register_sysctl_table() again. The files in that 74 * directory become the union of all files registered there. 75 * 76 * We simply need to make sure that we don't collide with 77 * someone else's file names! 78 */ 79 80 static unsigned int min_slot_table_size = RPC_MIN_SLOT_TABLE; 81 static unsigned int max_slot_table_size = RPC_MAX_SLOT_TABLE; 82 static unsigned int max_tcp_slot_table_limit = RPC_MAX_SLOT_TABLE_LIMIT; 83 static unsigned int xprt_min_resvport_limit = RPC_MIN_RESVPORT; 84 static unsigned int xprt_max_resvport_limit = RPC_MAX_RESVPORT; 85 86 static struct ctl_table_header *sunrpc_table_header; 87 88 /* 89 * FIXME: changing the UDP slot table size should also resize the UDP 90 * socket buffers for existing UDP transports 91 */ 92 static struct ctl_table xs_tunables_table[] = { 93 { 94 .procname = "udp_slot_table_entries", 95 .data = &xprt_udp_slot_table_entries, 96 .maxlen = sizeof(unsigned int), 97 .mode = 0644, 98 .proc_handler = proc_dointvec_minmax, 99 .extra1 = &min_slot_table_size, 100 .extra2 = &max_slot_table_size 101 }, 102 { 103 .procname = "tcp_slot_table_entries", 104 .data = &xprt_tcp_slot_table_entries, 105 .maxlen = sizeof(unsigned int), 106 .mode = 0644, 107 .proc_handler = proc_dointvec_minmax, 108 .extra1 = &min_slot_table_size, 109 .extra2 = &max_slot_table_size 110 }, 111 { 112 .procname = "tcp_max_slot_table_entries", 113 .data = &xprt_max_tcp_slot_table_entries, 114 .maxlen = sizeof(unsigned int), 115 .mode = 0644, 116 .proc_handler = proc_dointvec_minmax, 117 .extra1 = &min_slot_table_size, 118 .extra2 = &max_tcp_slot_table_limit 119 }, 120 { 121 .procname = "min_resvport", 122 .data = &xprt_min_resvport, 123 .maxlen = sizeof(unsigned int), 124 .mode = 0644, 125 .proc_handler = proc_dointvec_minmax, 126 .extra1 = &xprt_min_resvport_limit, 127 .extra2 = &xprt_max_resvport 128 }, 129 { 130 .procname = "max_resvport", 131 .data = &xprt_max_resvport, 132 .maxlen = sizeof(unsigned int), 133 .mode = 0644, 134 .proc_handler = proc_dointvec_minmax, 135 .extra1 = &xprt_min_resvport, 136 .extra2 = &xprt_max_resvport_limit 137 }, 138 { 139 .procname = "tcp_fin_timeout", 140 .data = &xs_tcp_fin_timeout, 141 .maxlen = sizeof(xs_tcp_fin_timeout), 142 .mode = 0644, 143 .proc_handler = proc_dointvec_jiffies, 144 }, 145 { }, 146 }; 147 148 static struct ctl_table sunrpc_table[] = { 149 { 150 .procname = "sunrpc", 151 .mode = 0555, 152 .child = xs_tunables_table 153 }, 154 { }, 155 }; 156 157 #endif 158 159 /* 160 * Wait duration for a reply from the RPC portmapper. 161 */ 162 #define XS_BIND_TO (60U * HZ) 163 164 /* 165 * Delay if a UDP socket connect error occurs. This is most likely some 166 * kind of resource problem on the local host. 167 */ 168 #define XS_UDP_REEST_TO (2U * HZ) 169 170 /* 171 * The reestablish timeout allows clients to delay for a bit before attempting 172 * to reconnect to a server that just dropped our connection. 173 * 174 * We implement an exponential backoff when trying to reestablish a TCP 175 * transport connection with the server. Some servers like to drop a TCP 176 * connection when they are overworked, so we start with a short timeout and 177 * increase over time if the server is down or not responding. 178 */ 179 #define XS_TCP_INIT_REEST_TO (3U * HZ) 180 181 /* 182 * TCP idle timeout; client drops the transport socket if it is idle 183 * for this long. Note that we also timeout UDP sockets to prevent 184 * holding port numbers when there is no RPC traffic. 185 */ 186 #define XS_IDLE_DISC_TO (5U * 60 * HZ) 187 188 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 189 # undef RPC_DEBUG_DATA 190 # define RPCDBG_FACILITY RPCDBG_TRANS 191 #endif 192 193 #ifdef RPC_DEBUG_DATA 194 static void xs_pktdump(char *msg, u32 *packet, unsigned int count) 195 { 196 u8 *buf = (u8 *) packet; 197 int j; 198 199 dprintk("RPC: %s\n", msg); 200 for (j = 0; j < count && j < 128; j += 4) { 201 if (!(j & 31)) { 202 if (j) 203 dprintk("\n"); 204 dprintk("0x%04x ", j); 205 } 206 dprintk("%02x%02x%02x%02x ", 207 buf[j], buf[j+1], buf[j+2], buf[j+3]); 208 } 209 dprintk("\n"); 210 } 211 #else 212 static inline void xs_pktdump(char *msg, u32 *packet, unsigned int count) 213 { 214 /* NOP */ 215 } 216 #endif 217 218 static inline struct rpc_xprt *xprt_from_sock(struct sock *sk) 219 { 220 return (struct rpc_xprt *) sk->sk_user_data; 221 } 222 223 static inline struct sockaddr *xs_addr(struct rpc_xprt *xprt) 224 { 225 return (struct sockaddr *) &xprt->addr; 226 } 227 228 static inline struct sockaddr_un *xs_addr_un(struct rpc_xprt *xprt) 229 { 230 return (struct sockaddr_un *) &xprt->addr; 231 } 232 233 static inline struct sockaddr_in *xs_addr_in(struct rpc_xprt *xprt) 234 { 235 return (struct sockaddr_in *) &xprt->addr; 236 } 237 238 static inline struct sockaddr_in6 *xs_addr_in6(struct rpc_xprt *xprt) 239 { 240 return (struct sockaddr_in6 *) &xprt->addr; 241 } 242 243 static void xs_format_common_peer_addresses(struct rpc_xprt *xprt) 244 { 245 struct sockaddr *sap = xs_addr(xprt); 246 struct sockaddr_in6 *sin6; 247 struct sockaddr_in *sin; 248 struct sockaddr_un *sun; 249 char buf[128]; 250 251 switch (sap->sa_family) { 252 case AF_LOCAL: 253 sun = xs_addr_un(xprt); 254 strlcpy(buf, sun->sun_path, sizeof(buf)); 255 xprt->address_strings[RPC_DISPLAY_ADDR] = 256 kstrdup(buf, GFP_KERNEL); 257 break; 258 case AF_INET: 259 (void)rpc_ntop(sap, buf, sizeof(buf)); 260 xprt->address_strings[RPC_DISPLAY_ADDR] = 261 kstrdup(buf, GFP_KERNEL); 262 sin = xs_addr_in(xprt); 263 snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr)); 264 break; 265 case AF_INET6: 266 (void)rpc_ntop(sap, buf, sizeof(buf)); 267 xprt->address_strings[RPC_DISPLAY_ADDR] = 268 kstrdup(buf, GFP_KERNEL); 269 sin6 = xs_addr_in6(xprt); 270 snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr); 271 break; 272 default: 273 BUG(); 274 } 275 276 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL); 277 } 278 279 static void xs_format_common_peer_ports(struct rpc_xprt *xprt) 280 { 281 struct sockaddr *sap = xs_addr(xprt); 282 char buf[128]; 283 284 snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap)); 285 xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL); 286 287 snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap)); 288 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL); 289 } 290 291 static void xs_format_peer_addresses(struct rpc_xprt *xprt, 292 const char *protocol, 293 const char *netid) 294 { 295 xprt->address_strings[RPC_DISPLAY_PROTO] = protocol; 296 xprt->address_strings[RPC_DISPLAY_NETID] = netid; 297 xs_format_common_peer_addresses(xprt); 298 xs_format_common_peer_ports(xprt); 299 } 300 301 static void xs_update_peer_port(struct rpc_xprt *xprt) 302 { 303 kfree(xprt->address_strings[RPC_DISPLAY_HEX_PORT]); 304 kfree(xprt->address_strings[RPC_DISPLAY_PORT]); 305 306 xs_format_common_peer_ports(xprt); 307 } 308 309 static void xs_free_peer_addresses(struct rpc_xprt *xprt) 310 { 311 unsigned int i; 312 313 for (i = 0; i < RPC_DISPLAY_MAX; i++) 314 switch (i) { 315 case RPC_DISPLAY_PROTO: 316 case RPC_DISPLAY_NETID: 317 continue; 318 default: 319 kfree(xprt->address_strings[i]); 320 } 321 } 322 323 #define XS_SENDMSG_FLAGS (MSG_DONTWAIT | MSG_NOSIGNAL) 324 325 static int xs_send_kvec(struct socket *sock, struct sockaddr *addr, int addrlen, struct kvec *vec, unsigned int base, int more) 326 { 327 struct msghdr msg = { 328 .msg_name = addr, 329 .msg_namelen = addrlen, 330 .msg_flags = XS_SENDMSG_FLAGS | (more ? MSG_MORE : 0), 331 }; 332 struct kvec iov = { 333 .iov_base = vec->iov_base + base, 334 .iov_len = vec->iov_len - base, 335 }; 336 337 if (iov.iov_len != 0) 338 return kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len); 339 return kernel_sendmsg(sock, &msg, NULL, 0, 0); 340 } 341 342 static int xs_send_pagedata(struct socket *sock, struct xdr_buf *xdr, unsigned int base, int more, bool zerocopy, int *sent_p) 343 { 344 ssize_t (*do_sendpage)(struct socket *sock, struct page *page, 345 int offset, size_t size, int flags); 346 struct page **ppage; 347 unsigned int remainder; 348 int err; 349 350 remainder = xdr->page_len - base; 351 base += xdr->page_base; 352 ppage = xdr->pages + (base >> PAGE_SHIFT); 353 base &= ~PAGE_MASK; 354 do_sendpage = sock->ops->sendpage; 355 if (!zerocopy) 356 do_sendpage = sock_no_sendpage; 357 for(;;) { 358 unsigned int len = min_t(unsigned int, PAGE_SIZE - base, remainder); 359 int flags = XS_SENDMSG_FLAGS; 360 361 remainder -= len; 362 if (more) 363 flags |= MSG_MORE; 364 if (remainder != 0) 365 flags |= MSG_SENDPAGE_NOTLAST | MSG_MORE; 366 err = do_sendpage(sock, *ppage, base, len, flags); 367 if (remainder == 0 || err != len) 368 break; 369 *sent_p += err; 370 ppage++; 371 base = 0; 372 } 373 if (err > 0) { 374 *sent_p += err; 375 err = 0; 376 } 377 return err; 378 } 379 380 /** 381 * xs_sendpages - write pages directly to a socket 382 * @sock: socket to send on 383 * @addr: UDP only -- address of destination 384 * @addrlen: UDP only -- length of destination address 385 * @xdr: buffer containing this request 386 * @base: starting position in the buffer 387 * @zerocopy: true if it is safe to use sendpage() 388 * @sent_p: return the total number of bytes successfully queued for sending 389 * 390 */ 391 static int xs_sendpages(struct socket *sock, struct sockaddr *addr, int addrlen, struct xdr_buf *xdr, unsigned int base, bool zerocopy, int *sent_p) 392 { 393 unsigned int remainder = xdr->len - base; 394 int err = 0; 395 int sent = 0; 396 397 if (unlikely(!sock)) 398 return -ENOTSOCK; 399 400 if (base != 0) { 401 addr = NULL; 402 addrlen = 0; 403 } 404 405 if (base < xdr->head[0].iov_len || addr != NULL) { 406 unsigned int len = xdr->head[0].iov_len - base; 407 remainder -= len; 408 err = xs_send_kvec(sock, addr, addrlen, &xdr->head[0], base, remainder != 0); 409 if (remainder == 0 || err != len) 410 goto out; 411 *sent_p += err; 412 base = 0; 413 } else 414 base -= xdr->head[0].iov_len; 415 416 if (base < xdr->page_len) { 417 unsigned int len = xdr->page_len - base; 418 remainder -= len; 419 err = xs_send_pagedata(sock, xdr, base, remainder != 0, zerocopy, &sent); 420 *sent_p += sent; 421 if (remainder == 0 || sent != len) 422 goto out; 423 base = 0; 424 } else 425 base -= xdr->page_len; 426 427 if (base >= xdr->tail[0].iov_len) 428 return 0; 429 err = xs_send_kvec(sock, NULL, 0, &xdr->tail[0], base, 0); 430 out: 431 if (err > 0) { 432 *sent_p += err; 433 err = 0; 434 } 435 return err; 436 } 437 438 static void xs_nospace_callback(struct rpc_task *task) 439 { 440 struct sock_xprt *transport = container_of(task->tk_rqstp->rq_xprt, struct sock_xprt, xprt); 441 442 transport->inet->sk_write_pending--; 443 } 444 445 /** 446 * xs_nospace - place task on wait queue if transmit was incomplete 447 * @task: task to put to sleep 448 * 449 */ 450 static int xs_nospace(struct rpc_task *task) 451 { 452 struct rpc_rqst *req = task->tk_rqstp; 453 struct rpc_xprt *xprt = req->rq_xprt; 454 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 455 struct sock *sk = transport->inet; 456 int ret = -EAGAIN; 457 458 dprintk("RPC: %5u xmit incomplete (%u left of %u)\n", 459 task->tk_pid, req->rq_slen - req->rq_bytes_sent, 460 req->rq_slen); 461 462 /* Protect against races with write_space */ 463 spin_lock_bh(&xprt->transport_lock); 464 465 /* Don't race with disconnect */ 466 if (xprt_connected(xprt)) { 467 /* wait for more buffer space */ 468 sk->sk_write_pending++; 469 xprt_wait_for_buffer_space(task, xs_nospace_callback); 470 } else 471 ret = -ENOTCONN; 472 473 spin_unlock_bh(&xprt->transport_lock); 474 475 /* Race breaker in case memory is freed before above code is called */ 476 if (ret == -EAGAIN) { 477 struct socket_wq *wq; 478 479 rcu_read_lock(); 480 wq = rcu_dereference(sk->sk_wq); 481 set_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags); 482 rcu_read_unlock(); 483 484 sk->sk_write_space(sk); 485 } 486 return ret; 487 } 488 489 /* 490 * Construct a stream transport record marker in @buf. 491 */ 492 static inline void xs_encode_stream_record_marker(struct xdr_buf *buf) 493 { 494 u32 reclen = buf->len - sizeof(rpc_fraghdr); 495 rpc_fraghdr *base = buf->head[0].iov_base; 496 *base = cpu_to_be32(RPC_LAST_STREAM_FRAGMENT | reclen); 497 } 498 499 /** 500 * xs_local_send_request - write an RPC request to an AF_LOCAL socket 501 * @task: RPC task that manages the state of an RPC request 502 * 503 * Return values: 504 * 0: The request has been sent 505 * EAGAIN: The socket was blocked, please call again later to 506 * complete the request 507 * ENOTCONN: Caller needs to invoke connect logic then call again 508 * other: Some other error occured, the request was not sent 509 */ 510 static int xs_local_send_request(struct rpc_task *task) 511 { 512 struct rpc_rqst *req = task->tk_rqstp; 513 struct rpc_xprt *xprt = req->rq_xprt; 514 struct sock_xprt *transport = 515 container_of(xprt, struct sock_xprt, xprt); 516 struct xdr_buf *xdr = &req->rq_snd_buf; 517 int status; 518 int sent = 0; 519 520 xs_encode_stream_record_marker(&req->rq_snd_buf); 521 522 xs_pktdump("packet data:", 523 req->rq_svec->iov_base, req->rq_svec->iov_len); 524 525 status = xs_sendpages(transport->sock, NULL, 0, xdr, req->rq_bytes_sent, 526 true, &sent); 527 dprintk("RPC: %s(%u) = %d\n", 528 __func__, xdr->len - req->rq_bytes_sent, status); 529 530 if (status == -EAGAIN && sock_writeable(transport->inet)) 531 status = -ENOBUFS; 532 533 if (likely(sent > 0) || status == 0) { 534 req->rq_bytes_sent += sent; 535 req->rq_xmit_bytes_sent += sent; 536 if (likely(req->rq_bytes_sent >= req->rq_slen)) { 537 req->rq_bytes_sent = 0; 538 return 0; 539 } 540 status = -EAGAIN; 541 } 542 543 switch (status) { 544 case -ENOBUFS: 545 break; 546 case -EAGAIN: 547 status = xs_nospace(task); 548 break; 549 default: 550 dprintk("RPC: sendmsg returned unrecognized error %d\n", 551 -status); 552 case -EPIPE: 553 xs_close(xprt); 554 status = -ENOTCONN; 555 } 556 557 return status; 558 } 559 560 /** 561 * xs_udp_send_request - write an RPC request to a UDP socket 562 * @task: address of RPC task that manages the state of an RPC request 563 * 564 * Return values: 565 * 0: The request has been sent 566 * EAGAIN: The socket was blocked, please call again later to 567 * complete the request 568 * ENOTCONN: Caller needs to invoke connect logic then call again 569 * other: Some other error occurred, the request was not sent 570 */ 571 static int xs_udp_send_request(struct rpc_task *task) 572 { 573 struct rpc_rqst *req = task->tk_rqstp; 574 struct rpc_xprt *xprt = req->rq_xprt; 575 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 576 struct xdr_buf *xdr = &req->rq_snd_buf; 577 int sent = 0; 578 int status; 579 580 xs_pktdump("packet data:", 581 req->rq_svec->iov_base, 582 req->rq_svec->iov_len); 583 584 if (!xprt_bound(xprt)) 585 return -ENOTCONN; 586 status = xs_sendpages(transport->sock, xs_addr(xprt), xprt->addrlen, 587 xdr, req->rq_bytes_sent, true, &sent); 588 589 dprintk("RPC: xs_udp_send_request(%u) = %d\n", 590 xdr->len - req->rq_bytes_sent, status); 591 592 /* firewall is blocking us, don't return -EAGAIN or we end up looping */ 593 if (status == -EPERM) 594 goto process_status; 595 596 if (status == -EAGAIN && sock_writeable(transport->inet)) 597 status = -ENOBUFS; 598 599 if (sent > 0 || status == 0) { 600 req->rq_xmit_bytes_sent += sent; 601 if (sent >= req->rq_slen) 602 return 0; 603 /* Still some bytes left; set up for a retry later. */ 604 status = -EAGAIN; 605 } 606 607 process_status: 608 switch (status) { 609 case -ENOTSOCK: 610 status = -ENOTCONN; 611 /* Should we call xs_close() here? */ 612 break; 613 case -EAGAIN: 614 status = xs_nospace(task); 615 break; 616 case -ENETUNREACH: 617 case -ENOBUFS: 618 case -EPIPE: 619 case -ECONNREFUSED: 620 case -EPERM: 621 /* When the server has died, an ICMP port unreachable message 622 * prompts ECONNREFUSED. */ 623 break; 624 default: 625 dprintk("RPC: sendmsg returned unrecognized error %d\n", 626 -status); 627 } 628 629 return status; 630 } 631 632 /** 633 * xs_tcp_send_request - write an RPC request to a TCP socket 634 * @task: address of RPC task that manages the state of an RPC request 635 * 636 * Return values: 637 * 0: The request has been sent 638 * EAGAIN: The socket was blocked, please call again later to 639 * complete the request 640 * ENOTCONN: Caller needs to invoke connect logic then call again 641 * other: Some other error occurred, the request was not sent 642 * 643 * XXX: In the case of soft timeouts, should we eventually give up 644 * if sendmsg is not able to make progress? 645 */ 646 static int xs_tcp_send_request(struct rpc_task *task) 647 { 648 struct rpc_rqst *req = task->tk_rqstp; 649 struct rpc_xprt *xprt = req->rq_xprt; 650 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 651 struct xdr_buf *xdr = &req->rq_snd_buf; 652 bool zerocopy = true; 653 bool vm_wait = false; 654 int status; 655 int sent; 656 657 xs_encode_stream_record_marker(&req->rq_snd_buf); 658 659 xs_pktdump("packet data:", 660 req->rq_svec->iov_base, 661 req->rq_svec->iov_len); 662 /* Don't use zero copy if this is a resend. If the RPC call 663 * completes while the socket holds a reference to the pages, 664 * then we may end up resending corrupted data. 665 */ 666 if (task->tk_flags & RPC_TASK_SENT) 667 zerocopy = false; 668 669 /* Continue transmitting the packet/record. We must be careful 670 * to cope with writespace callbacks arriving _after_ we have 671 * called sendmsg(). */ 672 while (1) { 673 sent = 0; 674 status = xs_sendpages(transport->sock, NULL, 0, xdr, 675 req->rq_bytes_sent, zerocopy, &sent); 676 677 dprintk("RPC: xs_tcp_send_request(%u) = %d\n", 678 xdr->len - req->rq_bytes_sent, status); 679 680 /* If we've sent the entire packet, immediately 681 * reset the count of bytes sent. */ 682 req->rq_bytes_sent += sent; 683 req->rq_xmit_bytes_sent += sent; 684 if (likely(req->rq_bytes_sent >= req->rq_slen)) { 685 req->rq_bytes_sent = 0; 686 return 0; 687 } 688 689 WARN_ON_ONCE(sent == 0 && status == 0); 690 691 if (status == -EAGAIN ) { 692 /* 693 * Return EAGAIN if we're sure we're hitting the 694 * socket send buffer limits. 695 */ 696 if (test_bit(SOCK_NOSPACE, &transport->sock->flags)) 697 break; 698 /* 699 * Did we hit a memory allocation failure? 700 */ 701 if (sent == 0) { 702 status = -ENOBUFS; 703 if (vm_wait) 704 break; 705 /* Retry, knowing now that we're below the 706 * socket send buffer limit 707 */ 708 vm_wait = true; 709 } 710 continue; 711 } 712 if (status < 0) 713 break; 714 vm_wait = false; 715 } 716 717 switch (status) { 718 case -ENOTSOCK: 719 status = -ENOTCONN; 720 /* Should we call xs_close() here? */ 721 break; 722 case -EAGAIN: 723 status = xs_nospace(task); 724 break; 725 case -ECONNRESET: 726 case -ECONNREFUSED: 727 case -ENOTCONN: 728 case -EADDRINUSE: 729 case -ENOBUFS: 730 case -EPIPE: 731 break; 732 default: 733 dprintk("RPC: sendmsg returned unrecognized error %d\n", 734 -status); 735 } 736 737 return status; 738 } 739 740 /** 741 * xs_tcp_release_xprt - clean up after a tcp transmission 742 * @xprt: transport 743 * @task: rpc task 744 * 745 * This cleans up if an error causes us to abort the transmission of a request. 746 * In this case, the socket may need to be reset in order to avoid confusing 747 * the server. 748 */ 749 static void xs_tcp_release_xprt(struct rpc_xprt *xprt, struct rpc_task *task) 750 { 751 struct rpc_rqst *req; 752 753 if (task != xprt->snd_task) 754 return; 755 if (task == NULL) 756 goto out_release; 757 req = task->tk_rqstp; 758 if (req == NULL) 759 goto out_release; 760 if (req->rq_bytes_sent == 0) 761 goto out_release; 762 if (req->rq_bytes_sent == req->rq_snd_buf.len) 763 goto out_release; 764 set_bit(XPRT_CLOSE_WAIT, &xprt->state); 765 out_release: 766 xprt_release_xprt(xprt, task); 767 } 768 769 static void xs_save_old_callbacks(struct sock_xprt *transport, struct sock *sk) 770 { 771 transport->old_data_ready = sk->sk_data_ready; 772 transport->old_state_change = sk->sk_state_change; 773 transport->old_write_space = sk->sk_write_space; 774 transport->old_error_report = sk->sk_error_report; 775 } 776 777 static void xs_restore_old_callbacks(struct sock_xprt *transport, struct sock *sk) 778 { 779 sk->sk_data_ready = transport->old_data_ready; 780 sk->sk_state_change = transport->old_state_change; 781 sk->sk_write_space = transport->old_write_space; 782 sk->sk_error_report = transport->old_error_report; 783 } 784 785 static void xs_sock_reset_state_flags(struct rpc_xprt *xprt) 786 { 787 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 788 789 clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state); 790 } 791 792 static void xs_sock_reset_connection_flags(struct rpc_xprt *xprt) 793 { 794 smp_mb__before_atomic(); 795 clear_bit(XPRT_CLOSE_WAIT, &xprt->state); 796 clear_bit(XPRT_CLOSING, &xprt->state); 797 xs_sock_reset_state_flags(xprt); 798 smp_mb__after_atomic(); 799 } 800 801 static void xs_sock_mark_closed(struct rpc_xprt *xprt) 802 { 803 xs_sock_reset_connection_flags(xprt); 804 /* Mark transport as closed and wake up all pending tasks */ 805 xprt_disconnect_done(xprt); 806 } 807 808 /** 809 * xs_error_report - callback to handle TCP socket state errors 810 * @sk: socket 811 * 812 * Note: we don't call sock_error() since there may be a rpc_task 813 * using the socket, and so we don't want to clear sk->sk_err. 814 */ 815 static void xs_error_report(struct sock *sk) 816 { 817 struct rpc_xprt *xprt; 818 int err; 819 820 read_lock_bh(&sk->sk_callback_lock); 821 if (!(xprt = xprt_from_sock(sk))) 822 goto out; 823 824 err = -sk->sk_err; 825 if (err == 0) 826 goto out; 827 /* Is this a reset event? */ 828 if (sk->sk_state == TCP_CLOSE) 829 xs_sock_mark_closed(xprt); 830 dprintk("RPC: xs_error_report client %p, error=%d...\n", 831 xprt, -err); 832 trace_rpc_socket_error(xprt, sk->sk_socket, err); 833 xprt_wake_pending_tasks(xprt, err); 834 out: 835 read_unlock_bh(&sk->sk_callback_lock); 836 } 837 838 static void xs_reset_transport(struct sock_xprt *transport) 839 { 840 struct socket *sock = transport->sock; 841 struct sock *sk = transport->inet; 842 struct rpc_xprt *xprt = &transport->xprt; 843 844 if (sk == NULL) 845 return; 846 847 if (atomic_read(&transport->xprt.swapper)) 848 sk_clear_memalloc(sk); 849 850 kernel_sock_shutdown(sock, SHUT_RDWR); 851 852 mutex_lock(&transport->recv_mutex); 853 write_lock_bh(&sk->sk_callback_lock); 854 transport->inet = NULL; 855 transport->sock = NULL; 856 857 sk->sk_user_data = NULL; 858 859 xs_restore_old_callbacks(transport, sk); 860 xprt_clear_connected(xprt); 861 write_unlock_bh(&sk->sk_callback_lock); 862 xs_sock_reset_connection_flags(xprt); 863 mutex_unlock(&transport->recv_mutex); 864 865 trace_rpc_socket_close(xprt, sock); 866 sock_release(sock); 867 } 868 869 /** 870 * xs_close - close a socket 871 * @xprt: transport 872 * 873 * This is used when all requests are complete; ie, no DRC state remains 874 * on the server we want to save. 875 * 876 * The caller _must_ be holding XPRT_LOCKED in order to avoid issues with 877 * xs_reset_transport() zeroing the socket from underneath a writer. 878 */ 879 static void xs_close(struct rpc_xprt *xprt) 880 { 881 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 882 883 dprintk("RPC: xs_close xprt %p\n", xprt); 884 885 xs_reset_transport(transport); 886 xprt->reestablish_timeout = 0; 887 888 xprt_disconnect_done(xprt); 889 } 890 891 static void xs_inject_disconnect(struct rpc_xprt *xprt) 892 { 893 dprintk("RPC: injecting transport disconnect on xprt=%p\n", 894 xprt); 895 xprt_disconnect_done(xprt); 896 } 897 898 static void xs_xprt_free(struct rpc_xprt *xprt) 899 { 900 xs_free_peer_addresses(xprt); 901 xprt_free(xprt); 902 } 903 904 /** 905 * xs_destroy - prepare to shutdown a transport 906 * @xprt: doomed transport 907 * 908 */ 909 static void xs_destroy(struct rpc_xprt *xprt) 910 { 911 struct sock_xprt *transport = container_of(xprt, 912 struct sock_xprt, xprt); 913 dprintk("RPC: xs_destroy xprt %p\n", xprt); 914 915 cancel_delayed_work_sync(&transport->connect_worker); 916 xs_close(xprt); 917 cancel_work_sync(&transport->recv_worker); 918 xs_xprt_free(xprt); 919 module_put(THIS_MODULE); 920 } 921 922 static int xs_local_copy_to_xdr(struct xdr_buf *xdr, struct sk_buff *skb) 923 { 924 struct xdr_skb_reader desc = { 925 .skb = skb, 926 .offset = sizeof(rpc_fraghdr), 927 .count = skb->len - sizeof(rpc_fraghdr), 928 }; 929 930 if (xdr_partial_copy_from_skb(xdr, 0, &desc, xdr_skb_read_bits) < 0) 931 return -1; 932 if (desc.count) 933 return -1; 934 return 0; 935 } 936 937 /** 938 * xs_local_data_read_skb 939 * @xprt: transport 940 * @sk: socket 941 * @skb: skbuff 942 * 943 * Currently this assumes we can read the whole reply in a single gulp. 944 */ 945 static void xs_local_data_read_skb(struct rpc_xprt *xprt, 946 struct sock *sk, 947 struct sk_buff *skb) 948 { 949 struct rpc_task *task; 950 struct rpc_rqst *rovr; 951 int repsize, copied; 952 u32 _xid; 953 __be32 *xp; 954 955 repsize = skb->len - sizeof(rpc_fraghdr); 956 if (repsize < 4) { 957 dprintk("RPC: impossible RPC reply size %d\n", repsize); 958 return; 959 } 960 961 /* Copy the XID from the skb... */ 962 xp = skb_header_pointer(skb, sizeof(rpc_fraghdr), sizeof(_xid), &_xid); 963 if (xp == NULL) 964 return; 965 966 /* Look up and lock the request corresponding to the given XID */ 967 spin_lock_bh(&xprt->transport_lock); 968 rovr = xprt_lookup_rqst(xprt, *xp); 969 if (!rovr) 970 goto out_unlock; 971 task = rovr->rq_task; 972 973 copied = rovr->rq_private_buf.buflen; 974 if (copied > repsize) 975 copied = repsize; 976 977 if (xs_local_copy_to_xdr(&rovr->rq_private_buf, skb)) { 978 dprintk("RPC: sk_buff copy failed\n"); 979 goto out_unlock; 980 } 981 982 xprt_complete_rqst(task, copied); 983 984 out_unlock: 985 spin_unlock_bh(&xprt->transport_lock); 986 } 987 988 static void xs_local_data_receive(struct sock_xprt *transport) 989 { 990 struct sk_buff *skb; 991 struct sock *sk; 992 int err; 993 994 mutex_lock(&transport->recv_mutex); 995 sk = transport->inet; 996 if (sk == NULL) 997 goto out; 998 for (;;) { 999 skb = skb_recv_datagram(sk, 0, 1, &err); 1000 if (skb != NULL) { 1001 xs_local_data_read_skb(&transport->xprt, sk, skb); 1002 skb_free_datagram(sk, skb); 1003 continue; 1004 } 1005 if (!test_and_clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state)) 1006 break; 1007 } 1008 out: 1009 mutex_unlock(&transport->recv_mutex); 1010 } 1011 1012 static void xs_local_data_receive_workfn(struct work_struct *work) 1013 { 1014 struct sock_xprt *transport = 1015 container_of(work, struct sock_xprt, recv_worker); 1016 xs_local_data_receive(transport); 1017 } 1018 1019 /** 1020 * xs_udp_data_read_skb - receive callback for UDP sockets 1021 * @xprt: transport 1022 * @sk: socket 1023 * @skb: skbuff 1024 * 1025 */ 1026 static void xs_udp_data_read_skb(struct rpc_xprt *xprt, 1027 struct sock *sk, 1028 struct sk_buff *skb) 1029 { 1030 struct rpc_task *task; 1031 struct rpc_rqst *rovr; 1032 int repsize, copied; 1033 u32 _xid; 1034 __be32 *xp; 1035 1036 repsize = skb->len; 1037 if (repsize < 4) { 1038 dprintk("RPC: impossible RPC reply size %d!\n", repsize); 1039 return; 1040 } 1041 1042 /* Copy the XID from the skb... */ 1043 xp = skb_header_pointer(skb, 0, sizeof(_xid), &_xid); 1044 if (xp == NULL) 1045 return; 1046 1047 /* Look up and lock the request corresponding to the given XID */ 1048 spin_lock_bh(&xprt->transport_lock); 1049 rovr = xprt_lookup_rqst(xprt, *xp); 1050 if (!rovr) 1051 goto out_unlock; 1052 task = rovr->rq_task; 1053 1054 if ((copied = rovr->rq_private_buf.buflen) > repsize) 1055 copied = repsize; 1056 1057 /* Suck it into the iovec, verify checksum if not done by hw. */ 1058 if (csum_partial_copy_to_xdr(&rovr->rq_private_buf, skb)) { 1059 __UDPX_INC_STATS(sk, UDP_MIB_INERRORS); 1060 goto out_unlock; 1061 } 1062 1063 __UDPX_INC_STATS(sk, UDP_MIB_INDATAGRAMS); 1064 1065 xprt_adjust_cwnd(xprt, task, copied); 1066 xprt_complete_rqst(task, copied); 1067 1068 out_unlock: 1069 spin_unlock_bh(&xprt->transport_lock); 1070 } 1071 1072 static void xs_udp_data_receive(struct sock_xprt *transport) 1073 { 1074 struct sk_buff *skb; 1075 struct sock *sk; 1076 int err; 1077 1078 mutex_lock(&transport->recv_mutex); 1079 sk = transport->inet; 1080 if (sk == NULL) 1081 goto out; 1082 for (;;) { 1083 skb = skb_recv_datagram(sk, 0, 1, &err); 1084 if (skb != NULL) { 1085 xs_udp_data_read_skb(&transport->xprt, sk, skb); 1086 skb_free_datagram_locked(sk, skb); 1087 continue; 1088 } 1089 if (!test_and_clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state)) 1090 break; 1091 } 1092 out: 1093 mutex_unlock(&transport->recv_mutex); 1094 } 1095 1096 static void xs_udp_data_receive_workfn(struct work_struct *work) 1097 { 1098 struct sock_xprt *transport = 1099 container_of(work, struct sock_xprt, recv_worker); 1100 xs_udp_data_receive(transport); 1101 } 1102 1103 /** 1104 * xs_data_ready - "data ready" callback for UDP sockets 1105 * @sk: socket with data to read 1106 * 1107 */ 1108 static void xs_data_ready(struct sock *sk) 1109 { 1110 struct rpc_xprt *xprt; 1111 1112 read_lock_bh(&sk->sk_callback_lock); 1113 dprintk("RPC: xs_data_ready...\n"); 1114 xprt = xprt_from_sock(sk); 1115 if (xprt != NULL) { 1116 struct sock_xprt *transport = container_of(xprt, 1117 struct sock_xprt, xprt); 1118 transport->old_data_ready(sk); 1119 /* Any data means we had a useful conversation, so 1120 * then we don't need to delay the next reconnect 1121 */ 1122 if (xprt->reestablish_timeout) 1123 xprt->reestablish_timeout = 0; 1124 if (!test_and_set_bit(XPRT_SOCK_DATA_READY, &transport->sock_state)) 1125 queue_work(xprtiod_workqueue, &transport->recv_worker); 1126 } 1127 read_unlock_bh(&sk->sk_callback_lock); 1128 } 1129 1130 /* 1131 * Helper function to force a TCP close if the server is sending 1132 * junk and/or it has put us in CLOSE_WAIT 1133 */ 1134 static void xs_tcp_force_close(struct rpc_xprt *xprt) 1135 { 1136 xprt_force_disconnect(xprt); 1137 } 1138 1139 static inline void xs_tcp_read_fraghdr(struct rpc_xprt *xprt, struct xdr_skb_reader *desc) 1140 { 1141 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 1142 size_t len, used; 1143 char *p; 1144 1145 p = ((char *) &transport->tcp_fraghdr) + transport->tcp_offset; 1146 len = sizeof(transport->tcp_fraghdr) - transport->tcp_offset; 1147 used = xdr_skb_read_bits(desc, p, len); 1148 transport->tcp_offset += used; 1149 if (used != len) 1150 return; 1151 1152 transport->tcp_reclen = ntohl(transport->tcp_fraghdr); 1153 if (transport->tcp_reclen & RPC_LAST_STREAM_FRAGMENT) 1154 transport->tcp_flags |= TCP_RCV_LAST_FRAG; 1155 else 1156 transport->tcp_flags &= ~TCP_RCV_LAST_FRAG; 1157 transport->tcp_reclen &= RPC_FRAGMENT_SIZE_MASK; 1158 1159 transport->tcp_flags &= ~TCP_RCV_COPY_FRAGHDR; 1160 transport->tcp_offset = 0; 1161 1162 /* Sanity check of the record length */ 1163 if (unlikely(transport->tcp_reclen < 8)) { 1164 dprintk("RPC: invalid TCP record fragment length\n"); 1165 xs_tcp_force_close(xprt); 1166 return; 1167 } 1168 dprintk("RPC: reading TCP record fragment of length %d\n", 1169 transport->tcp_reclen); 1170 } 1171 1172 static void xs_tcp_check_fraghdr(struct sock_xprt *transport) 1173 { 1174 if (transport->tcp_offset == transport->tcp_reclen) { 1175 transport->tcp_flags |= TCP_RCV_COPY_FRAGHDR; 1176 transport->tcp_offset = 0; 1177 if (transport->tcp_flags & TCP_RCV_LAST_FRAG) { 1178 transport->tcp_flags &= ~TCP_RCV_COPY_DATA; 1179 transport->tcp_flags |= TCP_RCV_COPY_XID; 1180 transport->tcp_copied = 0; 1181 } 1182 } 1183 } 1184 1185 static inline void xs_tcp_read_xid(struct sock_xprt *transport, struct xdr_skb_reader *desc) 1186 { 1187 size_t len, used; 1188 char *p; 1189 1190 len = sizeof(transport->tcp_xid) - transport->tcp_offset; 1191 dprintk("RPC: reading XID (%Zu bytes)\n", len); 1192 p = ((char *) &transport->tcp_xid) + transport->tcp_offset; 1193 used = xdr_skb_read_bits(desc, p, len); 1194 transport->tcp_offset += used; 1195 if (used != len) 1196 return; 1197 transport->tcp_flags &= ~TCP_RCV_COPY_XID; 1198 transport->tcp_flags |= TCP_RCV_READ_CALLDIR; 1199 transport->tcp_copied = 4; 1200 dprintk("RPC: reading %s XID %08x\n", 1201 (transport->tcp_flags & TCP_RPC_REPLY) ? "reply for" 1202 : "request with", 1203 ntohl(transport->tcp_xid)); 1204 xs_tcp_check_fraghdr(transport); 1205 } 1206 1207 static inline void xs_tcp_read_calldir(struct sock_xprt *transport, 1208 struct xdr_skb_reader *desc) 1209 { 1210 size_t len, used; 1211 u32 offset; 1212 char *p; 1213 1214 /* 1215 * We want transport->tcp_offset to be 8 at the end of this routine 1216 * (4 bytes for the xid and 4 bytes for the call/reply flag). 1217 * When this function is called for the first time, 1218 * transport->tcp_offset is 4 (after having already read the xid). 1219 */ 1220 offset = transport->tcp_offset - sizeof(transport->tcp_xid); 1221 len = sizeof(transport->tcp_calldir) - offset; 1222 dprintk("RPC: reading CALL/REPLY flag (%Zu bytes)\n", len); 1223 p = ((char *) &transport->tcp_calldir) + offset; 1224 used = xdr_skb_read_bits(desc, p, len); 1225 transport->tcp_offset += used; 1226 if (used != len) 1227 return; 1228 transport->tcp_flags &= ~TCP_RCV_READ_CALLDIR; 1229 /* 1230 * We don't yet have the XDR buffer, so we will write the calldir 1231 * out after we get the buffer from the 'struct rpc_rqst' 1232 */ 1233 switch (ntohl(transport->tcp_calldir)) { 1234 case RPC_REPLY: 1235 transport->tcp_flags |= TCP_RCV_COPY_CALLDIR; 1236 transport->tcp_flags |= TCP_RCV_COPY_DATA; 1237 transport->tcp_flags |= TCP_RPC_REPLY; 1238 break; 1239 case RPC_CALL: 1240 transport->tcp_flags |= TCP_RCV_COPY_CALLDIR; 1241 transport->tcp_flags |= TCP_RCV_COPY_DATA; 1242 transport->tcp_flags &= ~TCP_RPC_REPLY; 1243 break; 1244 default: 1245 dprintk("RPC: invalid request message type\n"); 1246 xs_tcp_force_close(&transport->xprt); 1247 } 1248 xs_tcp_check_fraghdr(transport); 1249 } 1250 1251 static inline void xs_tcp_read_common(struct rpc_xprt *xprt, 1252 struct xdr_skb_reader *desc, 1253 struct rpc_rqst *req) 1254 { 1255 struct sock_xprt *transport = 1256 container_of(xprt, struct sock_xprt, xprt); 1257 struct xdr_buf *rcvbuf; 1258 size_t len; 1259 ssize_t r; 1260 1261 rcvbuf = &req->rq_private_buf; 1262 1263 if (transport->tcp_flags & TCP_RCV_COPY_CALLDIR) { 1264 /* 1265 * Save the RPC direction in the XDR buffer 1266 */ 1267 memcpy(rcvbuf->head[0].iov_base + transport->tcp_copied, 1268 &transport->tcp_calldir, 1269 sizeof(transport->tcp_calldir)); 1270 transport->tcp_copied += sizeof(transport->tcp_calldir); 1271 transport->tcp_flags &= ~TCP_RCV_COPY_CALLDIR; 1272 } 1273 1274 len = desc->count; 1275 if (len > transport->tcp_reclen - transport->tcp_offset) { 1276 struct xdr_skb_reader my_desc; 1277 1278 len = transport->tcp_reclen - transport->tcp_offset; 1279 memcpy(&my_desc, desc, sizeof(my_desc)); 1280 my_desc.count = len; 1281 r = xdr_partial_copy_from_skb(rcvbuf, transport->tcp_copied, 1282 &my_desc, xdr_skb_read_bits); 1283 desc->count -= r; 1284 desc->offset += r; 1285 } else 1286 r = xdr_partial_copy_from_skb(rcvbuf, transport->tcp_copied, 1287 desc, xdr_skb_read_bits); 1288 1289 if (r > 0) { 1290 transport->tcp_copied += r; 1291 transport->tcp_offset += r; 1292 } 1293 if (r != len) { 1294 /* Error when copying to the receive buffer, 1295 * usually because we weren't able to allocate 1296 * additional buffer pages. All we can do now 1297 * is turn off TCP_RCV_COPY_DATA, so the request 1298 * will not receive any additional updates, 1299 * and time out. 1300 * Any remaining data from this record will 1301 * be discarded. 1302 */ 1303 transport->tcp_flags &= ~TCP_RCV_COPY_DATA; 1304 dprintk("RPC: XID %08x truncated request\n", 1305 ntohl(transport->tcp_xid)); 1306 dprintk("RPC: xprt = %p, tcp_copied = %lu, " 1307 "tcp_offset = %u, tcp_reclen = %u\n", 1308 xprt, transport->tcp_copied, 1309 transport->tcp_offset, transport->tcp_reclen); 1310 return; 1311 } 1312 1313 dprintk("RPC: XID %08x read %Zd bytes\n", 1314 ntohl(transport->tcp_xid), r); 1315 dprintk("RPC: xprt = %p, tcp_copied = %lu, tcp_offset = %u, " 1316 "tcp_reclen = %u\n", xprt, transport->tcp_copied, 1317 transport->tcp_offset, transport->tcp_reclen); 1318 1319 if (transport->tcp_copied == req->rq_private_buf.buflen) 1320 transport->tcp_flags &= ~TCP_RCV_COPY_DATA; 1321 else if (transport->tcp_offset == transport->tcp_reclen) { 1322 if (transport->tcp_flags & TCP_RCV_LAST_FRAG) 1323 transport->tcp_flags &= ~TCP_RCV_COPY_DATA; 1324 } 1325 } 1326 1327 /* 1328 * Finds the request corresponding to the RPC xid and invokes the common 1329 * tcp read code to read the data. 1330 */ 1331 static inline int xs_tcp_read_reply(struct rpc_xprt *xprt, 1332 struct xdr_skb_reader *desc) 1333 { 1334 struct sock_xprt *transport = 1335 container_of(xprt, struct sock_xprt, xprt); 1336 struct rpc_rqst *req; 1337 1338 dprintk("RPC: read reply XID %08x\n", ntohl(transport->tcp_xid)); 1339 1340 /* Find and lock the request corresponding to this xid */ 1341 spin_lock_bh(&xprt->transport_lock); 1342 req = xprt_lookup_rqst(xprt, transport->tcp_xid); 1343 if (!req) { 1344 dprintk("RPC: XID %08x request not found!\n", 1345 ntohl(transport->tcp_xid)); 1346 spin_unlock_bh(&xprt->transport_lock); 1347 return -1; 1348 } 1349 1350 xs_tcp_read_common(xprt, desc, req); 1351 1352 if (!(transport->tcp_flags & TCP_RCV_COPY_DATA)) 1353 xprt_complete_rqst(req->rq_task, transport->tcp_copied); 1354 1355 spin_unlock_bh(&xprt->transport_lock); 1356 return 0; 1357 } 1358 1359 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1360 /* 1361 * Obtains an rpc_rqst previously allocated and invokes the common 1362 * tcp read code to read the data. The result is placed in the callback 1363 * queue. 1364 * If we're unable to obtain the rpc_rqst we schedule the closing of the 1365 * connection and return -1. 1366 */ 1367 static int xs_tcp_read_callback(struct rpc_xprt *xprt, 1368 struct xdr_skb_reader *desc) 1369 { 1370 struct sock_xprt *transport = 1371 container_of(xprt, struct sock_xprt, xprt); 1372 struct rpc_rqst *req; 1373 1374 /* Look up and lock the request corresponding to the given XID */ 1375 spin_lock_bh(&xprt->transport_lock); 1376 req = xprt_lookup_bc_request(xprt, transport->tcp_xid); 1377 if (req == NULL) { 1378 spin_unlock_bh(&xprt->transport_lock); 1379 printk(KERN_WARNING "Callback slot table overflowed\n"); 1380 xprt_force_disconnect(xprt); 1381 return -1; 1382 } 1383 1384 dprintk("RPC: read callback XID %08x\n", ntohl(req->rq_xid)); 1385 xs_tcp_read_common(xprt, desc, req); 1386 1387 if (!(transport->tcp_flags & TCP_RCV_COPY_DATA)) 1388 xprt_complete_bc_request(req, transport->tcp_copied); 1389 spin_unlock_bh(&xprt->transport_lock); 1390 1391 return 0; 1392 } 1393 1394 static inline int _xs_tcp_read_data(struct rpc_xprt *xprt, 1395 struct xdr_skb_reader *desc) 1396 { 1397 struct sock_xprt *transport = 1398 container_of(xprt, struct sock_xprt, xprt); 1399 1400 return (transport->tcp_flags & TCP_RPC_REPLY) ? 1401 xs_tcp_read_reply(xprt, desc) : 1402 xs_tcp_read_callback(xprt, desc); 1403 } 1404 1405 static int xs_tcp_bc_up(struct svc_serv *serv, struct net *net) 1406 { 1407 int ret; 1408 1409 ret = svc_create_xprt(serv, "tcp-bc", net, PF_INET, 0, 1410 SVC_SOCK_ANONYMOUS); 1411 if (ret < 0) 1412 return ret; 1413 return 0; 1414 } 1415 1416 static size_t xs_tcp_bc_maxpayload(struct rpc_xprt *xprt) 1417 { 1418 return PAGE_SIZE; 1419 } 1420 #else 1421 static inline int _xs_tcp_read_data(struct rpc_xprt *xprt, 1422 struct xdr_skb_reader *desc) 1423 { 1424 return xs_tcp_read_reply(xprt, desc); 1425 } 1426 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1427 1428 /* 1429 * Read data off the transport. This can be either an RPC_CALL or an 1430 * RPC_REPLY. Relay the processing to helper functions. 1431 */ 1432 static void xs_tcp_read_data(struct rpc_xprt *xprt, 1433 struct xdr_skb_reader *desc) 1434 { 1435 struct sock_xprt *transport = 1436 container_of(xprt, struct sock_xprt, xprt); 1437 1438 if (_xs_tcp_read_data(xprt, desc) == 0) 1439 xs_tcp_check_fraghdr(transport); 1440 else { 1441 /* 1442 * The transport_lock protects the request handling. 1443 * There's no need to hold it to update the tcp_flags. 1444 */ 1445 transport->tcp_flags &= ~TCP_RCV_COPY_DATA; 1446 } 1447 } 1448 1449 static inline void xs_tcp_read_discard(struct sock_xprt *transport, struct xdr_skb_reader *desc) 1450 { 1451 size_t len; 1452 1453 len = transport->tcp_reclen - transport->tcp_offset; 1454 if (len > desc->count) 1455 len = desc->count; 1456 desc->count -= len; 1457 desc->offset += len; 1458 transport->tcp_offset += len; 1459 dprintk("RPC: discarded %Zu bytes\n", len); 1460 xs_tcp_check_fraghdr(transport); 1461 } 1462 1463 static int xs_tcp_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, unsigned int offset, size_t len) 1464 { 1465 struct rpc_xprt *xprt = rd_desc->arg.data; 1466 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 1467 struct xdr_skb_reader desc = { 1468 .skb = skb, 1469 .offset = offset, 1470 .count = len, 1471 }; 1472 1473 dprintk("RPC: xs_tcp_data_recv started\n"); 1474 do { 1475 trace_xs_tcp_data_recv(transport); 1476 /* Read in a new fragment marker if necessary */ 1477 /* Can we ever really expect to get completely empty fragments? */ 1478 if (transport->tcp_flags & TCP_RCV_COPY_FRAGHDR) { 1479 xs_tcp_read_fraghdr(xprt, &desc); 1480 continue; 1481 } 1482 /* Read in the xid if necessary */ 1483 if (transport->tcp_flags & TCP_RCV_COPY_XID) { 1484 xs_tcp_read_xid(transport, &desc); 1485 continue; 1486 } 1487 /* Read in the call/reply flag */ 1488 if (transport->tcp_flags & TCP_RCV_READ_CALLDIR) { 1489 xs_tcp_read_calldir(transport, &desc); 1490 continue; 1491 } 1492 /* Read in the request data */ 1493 if (transport->tcp_flags & TCP_RCV_COPY_DATA) { 1494 xs_tcp_read_data(xprt, &desc); 1495 continue; 1496 } 1497 /* Skip over any trailing bytes on short reads */ 1498 xs_tcp_read_discard(transport, &desc); 1499 } while (desc.count); 1500 trace_xs_tcp_data_recv(transport); 1501 dprintk("RPC: xs_tcp_data_recv done\n"); 1502 return len - desc.count; 1503 } 1504 1505 static void xs_tcp_data_receive(struct sock_xprt *transport) 1506 { 1507 struct rpc_xprt *xprt = &transport->xprt; 1508 struct sock *sk; 1509 read_descriptor_t rd_desc = { 1510 .count = 2*1024*1024, 1511 .arg.data = xprt, 1512 }; 1513 unsigned long total = 0; 1514 int read = 0; 1515 1516 mutex_lock(&transport->recv_mutex); 1517 sk = transport->inet; 1518 if (sk == NULL) 1519 goto out; 1520 1521 /* We use rd_desc to pass struct xprt to xs_tcp_data_recv */ 1522 for (;;) { 1523 lock_sock(sk); 1524 read = tcp_read_sock(sk, &rd_desc, xs_tcp_data_recv); 1525 if (read <= 0) { 1526 clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state); 1527 release_sock(sk); 1528 if (!test_bit(XPRT_SOCK_DATA_READY, &transport->sock_state)) 1529 break; 1530 } else { 1531 release_sock(sk); 1532 total += read; 1533 } 1534 rd_desc.count = 65536; 1535 } 1536 out: 1537 mutex_unlock(&transport->recv_mutex); 1538 trace_xs_tcp_data_ready(xprt, read, total); 1539 } 1540 1541 static void xs_tcp_data_receive_workfn(struct work_struct *work) 1542 { 1543 struct sock_xprt *transport = 1544 container_of(work, struct sock_xprt, recv_worker); 1545 xs_tcp_data_receive(transport); 1546 } 1547 1548 /** 1549 * xs_tcp_state_change - callback to handle TCP socket state changes 1550 * @sk: socket whose state has changed 1551 * 1552 */ 1553 static void xs_tcp_state_change(struct sock *sk) 1554 { 1555 struct rpc_xprt *xprt; 1556 struct sock_xprt *transport; 1557 1558 read_lock_bh(&sk->sk_callback_lock); 1559 if (!(xprt = xprt_from_sock(sk))) 1560 goto out; 1561 dprintk("RPC: xs_tcp_state_change client %p...\n", xprt); 1562 dprintk("RPC: state %x conn %d dead %d zapped %d sk_shutdown %d\n", 1563 sk->sk_state, xprt_connected(xprt), 1564 sock_flag(sk, SOCK_DEAD), 1565 sock_flag(sk, SOCK_ZAPPED), 1566 sk->sk_shutdown); 1567 1568 transport = container_of(xprt, struct sock_xprt, xprt); 1569 trace_rpc_socket_state_change(xprt, sk->sk_socket); 1570 switch (sk->sk_state) { 1571 case TCP_ESTABLISHED: 1572 spin_lock(&xprt->transport_lock); 1573 if (!xprt_test_and_set_connected(xprt)) { 1574 1575 /* Reset TCP record info */ 1576 transport->tcp_offset = 0; 1577 transport->tcp_reclen = 0; 1578 transport->tcp_copied = 0; 1579 transport->tcp_flags = 1580 TCP_RCV_COPY_FRAGHDR | TCP_RCV_COPY_XID; 1581 xprt->connect_cookie++; 1582 clear_bit(XPRT_SOCK_CONNECTING, &transport->sock_state); 1583 xprt_clear_connecting(xprt); 1584 1585 xprt_wake_pending_tasks(xprt, -EAGAIN); 1586 } 1587 spin_unlock(&xprt->transport_lock); 1588 break; 1589 case TCP_FIN_WAIT1: 1590 /* The client initiated a shutdown of the socket */ 1591 xprt->connect_cookie++; 1592 xprt->reestablish_timeout = 0; 1593 set_bit(XPRT_CLOSING, &xprt->state); 1594 smp_mb__before_atomic(); 1595 clear_bit(XPRT_CONNECTED, &xprt->state); 1596 clear_bit(XPRT_CLOSE_WAIT, &xprt->state); 1597 smp_mb__after_atomic(); 1598 break; 1599 case TCP_CLOSE_WAIT: 1600 /* The server initiated a shutdown of the socket */ 1601 xprt->connect_cookie++; 1602 clear_bit(XPRT_CONNECTED, &xprt->state); 1603 xs_tcp_force_close(xprt); 1604 case TCP_CLOSING: 1605 /* 1606 * If the server closed down the connection, make sure that 1607 * we back off before reconnecting 1608 */ 1609 if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO) 1610 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 1611 break; 1612 case TCP_LAST_ACK: 1613 set_bit(XPRT_CLOSING, &xprt->state); 1614 smp_mb__before_atomic(); 1615 clear_bit(XPRT_CONNECTED, &xprt->state); 1616 smp_mb__after_atomic(); 1617 break; 1618 case TCP_CLOSE: 1619 if (test_and_clear_bit(XPRT_SOCK_CONNECTING, 1620 &transport->sock_state)) 1621 xprt_clear_connecting(xprt); 1622 xs_sock_mark_closed(xprt); 1623 } 1624 out: 1625 read_unlock_bh(&sk->sk_callback_lock); 1626 } 1627 1628 static void xs_write_space(struct sock *sk) 1629 { 1630 struct socket_wq *wq; 1631 struct rpc_xprt *xprt; 1632 1633 if (!sk->sk_socket) 1634 return; 1635 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1636 1637 if (unlikely(!(xprt = xprt_from_sock(sk)))) 1638 return; 1639 rcu_read_lock(); 1640 wq = rcu_dereference(sk->sk_wq); 1641 if (!wq || test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags) == 0) 1642 goto out; 1643 1644 xprt_write_space(xprt); 1645 out: 1646 rcu_read_unlock(); 1647 } 1648 1649 /** 1650 * xs_udp_write_space - callback invoked when socket buffer space 1651 * becomes available 1652 * @sk: socket whose state has changed 1653 * 1654 * Called when more output buffer space is available for this socket. 1655 * We try not to wake our writers until they can make "significant" 1656 * progress, otherwise we'll waste resources thrashing kernel_sendmsg 1657 * with a bunch of small requests. 1658 */ 1659 static void xs_udp_write_space(struct sock *sk) 1660 { 1661 read_lock_bh(&sk->sk_callback_lock); 1662 1663 /* from net/core/sock.c:sock_def_write_space */ 1664 if (sock_writeable(sk)) 1665 xs_write_space(sk); 1666 1667 read_unlock_bh(&sk->sk_callback_lock); 1668 } 1669 1670 /** 1671 * xs_tcp_write_space - callback invoked when socket buffer space 1672 * becomes available 1673 * @sk: socket whose state has changed 1674 * 1675 * Called when more output buffer space is available for this socket. 1676 * We try not to wake our writers until they can make "significant" 1677 * progress, otherwise we'll waste resources thrashing kernel_sendmsg 1678 * with a bunch of small requests. 1679 */ 1680 static void xs_tcp_write_space(struct sock *sk) 1681 { 1682 read_lock_bh(&sk->sk_callback_lock); 1683 1684 /* from net/core/stream.c:sk_stream_write_space */ 1685 if (sk_stream_is_writeable(sk)) 1686 xs_write_space(sk); 1687 1688 read_unlock_bh(&sk->sk_callback_lock); 1689 } 1690 1691 static void xs_udp_do_set_buffer_size(struct rpc_xprt *xprt) 1692 { 1693 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 1694 struct sock *sk = transport->inet; 1695 1696 if (transport->rcvsize) { 1697 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 1698 sk->sk_rcvbuf = transport->rcvsize * xprt->max_reqs * 2; 1699 } 1700 if (transport->sndsize) { 1701 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1702 sk->sk_sndbuf = transport->sndsize * xprt->max_reqs * 2; 1703 sk->sk_write_space(sk); 1704 } 1705 } 1706 1707 /** 1708 * xs_udp_set_buffer_size - set send and receive limits 1709 * @xprt: generic transport 1710 * @sndsize: requested size of send buffer, in bytes 1711 * @rcvsize: requested size of receive buffer, in bytes 1712 * 1713 * Set socket send and receive buffer size limits. 1714 */ 1715 static void xs_udp_set_buffer_size(struct rpc_xprt *xprt, size_t sndsize, size_t rcvsize) 1716 { 1717 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 1718 1719 transport->sndsize = 0; 1720 if (sndsize) 1721 transport->sndsize = sndsize + 1024; 1722 transport->rcvsize = 0; 1723 if (rcvsize) 1724 transport->rcvsize = rcvsize + 1024; 1725 1726 xs_udp_do_set_buffer_size(xprt); 1727 } 1728 1729 /** 1730 * xs_udp_timer - called when a retransmit timeout occurs on a UDP transport 1731 * @task: task that timed out 1732 * 1733 * Adjust the congestion window after a retransmit timeout has occurred. 1734 */ 1735 static void xs_udp_timer(struct rpc_xprt *xprt, struct rpc_task *task) 1736 { 1737 xprt_adjust_cwnd(xprt, task, -ETIMEDOUT); 1738 } 1739 1740 static unsigned short xs_get_random_port(void) 1741 { 1742 unsigned short range = xprt_max_resvport - xprt_min_resvport + 1; 1743 unsigned short rand = (unsigned short) prandom_u32() % range; 1744 return rand + xprt_min_resvport; 1745 } 1746 1747 /** 1748 * xs_set_reuseaddr_port - set the socket's port and address reuse options 1749 * @sock: socket 1750 * 1751 * Note that this function has to be called on all sockets that share the 1752 * same port, and it must be called before binding. 1753 */ 1754 static void xs_sock_set_reuseport(struct socket *sock) 1755 { 1756 int opt = 1; 1757 1758 kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEPORT, 1759 (char *)&opt, sizeof(opt)); 1760 } 1761 1762 static unsigned short xs_sock_getport(struct socket *sock) 1763 { 1764 struct sockaddr_storage buf; 1765 int buflen; 1766 unsigned short port = 0; 1767 1768 if (kernel_getsockname(sock, (struct sockaddr *)&buf, &buflen) < 0) 1769 goto out; 1770 switch (buf.ss_family) { 1771 case AF_INET6: 1772 port = ntohs(((struct sockaddr_in6 *)&buf)->sin6_port); 1773 break; 1774 case AF_INET: 1775 port = ntohs(((struct sockaddr_in *)&buf)->sin_port); 1776 } 1777 out: 1778 return port; 1779 } 1780 1781 /** 1782 * xs_set_port - reset the port number in the remote endpoint address 1783 * @xprt: generic transport 1784 * @port: new port number 1785 * 1786 */ 1787 static void xs_set_port(struct rpc_xprt *xprt, unsigned short port) 1788 { 1789 dprintk("RPC: setting port for xprt %p to %u\n", xprt, port); 1790 1791 rpc_set_port(xs_addr(xprt), port); 1792 xs_update_peer_port(xprt); 1793 } 1794 1795 static void xs_set_srcport(struct sock_xprt *transport, struct socket *sock) 1796 { 1797 if (transport->srcport == 0) 1798 transport->srcport = xs_sock_getport(sock); 1799 } 1800 1801 static unsigned short xs_get_srcport(struct sock_xprt *transport) 1802 { 1803 unsigned short port = transport->srcport; 1804 1805 if (port == 0 && transport->xprt.resvport) 1806 port = xs_get_random_port(); 1807 return port; 1808 } 1809 1810 static unsigned short xs_next_srcport(struct sock_xprt *transport, unsigned short port) 1811 { 1812 if (transport->srcport != 0) 1813 transport->srcport = 0; 1814 if (!transport->xprt.resvport) 1815 return 0; 1816 if (port <= xprt_min_resvport || port > xprt_max_resvport) 1817 return xprt_max_resvport; 1818 return --port; 1819 } 1820 static int xs_bind(struct sock_xprt *transport, struct socket *sock) 1821 { 1822 struct sockaddr_storage myaddr; 1823 int err, nloop = 0; 1824 unsigned short port = xs_get_srcport(transport); 1825 unsigned short last; 1826 1827 /* 1828 * If we are asking for any ephemeral port (i.e. port == 0 && 1829 * transport->xprt.resvport == 0), don't bind. Let the local 1830 * port selection happen implicitly when the socket is used 1831 * (for example at connect time). 1832 * 1833 * This ensures that we can continue to establish TCP 1834 * connections even when all local ephemeral ports are already 1835 * a part of some TCP connection. This makes no difference 1836 * for UDP sockets, but also doens't harm them. 1837 * 1838 * If we're asking for any reserved port (i.e. port == 0 && 1839 * transport->xprt.resvport == 1) xs_get_srcport above will 1840 * ensure that port is non-zero and we will bind as needed. 1841 */ 1842 if (port == 0) 1843 return 0; 1844 1845 memcpy(&myaddr, &transport->srcaddr, transport->xprt.addrlen); 1846 do { 1847 rpc_set_port((struct sockaddr *)&myaddr, port); 1848 err = kernel_bind(sock, (struct sockaddr *)&myaddr, 1849 transport->xprt.addrlen); 1850 if (err == 0) { 1851 transport->srcport = port; 1852 break; 1853 } 1854 last = port; 1855 port = xs_next_srcport(transport, port); 1856 if (port > last) 1857 nloop++; 1858 } while (err == -EADDRINUSE && nloop != 2); 1859 1860 if (myaddr.ss_family == AF_INET) 1861 dprintk("RPC: %s %pI4:%u: %s (%d)\n", __func__, 1862 &((struct sockaddr_in *)&myaddr)->sin_addr, 1863 port, err ? "failed" : "ok", err); 1864 else 1865 dprintk("RPC: %s %pI6:%u: %s (%d)\n", __func__, 1866 &((struct sockaddr_in6 *)&myaddr)->sin6_addr, 1867 port, err ? "failed" : "ok", err); 1868 return err; 1869 } 1870 1871 /* 1872 * We don't support autobind on AF_LOCAL sockets 1873 */ 1874 static void xs_local_rpcbind(struct rpc_task *task) 1875 { 1876 xprt_set_bound(task->tk_xprt); 1877 } 1878 1879 static void xs_local_set_port(struct rpc_xprt *xprt, unsigned short port) 1880 { 1881 } 1882 1883 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1884 static struct lock_class_key xs_key[2]; 1885 static struct lock_class_key xs_slock_key[2]; 1886 1887 static inline void xs_reclassify_socketu(struct socket *sock) 1888 { 1889 struct sock *sk = sock->sk; 1890 1891 sock_lock_init_class_and_name(sk, "slock-AF_LOCAL-RPC", 1892 &xs_slock_key[1], "sk_lock-AF_LOCAL-RPC", &xs_key[1]); 1893 } 1894 1895 static inline void xs_reclassify_socket4(struct socket *sock) 1896 { 1897 struct sock *sk = sock->sk; 1898 1899 sock_lock_init_class_and_name(sk, "slock-AF_INET-RPC", 1900 &xs_slock_key[0], "sk_lock-AF_INET-RPC", &xs_key[0]); 1901 } 1902 1903 static inline void xs_reclassify_socket6(struct socket *sock) 1904 { 1905 struct sock *sk = sock->sk; 1906 1907 sock_lock_init_class_and_name(sk, "slock-AF_INET6-RPC", 1908 &xs_slock_key[1], "sk_lock-AF_INET6-RPC", &xs_key[1]); 1909 } 1910 1911 static inline void xs_reclassify_socket(int family, struct socket *sock) 1912 { 1913 if (WARN_ON_ONCE(!sock_allow_reclassification(sock->sk))) 1914 return; 1915 1916 switch (family) { 1917 case AF_LOCAL: 1918 xs_reclassify_socketu(sock); 1919 break; 1920 case AF_INET: 1921 xs_reclassify_socket4(sock); 1922 break; 1923 case AF_INET6: 1924 xs_reclassify_socket6(sock); 1925 break; 1926 } 1927 } 1928 #else 1929 static inline void xs_reclassify_socket(int family, struct socket *sock) 1930 { 1931 } 1932 #endif 1933 1934 static void xs_dummy_setup_socket(struct work_struct *work) 1935 { 1936 } 1937 1938 static struct socket *xs_create_sock(struct rpc_xprt *xprt, 1939 struct sock_xprt *transport, int family, int type, 1940 int protocol, bool reuseport) 1941 { 1942 struct socket *sock; 1943 int err; 1944 1945 err = __sock_create(xprt->xprt_net, family, type, protocol, &sock, 1); 1946 if (err < 0) { 1947 dprintk("RPC: can't create %d transport socket (%d).\n", 1948 protocol, -err); 1949 goto out; 1950 } 1951 xs_reclassify_socket(family, sock); 1952 1953 if (reuseport) 1954 xs_sock_set_reuseport(sock); 1955 1956 err = xs_bind(transport, sock); 1957 if (err) { 1958 sock_release(sock); 1959 goto out; 1960 } 1961 1962 return sock; 1963 out: 1964 return ERR_PTR(err); 1965 } 1966 1967 static int xs_local_finish_connecting(struct rpc_xprt *xprt, 1968 struct socket *sock) 1969 { 1970 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, 1971 xprt); 1972 1973 if (!transport->inet) { 1974 struct sock *sk = sock->sk; 1975 1976 write_lock_bh(&sk->sk_callback_lock); 1977 1978 xs_save_old_callbacks(transport, sk); 1979 1980 sk->sk_user_data = xprt; 1981 sk->sk_data_ready = xs_data_ready; 1982 sk->sk_write_space = xs_udp_write_space; 1983 sock_set_flag(sk, SOCK_FASYNC); 1984 sk->sk_error_report = xs_error_report; 1985 sk->sk_allocation = GFP_NOIO; 1986 1987 xprt_clear_connected(xprt); 1988 1989 /* Reset to new socket */ 1990 transport->sock = sock; 1991 transport->inet = sk; 1992 1993 write_unlock_bh(&sk->sk_callback_lock); 1994 } 1995 1996 /* Tell the socket layer to start connecting... */ 1997 xprt->stat.connect_count++; 1998 xprt->stat.connect_start = jiffies; 1999 return kernel_connect(sock, xs_addr(xprt), xprt->addrlen, 0); 2000 } 2001 2002 /** 2003 * xs_local_setup_socket - create AF_LOCAL socket, connect to a local endpoint 2004 * @transport: socket transport to connect 2005 */ 2006 static int xs_local_setup_socket(struct sock_xprt *transport) 2007 { 2008 struct rpc_xprt *xprt = &transport->xprt; 2009 struct socket *sock; 2010 int status = -EIO; 2011 2012 status = __sock_create(xprt->xprt_net, AF_LOCAL, 2013 SOCK_STREAM, 0, &sock, 1); 2014 if (status < 0) { 2015 dprintk("RPC: can't create AF_LOCAL " 2016 "transport socket (%d).\n", -status); 2017 goto out; 2018 } 2019 xs_reclassify_socket(AF_LOCAL, sock); 2020 2021 dprintk("RPC: worker connecting xprt %p via AF_LOCAL to %s\n", 2022 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); 2023 2024 status = xs_local_finish_connecting(xprt, sock); 2025 trace_rpc_socket_connect(xprt, sock, status); 2026 switch (status) { 2027 case 0: 2028 dprintk("RPC: xprt %p connected to %s\n", 2029 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); 2030 xprt_set_connected(xprt); 2031 case -ENOBUFS: 2032 break; 2033 case -ENOENT: 2034 dprintk("RPC: xprt %p: socket %s does not exist\n", 2035 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); 2036 break; 2037 case -ECONNREFUSED: 2038 dprintk("RPC: xprt %p: connection refused for %s\n", 2039 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); 2040 break; 2041 default: 2042 printk(KERN_ERR "%s: unhandled error (%d) connecting to %s\n", 2043 __func__, -status, 2044 xprt->address_strings[RPC_DISPLAY_ADDR]); 2045 } 2046 2047 out: 2048 xprt_clear_connecting(xprt); 2049 xprt_wake_pending_tasks(xprt, status); 2050 return status; 2051 } 2052 2053 static void xs_local_connect(struct rpc_xprt *xprt, struct rpc_task *task) 2054 { 2055 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2056 int ret; 2057 2058 if (RPC_IS_ASYNC(task)) { 2059 /* 2060 * We want the AF_LOCAL connect to be resolved in the 2061 * filesystem namespace of the process making the rpc 2062 * call. Thus we connect synchronously. 2063 * 2064 * If we want to support asynchronous AF_LOCAL calls, 2065 * we'll need to figure out how to pass a namespace to 2066 * connect. 2067 */ 2068 rpc_exit(task, -ENOTCONN); 2069 return; 2070 } 2071 ret = xs_local_setup_socket(transport); 2072 if (ret && !RPC_IS_SOFTCONN(task)) 2073 msleep_interruptible(15000); 2074 } 2075 2076 #if IS_ENABLED(CONFIG_SUNRPC_SWAP) 2077 /* 2078 * Note that this should be called with XPRT_LOCKED held (or when we otherwise 2079 * know that we have exclusive access to the socket), to guard against 2080 * races with xs_reset_transport. 2081 */ 2082 static void xs_set_memalloc(struct rpc_xprt *xprt) 2083 { 2084 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, 2085 xprt); 2086 2087 /* 2088 * If there's no sock, then we have nothing to set. The 2089 * reconnecting process will get it for us. 2090 */ 2091 if (!transport->inet) 2092 return; 2093 if (atomic_read(&xprt->swapper)) 2094 sk_set_memalloc(transport->inet); 2095 } 2096 2097 /** 2098 * xs_enable_swap - Tag this transport as being used for swap. 2099 * @xprt: transport to tag 2100 * 2101 * Take a reference to this transport on behalf of the rpc_clnt, and 2102 * optionally mark it for swapping if it wasn't already. 2103 */ 2104 static int 2105 xs_enable_swap(struct rpc_xprt *xprt) 2106 { 2107 struct sock_xprt *xs = container_of(xprt, struct sock_xprt, xprt); 2108 2109 if (atomic_inc_return(&xprt->swapper) != 1) 2110 return 0; 2111 if (wait_on_bit_lock(&xprt->state, XPRT_LOCKED, TASK_KILLABLE)) 2112 return -ERESTARTSYS; 2113 if (xs->inet) 2114 sk_set_memalloc(xs->inet); 2115 xprt_release_xprt(xprt, NULL); 2116 return 0; 2117 } 2118 2119 /** 2120 * xs_disable_swap - Untag this transport as being used for swap. 2121 * @xprt: transport to tag 2122 * 2123 * Drop a "swapper" reference to this xprt on behalf of the rpc_clnt. If the 2124 * swapper refcount goes to 0, untag the socket as a memalloc socket. 2125 */ 2126 static void 2127 xs_disable_swap(struct rpc_xprt *xprt) 2128 { 2129 struct sock_xprt *xs = container_of(xprt, struct sock_xprt, xprt); 2130 2131 if (!atomic_dec_and_test(&xprt->swapper)) 2132 return; 2133 if (wait_on_bit_lock(&xprt->state, XPRT_LOCKED, TASK_KILLABLE)) 2134 return; 2135 if (xs->inet) 2136 sk_clear_memalloc(xs->inet); 2137 xprt_release_xprt(xprt, NULL); 2138 } 2139 #else 2140 static void xs_set_memalloc(struct rpc_xprt *xprt) 2141 { 2142 } 2143 2144 static int 2145 xs_enable_swap(struct rpc_xprt *xprt) 2146 { 2147 return -EINVAL; 2148 } 2149 2150 static void 2151 xs_disable_swap(struct rpc_xprt *xprt) 2152 { 2153 } 2154 #endif 2155 2156 static void xs_udp_finish_connecting(struct rpc_xprt *xprt, struct socket *sock) 2157 { 2158 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2159 2160 if (!transport->inet) { 2161 struct sock *sk = sock->sk; 2162 2163 write_lock_bh(&sk->sk_callback_lock); 2164 2165 xs_save_old_callbacks(transport, sk); 2166 2167 sk->sk_user_data = xprt; 2168 sk->sk_data_ready = xs_data_ready; 2169 sk->sk_write_space = xs_udp_write_space; 2170 sock_set_flag(sk, SOCK_FASYNC); 2171 sk->sk_allocation = GFP_NOIO; 2172 2173 xprt_set_connected(xprt); 2174 2175 /* Reset to new socket */ 2176 transport->sock = sock; 2177 transport->inet = sk; 2178 2179 xs_set_memalloc(xprt); 2180 2181 write_unlock_bh(&sk->sk_callback_lock); 2182 } 2183 xs_udp_do_set_buffer_size(xprt); 2184 2185 xprt->stat.connect_start = jiffies; 2186 } 2187 2188 static void xs_udp_setup_socket(struct work_struct *work) 2189 { 2190 struct sock_xprt *transport = 2191 container_of(work, struct sock_xprt, connect_worker.work); 2192 struct rpc_xprt *xprt = &transport->xprt; 2193 struct socket *sock = transport->sock; 2194 int status = -EIO; 2195 2196 sock = xs_create_sock(xprt, transport, 2197 xs_addr(xprt)->sa_family, SOCK_DGRAM, 2198 IPPROTO_UDP, false); 2199 if (IS_ERR(sock)) 2200 goto out; 2201 2202 dprintk("RPC: worker connecting xprt %p via %s to " 2203 "%s (port %s)\n", xprt, 2204 xprt->address_strings[RPC_DISPLAY_PROTO], 2205 xprt->address_strings[RPC_DISPLAY_ADDR], 2206 xprt->address_strings[RPC_DISPLAY_PORT]); 2207 2208 xs_udp_finish_connecting(xprt, sock); 2209 trace_rpc_socket_connect(xprt, sock, 0); 2210 status = 0; 2211 out: 2212 xprt_unlock_connect(xprt, transport); 2213 xprt_clear_connecting(xprt); 2214 xprt_wake_pending_tasks(xprt, status); 2215 } 2216 2217 /** 2218 * xs_tcp_shutdown - gracefully shut down a TCP socket 2219 * @xprt: transport 2220 * 2221 * Initiates a graceful shutdown of the TCP socket by calling the 2222 * equivalent of shutdown(SHUT_RDWR); 2223 */ 2224 static void xs_tcp_shutdown(struct rpc_xprt *xprt) 2225 { 2226 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2227 struct socket *sock = transport->sock; 2228 2229 if (sock == NULL) 2230 return; 2231 if (xprt_connected(xprt)) { 2232 kernel_sock_shutdown(sock, SHUT_RDWR); 2233 trace_rpc_socket_shutdown(xprt, sock); 2234 } else 2235 xs_reset_transport(transport); 2236 } 2237 2238 static int xs_tcp_finish_connecting(struct rpc_xprt *xprt, struct socket *sock) 2239 { 2240 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2241 int ret = -ENOTCONN; 2242 2243 if (!transport->inet) { 2244 struct sock *sk = sock->sk; 2245 unsigned int keepidle = xprt->timeout->to_initval / HZ; 2246 unsigned int keepcnt = xprt->timeout->to_retries + 1; 2247 unsigned int opt_on = 1; 2248 unsigned int timeo; 2249 unsigned int addr_pref = IPV6_PREFER_SRC_PUBLIC; 2250 2251 /* TCP Keepalive options */ 2252 kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE, 2253 (char *)&opt_on, sizeof(opt_on)); 2254 kernel_setsockopt(sock, SOL_TCP, TCP_KEEPIDLE, 2255 (char *)&keepidle, sizeof(keepidle)); 2256 kernel_setsockopt(sock, SOL_TCP, TCP_KEEPINTVL, 2257 (char *)&keepidle, sizeof(keepidle)); 2258 kernel_setsockopt(sock, SOL_TCP, TCP_KEEPCNT, 2259 (char *)&keepcnt, sizeof(keepcnt)); 2260 2261 /* Avoid temporary address, they are bad for long-lived 2262 * connections such as NFS mounts. 2263 * RFC4941, section 3.6 suggests that: 2264 * Individual applications, which have specific 2265 * knowledge about the normal duration of connections, 2266 * MAY override this as appropriate. 2267 */ 2268 kernel_setsockopt(sock, SOL_IPV6, IPV6_ADDR_PREFERENCES, 2269 (char *)&addr_pref, sizeof(addr_pref)); 2270 2271 /* TCP user timeout (see RFC5482) */ 2272 timeo = jiffies_to_msecs(xprt->timeout->to_initval) * 2273 (xprt->timeout->to_retries + 1); 2274 kernel_setsockopt(sock, SOL_TCP, TCP_USER_TIMEOUT, 2275 (char *)&timeo, sizeof(timeo)); 2276 2277 write_lock_bh(&sk->sk_callback_lock); 2278 2279 xs_save_old_callbacks(transport, sk); 2280 2281 sk->sk_user_data = xprt; 2282 sk->sk_data_ready = xs_data_ready; 2283 sk->sk_state_change = xs_tcp_state_change; 2284 sk->sk_write_space = xs_tcp_write_space; 2285 sock_set_flag(sk, SOCK_FASYNC); 2286 sk->sk_error_report = xs_error_report; 2287 sk->sk_allocation = GFP_NOIO; 2288 2289 /* socket options */ 2290 sock_reset_flag(sk, SOCK_LINGER); 2291 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF; 2292 2293 xprt_clear_connected(xprt); 2294 2295 /* Reset to new socket */ 2296 transport->sock = sock; 2297 transport->inet = sk; 2298 2299 write_unlock_bh(&sk->sk_callback_lock); 2300 } 2301 2302 if (!xprt_bound(xprt)) 2303 goto out; 2304 2305 xs_set_memalloc(xprt); 2306 2307 /* Tell the socket layer to start connecting... */ 2308 xprt->stat.connect_count++; 2309 xprt->stat.connect_start = jiffies; 2310 set_bit(XPRT_SOCK_CONNECTING, &transport->sock_state); 2311 ret = kernel_connect(sock, xs_addr(xprt), xprt->addrlen, O_NONBLOCK); 2312 switch (ret) { 2313 case 0: 2314 xs_set_srcport(transport, sock); 2315 case -EINPROGRESS: 2316 /* SYN_SENT! */ 2317 if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO) 2318 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 2319 break; 2320 case -EADDRNOTAVAIL: 2321 /* Source port number is unavailable. Try a new one! */ 2322 transport->srcport = 0; 2323 } 2324 out: 2325 return ret; 2326 } 2327 2328 /** 2329 * xs_tcp_setup_socket - create a TCP socket and connect to a remote endpoint 2330 * 2331 * Invoked by a work queue tasklet. 2332 */ 2333 static void xs_tcp_setup_socket(struct work_struct *work) 2334 { 2335 struct sock_xprt *transport = 2336 container_of(work, struct sock_xprt, connect_worker.work); 2337 struct socket *sock = transport->sock; 2338 struct rpc_xprt *xprt = &transport->xprt; 2339 int status = -EIO; 2340 2341 if (!sock) { 2342 sock = xs_create_sock(xprt, transport, 2343 xs_addr(xprt)->sa_family, SOCK_STREAM, 2344 IPPROTO_TCP, true); 2345 if (IS_ERR(sock)) { 2346 status = PTR_ERR(sock); 2347 goto out; 2348 } 2349 } 2350 2351 dprintk("RPC: worker connecting xprt %p via %s to " 2352 "%s (port %s)\n", xprt, 2353 xprt->address_strings[RPC_DISPLAY_PROTO], 2354 xprt->address_strings[RPC_DISPLAY_ADDR], 2355 xprt->address_strings[RPC_DISPLAY_PORT]); 2356 2357 status = xs_tcp_finish_connecting(xprt, sock); 2358 trace_rpc_socket_connect(xprt, sock, status); 2359 dprintk("RPC: %p connect status %d connected %d sock state %d\n", 2360 xprt, -status, xprt_connected(xprt), 2361 sock->sk->sk_state); 2362 switch (status) { 2363 default: 2364 printk("%s: connect returned unhandled error %d\n", 2365 __func__, status); 2366 case -EADDRNOTAVAIL: 2367 /* We're probably in TIME_WAIT. Get rid of existing socket, 2368 * and retry 2369 */ 2370 xs_tcp_force_close(xprt); 2371 break; 2372 case 0: 2373 case -EINPROGRESS: 2374 case -EALREADY: 2375 xprt_unlock_connect(xprt, transport); 2376 return; 2377 case -EINVAL: 2378 /* Happens, for instance, if the user specified a link 2379 * local IPv6 address without a scope-id. 2380 */ 2381 case -ECONNREFUSED: 2382 case -ECONNRESET: 2383 case -ENETUNREACH: 2384 case -EADDRINUSE: 2385 case -ENOBUFS: 2386 /* retry with existing socket, after a delay */ 2387 xs_tcp_force_close(xprt); 2388 goto out; 2389 } 2390 status = -EAGAIN; 2391 out: 2392 xprt_unlock_connect(xprt, transport); 2393 xprt_clear_connecting(xprt); 2394 xprt_wake_pending_tasks(xprt, status); 2395 } 2396 2397 static unsigned long xs_reconnect_delay(const struct rpc_xprt *xprt) 2398 { 2399 unsigned long start, now = jiffies; 2400 2401 start = xprt->stat.connect_start + xprt->reestablish_timeout; 2402 if (time_after(start, now)) 2403 return start - now; 2404 return 0; 2405 } 2406 2407 static void xs_reconnect_backoff(struct rpc_xprt *xprt) 2408 { 2409 xprt->reestablish_timeout <<= 1; 2410 if (xprt->reestablish_timeout > xprt->max_reconnect_timeout) 2411 xprt->reestablish_timeout = xprt->max_reconnect_timeout; 2412 if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO) 2413 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 2414 } 2415 2416 /** 2417 * xs_connect - connect a socket to a remote endpoint 2418 * @xprt: pointer to transport structure 2419 * @task: address of RPC task that manages state of connect request 2420 * 2421 * TCP: If the remote end dropped the connection, delay reconnecting. 2422 * 2423 * UDP socket connects are synchronous, but we use a work queue anyway 2424 * to guarantee that even unprivileged user processes can set up a 2425 * socket on a privileged port. 2426 * 2427 * If a UDP socket connect fails, the delay behavior here prevents 2428 * retry floods (hard mounts). 2429 */ 2430 static void xs_connect(struct rpc_xprt *xprt, struct rpc_task *task) 2431 { 2432 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2433 unsigned long delay = 0; 2434 2435 WARN_ON_ONCE(!xprt_lock_connect(xprt, task, transport)); 2436 2437 if (transport->sock != NULL) { 2438 dprintk("RPC: xs_connect delayed xprt %p for %lu " 2439 "seconds\n", 2440 xprt, xprt->reestablish_timeout / HZ); 2441 2442 /* Start by resetting any existing state */ 2443 xs_reset_transport(transport); 2444 2445 delay = xs_reconnect_delay(xprt); 2446 xs_reconnect_backoff(xprt); 2447 2448 } else 2449 dprintk("RPC: xs_connect scheduled xprt %p\n", xprt); 2450 2451 queue_delayed_work(xprtiod_workqueue, 2452 &transport->connect_worker, 2453 delay); 2454 } 2455 2456 /** 2457 * xs_local_print_stats - display AF_LOCAL socket-specifc stats 2458 * @xprt: rpc_xprt struct containing statistics 2459 * @seq: output file 2460 * 2461 */ 2462 static void xs_local_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 2463 { 2464 long idle_time = 0; 2465 2466 if (xprt_connected(xprt)) 2467 idle_time = (long)(jiffies - xprt->last_used) / HZ; 2468 2469 seq_printf(seq, "\txprt:\tlocal %lu %lu %lu %ld %lu %lu %lu " 2470 "%llu %llu %lu %llu %llu\n", 2471 xprt->stat.bind_count, 2472 xprt->stat.connect_count, 2473 xprt->stat.connect_time, 2474 idle_time, 2475 xprt->stat.sends, 2476 xprt->stat.recvs, 2477 xprt->stat.bad_xids, 2478 xprt->stat.req_u, 2479 xprt->stat.bklog_u, 2480 xprt->stat.max_slots, 2481 xprt->stat.sending_u, 2482 xprt->stat.pending_u); 2483 } 2484 2485 /** 2486 * xs_udp_print_stats - display UDP socket-specifc stats 2487 * @xprt: rpc_xprt struct containing statistics 2488 * @seq: output file 2489 * 2490 */ 2491 static void xs_udp_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 2492 { 2493 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2494 2495 seq_printf(seq, "\txprt:\tudp %u %lu %lu %lu %lu %llu %llu " 2496 "%lu %llu %llu\n", 2497 transport->srcport, 2498 xprt->stat.bind_count, 2499 xprt->stat.sends, 2500 xprt->stat.recvs, 2501 xprt->stat.bad_xids, 2502 xprt->stat.req_u, 2503 xprt->stat.bklog_u, 2504 xprt->stat.max_slots, 2505 xprt->stat.sending_u, 2506 xprt->stat.pending_u); 2507 } 2508 2509 /** 2510 * xs_tcp_print_stats - display TCP socket-specifc stats 2511 * @xprt: rpc_xprt struct containing statistics 2512 * @seq: output file 2513 * 2514 */ 2515 static void xs_tcp_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 2516 { 2517 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2518 long idle_time = 0; 2519 2520 if (xprt_connected(xprt)) 2521 idle_time = (long)(jiffies - xprt->last_used) / HZ; 2522 2523 seq_printf(seq, "\txprt:\ttcp %u %lu %lu %lu %ld %lu %lu %lu " 2524 "%llu %llu %lu %llu %llu\n", 2525 transport->srcport, 2526 xprt->stat.bind_count, 2527 xprt->stat.connect_count, 2528 xprt->stat.connect_time, 2529 idle_time, 2530 xprt->stat.sends, 2531 xprt->stat.recvs, 2532 xprt->stat.bad_xids, 2533 xprt->stat.req_u, 2534 xprt->stat.bklog_u, 2535 xprt->stat.max_slots, 2536 xprt->stat.sending_u, 2537 xprt->stat.pending_u); 2538 } 2539 2540 /* 2541 * Allocate a bunch of pages for a scratch buffer for the rpc code. The reason 2542 * we allocate pages instead doing a kmalloc like rpc_malloc is because we want 2543 * to use the server side send routines. 2544 */ 2545 static int bc_malloc(struct rpc_task *task) 2546 { 2547 struct rpc_rqst *rqst = task->tk_rqstp; 2548 size_t size = rqst->rq_callsize; 2549 struct page *page; 2550 struct rpc_buffer *buf; 2551 2552 if (size > PAGE_SIZE - sizeof(struct rpc_buffer)) { 2553 WARN_ONCE(1, "xprtsock: large bc buffer request (size %zu)\n", 2554 size); 2555 return -EINVAL; 2556 } 2557 2558 page = alloc_page(GFP_KERNEL); 2559 if (!page) 2560 return -ENOMEM; 2561 2562 buf = page_address(page); 2563 buf->len = PAGE_SIZE; 2564 2565 rqst->rq_buffer = buf->data; 2566 return 0; 2567 } 2568 2569 /* 2570 * Free the space allocated in the bc_alloc routine 2571 */ 2572 static void bc_free(struct rpc_task *task) 2573 { 2574 void *buffer = task->tk_rqstp->rq_buffer; 2575 struct rpc_buffer *buf; 2576 2577 buf = container_of(buffer, struct rpc_buffer, data); 2578 free_page((unsigned long)buf); 2579 } 2580 2581 /* 2582 * Use the svc_sock to send the callback. Must be called with svsk->sk_mutex 2583 * held. Borrows heavily from svc_tcp_sendto and xs_tcp_send_request. 2584 */ 2585 static int bc_sendto(struct rpc_rqst *req) 2586 { 2587 int len; 2588 struct xdr_buf *xbufp = &req->rq_snd_buf; 2589 struct rpc_xprt *xprt = req->rq_xprt; 2590 struct sock_xprt *transport = 2591 container_of(xprt, struct sock_xprt, xprt); 2592 struct socket *sock = transport->sock; 2593 unsigned long headoff; 2594 unsigned long tailoff; 2595 2596 xs_encode_stream_record_marker(xbufp); 2597 2598 tailoff = (unsigned long)xbufp->tail[0].iov_base & ~PAGE_MASK; 2599 headoff = (unsigned long)xbufp->head[0].iov_base & ~PAGE_MASK; 2600 len = svc_send_common(sock, xbufp, 2601 virt_to_page(xbufp->head[0].iov_base), headoff, 2602 xbufp->tail[0].iov_base, tailoff); 2603 2604 if (len != xbufp->len) { 2605 printk(KERN_NOTICE "Error sending entire callback!\n"); 2606 len = -EAGAIN; 2607 } 2608 2609 return len; 2610 } 2611 2612 /* 2613 * The send routine. Borrows from svc_send 2614 */ 2615 static int bc_send_request(struct rpc_task *task) 2616 { 2617 struct rpc_rqst *req = task->tk_rqstp; 2618 struct svc_xprt *xprt; 2619 int len; 2620 2621 dprintk("sending request with xid: %08x\n", ntohl(req->rq_xid)); 2622 /* 2623 * Get the server socket associated with this callback xprt 2624 */ 2625 xprt = req->rq_xprt->bc_xprt; 2626 2627 /* 2628 * Grab the mutex to serialize data as the connection is shared 2629 * with the fore channel 2630 */ 2631 if (!mutex_trylock(&xprt->xpt_mutex)) { 2632 rpc_sleep_on(&xprt->xpt_bc_pending, task, NULL); 2633 if (!mutex_trylock(&xprt->xpt_mutex)) 2634 return -EAGAIN; 2635 rpc_wake_up_queued_task(&xprt->xpt_bc_pending, task); 2636 } 2637 if (test_bit(XPT_DEAD, &xprt->xpt_flags)) 2638 len = -ENOTCONN; 2639 else 2640 len = bc_sendto(req); 2641 mutex_unlock(&xprt->xpt_mutex); 2642 2643 if (len > 0) 2644 len = 0; 2645 2646 return len; 2647 } 2648 2649 /* 2650 * The close routine. Since this is client initiated, we do nothing 2651 */ 2652 2653 static void bc_close(struct rpc_xprt *xprt) 2654 { 2655 } 2656 2657 /* 2658 * The xprt destroy routine. Again, because this connection is client 2659 * initiated, we do nothing 2660 */ 2661 2662 static void bc_destroy(struct rpc_xprt *xprt) 2663 { 2664 dprintk("RPC: bc_destroy xprt %p\n", xprt); 2665 2666 xs_xprt_free(xprt); 2667 module_put(THIS_MODULE); 2668 } 2669 2670 static struct rpc_xprt_ops xs_local_ops = { 2671 .reserve_xprt = xprt_reserve_xprt, 2672 .release_xprt = xs_tcp_release_xprt, 2673 .alloc_slot = xprt_alloc_slot, 2674 .rpcbind = xs_local_rpcbind, 2675 .set_port = xs_local_set_port, 2676 .connect = xs_local_connect, 2677 .buf_alloc = rpc_malloc, 2678 .buf_free = rpc_free, 2679 .send_request = xs_local_send_request, 2680 .set_retrans_timeout = xprt_set_retrans_timeout_def, 2681 .close = xs_close, 2682 .destroy = xs_destroy, 2683 .print_stats = xs_local_print_stats, 2684 .enable_swap = xs_enable_swap, 2685 .disable_swap = xs_disable_swap, 2686 }; 2687 2688 static struct rpc_xprt_ops xs_udp_ops = { 2689 .set_buffer_size = xs_udp_set_buffer_size, 2690 .reserve_xprt = xprt_reserve_xprt_cong, 2691 .release_xprt = xprt_release_xprt_cong, 2692 .alloc_slot = xprt_alloc_slot, 2693 .rpcbind = rpcb_getport_async, 2694 .set_port = xs_set_port, 2695 .connect = xs_connect, 2696 .buf_alloc = rpc_malloc, 2697 .buf_free = rpc_free, 2698 .send_request = xs_udp_send_request, 2699 .set_retrans_timeout = xprt_set_retrans_timeout_rtt, 2700 .timer = xs_udp_timer, 2701 .release_request = xprt_release_rqst_cong, 2702 .close = xs_close, 2703 .destroy = xs_destroy, 2704 .print_stats = xs_udp_print_stats, 2705 .enable_swap = xs_enable_swap, 2706 .disable_swap = xs_disable_swap, 2707 .inject_disconnect = xs_inject_disconnect, 2708 }; 2709 2710 static struct rpc_xprt_ops xs_tcp_ops = { 2711 .reserve_xprt = xprt_reserve_xprt, 2712 .release_xprt = xs_tcp_release_xprt, 2713 .alloc_slot = xprt_lock_and_alloc_slot, 2714 .rpcbind = rpcb_getport_async, 2715 .set_port = xs_set_port, 2716 .connect = xs_connect, 2717 .buf_alloc = rpc_malloc, 2718 .buf_free = rpc_free, 2719 .send_request = xs_tcp_send_request, 2720 .set_retrans_timeout = xprt_set_retrans_timeout_def, 2721 .close = xs_tcp_shutdown, 2722 .destroy = xs_destroy, 2723 .print_stats = xs_tcp_print_stats, 2724 .enable_swap = xs_enable_swap, 2725 .disable_swap = xs_disable_swap, 2726 .inject_disconnect = xs_inject_disconnect, 2727 #ifdef CONFIG_SUNRPC_BACKCHANNEL 2728 .bc_setup = xprt_setup_bc, 2729 .bc_up = xs_tcp_bc_up, 2730 .bc_maxpayload = xs_tcp_bc_maxpayload, 2731 .bc_free_rqst = xprt_free_bc_rqst, 2732 .bc_destroy = xprt_destroy_bc, 2733 #endif 2734 }; 2735 2736 /* 2737 * The rpc_xprt_ops for the server backchannel 2738 */ 2739 2740 static struct rpc_xprt_ops bc_tcp_ops = { 2741 .reserve_xprt = xprt_reserve_xprt, 2742 .release_xprt = xprt_release_xprt, 2743 .alloc_slot = xprt_alloc_slot, 2744 .buf_alloc = bc_malloc, 2745 .buf_free = bc_free, 2746 .send_request = bc_send_request, 2747 .set_retrans_timeout = xprt_set_retrans_timeout_def, 2748 .close = bc_close, 2749 .destroy = bc_destroy, 2750 .print_stats = xs_tcp_print_stats, 2751 .enable_swap = xs_enable_swap, 2752 .disable_swap = xs_disable_swap, 2753 .inject_disconnect = xs_inject_disconnect, 2754 }; 2755 2756 static int xs_init_anyaddr(const int family, struct sockaddr *sap) 2757 { 2758 static const struct sockaddr_in sin = { 2759 .sin_family = AF_INET, 2760 .sin_addr.s_addr = htonl(INADDR_ANY), 2761 }; 2762 static const struct sockaddr_in6 sin6 = { 2763 .sin6_family = AF_INET6, 2764 .sin6_addr = IN6ADDR_ANY_INIT, 2765 }; 2766 2767 switch (family) { 2768 case AF_LOCAL: 2769 break; 2770 case AF_INET: 2771 memcpy(sap, &sin, sizeof(sin)); 2772 break; 2773 case AF_INET6: 2774 memcpy(sap, &sin6, sizeof(sin6)); 2775 break; 2776 default: 2777 dprintk("RPC: %s: Bad address family\n", __func__); 2778 return -EAFNOSUPPORT; 2779 } 2780 return 0; 2781 } 2782 2783 static struct rpc_xprt *xs_setup_xprt(struct xprt_create *args, 2784 unsigned int slot_table_size, 2785 unsigned int max_slot_table_size) 2786 { 2787 struct rpc_xprt *xprt; 2788 struct sock_xprt *new; 2789 2790 if (args->addrlen > sizeof(xprt->addr)) { 2791 dprintk("RPC: xs_setup_xprt: address too large\n"); 2792 return ERR_PTR(-EBADF); 2793 } 2794 2795 xprt = xprt_alloc(args->net, sizeof(*new), slot_table_size, 2796 max_slot_table_size); 2797 if (xprt == NULL) { 2798 dprintk("RPC: xs_setup_xprt: couldn't allocate " 2799 "rpc_xprt\n"); 2800 return ERR_PTR(-ENOMEM); 2801 } 2802 2803 new = container_of(xprt, struct sock_xprt, xprt); 2804 mutex_init(&new->recv_mutex); 2805 memcpy(&xprt->addr, args->dstaddr, args->addrlen); 2806 xprt->addrlen = args->addrlen; 2807 if (args->srcaddr) 2808 memcpy(&new->srcaddr, args->srcaddr, args->addrlen); 2809 else { 2810 int err; 2811 err = xs_init_anyaddr(args->dstaddr->sa_family, 2812 (struct sockaddr *)&new->srcaddr); 2813 if (err != 0) { 2814 xprt_free(xprt); 2815 return ERR_PTR(err); 2816 } 2817 } 2818 2819 return xprt; 2820 } 2821 2822 static const struct rpc_timeout xs_local_default_timeout = { 2823 .to_initval = 10 * HZ, 2824 .to_maxval = 10 * HZ, 2825 .to_retries = 2, 2826 }; 2827 2828 /** 2829 * xs_setup_local - Set up transport to use an AF_LOCAL socket 2830 * @args: rpc transport creation arguments 2831 * 2832 * AF_LOCAL is a "tpi_cots_ord" transport, just like TCP 2833 */ 2834 static struct rpc_xprt *xs_setup_local(struct xprt_create *args) 2835 { 2836 struct sockaddr_un *sun = (struct sockaddr_un *)args->dstaddr; 2837 struct sock_xprt *transport; 2838 struct rpc_xprt *xprt; 2839 struct rpc_xprt *ret; 2840 2841 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries, 2842 xprt_max_tcp_slot_table_entries); 2843 if (IS_ERR(xprt)) 2844 return xprt; 2845 transport = container_of(xprt, struct sock_xprt, xprt); 2846 2847 xprt->prot = 0; 2848 xprt->tsh_size = sizeof(rpc_fraghdr) / sizeof(u32); 2849 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE; 2850 2851 xprt->bind_timeout = XS_BIND_TO; 2852 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 2853 xprt->idle_timeout = XS_IDLE_DISC_TO; 2854 2855 xprt->ops = &xs_local_ops; 2856 xprt->timeout = &xs_local_default_timeout; 2857 2858 INIT_WORK(&transport->recv_worker, xs_local_data_receive_workfn); 2859 INIT_DELAYED_WORK(&transport->connect_worker, 2860 xs_dummy_setup_socket); 2861 2862 switch (sun->sun_family) { 2863 case AF_LOCAL: 2864 if (sun->sun_path[0] != '/') { 2865 dprintk("RPC: bad AF_LOCAL address: %s\n", 2866 sun->sun_path); 2867 ret = ERR_PTR(-EINVAL); 2868 goto out_err; 2869 } 2870 xprt_set_bound(xprt); 2871 xs_format_peer_addresses(xprt, "local", RPCBIND_NETID_LOCAL); 2872 ret = ERR_PTR(xs_local_setup_socket(transport)); 2873 if (ret) 2874 goto out_err; 2875 break; 2876 default: 2877 ret = ERR_PTR(-EAFNOSUPPORT); 2878 goto out_err; 2879 } 2880 2881 dprintk("RPC: set up xprt to %s via AF_LOCAL\n", 2882 xprt->address_strings[RPC_DISPLAY_ADDR]); 2883 2884 if (try_module_get(THIS_MODULE)) 2885 return xprt; 2886 ret = ERR_PTR(-EINVAL); 2887 out_err: 2888 xs_xprt_free(xprt); 2889 return ret; 2890 } 2891 2892 static const struct rpc_timeout xs_udp_default_timeout = { 2893 .to_initval = 5 * HZ, 2894 .to_maxval = 30 * HZ, 2895 .to_increment = 5 * HZ, 2896 .to_retries = 5, 2897 }; 2898 2899 /** 2900 * xs_setup_udp - Set up transport to use a UDP socket 2901 * @args: rpc transport creation arguments 2902 * 2903 */ 2904 static struct rpc_xprt *xs_setup_udp(struct xprt_create *args) 2905 { 2906 struct sockaddr *addr = args->dstaddr; 2907 struct rpc_xprt *xprt; 2908 struct sock_xprt *transport; 2909 struct rpc_xprt *ret; 2910 2911 xprt = xs_setup_xprt(args, xprt_udp_slot_table_entries, 2912 xprt_udp_slot_table_entries); 2913 if (IS_ERR(xprt)) 2914 return xprt; 2915 transport = container_of(xprt, struct sock_xprt, xprt); 2916 2917 xprt->prot = IPPROTO_UDP; 2918 xprt->tsh_size = 0; 2919 /* XXX: header size can vary due to auth type, IPv6, etc. */ 2920 xprt->max_payload = (1U << 16) - (MAX_HEADER << 3); 2921 2922 xprt->bind_timeout = XS_BIND_TO; 2923 xprt->reestablish_timeout = XS_UDP_REEST_TO; 2924 xprt->idle_timeout = XS_IDLE_DISC_TO; 2925 2926 xprt->ops = &xs_udp_ops; 2927 2928 xprt->timeout = &xs_udp_default_timeout; 2929 2930 INIT_WORK(&transport->recv_worker, xs_udp_data_receive_workfn); 2931 INIT_DELAYED_WORK(&transport->connect_worker, xs_udp_setup_socket); 2932 2933 switch (addr->sa_family) { 2934 case AF_INET: 2935 if (((struct sockaddr_in *)addr)->sin_port != htons(0)) 2936 xprt_set_bound(xprt); 2937 2938 xs_format_peer_addresses(xprt, "udp", RPCBIND_NETID_UDP); 2939 break; 2940 case AF_INET6: 2941 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0)) 2942 xprt_set_bound(xprt); 2943 2944 xs_format_peer_addresses(xprt, "udp", RPCBIND_NETID_UDP6); 2945 break; 2946 default: 2947 ret = ERR_PTR(-EAFNOSUPPORT); 2948 goto out_err; 2949 } 2950 2951 if (xprt_bound(xprt)) 2952 dprintk("RPC: set up xprt to %s (port %s) via %s\n", 2953 xprt->address_strings[RPC_DISPLAY_ADDR], 2954 xprt->address_strings[RPC_DISPLAY_PORT], 2955 xprt->address_strings[RPC_DISPLAY_PROTO]); 2956 else 2957 dprintk("RPC: set up xprt to %s (autobind) via %s\n", 2958 xprt->address_strings[RPC_DISPLAY_ADDR], 2959 xprt->address_strings[RPC_DISPLAY_PROTO]); 2960 2961 if (try_module_get(THIS_MODULE)) 2962 return xprt; 2963 ret = ERR_PTR(-EINVAL); 2964 out_err: 2965 xs_xprt_free(xprt); 2966 return ret; 2967 } 2968 2969 static const struct rpc_timeout xs_tcp_default_timeout = { 2970 .to_initval = 60 * HZ, 2971 .to_maxval = 60 * HZ, 2972 .to_retries = 2, 2973 }; 2974 2975 /** 2976 * xs_setup_tcp - Set up transport to use a TCP socket 2977 * @args: rpc transport creation arguments 2978 * 2979 */ 2980 static struct rpc_xprt *xs_setup_tcp(struct xprt_create *args) 2981 { 2982 struct sockaddr *addr = args->dstaddr; 2983 struct rpc_xprt *xprt; 2984 struct sock_xprt *transport; 2985 struct rpc_xprt *ret; 2986 unsigned int max_slot_table_size = xprt_max_tcp_slot_table_entries; 2987 2988 if (args->flags & XPRT_CREATE_INFINITE_SLOTS) 2989 max_slot_table_size = RPC_MAX_SLOT_TABLE_LIMIT; 2990 2991 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries, 2992 max_slot_table_size); 2993 if (IS_ERR(xprt)) 2994 return xprt; 2995 transport = container_of(xprt, struct sock_xprt, xprt); 2996 2997 xprt->prot = IPPROTO_TCP; 2998 xprt->tsh_size = sizeof(rpc_fraghdr) / sizeof(u32); 2999 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE; 3000 3001 xprt->bind_timeout = XS_BIND_TO; 3002 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 3003 xprt->idle_timeout = XS_IDLE_DISC_TO; 3004 3005 xprt->ops = &xs_tcp_ops; 3006 xprt->timeout = &xs_tcp_default_timeout; 3007 3008 xprt->max_reconnect_timeout = xprt->timeout->to_maxval; 3009 3010 INIT_WORK(&transport->recv_worker, xs_tcp_data_receive_workfn); 3011 INIT_DELAYED_WORK(&transport->connect_worker, xs_tcp_setup_socket); 3012 3013 switch (addr->sa_family) { 3014 case AF_INET: 3015 if (((struct sockaddr_in *)addr)->sin_port != htons(0)) 3016 xprt_set_bound(xprt); 3017 3018 xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP); 3019 break; 3020 case AF_INET6: 3021 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0)) 3022 xprt_set_bound(xprt); 3023 3024 xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP6); 3025 break; 3026 default: 3027 ret = ERR_PTR(-EAFNOSUPPORT); 3028 goto out_err; 3029 } 3030 3031 if (xprt_bound(xprt)) 3032 dprintk("RPC: set up xprt to %s (port %s) via %s\n", 3033 xprt->address_strings[RPC_DISPLAY_ADDR], 3034 xprt->address_strings[RPC_DISPLAY_PORT], 3035 xprt->address_strings[RPC_DISPLAY_PROTO]); 3036 else 3037 dprintk("RPC: set up xprt to %s (autobind) via %s\n", 3038 xprt->address_strings[RPC_DISPLAY_ADDR], 3039 xprt->address_strings[RPC_DISPLAY_PROTO]); 3040 3041 if (try_module_get(THIS_MODULE)) 3042 return xprt; 3043 ret = ERR_PTR(-EINVAL); 3044 out_err: 3045 xs_xprt_free(xprt); 3046 return ret; 3047 } 3048 3049 /** 3050 * xs_setup_bc_tcp - Set up transport to use a TCP backchannel socket 3051 * @args: rpc transport creation arguments 3052 * 3053 */ 3054 static struct rpc_xprt *xs_setup_bc_tcp(struct xprt_create *args) 3055 { 3056 struct sockaddr *addr = args->dstaddr; 3057 struct rpc_xprt *xprt; 3058 struct sock_xprt *transport; 3059 struct svc_sock *bc_sock; 3060 struct rpc_xprt *ret; 3061 3062 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries, 3063 xprt_tcp_slot_table_entries); 3064 if (IS_ERR(xprt)) 3065 return xprt; 3066 transport = container_of(xprt, struct sock_xprt, xprt); 3067 3068 xprt->prot = IPPROTO_TCP; 3069 xprt->tsh_size = sizeof(rpc_fraghdr) / sizeof(u32); 3070 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE; 3071 xprt->timeout = &xs_tcp_default_timeout; 3072 3073 /* backchannel */ 3074 xprt_set_bound(xprt); 3075 xprt->bind_timeout = 0; 3076 xprt->reestablish_timeout = 0; 3077 xprt->idle_timeout = 0; 3078 3079 xprt->ops = &bc_tcp_ops; 3080 3081 switch (addr->sa_family) { 3082 case AF_INET: 3083 xs_format_peer_addresses(xprt, "tcp", 3084 RPCBIND_NETID_TCP); 3085 break; 3086 case AF_INET6: 3087 xs_format_peer_addresses(xprt, "tcp", 3088 RPCBIND_NETID_TCP6); 3089 break; 3090 default: 3091 ret = ERR_PTR(-EAFNOSUPPORT); 3092 goto out_err; 3093 } 3094 3095 dprintk("RPC: set up xprt to %s (port %s) via %s\n", 3096 xprt->address_strings[RPC_DISPLAY_ADDR], 3097 xprt->address_strings[RPC_DISPLAY_PORT], 3098 xprt->address_strings[RPC_DISPLAY_PROTO]); 3099 3100 /* 3101 * Once we've associated a backchannel xprt with a connection, 3102 * we want to keep it around as long as the connection lasts, 3103 * in case we need to start using it for a backchannel again; 3104 * this reference won't be dropped until bc_xprt is destroyed. 3105 */ 3106 xprt_get(xprt); 3107 args->bc_xprt->xpt_bc_xprt = xprt; 3108 xprt->bc_xprt = args->bc_xprt; 3109 bc_sock = container_of(args->bc_xprt, struct svc_sock, sk_xprt); 3110 transport->sock = bc_sock->sk_sock; 3111 transport->inet = bc_sock->sk_sk; 3112 3113 /* 3114 * Since we don't want connections for the backchannel, we set 3115 * the xprt status to connected 3116 */ 3117 xprt_set_connected(xprt); 3118 3119 if (try_module_get(THIS_MODULE)) 3120 return xprt; 3121 3122 args->bc_xprt->xpt_bc_xprt = NULL; 3123 args->bc_xprt->xpt_bc_xps = NULL; 3124 xprt_put(xprt); 3125 ret = ERR_PTR(-EINVAL); 3126 out_err: 3127 xs_xprt_free(xprt); 3128 return ret; 3129 } 3130 3131 static struct xprt_class xs_local_transport = { 3132 .list = LIST_HEAD_INIT(xs_local_transport.list), 3133 .name = "named UNIX socket", 3134 .owner = THIS_MODULE, 3135 .ident = XPRT_TRANSPORT_LOCAL, 3136 .setup = xs_setup_local, 3137 }; 3138 3139 static struct xprt_class xs_udp_transport = { 3140 .list = LIST_HEAD_INIT(xs_udp_transport.list), 3141 .name = "udp", 3142 .owner = THIS_MODULE, 3143 .ident = XPRT_TRANSPORT_UDP, 3144 .setup = xs_setup_udp, 3145 }; 3146 3147 static struct xprt_class xs_tcp_transport = { 3148 .list = LIST_HEAD_INIT(xs_tcp_transport.list), 3149 .name = "tcp", 3150 .owner = THIS_MODULE, 3151 .ident = XPRT_TRANSPORT_TCP, 3152 .setup = xs_setup_tcp, 3153 }; 3154 3155 static struct xprt_class xs_bc_tcp_transport = { 3156 .list = LIST_HEAD_INIT(xs_bc_tcp_transport.list), 3157 .name = "tcp NFSv4.1 backchannel", 3158 .owner = THIS_MODULE, 3159 .ident = XPRT_TRANSPORT_BC_TCP, 3160 .setup = xs_setup_bc_tcp, 3161 }; 3162 3163 /** 3164 * init_socket_xprt - set up xprtsock's sysctls, register with RPC client 3165 * 3166 */ 3167 int init_socket_xprt(void) 3168 { 3169 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 3170 if (!sunrpc_table_header) 3171 sunrpc_table_header = register_sysctl_table(sunrpc_table); 3172 #endif 3173 3174 xprt_register_transport(&xs_local_transport); 3175 xprt_register_transport(&xs_udp_transport); 3176 xprt_register_transport(&xs_tcp_transport); 3177 xprt_register_transport(&xs_bc_tcp_transport); 3178 3179 return 0; 3180 } 3181 3182 /** 3183 * cleanup_socket_xprt - remove xprtsock's sysctls, unregister 3184 * 3185 */ 3186 void cleanup_socket_xprt(void) 3187 { 3188 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 3189 if (sunrpc_table_header) { 3190 unregister_sysctl_table(sunrpc_table_header); 3191 sunrpc_table_header = NULL; 3192 } 3193 #endif 3194 3195 xprt_unregister_transport(&xs_local_transport); 3196 xprt_unregister_transport(&xs_udp_transport); 3197 xprt_unregister_transport(&xs_tcp_transport); 3198 xprt_unregister_transport(&xs_bc_tcp_transport); 3199 } 3200 3201 static int param_set_uint_minmax(const char *val, 3202 const struct kernel_param *kp, 3203 unsigned int min, unsigned int max) 3204 { 3205 unsigned int num; 3206 int ret; 3207 3208 if (!val) 3209 return -EINVAL; 3210 ret = kstrtouint(val, 0, &num); 3211 if (ret == -EINVAL || num < min || num > max) 3212 return -EINVAL; 3213 *((unsigned int *)kp->arg) = num; 3214 return 0; 3215 } 3216 3217 static int param_set_portnr(const char *val, const struct kernel_param *kp) 3218 { 3219 if (kp->arg == &xprt_min_resvport) 3220 return param_set_uint_minmax(val, kp, 3221 RPC_MIN_RESVPORT, 3222 xprt_max_resvport); 3223 return param_set_uint_minmax(val, kp, 3224 xprt_min_resvport, 3225 RPC_MAX_RESVPORT); 3226 } 3227 3228 static const struct kernel_param_ops param_ops_portnr = { 3229 .set = param_set_portnr, 3230 .get = param_get_uint, 3231 }; 3232 3233 #define param_check_portnr(name, p) \ 3234 __param_check(name, p, unsigned int); 3235 3236 module_param_named(min_resvport, xprt_min_resvport, portnr, 0644); 3237 module_param_named(max_resvport, xprt_max_resvport, portnr, 0644); 3238 3239 static int param_set_slot_table_size(const char *val, 3240 const struct kernel_param *kp) 3241 { 3242 return param_set_uint_minmax(val, kp, 3243 RPC_MIN_SLOT_TABLE, 3244 RPC_MAX_SLOT_TABLE); 3245 } 3246 3247 static const struct kernel_param_ops param_ops_slot_table_size = { 3248 .set = param_set_slot_table_size, 3249 .get = param_get_uint, 3250 }; 3251 3252 #define param_check_slot_table_size(name, p) \ 3253 __param_check(name, p, unsigned int); 3254 3255 static int param_set_max_slot_table_size(const char *val, 3256 const struct kernel_param *kp) 3257 { 3258 return param_set_uint_minmax(val, kp, 3259 RPC_MIN_SLOT_TABLE, 3260 RPC_MAX_SLOT_TABLE_LIMIT); 3261 } 3262 3263 static const struct kernel_param_ops param_ops_max_slot_table_size = { 3264 .set = param_set_max_slot_table_size, 3265 .get = param_get_uint, 3266 }; 3267 3268 #define param_check_max_slot_table_size(name, p) \ 3269 __param_check(name, p, unsigned int); 3270 3271 module_param_named(tcp_slot_table_entries, xprt_tcp_slot_table_entries, 3272 slot_table_size, 0644); 3273 module_param_named(tcp_max_slot_table_entries, xprt_max_tcp_slot_table_entries, 3274 max_slot_table_size, 0644); 3275 module_param_named(udp_slot_table_entries, xprt_udp_slot_table_entries, 3276 slot_table_size, 0644); 3277 3278