1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/net/sunrpc/xprtsock.c 4 * 5 * Client-side transport implementation for sockets. 6 * 7 * TCP callback races fixes (C) 1998 Red Hat 8 * TCP send fixes (C) 1998 Red Hat 9 * TCP NFS related read + write fixes 10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> 11 * 12 * Rewrite of larges part of the code in order to stabilize TCP stuff. 13 * Fix behaviour when socket buffer is full. 14 * (C) 1999 Trond Myklebust <trond.myklebust@fys.uio.no> 15 * 16 * IP socket transport implementation, (C) 2005 Chuck Lever <cel@netapp.com> 17 * 18 * IPv6 support contributed by Gilles Quillard, Bull Open Source, 2005. 19 * <gilles.quillard@bull.net> 20 */ 21 22 #include <linux/types.h> 23 #include <linux/string.h> 24 #include <linux/slab.h> 25 #include <linux/module.h> 26 #include <linux/capability.h> 27 #include <linux/pagemap.h> 28 #include <linux/errno.h> 29 #include <linux/socket.h> 30 #include <linux/in.h> 31 #include <linux/net.h> 32 #include <linux/mm.h> 33 #include <linux/un.h> 34 #include <linux/udp.h> 35 #include <linux/tcp.h> 36 #include <linux/sunrpc/clnt.h> 37 #include <linux/sunrpc/addr.h> 38 #include <linux/sunrpc/sched.h> 39 #include <linux/sunrpc/svcsock.h> 40 #include <linux/sunrpc/xprtsock.h> 41 #include <linux/file.h> 42 #ifdef CONFIG_SUNRPC_BACKCHANNEL 43 #include <linux/sunrpc/bc_xprt.h> 44 #endif 45 46 #include <net/sock.h> 47 #include <net/checksum.h> 48 #include <net/udp.h> 49 #include <net/tcp.h> 50 #include <net/tls_prot.h> 51 #include <net/handshake.h> 52 53 #include <linux/bvec.h> 54 #include <linux/highmem.h> 55 #include <linux/uio.h> 56 #include <linux/sched/mm.h> 57 58 #include <trace/events/sock.h> 59 #include <trace/events/sunrpc.h> 60 61 #include "socklib.h" 62 #include "sunrpc.h" 63 64 static void xs_close(struct rpc_xprt *xprt); 65 static void xs_set_srcport(struct sock_xprt *transport, struct socket *sock); 66 static void xs_tcp_set_socket_timeouts(struct rpc_xprt *xprt, 67 struct socket *sock); 68 69 /* 70 * xprtsock tunables 71 */ 72 static unsigned int xprt_udp_slot_table_entries = RPC_DEF_SLOT_TABLE; 73 static unsigned int xprt_tcp_slot_table_entries = RPC_MIN_SLOT_TABLE; 74 static unsigned int xprt_max_tcp_slot_table_entries = RPC_MAX_SLOT_TABLE; 75 76 static unsigned int xprt_min_resvport = RPC_DEF_MIN_RESVPORT; 77 static unsigned int xprt_max_resvport = RPC_DEF_MAX_RESVPORT; 78 79 #define XS_TCP_LINGER_TO (15U * HZ) 80 static unsigned int xs_tcp_fin_timeout __read_mostly = XS_TCP_LINGER_TO; 81 82 /* 83 * We can register our own files under /proc/sys/sunrpc by 84 * calling register_sysctl() again. The files in that 85 * directory become the union of all files registered there. 86 * 87 * We simply need to make sure that we don't collide with 88 * someone else's file names! 89 */ 90 91 static unsigned int min_slot_table_size = RPC_MIN_SLOT_TABLE; 92 static unsigned int max_slot_table_size = RPC_MAX_SLOT_TABLE; 93 static unsigned int max_tcp_slot_table_limit = RPC_MAX_SLOT_TABLE_LIMIT; 94 static unsigned int xprt_min_resvport_limit = RPC_MIN_RESVPORT; 95 static unsigned int xprt_max_resvport_limit = RPC_MAX_RESVPORT; 96 97 static struct ctl_table_header *sunrpc_table_header; 98 99 static struct xprt_class xs_local_transport; 100 static struct xprt_class xs_udp_transport; 101 static struct xprt_class xs_tcp_transport; 102 static struct xprt_class xs_tcp_tls_transport; 103 static struct xprt_class xs_bc_tcp_transport; 104 105 /* 106 * FIXME: changing the UDP slot table size should also resize the UDP 107 * socket buffers for existing UDP transports 108 */ 109 static struct ctl_table xs_tunables_table[] = { 110 { 111 .procname = "udp_slot_table_entries", 112 .data = &xprt_udp_slot_table_entries, 113 .maxlen = sizeof(unsigned int), 114 .mode = 0644, 115 .proc_handler = proc_dointvec_minmax, 116 .extra1 = &min_slot_table_size, 117 .extra2 = &max_slot_table_size 118 }, 119 { 120 .procname = "tcp_slot_table_entries", 121 .data = &xprt_tcp_slot_table_entries, 122 .maxlen = sizeof(unsigned int), 123 .mode = 0644, 124 .proc_handler = proc_dointvec_minmax, 125 .extra1 = &min_slot_table_size, 126 .extra2 = &max_slot_table_size 127 }, 128 { 129 .procname = "tcp_max_slot_table_entries", 130 .data = &xprt_max_tcp_slot_table_entries, 131 .maxlen = sizeof(unsigned int), 132 .mode = 0644, 133 .proc_handler = proc_dointvec_minmax, 134 .extra1 = &min_slot_table_size, 135 .extra2 = &max_tcp_slot_table_limit 136 }, 137 { 138 .procname = "min_resvport", 139 .data = &xprt_min_resvport, 140 .maxlen = sizeof(unsigned int), 141 .mode = 0644, 142 .proc_handler = proc_dointvec_minmax, 143 .extra1 = &xprt_min_resvport_limit, 144 .extra2 = &xprt_max_resvport_limit 145 }, 146 { 147 .procname = "max_resvport", 148 .data = &xprt_max_resvport, 149 .maxlen = sizeof(unsigned int), 150 .mode = 0644, 151 .proc_handler = proc_dointvec_minmax, 152 .extra1 = &xprt_min_resvport_limit, 153 .extra2 = &xprt_max_resvport_limit 154 }, 155 { 156 .procname = "tcp_fin_timeout", 157 .data = &xs_tcp_fin_timeout, 158 .maxlen = sizeof(xs_tcp_fin_timeout), 159 .mode = 0644, 160 .proc_handler = proc_dointvec_jiffies, 161 }, 162 { }, 163 }; 164 165 /* 166 * Wait duration for a reply from the RPC portmapper. 167 */ 168 #define XS_BIND_TO (60U * HZ) 169 170 /* 171 * Delay if a UDP socket connect error occurs. This is most likely some 172 * kind of resource problem on the local host. 173 */ 174 #define XS_UDP_REEST_TO (2U * HZ) 175 176 /* 177 * The reestablish timeout allows clients to delay for a bit before attempting 178 * to reconnect to a server that just dropped our connection. 179 * 180 * We implement an exponential backoff when trying to reestablish a TCP 181 * transport connection with the server. Some servers like to drop a TCP 182 * connection when they are overworked, so we start with a short timeout and 183 * increase over time if the server is down or not responding. 184 */ 185 #define XS_TCP_INIT_REEST_TO (3U * HZ) 186 187 /* 188 * TCP idle timeout; client drops the transport socket if it is idle 189 * for this long. Note that we also timeout UDP sockets to prevent 190 * holding port numbers when there is no RPC traffic. 191 */ 192 #define XS_IDLE_DISC_TO (5U * 60 * HZ) 193 194 /* 195 * TLS handshake timeout. 196 */ 197 #define XS_TLS_HANDSHAKE_TO (10U * HZ) 198 199 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 200 # undef RPC_DEBUG_DATA 201 # define RPCDBG_FACILITY RPCDBG_TRANS 202 #endif 203 204 #ifdef RPC_DEBUG_DATA 205 static void xs_pktdump(char *msg, u32 *packet, unsigned int count) 206 { 207 u8 *buf = (u8 *) packet; 208 int j; 209 210 dprintk("RPC: %s\n", msg); 211 for (j = 0; j < count && j < 128; j += 4) { 212 if (!(j & 31)) { 213 if (j) 214 dprintk("\n"); 215 dprintk("0x%04x ", j); 216 } 217 dprintk("%02x%02x%02x%02x ", 218 buf[j], buf[j+1], buf[j+2], buf[j+3]); 219 } 220 dprintk("\n"); 221 } 222 #else 223 static inline void xs_pktdump(char *msg, u32 *packet, unsigned int count) 224 { 225 /* NOP */ 226 } 227 #endif 228 229 static inline struct rpc_xprt *xprt_from_sock(struct sock *sk) 230 { 231 return (struct rpc_xprt *) sk->sk_user_data; 232 } 233 234 static inline struct sockaddr *xs_addr(struct rpc_xprt *xprt) 235 { 236 return (struct sockaddr *) &xprt->addr; 237 } 238 239 static inline struct sockaddr_un *xs_addr_un(struct rpc_xprt *xprt) 240 { 241 return (struct sockaddr_un *) &xprt->addr; 242 } 243 244 static inline struct sockaddr_in *xs_addr_in(struct rpc_xprt *xprt) 245 { 246 return (struct sockaddr_in *) &xprt->addr; 247 } 248 249 static inline struct sockaddr_in6 *xs_addr_in6(struct rpc_xprt *xprt) 250 { 251 return (struct sockaddr_in6 *) &xprt->addr; 252 } 253 254 static void xs_format_common_peer_addresses(struct rpc_xprt *xprt) 255 { 256 struct sockaddr *sap = xs_addr(xprt); 257 struct sockaddr_in6 *sin6; 258 struct sockaddr_in *sin; 259 struct sockaddr_un *sun; 260 char buf[128]; 261 262 switch (sap->sa_family) { 263 case AF_LOCAL: 264 sun = xs_addr_un(xprt); 265 if (sun->sun_path[0]) { 266 strscpy(buf, sun->sun_path, sizeof(buf)); 267 } else { 268 buf[0] = '@'; 269 strscpy(buf+1, sun->sun_path+1, sizeof(buf)-1); 270 } 271 xprt->address_strings[RPC_DISPLAY_ADDR] = 272 kstrdup(buf, GFP_KERNEL); 273 break; 274 case AF_INET: 275 (void)rpc_ntop(sap, buf, sizeof(buf)); 276 xprt->address_strings[RPC_DISPLAY_ADDR] = 277 kstrdup(buf, GFP_KERNEL); 278 sin = xs_addr_in(xprt); 279 snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr)); 280 break; 281 case AF_INET6: 282 (void)rpc_ntop(sap, buf, sizeof(buf)); 283 xprt->address_strings[RPC_DISPLAY_ADDR] = 284 kstrdup(buf, GFP_KERNEL); 285 sin6 = xs_addr_in6(xprt); 286 snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr); 287 break; 288 default: 289 BUG(); 290 } 291 292 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL); 293 } 294 295 static void xs_format_common_peer_ports(struct rpc_xprt *xprt) 296 { 297 struct sockaddr *sap = xs_addr(xprt); 298 char buf[128]; 299 300 snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap)); 301 xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL); 302 303 snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap)); 304 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL); 305 } 306 307 static void xs_format_peer_addresses(struct rpc_xprt *xprt, 308 const char *protocol, 309 const char *netid) 310 { 311 xprt->address_strings[RPC_DISPLAY_PROTO] = protocol; 312 xprt->address_strings[RPC_DISPLAY_NETID] = netid; 313 xs_format_common_peer_addresses(xprt); 314 xs_format_common_peer_ports(xprt); 315 } 316 317 static void xs_update_peer_port(struct rpc_xprt *xprt) 318 { 319 kfree(xprt->address_strings[RPC_DISPLAY_HEX_PORT]); 320 kfree(xprt->address_strings[RPC_DISPLAY_PORT]); 321 322 xs_format_common_peer_ports(xprt); 323 } 324 325 static void xs_free_peer_addresses(struct rpc_xprt *xprt) 326 { 327 unsigned int i; 328 329 for (i = 0; i < RPC_DISPLAY_MAX; i++) 330 switch (i) { 331 case RPC_DISPLAY_PROTO: 332 case RPC_DISPLAY_NETID: 333 continue; 334 default: 335 kfree(xprt->address_strings[i]); 336 } 337 } 338 339 static size_t 340 xs_alloc_sparse_pages(struct xdr_buf *buf, size_t want, gfp_t gfp) 341 { 342 size_t i,n; 343 344 if (!want || !(buf->flags & XDRBUF_SPARSE_PAGES)) 345 return want; 346 n = (buf->page_base + want + PAGE_SIZE - 1) >> PAGE_SHIFT; 347 for (i = 0; i < n; i++) { 348 if (buf->pages[i]) 349 continue; 350 buf->bvec[i].bv_page = buf->pages[i] = alloc_page(gfp); 351 if (!buf->pages[i]) { 352 i *= PAGE_SIZE; 353 return i > buf->page_base ? i - buf->page_base : 0; 354 } 355 } 356 return want; 357 } 358 359 static int 360 xs_sock_process_cmsg(struct socket *sock, struct msghdr *msg, 361 struct cmsghdr *cmsg, int ret) 362 { 363 u8 content_type = tls_get_record_type(sock->sk, cmsg); 364 u8 level, description; 365 366 switch (content_type) { 367 case 0: 368 break; 369 case TLS_RECORD_TYPE_DATA: 370 /* TLS sets EOR at the end of each application data 371 * record, even though there might be more frames 372 * waiting to be decrypted. 373 */ 374 msg->msg_flags &= ~MSG_EOR; 375 break; 376 case TLS_RECORD_TYPE_ALERT: 377 tls_alert_recv(sock->sk, msg, &level, &description); 378 ret = (level == TLS_ALERT_LEVEL_FATAL) ? 379 -EACCES : -EAGAIN; 380 break; 381 default: 382 /* discard this record type */ 383 ret = -EAGAIN; 384 } 385 return ret; 386 } 387 388 static int 389 xs_sock_recv_cmsg(struct socket *sock, struct msghdr *msg, int flags) 390 { 391 union { 392 struct cmsghdr cmsg; 393 u8 buf[CMSG_SPACE(sizeof(u8))]; 394 } u; 395 int ret; 396 397 msg->msg_control = &u; 398 msg->msg_controllen = sizeof(u); 399 ret = sock_recvmsg(sock, msg, flags); 400 if (msg->msg_controllen != sizeof(u)) 401 ret = xs_sock_process_cmsg(sock, msg, &u.cmsg, ret); 402 return ret; 403 } 404 405 static ssize_t 406 xs_sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags, size_t seek) 407 { 408 ssize_t ret; 409 if (seek != 0) 410 iov_iter_advance(&msg->msg_iter, seek); 411 ret = xs_sock_recv_cmsg(sock, msg, flags); 412 return ret > 0 ? ret + seek : ret; 413 } 414 415 static ssize_t 416 xs_read_kvec(struct socket *sock, struct msghdr *msg, int flags, 417 struct kvec *kvec, size_t count, size_t seek) 418 { 419 iov_iter_kvec(&msg->msg_iter, ITER_DEST, kvec, 1, count); 420 return xs_sock_recvmsg(sock, msg, flags, seek); 421 } 422 423 static ssize_t 424 xs_read_bvec(struct socket *sock, struct msghdr *msg, int flags, 425 struct bio_vec *bvec, unsigned long nr, size_t count, 426 size_t seek) 427 { 428 iov_iter_bvec(&msg->msg_iter, ITER_DEST, bvec, nr, count); 429 return xs_sock_recvmsg(sock, msg, flags, seek); 430 } 431 432 static ssize_t 433 xs_read_discard(struct socket *sock, struct msghdr *msg, int flags, 434 size_t count) 435 { 436 iov_iter_discard(&msg->msg_iter, ITER_DEST, count); 437 return xs_sock_recv_cmsg(sock, msg, flags); 438 } 439 440 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 441 static void 442 xs_flush_bvec(const struct bio_vec *bvec, size_t count, size_t seek) 443 { 444 struct bvec_iter bi = { 445 .bi_size = count, 446 }; 447 struct bio_vec bv; 448 449 bvec_iter_advance(bvec, &bi, seek & PAGE_MASK); 450 for_each_bvec(bv, bvec, bi, bi) 451 flush_dcache_page(bv.bv_page); 452 } 453 #else 454 static inline void 455 xs_flush_bvec(const struct bio_vec *bvec, size_t count, size_t seek) 456 { 457 } 458 #endif 459 460 static ssize_t 461 xs_read_xdr_buf(struct socket *sock, struct msghdr *msg, int flags, 462 struct xdr_buf *buf, size_t count, size_t seek, size_t *read) 463 { 464 size_t want, seek_init = seek, offset = 0; 465 ssize_t ret; 466 467 want = min_t(size_t, count, buf->head[0].iov_len); 468 if (seek < want) { 469 ret = xs_read_kvec(sock, msg, flags, &buf->head[0], want, seek); 470 if (ret <= 0) 471 goto sock_err; 472 offset += ret; 473 if (offset == count || msg->msg_flags & (MSG_EOR|MSG_TRUNC)) 474 goto out; 475 if (ret != want) 476 goto out; 477 seek = 0; 478 } else { 479 seek -= want; 480 offset += want; 481 } 482 483 want = xs_alloc_sparse_pages( 484 buf, min_t(size_t, count - offset, buf->page_len), 485 GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); 486 if (seek < want) { 487 ret = xs_read_bvec(sock, msg, flags, buf->bvec, 488 xdr_buf_pagecount(buf), 489 want + buf->page_base, 490 seek + buf->page_base); 491 if (ret <= 0) 492 goto sock_err; 493 xs_flush_bvec(buf->bvec, ret, seek + buf->page_base); 494 ret -= buf->page_base; 495 offset += ret; 496 if (offset == count || msg->msg_flags & (MSG_EOR|MSG_TRUNC)) 497 goto out; 498 if (ret != want) 499 goto out; 500 seek = 0; 501 } else { 502 seek -= want; 503 offset += want; 504 } 505 506 want = min_t(size_t, count - offset, buf->tail[0].iov_len); 507 if (seek < want) { 508 ret = xs_read_kvec(sock, msg, flags, &buf->tail[0], want, seek); 509 if (ret <= 0) 510 goto sock_err; 511 offset += ret; 512 if (offset == count || msg->msg_flags & (MSG_EOR|MSG_TRUNC)) 513 goto out; 514 if (ret != want) 515 goto out; 516 } else if (offset < seek_init) 517 offset = seek_init; 518 ret = -EMSGSIZE; 519 out: 520 *read = offset - seek_init; 521 return ret; 522 sock_err: 523 offset += seek; 524 goto out; 525 } 526 527 static void 528 xs_read_header(struct sock_xprt *transport, struct xdr_buf *buf) 529 { 530 if (!transport->recv.copied) { 531 if (buf->head[0].iov_len >= transport->recv.offset) 532 memcpy(buf->head[0].iov_base, 533 &transport->recv.xid, 534 transport->recv.offset); 535 transport->recv.copied = transport->recv.offset; 536 } 537 } 538 539 static bool 540 xs_read_stream_request_done(struct sock_xprt *transport) 541 { 542 return transport->recv.fraghdr & cpu_to_be32(RPC_LAST_STREAM_FRAGMENT); 543 } 544 545 static void 546 xs_read_stream_check_eor(struct sock_xprt *transport, 547 struct msghdr *msg) 548 { 549 if (xs_read_stream_request_done(transport)) 550 msg->msg_flags |= MSG_EOR; 551 } 552 553 static ssize_t 554 xs_read_stream_request(struct sock_xprt *transport, struct msghdr *msg, 555 int flags, struct rpc_rqst *req) 556 { 557 struct xdr_buf *buf = &req->rq_private_buf; 558 size_t want, read; 559 ssize_t ret; 560 561 xs_read_header(transport, buf); 562 563 want = transport->recv.len - transport->recv.offset; 564 if (want != 0) { 565 ret = xs_read_xdr_buf(transport->sock, msg, flags, buf, 566 transport->recv.copied + want, 567 transport->recv.copied, 568 &read); 569 transport->recv.offset += read; 570 transport->recv.copied += read; 571 } 572 573 if (transport->recv.offset == transport->recv.len) 574 xs_read_stream_check_eor(transport, msg); 575 576 if (want == 0) 577 return 0; 578 579 switch (ret) { 580 default: 581 break; 582 case -EFAULT: 583 case -EMSGSIZE: 584 msg->msg_flags |= MSG_TRUNC; 585 return read; 586 case 0: 587 return -ESHUTDOWN; 588 } 589 return ret < 0 ? ret : read; 590 } 591 592 static size_t 593 xs_read_stream_headersize(bool isfrag) 594 { 595 if (isfrag) 596 return sizeof(__be32); 597 return 3 * sizeof(__be32); 598 } 599 600 static ssize_t 601 xs_read_stream_header(struct sock_xprt *transport, struct msghdr *msg, 602 int flags, size_t want, size_t seek) 603 { 604 struct kvec kvec = { 605 .iov_base = &transport->recv.fraghdr, 606 .iov_len = want, 607 }; 608 return xs_read_kvec(transport->sock, msg, flags, &kvec, want, seek); 609 } 610 611 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 612 static ssize_t 613 xs_read_stream_call(struct sock_xprt *transport, struct msghdr *msg, int flags) 614 { 615 struct rpc_xprt *xprt = &transport->xprt; 616 struct rpc_rqst *req; 617 ssize_t ret; 618 619 /* Is this transport associated with the backchannel? */ 620 if (!xprt->bc_serv) 621 return -ESHUTDOWN; 622 623 /* Look up and lock the request corresponding to the given XID */ 624 req = xprt_lookup_bc_request(xprt, transport->recv.xid); 625 if (!req) { 626 printk(KERN_WARNING "Callback slot table overflowed\n"); 627 return -ESHUTDOWN; 628 } 629 if (transport->recv.copied && !req->rq_private_buf.len) 630 return -ESHUTDOWN; 631 632 ret = xs_read_stream_request(transport, msg, flags, req); 633 if (msg->msg_flags & (MSG_EOR|MSG_TRUNC)) 634 xprt_complete_bc_request(req, transport->recv.copied); 635 else 636 req->rq_private_buf.len = transport->recv.copied; 637 638 return ret; 639 } 640 #else /* CONFIG_SUNRPC_BACKCHANNEL */ 641 static ssize_t 642 xs_read_stream_call(struct sock_xprt *transport, struct msghdr *msg, int flags) 643 { 644 return -ESHUTDOWN; 645 } 646 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 647 648 static ssize_t 649 xs_read_stream_reply(struct sock_xprt *transport, struct msghdr *msg, int flags) 650 { 651 struct rpc_xprt *xprt = &transport->xprt; 652 struct rpc_rqst *req; 653 ssize_t ret = 0; 654 655 /* Look up and lock the request corresponding to the given XID */ 656 spin_lock(&xprt->queue_lock); 657 req = xprt_lookup_rqst(xprt, transport->recv.xid); 658 if (!req || (transport->recv.copied && !req->rq_private_buf.len)) { 659 msg->msg_flags |= MSG_TRUNC; 660 goto out; 661 } 662 xprt_pin_rqst(req); 663 spin_unlock(&xprt->queue_lock); 664 665 ret = xs_read_stream_request(transport, msg, flags, req); 666 667 spin_lock(&xprt->queue_lock); 668 if (msg->msg_flags & (MSG_EOR|MSG_TRUNC)) 669 xprt_complete_rqst(req->rq_task, transport->recv.copied); 670 else 671 req->rq_private_buf.len = transport->recv.copied; 672 xprt_unpin_rqst(req); 673 out: 674 spin_unlock(&xprt->queue_lock); 675 return ret; 676 } 677 678 static ssize_t 679 xs_read_stream(struct sock_xprt *transport, int flags) 680 { 681 struct msghdr msg = { 0 }; 682 size_t want, read = 0; 683 ssize_t ret = 0; 684 685 if (transport->recv.len == 0) { 686 want = xs_read_stream_headersize(transport->recv.copied != 0); 687 ret = xs_read_stream_header(transport, &msg, flags, want, 688 transport->recv.offset); 689 if (ret <= 0) 690 goto out_err; 691 transport->recv.offset = ret; 692 if (transport->recv.offset != want) 693 return transport->recv.offset; 694 transport->recv.len = be32_to_cpu(transport->recv.fraghdr) & 695 RPC_FRAGMENT_SIZE_MASK; 696 transport->recv.offset -= sizeof(transport->recv.fraghdr); 697 read = ret; 698 } 699 700 switch (be32_to_cpu(transport->recv.calldir)) { 701 default: 702 msg.msg_flags |= MSG_TRUNC; 703 break; 704 case RPC_CALL: 705 ret = xs_read_stream_call(transport, &msg, flags); 706 break; 707 case RPC_REPLY: 708 ret = xs_read_stream_reply(transport, &msg, flags); 709 } 710 if (msg.msg_flags & MSG_TRUNC) { 711 transport->recv.calldir = cpu_to_be32(-1); 712 transport->recv.copied = -1; 713 } 714 if (ret < 0) 715 goto out_err; 716 read += ret; 717 if (transport->recv.offset < transport->recv.len) { 718 if (!(msg.msg_flags & MSG_TRUNC)) 719 return read; 720 msg.msg_flags = 0; 721 ret = xs_read_discard(transport->sock, &msg, flags, 722 transport->recv.len - transport->recv.offset); 723 if (ret <= 0) 724 goto out_err; 725 transport->recv.offset += ret; 726 read += ret; 727 if (transport->recv.offset != transport->recv.len) 728 return read; 729 } 730 if (xs_read_stream_request_done(transport)) { 731 trace_xs_stream_read_request(transport); 732 transport->recv.copied = 0; 733 } 734 transport->recv.offset = 0; 735 transport->recv.len = 0; 736 return read; 737 out_err: 738 return ret != 0 ? ret : -ESHUTDOWN; 739 } 740 741 static __poll_t xs_poll_socket(struct sock_xprt *transport) 742 { 743 return transport->sock->ops->poll(transport->file, transport->sock, 744 NULL); 745 } 746 747 static bool xs_poll_socket_readable(struct sock_xprt *transport) 748 { 749 __poll_t events = xs_poll_socket(transport); 750 751 return (events & (EPOLLIN | EPOLLRDNORM)) && !(events & EPOLLRDHUP); 752 } 753 754 static void xs_poll_check_readable(struct sock_xprt *transport) 755 { 756 757 clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state); 758 if (test_bit(XPRT_SOCK_IGNORE_RECV, &transport->sock_state)) 759 return; 760 if (!xs_poll_socket_readable(transport)) 761 return; 762 if (!test_and_set_bit(XPRT_SOCK_DATA_READY, &transport->sock_state)) 763 queue_work(xprtiod_workqueue, &transport->recv_worker); 764 } 765 766 static void xs_stream_data_receive(struct sock_xprt *transport) 767 { 768 size_t read = 0; 769 ssize_t ret = 0; 770 771 mutex_lock(&transport->recv_mutex); 772 if (transport->sock == NULL) 773 goto out; 774 for (;;) { 775 ret = xs_read_stream(transport, MSG_DONTWAIT); 776 if (ret < 0) 777 break; 778 read += ret; 779 cond_resched(); 780 } 781 if (ret == -ESHUTDOWN) 782 kernel_sock_shutdown(transport->sock, SHUT_RDWR); 783 else if (ret == -EACCES) 784 xprt_wake_pending_tasks(&transport->xprt, -EACCES); 785 else 786 xs_poll_check_readable(transport); 787 out: 788 mutex_unlock(&transport->recv_mutex); 789 trace_xs_stream_read_data(&transport->xprt, ret, read); 790 } 791 792 static void xs_stream_data_receive_workfn(struct work_struct *work) 793 { 794 struct sock_xprt *transport = 795 container_of(work, struct sock_xprt, recv_worker); 796 unsigned int pflags = memalloc_nofs_save(); 797 798 xs_stream_data_receive(transport); 799 memalloc_nofs_restore(pflags); 800 } 801 802 static void 803 xs_stream_reset_connect(struct sock_xprt *transport) 804 { 805 transport->recv.offset = 0; 806 transport->recv.len = 0; 807 transport->recv.copied = 0; 808 transport->xmit.offset = 0; 809 } 810 811 static void 812 xs_stream_start_connect(struct sock_xprt *transport) 813 { 814 transport->xprt.stat.connect_count++; 815 transport->xprt.stat.connect_start = jiffies; 816 } 817 818 #define XS_SENDMSG_FLAGS (MSG_DONTWAIT | MSG_NOSIGNAL) 819 820 /** 821 * xs_nospace - handle transmit was incomplete 822 * @req: pointer to RPC request 823 * @transport: pointer to struct sock_xprt 824 * 825 */ 826 static int xs_nospace(struct rpc_rqst *req, struct sock_xprt *transport) 827 { 828 struct rpc_xprt *xprt = &transport->xprt; 829 struct sock *sk = transport->inet; 830 int ret = -EAGAIN; 831 832 trace_rpc_socket_nospace(req, transport); 833 834 /* Protect against races with write_space */ 835 spin_lock(&xprt->transport_lock); 836 837 /* Don't race with disconnect */ 838 if (xprt_connected(xprt)) { 839 /* wait for more buffer space */ 840 set_bit(XPRT_SOCK_NOSPACE, &transport->sock_state); 841 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 842 sk->sk_write_pending++; 843 xprt_wait_for_buffer_space(xprt); 844 } else 845 ret = -ENOTCONN; 846 847 spin_unlock(&xprt->transport_lock); 848 return ret; 849 } 850 851 static int xs_sock_nospace(struct rpc_rqst *req) 852 { 853 struct sock_xprt *transport = 854 container_of(req->rq_xprt, struct sock_xprt, xprt); 855 struct sock *sk = transport->inet; 856 int ret = -EAGAIN; 857 858 lock_sock(sk); 859 if (!sock_writeable(sk)) 860 ret = xs_nospace(req, transport); 861 release_sock(sk); 862 return ret; 863 } 864 865 static int xs_stream_nospace(struct rpc_rqst *req, bool vm_wait) 866 { 867 struct sock_xprt *transport = 868 container_of(req->rq_xprt, struct sock_xprt, xprt); 869 struct sock *sk = transport->inet; 870 int ret = -EAGAIN; 871 872 if (vm_wait) 873 return -ENOBUFS; 874 lock_sock(sk); 875 if (!sk_stream_memory_free(sk)) 876 ret = xs_nospace(req, transport); 877 release_sock(sk); 878 return ret; 879 } 880 881 static int xs_stream_prepare_request(struct rpc_rqst *req, struct xdr_buf *buf) 882 { 883 return xdr_alloc_bvec(buf, rpc_task_gfp_mask()); 884 } 885 886 /* 887 * Determine if the previous message in the stream was aborted before it 888 * could complete transmission. 889 */ 890 static bool 891 xs_send_request_was_aborted(struct sock_xprt *transport, struct rpc_rqst *req) 892 { 893 return transport->xmit.offset != 0 && req->rq_bytes_sent == 0; 894 } 895 896 /* 897 * Return the stream record marker field for a record of length < 2^31-1 898 */ 899 static rpc_fraghdr 900 xs_stream_record_marker(struct xdr_buf *xdr) 901 { 902 if (!xdr->len) 903 return 0; 904 return cpu_to_be32(RPC_LAST_STREAM_FRAGMENT | (u32)xdr->len); 905 } 906 907 /** 908 * xs_local_send_request - write an RPC request to an AF_LOCAL socket 909 * @req: pointer to RPC request 910 * 911 * Return values: 912 * 0: The request has been sent 913 * EAGAIN: The socket was blocked, please call again later to 914 * complete the request 915 * ENOTCONN: Caller needs to invoke connect logic then call again 916 * other: Some other error occurred, the request was not sent 917 */ 918 static int xs_local_send_request(struct rpc_rqst *req) 919 { 920 struct rpc_xprt *xprt = req->rq_xprt; 921 struct sock_xprt *transport = 922 container_of(xprt, struct sock_xprt, xprt); 923 struct xdr_buf *xdr = &req->rq_snd_buf; 924 rpc_fraghdr rm = xs_stream_record_marker(xdr); 925 unsigned int msglen = rm ? req->rq_slen + sizeof(rm) : req->rq_slen; 926 struct msghdr msg = { 927 .msg_flags = XS_SENDMSG_FLAGS, 928 }; 929 bool vm_wait; 930 unsigned int sent; 931 int status; 932 933 /* Close the stream if the previous transmission was incomplete */ 934 if (xs_send_request_was_aborted(transport, req)) { 935 xprt_force_disconnect(xprt); 936 return -ENOTCONN; 937 } 938 939 xs_pktdump("packet data:", 940 req->rq_svec->iov_base, req->rq_svec->iov_len); 941 942 vm_wait = sk_stream_is_writeable(transport->inet) ? true : false; 943 944 req->rq_xtime = ktime_get(); 945 status = xprt_sock_sendmsg(transport->sock, &msg, xdr, 946 transport->xmit.offset, rm, &sent); 947 dprintk("RPC: %s(%u) = %d\n", 948 __func__, xdr->len - transport->xmit.offset, status); 949 950 if (likely(sent > 0) || status == 0) { 951 transport->xmit.offset += sent; 952 req->rq_bytes_sent = transport->xmit.offset; 953 if (likely(req->rq_bytes_sent >= msglen)) { 954 req->rq_xmit_bytes_sent += transport->xmit.offset; 955 transport->xmit.offset = 0; 956 return 0; 957 } 958 status = -EAGAIN; 959 vm_wait = false; 960 } 961 962 switch (status) { 963 case -EAGAIN: 964 status = xs_stream_nospace(req, vm_wait); 965 break; 966 default: 967 dprintk("RPC: sendmsg returned unrecognized error %d\n", 968 -status); 969 fallthrough; 970 case -EPIPE: 971 xprt_force_disconnect(xprt); 972 status = -ENOTCONN; 973 } 974 975 return status; 976 } 977 978 /** 979 * xs_udp_send_request - write an RPC request to a UDP socket 980 * @req: pointer to RPC request 981 * 982 * Return values: 983 * 0: The request has been sent 984 * EAGAIN: The socket was blocked, please call again later to 985 * complete the request 986 * ENOTCONN: Caller needs to invoke connect logic then call again 987 * other: Some other error occurred, the request was not sent 988 */ 989 static int xs_udp_send_request(struct rpc_rqst *req) 990 { 991 struct rpc_xprt *xprt = req->rq_xprt; 992 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 993 struct xdr_buf *xdr = &req->rq_snd_buf; 994 struct msghdr msg = { 995 .msg_name = xs_addr(xprt), 996 .msg_namelen = xprt->addrlen, 997 .msg_flags = XS_SENDMSG_FLAGS, 998 }; 999 unsigned int sent; 1000 int status; 1001 1002 xs_pktdump("packet data:", 1003 req->rq_svec->iov_base, 1004 req->rq_svec->iov_len); 1005 1006 if (!xprt_bound(xprt)) 1007 return -ENOTCONN; 1008 1009 if (!xprt_request_get_cong(xprt, req)) 1010 return -EBADSLT; 1011 1012 status = xdr_alloc_bvec(xdr, rpc_task_gfp_mask()); 1013 if (status < 0) 1014 return status; 1015 req->rq_xtime = ktime_get(); 1016 status = xprt_sock_sendmsg(transport->sock, &msg, xdr, 0, 0, &sent); 1017 1018 dprintk("RPC: xs_udp_send_request(%u) = %d\n", 1019 xdr->len, status); 1020 1021 /* firewall is blocking us, don't return -EAGAIN or we end up looping */ 1022 if (status == -EPERM) 1023 goto process_status; 1024 1025 if (status == -EAGAIN && sock_writeable(transport->inet)) 1026 status = -ENOBUFS; 1027 1028 if (sent > 0 || status == 0) { 1029 req->rq_xmit_bytes_sent += sent; 1030 if (sent >= req->rq_slen) 1031 return 0; 1032 /* Still some bytes left; set up for a retry later. */ 1033 status = -EAGAIN; 1034 } 1035 1036 process_status: 1037 switch (status) { 1038 case -ENOTSOCK: 1039 status = -ENOTCONN; 1040 /* Should we call xs_close() here? */ 1041 break; 1042 case -EAGAIN: 1043 status = xs_sock_nospace(req); 1044 break; 1045 case -ENETUNREACH: 1046 case -ENOBUFS: 1047 case -EPIPE: 1048 case -ECONNREFUSED: 1049 case -EPERM: 1050 /* When the server has died, an ICMP port unreachable message 1051 * prompts ECONNREFUSED. */ 1052 break; 1053 default: 1054 dprintk("RPC: sendmsg returned unrecognized error %d\n", 1055 -status); 1056 } 1057 1058 return status; 1059 } 1060 1061 /** 1062 * xs_tcp_send_request - write an RPC request to a TCP socket 1063 * @req: pointer to RPC request 1064 * 1065 * Return values: 1066 * 0: The request has been sent 1067 * EAGAIN: The socket was blocked, please call again later to 1068 * complete the request 1069 * ENOTCONN: Caller needs to invoke connect logic then call again 1070 * other: Some other error occurred, the request was not sent 1071 * 1072 * XXX: In the case of soft timeouts, should we eventually give up 1073 * if sendmsg is not able to make progress? 1074 */ 1075 static int xs_tcp_send_request(struct rpc_rqst *req) 1076 { 1077 struct rpc_xprt *xprt = req->rq_xprt; 1078 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 1079 struct xdr_buf *xdr = &req->rq_snd_buf; 1080 rpc_fraghdr rm = xs_stream_record_marker(xdr); 1081 unsigned int msglen = rm ? req->rq_slen + sizeof(rm) : req->rq_slen; 1082 struct msghdr msg = { 1083 .msg_flags = XS_SENDMSG_FLAGS, 1084 }; 1085 bool vm_wait; 1086 unsigned int sent; 1087 int status; 1088 1089 /* Close the stream if the previous transmission was incomplete */ 1090 if (xs_send_request_was_aborted(transport, req)) { 1091 if (transport->sock != NULL) 1092 kernel_sock_shutdown(transport->sock, SHUT_RDWR); 1093 return -ENOTCONN; 1094 } 1095 if (!transport->inet) 1096 return -ENOTCONN; 1097 1098 xs_pktdump("packet data:", 1099 req->rq_svec->iov_base, 1100 req->rq_svec->iov_len); 1101 1102 if (test_bit(XPRT_SOCK_UPD_TIMEOUT, &transport->sock_state)) 1103 xs_tcp_set_socket_timeouts(xprt, transport->sock); 1104 1105 xs_set_srcport(transport, transport->sock); 1106 1107 /* Continue transmitting the packet/record. We must be careful 1108 * to cope with writespace callbacks arriving _after_ we have 1109 * called sendmsg(). */ 1110 req->rq_xtime = ktime_get(); 1111 tcp_sock_set_cork(transport->inet, true); 1112 1113 vm_wait = sk_stream_is_writeable(transport->inet) ? true : false; 1114 1115 do { 1116 status = xprt_sock_sendmsg(transport->sock, &msg, xdr, 1117 transport->xmit.offset, rm, &sent); 1118 1119 dprintk("RPC: xs_tcp_send_request(%u) = %d\n", 1120 xdr->len - transport->xmit.offset, status); 1121 1122 /* If we've sent the entire packet, immediately 1123 * reset the count of bytes sent. */ 1124 transport->xmit.offset += sent; 1125 req->rq_bytes_sent = transport->xmit.offset; 1126 if (likely(req->rq_bytes_sent >= msglen)) { 1127 req->rq_xmit_bytes_sent += transport->xmit.offset; 1128 transport->xmit.offset = 0; 1129 if (atomic_long_read(&xprt->xmit_queuelen) == 1) 1130 tcp_sock_set_cork(transport->inet, false); 1131 return 0; 1132 } 1133 1134 WARN_ON_ONCE(sent == 0 && status == 0); 1135 1136 if (sent > 0) 1137 vm_wait = false; 1138 1139 } while (status == 0); 1140 1141 switch (status) { 1142 case -ENOTSOCK: 1143 status = -ENOTCONN; 1144 /* Should we call xs_close() here? */ 1145 break; 1146 case -EAGAIN: 1147 status = xs_stream_nospace(req, vm_wait); 1148 break; 1149 case -ECONNRESET: 1150 case -ECONNREFUSED: 1151 case -ENOTCONN: 1152 case -EADDRINUSE: 1153 case -ENOBUFS: 1154 case -EPIPE: 1155 break; 1156 default: 1157 dprintk("RPC: sendmsg returned unrecognized error %d\n", 1158 -status); 1159 } 1160 1161 return status; 1162 } 1163 1164 static void xs_save_old_callbacks(struct sock_xprt *transport, struct sock *sk) 1165 { 1166 transport->old_data_ready = sk->sk_data_ready; 1167 transport->old_state_change = sk->sk_state_change; 1168 transport->old_write_space = sk->sk_write_space; 1169 transport->old_error_report = sk->sk_error_report; 1170 } 1171 1172 static void xs_restore_old_callbacks(struct sock_xprt *transport, struct sock *sk) 1173 { 1174 sk->sk_data_ready = transport->old_data_ready; 1175 sk->sk_state_change = transport->old_state_change; 1176 sk->sk_write_space = transport->old_write_space; 1177 sk->sk_error_report = transport->old_error_report; 1178 } 1179 1180 static void xs_sock_reset_state_flags(struct rpc_xprt *xprt) 1181 { 1182 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 1183 1184 clear_bit(XPRT_SOCK_DATA_READY, &transport->sock_state); 1185 clear_bit(XPRT_SOCK_WAKE_ERROR, &transport->sock_state); 1186 clear_bit(XPRT_SOCK_WAKE_WRITE, &transport->sock_state); 1187 clear_bit(XPRT_SOCK_WAKE_DISCONNECT, &transport->sock_state); 1188 clear_bit(XPRT_SOCK_NOSPACE, &transport->sock_state); 1189 } 1190 1191 static void xs_run_error_worker(struct sock_xprt *transport, unsigned int nr) 1192 { 1193 set_bit(nr, &transport->sock_state); 1194 queue_work(xprtiod_workqueue, &transport->error_worker); 1195 } 1196 1197 static void xs_sock_reset_connection_flags(struct rpc_xprt *xprt) 1198 { 1199 xprt->connect_cookie++; 1200 smp_mb__before_atomic(); 1201 clear_bit(XPRT_CLOSE_WAIT, &xprt->state); 1202 clear_bit(XPRT_CLOSING, &xprt->state); 1203 xs_sock_reset_state_flags(xprt); 1204 smp_mb__after_atomic(); 1205 } 1206 1207 /** 1208 * xs_error_report - callback to handle TCP socket state errors 1209 * @sk: socket 1210 * 1211 * Note: we don't call sock_error() since there may be a rpc_task 1212 * using the socket, and so we don't want to clear sk->sk_err. 1213 */ 1214 static void xs_error_report(struct sock *sk) 1215 { 1216 struct sock_xprt *transport; 1217 struct rpc_xprt *xprt; 1218 1219 if (!(xprt = xprt_from_sock(sk))) 1220 return; 1221 1222 transport = container_of(xprt, struct sock_xprt, xprt); 1223 transport->xprt_err = -sk->sk_err; 1224 if (transport->xprt_err == 0) 1225 return; 1226 dprintk("RPC: xs_error_report client %p, error=%d...\n", 1227 xprt, -transport->xprt_err); 1228 trace_rpc_socket_error(xprt, sk->sk_socket, transport->xprt_err); 1229 1230 /* barrier ensures xprt_err is set before XPRT_SOCK_WAKE_ERROR */ 1231 smp_mb__before_atomic(); 1232 xs_run_error_worker(transport, XPRT_SOCK_WAKE_ERROR); 1233 } 1234 1235 static void xs_reset_transport(struct sock_xprt *transport) 1236 { 1237 struct socket *sock = transport->sock; 1238 struct sock *sk = transport->inet; 1239 struct rpc_xprt *xprt = &transport->xprt; 1240 struct file *filp = transport->file; 1241 1242 if (sk == NULL) 1243 return; 1244 /* 1245 * Make sure we're calling this in a context from which it is safe 1246 * to call __fput_sync(). In practice that means rpciod and the 1247 * system workqueue. 1248 */ 1249 if (!(current->flags & PF_WQ_WORKER)) { 1250 WARN_ON_ONCE(1); 1251 set_bit(XPRT_CLOSE_WAIT, &xprt->state); 1252 return; 1253 } 1254 1255 if (atomic_read(&transport->xprt.swapper)) 1256 sk_clear_memalloc(sk); 1257 1258 tls_handshake_cancel(sk); 1259 1260 kernel_sock_shutdown(sock, SHUT_RDWR); 1261 1262 mutex_lock(&transport->recv_mutex); 1263 lock_sock(sk); 1264 transport->inet = NULL; 1265 transport->sock = NULL; 1266 transport->file = NULL; 1267 1268 sk->sk_user_data = NULL; 1269 1270 xs_restore_old_callbacks(transport, sk); 1271 xprt_clear_connected(xprt); 1272 xs_sock_reset_connection_flags(xprt); 1273 /* Reset stream record info */ 1274 xs_stream_reset_connect(transport); 1275 release_sock(sk); 1276 mutex_unlock(&transport->recv_mutex); 1277 1278 trace_rpc_socket_close(xprt, sock); 1279 __fput_sync(filp); 1280 1281 xprt_disconnect_done(xprt); 1282 } 1283 1284 /** 1285 * xs_close - close a socket 1286 * @xprt: transport 1287 * 1288 * This is used when all requests are complete; ie, no DRC state remains 1289 * on the server we want to save. 1290 * 1291 * The caller _must_ be holding XPRT_LOCKED in order to avoid issues with 1292 * xs_reset_transport() zeroing the socket from underneath a writer. 1293 */ 1294 static void xs_close(struct rpc_xprt *xprt) 1295 { 1296 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 1297 1298 dprintk("RPC: xs_close xprt %p\n", xprt); 1299 1300 if (transport->sock) 1301 tls_handshake_close(transport->sock); 1302 xs_reset_transport(transport); 1303 xprt->reestablish_timeout = 0; 1304 } 1305 1306 static void xs_inject_disconnect(struct rpc_xprt *xprt) 1307 { 1308 dprintk("RPC: injecting transport disconnect on xprt=%p\n", 1309 xprt); 1310 xprt_disconnect_done(xprt); 1311 } 1312 1313 static void xs_xprt_free(struct rpc_xprt *xprt) 1314 { 1315 xs_free_peer_addresses(xprt); 1316 xprt_free(xprt); 1317 } 1318 1319 /** 1320 * xs_destroy - prepare to shutdown a transport 1321 * @xprt: doomed transport 1322 * 1323 */ 1324 static void xs_destroy(struct rpc_xprt *xprt) 1325 { 1326 struct sock_xprt *transport = container_of(xprt, 1327 struct sock_xprt, xprt); 1328 dprintk("RPC: xs_destroy xprt %p\n", xprt); 1329 1330 cancel_delayed_work_sync(&transport->connect_worker); 1331 xs_close(xprt); 1332 cancel_work_sync(&transport->recv_worker); 1333 cancel_work_sync(&transport->error_worker); 1334 xs_xprt_free(xprt); 1335 module_put(THIS_MODULE); 1336 } 1337 1338 /** 1339 * xs_udp_data_read_skb - receive callback for UDP sockets 1340 * @xprt: transport 1341 * @sk: socket 1342 * @skb: skbuff 1343 * 1344 */ 1345 static void xs_udp_data_read_skb(struct rpc_xprt *xprt, 1346 struct sock *sk, 1347 struct sk_buff *skb) 1348 { 1349 struct rpc_task *task; 1350 struct rpc_rqst *rovr; 1351 int repsize, copied; 1352 u32 _xid; 1353 __be32 *xp; 1354 1355 repsize = skb->len; 1356 if (repsize < 4) { 1357 dprintk("RPC: impossible RPC reply size %d!\n", repsize); 1358 return; 1359 } 1360 1361 /* Copy the XID from the skb... */ 1362 xp = skb_header_pointer(skb, 0, sizeof(_xid), &_xid); 1363 if (xp == NULL) 1364 return; 1365 1366 /* Look up and lock the request corresponding to the given XID */ 1367 spin_lock(&xprt->queue_lock); 1368 rovr = xprt_lookup_rqst(xprt, *xp); 1369 if (!rovr) 1370 goto out_unlock; 1371 xprt_pin_rqst(rovr); 1372 xprt_update_rtt(rovr->rq_task); 1373 spin_unlock(&xprt->queue_lock); 1374 task = rovr->rq_task; 1375 1376 if ((copied = rovr->rq_private_buf.buflen) > repsize) 1377 copied = repsize; 1378 1379 /* Suck it into the iovec, verify checksum if not done by hw. */ 1380 if (csum_partial_copy_to_xdr(&rovr->rq_private_buf, skb)) { 1381 spin_lock(&xprt->queue_lock); 1382 __UDPX_INC_STATS(sk, UDP_MIB_INERRORS); 1383 goto out_unpin; 1384 } 1385 1386 1387 spin_lock(&xprt->transport_lock); 1388 xprt_adjust_cwnd(xprt, task, copied); 1389 spin_unlock(&xprt->transport_lock); 1390 spin_lock(&xprt->queue_lock); 1391 xprt_complete_rqst(task, copied); 1392 __UDPX_INC_STATS(sk, UDP_MIB_INDATAGRAMS); 1393 out_unpin: 1394 xprt_unpin_rqst(rovr); 1395 out_unlock: 1396 spin_unlock(&xprt->queue_lock); 1397 } 1398 1399 static void xs_udp_data_receive(struct sock_xprt *transport) 1400 { 1401 struct sk_buff *skb; 1402 struct sock *sk; 1403 int err; 1404 1405 mutex_lock(&transport->recv_mutex); 1406 sk = transport->inet; 1407 if (sk == NULL) 1408 goto out; 1409 for (;;) { 1410 skb = skb_recv_udp(sk, MSG_DONTWAIT, &err); 1411 if (skb == NULL) 1412 break; 1413 xs_udp_data_read_skb(&transport->xprt, sk, skb); 1414 consume_skb(skb); 1415 cond_resched(); 1416 } 1417 xs_poll_check_readable(transport); 1418 out: 1419 mutex_unlock(&transport->recv_mutex); 1420 } 1421 1422 static void xs_udp_data_receive_workfn(struct work_struct *work) 1423 { 1424 struct sock_xprt *transport = 1425 container_of(work, struct sock_xprt, recv_worker); 1426 unsigned int pflags = memalloc_nofs_save(); 1427 1428 xs_udp_data_receive(transport); 1429 memalloc_nofs_restore(pflags); 1430 } 1431 1432 /** 1433 * xs_data_ready - "data ready" callback for sockets 1434 * @sk: socket with data to read 1435 * 1436 */ 1437 static void xs_data_ready(struct sock *sk) 1438 { 1439 struct rpc_xprt *xprt; 1440 1441 trace_sk_data_ready(sk); 1442 1443 xprt = xprt_from_sock(sk); 1444 if (xprt != NULL) { 1445 struct sock_xprt *transport = container_of(xprt, 1446 struct sock_xprt, xprt); 1447 1448 trace_xs_data_ready(xprt); 1449 1450 transport->old_data_ready(sk); 1451 1452 if (test_bit(XPRT_SOCK_IGNORE_RECV, &transport->sock_state)) 1453 return; 1454 1455 /* Any data means we had a useful conversation, so 1456 * then we don't need to delay the next reconnect 1457 */ 1458 if (xprt->reestablish_timeout) 1459 xprt->reestablish_timeout = 0; 1460 if (!test_and_set_bit(XPRT_SOCK_DATA_READY, &transport->sock_state)) 1461 queue_work(xprtiod_workqueue, &transport->recv_worker); 1462 } 1463 } 1464 1465 /* 1466 * Helper function to force a TCP close if the server is sending 1467 * junk and/or it has put us in CLOSE_WAIT 1468 */ 1469 static void xs_tcp_force_close(struct rpc_xprt *xprt) 1470 { 1471 xprt_force_disconnect(xprt); 1472 } 1473 1474 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1475 static size_t xs_tcp_bc_maxpayload(struct rpc_xprt *xprt) 1476 { 1477 return PAGE_SIZE; 1478 } 1479 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1480 1481 /** 1482 * xs_local_state_change - callback to handle AF_LOCAL socket state changes 1483 * @sk: socket whose state has changed 1484 * 1485 */ 1486 static void xs_local_state_change(struct sock *sk) 1487 { 1488 struct rpc_xprt *xprt; 1489 struct sock_xprt *transport; 1490 1491 if (!(xprt = xprt_from_sock(sk))) 1492 return; 1493 transport = container_of(xprt, struct sock_xprt, xprt); 1494 if (sk->sk_shutdown & SHUTDOWN_MASK) { 1495 clear_bit(XPRT_CONNECTED, &xprt->state); 1496 /* Trigger the socket release */ 1497 xs_run_error_worker(transport, XPRT_SOCK_WAKE_DISCONNECT); 1498 } 1499 } 1500 1501 /** 1502 * xs_tcp_state_change - callback to handle TCP socket state changes 1503 * @sk: socket whose state has changed 1504 * 1505 */ 1506 static void xs_tcp_state_change(struct sock *sk) 1507 { 1508 struct rpc_xprt *xprt; 1509 struct sock_xprt *transport; 1510 1511 if (!(xprt = xprt_from_sock(sk))) 1512 return; 1513 dprintk("RPC: xs_tcp_state_change client %p...\n", xprt); 1514 dprintk("RPC: state %x conn %d dead %d zapped %d sk_shutdown %d\n", 1515 sk->sk_state, xprt_connected(xprt), 1516 sock_flag(sk, SOCK_DEAD), 1517 sock_flag(sk, SOCK_ZAPPED), 1518 sk->sk_shutdown); 1519 1520 transport = container_of(xprt, struct sock_xprt, xprt); 1521 trace_rpc_socket_state_change(xprt, sk->sk_socket); 1522 switch (sk->sk_state) { 1523 case TCP_ESTABLISHED: 1524 if (!xprt_test_and_set_connected(xprt)) { 1525 xprt->connect_cookie++; 1526 clear_bit(XPRT_SOCK_CONNECTING, &transport->sock_state); 1527 xprt_clear_connecting(xprt); 1528 1529 xprt->stat.connect_count++; 1530 xprt->stat.connect_time += (long)jiffies - 1531 xprt->stat.connect_start; 1532 xs_run_error_worker(transport, XPRT_SOCK_WAKE_PENDING); 1533 } 1534 break; 1535 case TCP_FIN_WAIT1: 1536 /* The client initiated a shutdown of the socket */ 1537 xprt->connect_cookie++; 1538 xprt->reestablish_timeout = 0; 1539 set_bit(XPRT_CLOSING, &xprt->state); 1540 smp_mb__before_atomic(); 1541 clear_bit(XPRT_CONNECTED, &xprt->state); 1542 clear_bit(XPRT_CLOSE_WAIT, &xprt->state); 1543 smp_mb__after_atomic(); 1544 break; 1545 case TCP_CLOSE_WAIT: 1546 /* The server initiated a shutdown of the socket */ 1547 xprt->connect_cookie++; 1548 clear_bit(XPRT_CONNECTED, &xprt->state); 1549 xs_run_error_worker(transport, XPRT_SOCK_WAKE_DISCONNECT); 1550 fallthrough; 1551 case TCP_CLOSING: 1552 /* 1553 * If the server closed down the connection, make sure that 1554 * we back off before reconnecting 1555 */ 1556 if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO) 1557 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 1558 break; 1559 case TCP_LAST_ACK: 1560 set_bit(XPRT_CLOSING, &xprt->state); 1561 smp_mb__before_atomic(); 1562 clear_bit(XPRT_CONNECTED, &xprt->state); 1563 smp_mb__after_atomic(); 1564 break; 1565 case TCP_CLOSE: 1566 if (test_and_clear_bit(XPRT_SOCK_CONNECTING, 1567 &transport->sock_state)) 1568 xprt_clear_connecting(xprt); 1569 clear_bit(XPRT_CLOSING, &xprt->state); 1570 /* Trigger the socket release */ 1571 xs_run_error_worker(transport, XPRT_SOCK_WAKE_DISCONNECT); 1572 } 1573 } 1574 1575 static void xs_write_space(struct sock *sk) 1576 { 1577 struct sock_xprt *transport; 1578 struct rpc_xprt *xprt; 1579 1580 if (!sk->sk_socket) 1581 return; 1582 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1583 1584 if (unlikely(!(xprt = xprt_from_sock(sk)))) 1585 return; 1586 transport = container_of(xprt, struct sock_xprt, xprt); 1587 if (!test_and_clear_bit(XPRT_SOCK_NOSPACE, &transport->sock_state)) 1588 return; 1589 xs_run_error_worker(transport, XPRT_SOCK_WAKE_WRITE); 1590 sk->sk_write_pending--; 1591 } 1592 1593 /** 1594 * xs_udp_write_space - callback invoked when socket buffer space 1595 * becomes available 1596 * @sk: socket whose state has changed 1597 * 1598 * Called when more output buffer space is available for this socket. 1599 * We try not to wake our writers until they can make "significant" 1600 * progress, otherwise we'll waste resources thrashing kernel_sendmsg 1601 * with a bunch of small requests. 1602 */ 1603 static void xs_udp_write_space(struct sock *sk) 1604 { 1605 /* from net/core/sock.c:sock_def_write_space */ 1606 if (sock_writeable(sk)) 1607 xs_write_space(sk); 1608 } 1609 1610 /** 1611 * xs_tcp_write_space - callback invoked when socket buffer space 1612 * becomes available 1613 * @sk: socket whose state has changed 1614 * 1615 * Called when more output buffer space is available for this socket. 1616 * We try not to wake our writers until they can make "significant" 1617 * progress, otherwise we'll waste resources thrashing kernel_sendmsg 1618 * with a bunch of small requests. 1619 */ 1620 static void xs_tcp_write_space(struct sock *sk) 1621 { 1622 /* from net/core/stream.c:sk_stream_write_space */ 1623 if (sk_stream_is_writeable(sk)) 1624 xs_write_space(sk); 1625 } 1626 1627 static void xs_udp_do_set_buffer_size(struct rpc_xprt *xprt) 1628 { 1629 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 1630 struct sock *sk = transport->inet; 1631 1632 if (transport->rcvsize) { 1633 sk->sk_userlocks |= SOCK_RCVBUF_LOCK; 1634 sk->sk_rcvbuf = transport->rcvsize * xprt->max_reqs * 2; 1635 } 1636 if (transport->sndsize) { 1637 sk->sk_userlocks |= SOCK_SNDBUF_LOCK; 1638 sk->sk_sndbuf = transport->sndsize * xprt->max_reqs * 2; 1639 sk->sk_write_space(sk); 1640 } 1641 } 1642 1643 /** 1644 * xs_udp_set_buffer_size - set send and receive limits 1645 * @xprt: generic transport 1646 * @sndsize: requested size of send buffer, in bytes 1647 * @rcvsize: requested size of receive buffer, in bytes 1648 * 1649 * Set socket send and receive buffer size limits. 1650 */ 1651 static void xs_udp_set_buffer_size(struct rpc_xprt *xprt, size_t sndsize, size_t rcvsize) 1652 { 1653 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 1654 1655 transport->sndsize = 0; 1656 if (sndsize) 1657 transport->sndsize = sndsize + 1024; 1658 transport->rcvsize = 0; 1659 if (rcvsize) 1660 transport->rcvsize = rcvsize + 1024; 1661 1662 xs_udp_do_set_buffer_size(xprt); 1663 } 1664 1665 /** 1666 * xs_udp_timer - called when a retransmit timeout occurs on a UDP transport 1667 * @xprt: controlling transport 1668 * @task: task that timed out 1669 * 1670 * Adjust the congestion window after a retransmit timeout has occurred. 1671 */ 1672 static void xs_udp_timer(struct rpc_xprt *xprt, struct rpc_task *task) 1673 { 1674 spin_lock(&xprt->transport_lock); 1675 xprt_adjust_cwnd(xprt, task, -ETIMEDOUT); 1676 spin_unlock(&xprt->transport_lock); 1677 } 1678 1679 static int xs_get_random_port(void) 1680 { 1681 unsigned short min = xprt_min_resvport, max = xprt_max_resvport; 1682 unsigned short range; 1683 unsigned short rand; 1684 1685 if (max < min) 1686 return -EADDRINUSE; 1687 range = max - min + 1; 1688 rand = get_random_u32_below(range); 1689 return rand + min; 1690 } 1691 1692 static unsigned short xs_sock_getport(struct socket *sock) 1693 { 1694 struct sockaddr_storage buf; 1695 unsigned short port = 0; 1696 1697 if (kernel_getsockname(sock, (struct sockaddr *)&buf) < 0) 1698 goto out; 1699 switch (buf.ss_family) { 1700 case AF_INET6: 1701 port = ntohs(((struct sockaddr_in6 *)&buf)->sin6_port); 1702 break; 1703 case AF_INET: 1704 port = ntohs(((struct sockaddr_in *)&buf)->sin_port); 1705 } 1706 out: 1707 return port; 1708 } 1709 1710 /** 1711 * xs_set_port - reset the port number in the remote endpoint address 1712 * @xprt: generic transport 1713 * @port: new port number 1714 * 1715 */ 1716 static void xs_set_port(struct rpc_xprt *xprt, unsigned short port) 1717 { 1718 dprintk("RPC: setting port for xprt %p to %u\n", xprt, port); 1719 1720 rpc_set_port(xs_addr(xprt), port); 1721 xs_update_peer_port(xprt); 1722 } 1723 1724 static void xs_set_srcport(struct sock_xprt *transport, struct socket *sock) 1725 { 1726 if (transport->srcport == 0 && transport->xprt.reuseport) 1727 transport->srcport = xs_sock_getport(sock); 1728 } 1729 1730 static int xs_get_srcport(struct sock_xprt *transport) 1731 { 1732 int port = transport->srcport; 1733 1734 if (port == 0 && transport->xprt.resvport) 1735 port = xs_get_random_port(); 1736 return port; 1737 } 1738 1739 static unsigned short xs_sock_srcport(struct rpc_xprt *xprt) 1740 { 1741 struct sock_xprt *sock = container_of(xprt, struct sock_xprt, xprt); 1742 unsigned short ret = 0; 1743 mutex_lock(&sock->recv_mutex); 1744 if (sock->sock) 1745 ret = xs_sock_getport(sock->sock); 1746 mutex_unlock(&sock->recv_mutex); 1747 return ret; 1748 } 1749 1750 static int xs_sock_srcaddr(struct rpc_xprt *xprt, char *buf, size_t buflen) 1751 { 1752 struct sock_xprt *sock = container_of(xprt, struct sock_xprt, xprt); 1753 union { 1754 struct sockaddr sa; 1755 struct sockaddr_storage st; 1756 } saddr; 1757 int ret = -ENOTCONN; 1758 1759 mutex_lock(&sock->recv_mutex); 1760 if (sock->sock) { 1761 ret = kernel_getsockname(sock->sock, &saddr.sa); 1762 if (ret >= 0) 1763 ret = snprintf(buf, buflen, "%pISc", &saddr.sa); 1764 } 1765 mutex_unlock(&sock->recv_mutex); 1766 return ret; 1767 } 1768 1769 static unsigned short xs_next_srcport(struct sock_xprt *transport, unsigned short port) 1770 { 1771 if (transport->srcport != 0) 1772 transport->srcport = 0; 1773 if (!transport->xprt.resvport) 1774 return 0; 1775 if (port <= xprt_min_resvport || port > xprt_max_resvport) 1776 return xprt_max_resvport; 1777 return --port; 1778 } 1779 static int xs_bind(struct sock_xprt *transport, struct socket *sock) 1780 { 1781 struct sockaddr_storage myaddr; 1782 int err, nloop = 0; 1783 int port = xs_get_srcport(transport); 1784 unsigned short last; 1785 1786 /* 1787 * If we are asking for any ephemeral port (i.e. port == 0 && 1788 * transport->xprt.resvport == 0), don't bind. Let the local 1789 * port selection happen implicitly when the socket is used 1790 * (for example at connect time). 1791 * 1792 * This ensures that we can continue to establish TCP 1793 * connections even when all local ephemeral ports are already 1794 * a part of some TCP connection. This makes no difference 1795 * for UDP sockets, but also doesn't harm them. 1796 * 1797 * If we're asking for any reserved port (i.e. port == 0 && 1798 * transport->xprt.resvport == 1) xs_get_srcport above will 1799 * ensure that port is non-zero and we will bind as needed. 1800 */ 1801 if (port <= 0) 1802 return port; 1803 1804 memcpy(&myaddr, &transport->srcaddr, transport->xprt.addrlen); 1805 do { 1806 rpc_set_port((struct sockaddr *)&myaddr, port); 1807 err = kernel_bind(sock, (struct sockaddr *)&myaddr, 1808 transport->xprt.addrlen); 1809 if (err == 0) { 1810 if (transport->xprt.reuseport) 1811 transport->srcport = port; 1812 break; 1813 } 1814 last = port; 1815 port = xs_next_srcport(transport, port); 1816 if (port > last) 1817 nloop++; 1818 } while (err == -EADDRINUSE && nloop != 2); 1819 1820 if (myaddr.ss_family == AF_INET) 1821 dprintk("RPC: %s %pI4:%u: %s (%d)\n", __func__, 1822 &((struct sockaddr_in *)&myaddr)->sin_addr, 1823 port, err ? "failed" : "ok", err); 1824 else 1825 dprintk("RPC: %s %pI6:%u: %s (%d)\n", __func__, 1826 &((struct sockaddr_in6 *)&myaddr)->sin6_addr, 1827 port, err ? "failed" : "ok", err); 1828 return err; 1829 } 1830 1831 /* 1832 * We don't support autobind on AF_LOCAL sockets 1833 */ 1834 static void xs_local_rpcbind(struct rpc_task *task) 1835 { 1836 xprt_set_bound(task->tk_xprt); 1837 } 1838 1839 static void xs_local_set_port(struct rpc_xprt *xprt, unsigned short port) 1840 { 1841 } 1842 1843 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1844 static struct lock_class_key xs_key[3]; 1845 static struct lock_class_key xs_slock_key[3]; 1846 1847 static inline void xs_reclassify_socketu(struct socket *sock) 1848 { 1849 struct sock *sk = sock->sk; 1850 1851 sock_lock_init_class_and_name(sk, "slock-AF_LOCAL-RPC", 1852 &xs_slock_key[0], "sk_lock-AF_LOCAL-RPC", &xs_key[0]); 1853 } 1854 1855 static inline void xs_reclassify_socket4(struct socket *sock) 1856 { 1857 struct sock *sk = sock->sk; 1858 1859 sock_lock_init_class_and_name(sk, "slock-AF_INET-RPC", 1860 &xs_slock_key[1], "sk_lock-AF_INET-RPC", &xs_key[1]); 1861 } 1862 1863 static inline void xs_reclassify_socket6(struct socket *sock) 1864 { 1865 struct sock *sk = sock->sk; 1866 1867 sock_lock_init_class_and_name(sk, "slock-AF_INET6-RPC", 1868 &xs_slock_key[2], "sk_lock-AF_INET6-RPC", &xs_key[2]); 1869 } 1870 1871 static inline void xs_reclassify_socket(int family, struct socket *sock) 1872 { 1873 if (WARN_ON_ONCE(!sock_allow_reclassification(sock->sk))) 1874 return; 1875 1876 switch (family) { 1877 case AF_LOCAL: 1878 xs_reclassify_socketu(sock); 1879 break; 1880 case AF_INET: 1881 xs_reclassify_socket4(sock); 1882 break; 1883 case AF_INET6: 1884 xs_reclassify_socket6(sock); 1885 break; 1886 } 1887 } 1888 #else 1889 static inline void xs_reclassify_socket(int family, struct socket *sock) 1890 { 1891 } 1892 #endif 1893 1894 static void xs_dummy_setup_socket(struct work_struct *work) 1895 { 1896 } 1897 1898 static struct socket *xs_create_sock(struct rpc_xprt *xprt, 1899 struct sock_xprt *transport, int family, int type, 1900 int protocol, bool reuseport) 1901 { 1902 struct file *filp; 1903 struct socket *sock; 1904 int err; 1905 1906 err = __sock_create(xprt->xprt_net, family, type, protocol, &sock, 1); 1907 if (err < 0) { 1908 dprintk("RPC: can't create %d transport socket (%d).\n", 1909 protocol, -err); 1910 goto out; 1911 } 1912 xs_reclassify_socket(family, sock); 1913 1914 if (reuseport) 1915 sock_set_reuseport(sock->sk); 1916 1917 err = xs_bind(transport, sock); 1918 if (err) { 1919 sock_release(sock); 1920 goto out; 1921 } 1922 1923 filp = sock_alloc_file(sock, O_NONBLOCK, NULL); 1924 if (IS_ERR(filp)) 1925 return ERR_CAST(filp); 1926 transport->file = filp; 1927 1928 return sock; 1929 out: 1930 return ERR_PTR(err); 1931 } 1932 1933 static int xs_local_finish_connecting(struct rpc_xprt *xprt, 1934 struct socket *sock) 1935 { 1936 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, 1937 xprt); 1938 1939 if (!transport->inet) { 1940 struct sock *sk = sock->sk; 1941 1942 lock_sock(sk); 1943 1944 xs_save_old_callbacks(transport, sk); 1945 1946 sk->sk_user_data = xprt; 1947 sk->sk_data_ready = xs_data_ready; 1948 sk->sk_write_space = xs_udp_write_space; 1949 sk->sk_state_change = xs_local_state_change; 1950 sk->sk_error_report = xs_error_report; 1951 sk->sk_use_task_frag = false; 1952 1953 xprt_clear_connected(xprt); 1954 1955 /* Reset to new socket */ 1956 transport->sock = sock; 1957 transport->inet = sk; 1958 1959 release_sock(sk); 1960 } 1961 1962 xs_stream_start_connect(transport); 1963 1964 return kernel_connect(sock, xs_addr(xprt), xprt->addrlen, 0); 1965 } 1966 1967 /** 1968 * xs_local_setup_socket - create AF_LOCAL socket, connect to a local endpoint 1969 * @transport: socket transport to connect 1970 */ 1971 static int xs_local_setup_socket(struct sock_xprt *transport) 1972 { 1973 struct rpc_xprt *xprt = &transport->xprt; 1974 struct file *filp; 1975 struct socket *sock; 1976 int status; 1977 1978 status = __sock_create(xprt->xprt_net, AF_LOCAL, 1979 SOCK_STREAM, 0, &sock, 1); 1980 if (status < 0) { 1981 dprintk("RPC: can't create AF_LOCAL " 1982 "transport socket (%d).\n", -status); 1983 goto out; 1984 } 1985 xs_reclassify_socket(AF_LOCAL, sock); 1986 1987 filp = sock_alloc_file(sock, O_NONBLOCK, NULL); 1988 if (IS_ERR(filp)) { 1989 status = PTR_ERR(filp); 1990 goto out; 1991 } 1992 transport->file = filp; 1993 1994 dprintk("RPC: worker connecting xprt %p via AF_LOCAL to %s\n", 1995 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); 1996 1997 status = xs_local_finish_connecting(xprt, sock); 1998 trace_rpc_socket_connect(xprt, sock, status); 1999 switch (status) { 2000 case 0: 2001 dprintk("RPC: xprt %p connected to %s\n", 2002 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); 2003 xprt->stat.connect_count++; 2004 xprt->stat.connect_time += (long)jiffies - 2005 xprt->stat.connect_start; 2006 xprt_set_connected(xprt); 2007 break; 2008 case -ENOBUFS: 2009 break; 2010 case -ENOENT: 2011 dprintk("RPC: xprt %p: socket %s does not exist\n", 2012 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); 2013 break; 2014 case -ECONNREFUSED: 2015 dprintk("RPC: xprt %p: connection refused for %s\n", 2016 xprt, xprt->address_strings[RPC_DISPLAY_ADDR]); 2017 break; 2018 default: 2019 printk(KERN_ERR "%s: unhandled error (%d) connecting to %s\n", 2020 __func__, -status, 2021 xprt->address_strings[RPC_DISPLAY_ADDR]); 2022 } 2023 2024 out: 2025 xprt_clear_connecting(xprt); 2026 xprt_wake_pending_tasks(xprt, status); 2027 return status; 2028 } 2029 2030 static void xs_local_connect(struct rpc_xprt *xprt, struct rpc_task *task) 2031 { 2032 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2033 int ret; 2034 2035 if (transport->file) 2036 goto force_disconnect; 2037 2038 if (RPC_IS_ASYNC(task)) { 2039 /* 2040 * We want the AF_LOCAL connect to be resolved in the 2041 * filesystem namespace of the process making the rpc 2042 * call. Thus we connect synchronously. 2043 * 2044 * If we want to support asynchronous AF_LOCAL calls, 2045 * we'll need to figure out how to pass a namespace to 2046 * connect. 2047 */ 2048 rpc_task_set_rpc_status(task, -ENOTCONN); 2049 goto out_wake; 2050 } 2051 ret = xs_local_setup_socket(transport); 2052 if (ret && !RPC_IS_SOFTCONN(task)) 2053 msleep_interruptible(15000); 2054 return; 2055 force_disconnect: 2056 xprt_force_disconnect(xprt); 2057 out_wake: 2058 xprt_clear_connecting(xprt); 2059 xprt_wake_pending_tasks(xprt, -ENOTCONN); 2060 } 2061 2062 #if IS_ENABLED(CONFIG_SUNRPC_SWAP) 2063 /* 2064 * Note that this should be called with XPRT_LOCKED held, or recv_mutex 2065 * held, or when we otherwise know that we have exclusive access to the 2066 * socket, to guard against races with xs_reset_transport. 2067 */ 2068 static void xs_set_memalloc(struct rpc_xprt *xprt) 2069 { 2070 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, 2071 xprt); 2072 2073 /* 2074 * If there's no sock, then we have nothing to set. The 2075 * reconnecting process will get it for us. 2076 */ 2077 if (!transport->inet) 2078 return; 2079 if (atomic_read(&xprt->swapper)) 2080 sk_set_memalloc(transport->inet); 2081 } 2082 2083 /** 2084 * xs_enable_swap - Tag this transport as being used for swap. 2085 * @xprt: transport to tag 2086 * 2087 * Take a reference to this transport on behalf of the rpc_clnt, and 2088 * optionally mark it for swapping if it wasn't already. 2089 */ 2090 static int 2091 xs_enable_swap(struct rpc_xprt *xprt) 2092 { 2093 struct sock_xprt *xs = container_of(xprt, struct sock_xprt, xprt); 2094 2095 mutex_lock(&xs->recv_mutex); 2096 if (atomic_inc_return(&xprt->swapper) == 1 && 2097 xs->inet) 2098 sk_set_memalloc(xs->inet); 2099 mutex_unlock(&xs->recv_mutex); 2100 return 0; 2101 } 2102 2103 /** 2104 * xs_disable_swap - Untag this transport as being used for swap. 2105 * @xprt: transport to tag 2106 * 2107 * Drop a "swapper" reference to this xprt on behalf of the rpc_clnt. If the 2108 * swapper refcount goes to 0, untag the socket as a memalloc socket. 2109 */ 2110 static void 2111 xs_disable_swap(struct rpc_xprt *xprt) 2112 { 2113 struct sock_xprt *xs = container_of(xprt, struct sock_xprt, xprt); 2114 2115 mutex_lock(&xs->recv_mutex); 2116 if (atomic_dec_and_test(&xprt->swapper) && 2117 xs->inet) 2118 sk_clear_memalloc(xs->inet); 2119 mutex_unlock(&xs->recv_mutex); 2120 } 2121 #else 2122 static void xs_set_memalloc(struct rpc_xprt *xprt) 2123 { 2124 } 2125 2126 static int 2127 xs_enable_swap(struct rpc_xprt *xprt) 2128 { 2129 return -EINVAL; 2130 } 2131 2132 static void 2133 xs_disable_swap(struct rpc_xprt *xprt) 2134 { 2135 } 2136 #endif 2137 2138 static void xs_udp_finish_connecting(struct rpc_xprt *xprt, struct socket *sock) 2139 { 2140 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2141 2142 if (!transport->inet) { 2143 struct sock *sk = sock->sk; 2144 2145 lock_sock(sk); 2146 2147 xs_save_old_callbacks(transport, sk); 2148 2149 sk->sk_user_data = xprt; 2150 sk->sk_data_ready = xs_data_ready; 2151 sk->sk_write_space = xs_udp_write_space; 2152 sk->sk_use_task_frag = false; 2153 2154 xprt_set_connected(xprt); 2155 2156 /* Reset to new socket */ 2157 transport->sock = sock; 2158 transport->inet = sk; 2159 2160 xs_set_memalloc(xprt); 2161 2162 release_sock(sk); 2163 } 2164 xs_udp_do_set_buffer_size(xprt); 2165 2166 xprt->stat.connect_start = jiffies; 2167 } 2168 2169 static void xs_udp_setup_socket(struct work_struct *work) 2170 { 2171 struct sock_xprt *transport = 2172 container_of(work, struct sock_xprt, connect_worker.work); 2173 struct rpc_xprt *xprt = &transport->xprt; 2174 struct socket *sock; 2175 int status = -EIO; 2176 unsigned int pflags = current->flags; 2177 2178 if (atomic_read(&xprt->swapper)) 2179 current->flags |= PF_MEMALLOC; 2180 sock = xs_create_sock(xprt, transport, 2181 xs_addr(xprt)->sa_family, SOCK_DGRAM, 2182 IPPROTO_UDP, false); 2183 if (IS_ERR(sock)) 2184 goto out; 2185 2186 dprintk("RPC: worker connecting xprt %p via %s to " 2187 "%s (port %s)\n", xprt, 2188 xprt->address_strings[RPC_DISPLAY_PROTO], 2189 xprt->address_strings[RPC_DISPLAY_ADDR], 2190 xprt->address_strings[RPC_DISPLAY_PORT]); 2191 2192 xs_udp_finish_connecting(xprt, sock); 2193 trace_rpc_socket_connect(xprt, sock, 0); 2194 status = 0; 2195 out: 2196 xprt_clear_connecting(xprt); 2197 xprt_unlock_connect(xprt, transport); 2198 xprt_wake_pending_tasks(xprt, status); 2199 current_restore_flags(pflags, PF_MEMALLOC); 2200 } 2201 2202 /** 2203 * xs_tcp_shutdown - gracefully shut down a TCP socket 2204 * @xprt: transport 2205 * 2206 * Initiates a graceful shutdown of the TCP socket by calling the 2207 * equivalent of shutdown(SHUT_RDWR); 2208 */ 2209 static void xs_tcp_shutdown(struct rpc_xprt *xprt) 2210 { 2211 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2212 struct socket *sock = transport->sock; 2213 int skst = transport->inet ? transport->inet->sk_state : TCP_CLOSE; 2214 2215 if (sock == NULL) 2216 return; 2217 if (!xprt->reuseport) { 2218 xs_close(xprt); 2219 return; 2220 } 2221 switch (skst) { 2222 case TCP_FIN_WAIT1: 2223 case TCP_FIN_WAIT2: 2224 case TCP_LAST_ACK: 2225 break; 2226 case TCP_ESTABLISHED: 2227 case TCP_CLOSE_WAIT: 2228 kernel_sock_shutdown(sock, SHUT_RDWR); 2229 trace_rpc_socket_shutdown(xprt, sock); 2230 break; 2231 default: 2232 xs_reset_transport(transport); 2233 } 2234 } 2235 2236 static void xs_tcp_set_socket_timeouts(struct rpc_xprt *xprt, 2237 struct socket *sock) 2238 { 2239 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2240 struct net *net = sock_net(sock->sk); 2241 unsigned long connect_timeout; 2242 unsigned long syn_retries; 2243 unsigned int keepidle; 2244 unsigned int keepcnt; 2245 unsigned int timeo; 2246 unsigned long t; 2247 2248 spin_lock(&xprt->transport_lock); 2249 keepidle = DIV_ROUND_UP(xprt->timeout->to_initval, HZ); 2250 keepcnt = xprt->timeout->to_retries + 1; 2251 timeo = jiffies_to_msecs(xprt->timeout->to_initval) * 2252 (xprt->timeout->to_retries + 1); 2253 clear_bit(XPRT_SOCK_UPD_TIMEOUT, &transport->sock_state); 2254 spin_unlock(&xprt->transport_lock); 2255 2256 /* TCP Keepalive options */ 2257 sock_set_keepalive(sock->sk); 2258 tcp_sock_set_keepidle(sock->sk, keepidle); 2259 tcp_sock_set_keepintvl(sock->sk, keepidle); 2260 tcp_sock_set_keepcnt(sock->sk, keepcnt); 2261 2262 /* TCP user timeout (see RFC5482) */ 2263 tcp_sock_set_user_timeout(sock->sk, timeo); 2264 2265 /* Connect timeout */ 2266 connect_timeout = max_t(unsigned long, 2267 DIV_ROUND_UP(xprt->connect_timeout, HZ), 1); 2268 syn_retries = max_t(unsigned long, 2269 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries), 1); 2270 for (t = 0; t <= syn_retries && (1UL << t) < connect_timeout; t++) 2271 ; 2272 if (t <= syn_retries) 2273 tcp_sock_set_syncnt(sock->sk, t - 1); 2274 } 2275 2276 static void xs_tcp_do_set_connect_timeout(struct rpc_xprt *xprt, 2277 unsigned long connect_timeout) 2278 { 2279 struct sock_xprt *transport = 2280 container_of(xprt, struct sock_xprt, xprt); 2281 struct rpc_timeout to; 2282 unsigned long initval; 2283 2284 memcpy(&to, xprt->timeout, sizeof(to)); 2285 /* Arbitrary lower limit */ 2286 initval = max_t(unsigned long, connect_timeout, XS_TCP_INIT_REEST_TO); 2287 to.to_initval = initval; 2288 to.to_maxval = initval; 2289 to.to_retries = 0; 2290 memcpy(&transport->tcp_timeout, &to, sizeof(transport->tcp_timeout)); 2291 xprt->timeout = &transport->tcp_timeout; 2292 xprt->connect_timeout = connect_timeout; 2293 } 2294 2295 static void xs_tcp_set_connect_timeout(struct rpc_xprt *xprt, 2296 unsigned long connect_timeout, 2297 unsigned long reconnect_timeout) 2298 { 2299 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2300 2301 spin_lock(&xprt->transport_lock); 2302 if (reconnect_timeout < xprt->max_reconnect_timeout) 2303 xprt->max_reconnect_timeout = reconnect_timeout; 2304 if (connect_timeout < xprt->connect_timeout) 2305 xs_tcp_do_set_connect_timeout(xprt, connect_timeout); 2306 set_bit(XPRT_SOCK_UPD_TIMEOUT, &transport->sock_state); 2307 spin_unlock(&xprt->transport_lock); 2308 } 2309 2310 static int xs_tcp_finish_connecting(struct rpc_xprt *xprt, struct socket *sock) 2311 { 2312 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2313 2314 if (!transport->inet) { 2315 struct sock *sk = sock->sk; 2316 2317 /* Avoid temporary address, they are bad for long-lived 2318 * connections such as NFS mounts. 2319 * RFC4941, section 3.6 suggests that: 2320 * Individual applications, which have specific 2321 * knowledge about the normal duration of connections, 2322 * MAY override this as appropriate. 2323 */ 2324 if (xs_addr(xprt)->sa_family == PF_INET6) { 2325 ip6_sock_set_addr_preferences(sk, 2326 IPV6_PREFER_SRC_PUBLIC); 2327 } 2328 2329 xs_tcp_set_socket_timeouts(xprt, sock); 2330 tcp_sock_set_nodelay(sk); 2331 2332 lock_sock(sk); 2333 2334 xs_save_old_callbacks(transport, sk); 2335 2336 sk->sk_user_data = xprt; 2337 sk->sk_data_ready = xs_data_ready; 2338 sk->sk_state_change = xs_tcp_state_change; 2339 sk->sk_write_space = xs_tcp_write_space; 2340 sk->sk_error_report = xs_error_report; 2341 sk->sk_use_task_frag = false; 2342 2343 /* socket options */ 2344 sock_reset_flag(sk, SOCK_LINGER); 2345 2346 xprt_clear_connected(xprt); 2347 2348 /* Reset to new socket */ 2349 transport->sock = sock; 2350 transport->inet = sk; 2351 2352 release_sock(sk); 2353 } 2354 2355 if (!xprt_bound(xprt)) 2356 return -ENOTCONN; 2357 2358 xs_set_memalloc(xprt); 2359 2360 xs_stream_start_connect(transport); 2361 2362 /* Tell the socket layer to start connecting... */ 2363 set_bit(XPRT_SOCK_CONNECTING, &transport->sock_state); 2364 return kernel_connect(sock, xs_addr(xprt), xprt->addrlen, O_NONBLOCK); 2365 } 2366 2367 /** 2368 * xs_tcp_setup_socket - create a TCP socket and connect to a remote endpoint 2369 * @work: queued work item 2370 * 2371 * Invoked by a work queue tasklet. 2372 */ 2373 static void xs_tcp_setup_socket(struct work_struct *work) 2374 { 2375 struct sock_xprt *transport = 2376 container_of(work, struct sock_xprt, connect_worker.work); 2377 struct socket *sock = transport->sock; 2378 struct rpc_xprt *xprt = &transport->xprt; 2379 int status; 2380 unsigned int pflags = current->flags; 2381 2382 if (atomic_read(&xprt->swapper)) 2383 current->flags |= PF_MEMALLOC; 2384 2385 if (xprt_connected(xprt)) 2386 goto out; 2387 if (test_and_clear_bit(XPRT_SOCK_CONNECT_SENT, 2388 &transport->sock_state) || 2389 !sock) { 2390 xs_reset_transport(transport); 2391 sock = xs_create_sock(xprt, transport, xs_addr(xprt)->sa_family, 2392 SOCK_STREAM, IPPROTO_TCP, true); 2393 if (IS_ERR(sock)) { 2394 xprt_wake_pending_tasks(xprt, PTR_ERR(sock)); 2395 goto out; 2396 } 2397 } 2398 2399 dprintk("RPC: worker connecting xprt %p via %s to " 2400 "%s (port %s)\n", xprt, 2401 xprt->address_strings[RPC_DISPLAY_PROTO], 2402 xprt->address_strings[RPC_DISPLAY_ADDR], 2403 xprt->address_strings[RPC_DISPLAY_PORT]); 2404 2405 status = xs_tcp_finish_connecting(xprt, sock); 2406 trace_rpc_socket_connect(xprt, sock, status); 2407 dprintk("RPC: %p connect status %d connected %d sock state %d\n", 2408 xprt, -status, xprt_connected(xprt), 2409 sock->sk->sk_state); 2410 switch (status) { 2411 case 0: 2412 case -EINPROGRESS: 2413 /* SYN_SENT! */ 2414 set_bit(XPRT_SOCK_CONNECT_SENT, &transport->sock_state); 2415 if (xprt->reestablish_timeout < XS_TCP_INIT_REEST_TO) 2416 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 2417 fallthrough; 2418 case -EALREADY: 2419 goto out_unlock; 2420 case -EADDRNOTAVAIL: 2421 /* Source port number is unavailable. Try a new one! */ 2422 transport->srcport = 0; 2423 status = -EAGAIN; 2424 break; 2425 case -EPERM: 2426 /* Happens, for instance, if a BPF program is preventing 2427 * the connect. Remap the error so upper layers can better 2428 * deal with it. 2429 */ 2430 status = -ECONNREFUSED; 2431 fallthrough; 2432 case -EINVAL: 2433 /* Happens, for instance, if the user specified a link 2434 * local IPv6 address without a scope-id. 2435 */ 2436 case -ECONNREFUSED: 2437 case -ECONNRESET: 2438 case -ENETDOWN: 2439 case -ENETUNREACH: 2440 case -EHOSTUNREACH: 2441 case -EADDRINUSE: 2442 case -ENOBUFS: 2443 break; 2444 default: 2445 printk("%s: connect returned unhandled error %d\n", 2446 __func__, status); 2447 status = -EAGAIN; 2448 } 2449 2450 /* xs_tcp_force_close() wakes tasks with a fixed error code. 2451 * We need to wake them first to ensure the correct error code. 2452 */ 2453 xprt_wake_pending_tasks(xprt, status); 2454 xs_tcp_force_close(xprt); 2455 out: 2456 xprt_clear_connecting(xprt); 2457 out_unlock: 2458 xprt_unlock_connect(xprt, transport); 2459 current_restore_flags(pflags, PF_MEMALLOC); 2460 } 2461 2462 /* 2463 * Transfer the connected socket to @upper_transport, then mark that 2464 * xprt CONNECTED. 2465 */ 2466 static int xs_tcp_tls_finish_connecting(struct rpc_xprt *lower_xprt, 2467 struct sock_xprt *upper_transport) 2468 { 2469 struct sock_xprt *lower_transport = 2470 container_of(lower_xprt, struct sock_xprt, xprt); 2471 struct rpc_xprt *upper_xprt = &upper_transport->xprt; 2472 2473 if (!upper_transport->inet) { 2474 struct socket *sock = lower_transport->sock; 2475 struct sock *sk = sock->sk; 2476 2477 /* Avoid temporary address, they are bad for long-lived 2478 * connections such as NFS mounts. 2479 * RFC4941, section 3.6 suggests that: 2480 * Individual applications, which have specific 2481 * knowledge about the normal duration of connections, 2482 * MAY override this as appropriate. 2483 */ 2484 if (xs_addr(upper_xprt)->sa_family == PF_INET6) 2485 ip6_sock_set_addr_preferences(sk, IPV6_PREFER_SRC_PUBLIC); 2486 2487 xs_tcp_set_socket_timeouts(upper_xprt, sock); 2488 tcp_sock_set_nodelay(sk); 2489 2490 lock_sock(sk); 2491 2492 /* @sk is already connected, so it now has the RPC callbacks. 2493 * Reach into @lower_transport to save the original ones. 2494 */ 2495 upper_transport->old_data_ready = lower_transport->old_data_ready; 2496 upper_transport->old_state_change = lower_transport->old_state_change; 2497 upper_transport->old_write_space = lower_transport->old_write_space; 2498 upper_transport->old_error_report = lower_transport->old_error_report; 2499 sk->sk_user_data = upper_xprt; 2500 2501 /* socket options */ 2502 sock_reset_flag(sk, SOCK_LINGER); 2503 2504 xprt_clear_connected(upper_xprt); 2505 2506 upper_transport->sock = sock; 2507 upper_transport->inet = sk; 2508 upper_transport->file = lower_transport->file; 2509 2510 release_sock(sk); 2511 2512 /* Reset lower_transport before shutting down its clnt */ 2513 mutex_lock(&lower_transport->recv_mutex); 2514 lower_transport->inet = NULL; 2515 lower_transport->sock = NULL; 2516 lower_transport->file = NULL; 2517 2518 xprt_clear_connected(lower_xprt); 2519 xs_sock_reset_connection_flags(lower_xprt); 2520 xs_stream_reset_connect(lower_transport); 2521 mutex_unlock(&lower_transport->recv_mutex); 2522 } 2523 2524 if (!xprt_bound(upper_xprt)) 2525 return -ENOTCONN; 2526 2527 xs_set_memalloc(upper_xprt); 2528 2529 if (!xprt_test_and_set_connected(upper_xprt)) { 2530 upper_xprt->connect_cookie++; 2531 clear_bit(XPRT_SOCK_CONNECTING, &upper_transport->sock_state); 2532 xprt_clear_connecting(upper_xprt); 2533 2534 upper_xprt->stat.connect_count++; 2535 upper_xprt->stat.connect_time += (long)jiffies - 2536 upper_xprt->stat.connect_start; 2537 xs_run_error_worker(upper_transport, XPRT_SOCK_WAKE_PENDING); 2538 } 2539 return 0; 2540 } 2541 2542 /** 2543 * xs_tls_handshake_done - TLS handshake completion handler 2544 * @data: address of xprt to wake 2545 * @status: status of handshake 2546 * @peerid: serial number of key containing the remote's identity 2547 * 2548 */ 2549 static void xs_tls_handshake_done(void *data, int status, key_serial_t peerid) 2550 { 2551 struct rpc_xprt *lower_xprt = data; 2552 struct sock_xprt *lower_transport = 2553 container_of(lower_xprt, struct sock_xprt, xprt); 2554 2555 lower_transport->xprt_err = status ? -EACCES : 0; 2556 complete(&lower_transport->handshake_done); 2557 xprt_put(lower_xprt); 2558 } 2559 2560 static int xs_tls_handshake_sync(struct rpc_xprt *lower_xprt, struct xprtsec_parms *xprtsec) 2561 { 2562 struct sock_xprt *lower_transport = 2563 container_of(lower_xprt, struct sock_xprt, xprt); 2564 struct tls_handshake_args args = { 2565 .ta_sock = lower_transport->sock, 2566 .ta_done = xs_tls_handshake_done, 2567 .ta_data = xprt_get(lower_xprt), 2568 .ta_peername = lower_xprt->servername, 2569 }; 2570 struct sock *sk = lower_transport->inet; 2571 int rc; 2572 2573 init_completion(&lower_transport->handshake_done); 2574 set_bit(XPRT_SOCK_IGNORE_RECV, &lower_transport->sock_state); 2575 lower_transport->xprt_err = -ETIMEDOUT; 2576 switch (xprtsec->policy) { 2577 case RPC_XPRTSEC_TLS_ANON: 2578 rc = tls_client_hello_anon(&args, GFP_KERNEL); 2579 if (rc) 2580 goto out_put_xprt; 2581 break; 2582 case RPC_XPRTSEC_TLS_X509: 2583 args.ta_my_cert = xprtsec->cert_serial; 2584 args.ta_my_privkey = xprtsec->privkey_serial; 2585 rc = tls_client_hello_x509(&args, GFP_KERNEL); 2586 if (rc) 2587 goto out_put_xprt; 2588 break; 2589 default: 2590 rc = -EACCES; 2591 goto out_put_xprt; 2592 } 2593 2594 rc = wait_for_completion_interruptible_timeout(&lower_transport->handshake_done, 2595 XS_TLS_HANDSHAKE_TO); 2596 if (rc <= 0) { 2597 if (!tls_handshake_cancel(sk)) { 2598 if (rc == 0) 2599 rc = -ETIMEDOUT; 2600 goto out_put_xprt; 2601 } 2602 } 2603 2604 rc = lower_transport->xprt_err; 2605 2606 out: 2607 xs_stream_reset_connect(lower_transport); 2608 clear_bit(XPRT_SOCK_IGNORE_RECV, &lower_transport->sock_state); 2609 return rc; 2610 2611 out_put_xprt: 2612 xprt_put(lower_xprt); 2613 goto out; 2614 } 2615 2616 /** 2617 * xs_tcp_tls_setup_socket - establish a TLS session on a TCP socket 2618 * @work: queued work item 2619 * 2620 * Invoked by a work queue tasklet. 2621 * 2622 * For RPC-with-TLS, there is a two-stage connection process. 2623 * 2624 * The "upper-layer xprt" is visible to the RPC consumer. Once it has 2625 * been marked connected, the consumer knows that a TCP connection and 2626 * a TLS session have been established. 2627 * 2628 * A "lower-layer xprt", created in this function, handles the mechanics 2629 * of connecting the TCP socket, performing the RPC_AUTH_TLS probe, and 2630 * then driving the TLS handshake. Once all that is complete, the upper 2631 * layer xprt is marked connected. 2632 */ 2633 static void xs_tcp_tls_setup_socket(struct work_struct *work) 2634 { 2635 struct sock_xprt *upper_transport = 2636 container_of(work, struct sock_xprt, connect_worker.work); 2637 struct rpc_clnt *upper_clnt = upper_transport->clnt; 2638 struct rpc_xprt *upper_xprt = &upper_transport->xprt; 2639 struct rpc_create_args args = { 2640 .net = upper_xprt->xprt_net, 2641 .protocol = upper_xprt->prot, 2642 .address = (struct sockaddr *)&upper_xprt->addr, 2643 .addrsize = upper_xprt->addrlen, 2644 .timeout = upper_clnt->cl_timeout, 2645 .servername = upper_xprt->servername, 2646 .program = upper_clnt->cl_program, 2647 .prognumber = upper_clnt->cl_prog, 2648 .version = upper_clnt->cl_vers, 2649 .authflavor = RPC_AUTH_TLS, 2650 .cred = upper_clnt->cl_cred, 2651 .xprtsec = { 2652 .policy = RPC_XPRTSEC_NONE, 2653 }, 2654 .stats = upper_clnt->cl_stats, 2655 }; 2656 unsigned int pflags = current->flags; 2657 struct rpc_clnt *lower_clnt; 2658 struct rpc_xprt *lower_xprt; 2659 int status; 2660 2661 if (atomic_read(&upper_xprt->swapper)) 2662 current->flags |= PF_MEMALLOC; 2663 2664 xs_stream_start_connect(upper_transport); 2665 2666 /* This implicitly sends an RPC_AUTH_TLS probe */ 2667 lower_clnt = rpc_create(&args); 2668 if (IS_ERR(lower_clnt)) { 2669 trace_rpc_tls_unavailable(upper_clnt, upper_xprt); 2670 clear_bit(XPRT_SOCK_CONNECTING, &upper_transport->sock_state); 2671 xprt_clear_connecting(upper_xprt); 2672 xprt_wake_pending_tasks(upper_xprt, PTR_ERR(lower_clnt)); 2673 xs_run_error_worker(upper_transport, XPRT_SOCK_WAKE_PENDING); 2674 goto out_unlock; 2675 } 2676 2677 /* RPC_AUTH_TLS probe was successful. Try a TLS handshake on 2678 * the lower xprt. 2679 */ 2680 rcu_read_lock(); 2681 lower_xprt = rcu_dereference(lower_clnt->cl_xprt); 2682 rcu_read_unlock(); 2683 2684 if (wait_on_bit_lock(&lower_xprt->state, XPRT_LOCKED, TASK_KILLABLE)) 2685 goto out_unlock; 2686 2687 status = xs_tls_handshake_sync(lower_xprt, &upper_xprt->xprtsec); 2688 if (status) { 2689 trace_rpc_tls_not_started(upper_clnt, upper_xprt); 2690 goto out_close; 2691 } 2692 2693 status = xs_tcp_tls_finish_connecting(lower_xprt, upper_transport); 2694 if (status) 2695 goto out_close; 2696 xprt_release_write(lower_xprt, NULL); 2697 2698 trace_rpc_socket_connect(upper_xprt, upper_transport->sock, 0); 2699 if (!xprt_test_and_set_connected(upper_xprt)) { 2700 upper_xprt->connect_cookie++; 2701 clear_bit(XPRT_SOCK_CONNECTING, &upper_transport->sock_state); 2702 xprt_clear_connecting(upper_xprt); 2703 2704 upper_xprt->stat.connect_count++; 2705 upper_xprt->stat.connect_time += (long)jiffies - 2706 upper_xprt->stat.connect_start; 2707 xs_run_error_worker(upper_transport, XPRT_SOCK_WAKE_PENDING); 2708 } 2709 rpc_shutdown_client(lower_clnt); 2710 2711 out_unlock: 2712 current_restore_flags(pflags, PF_MEMALLOC); 2713 upper_transport->clnt = NULL; 2714 xprt_unlock_connect(upper_xprt, upper_transport); 2715 return; 2716 2717 out_close: 2718 xprt_release_write(lower_xprt, NULL); 2719 rpc_shutdown_client(lower_clnt); 2720 2721 /* xprt_force_disconnect() wakes tasks with a fixed tk_status code. 2722 * Wake them first here to ensure they get our tk_status code. 2723 */ 2724 xprt_wake_pending_tasks(upper_xprt, status); 2725 xs_tcp_force_close(upper_xprt); 2726 xprt_clear_connecting(upper_xprt); 2727 goto out_unlock; 2728 } 2729 2730 /** 2731 * xs_connect - connect a socket to a remote endpoint 2732 * @xprt: pointer to transport structure 2733 * @task: address of RPC task that manages state of connect request 2734 * 2735 * TCP: If the remote end dropped the connection, delay reconnecting. 2736 * 2737 * UDP socket connects are synchronous, but we use a work queue anyway 2738 * to guarantee that even unprivileged user processes can set up a 2739 * socket on a privileged port. 2740 * 2741 * If a UDP socket connect fails, the delay behavior here prevents 2742 * retry floods (hard mounts). 2743 */ 2744 static void xs_connect(struct rpc_xprt *xprt, struct rpc_task *task) 2745 { 2746 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2747 unsigned long delay = 0; 2748 2749 WARN_ON_ONCE(!xprt_lock_connect(xprt, task, transport)); 2750 2751 if (transport->sock != NULL) { 2752 dprintk("RPC: xs_connect delayed xprt %p for %lu " 2753 "seconds\n", xprt, xprt->reestablish_timeout / HZ); 2754 2755 delay = xprt_reconnect_delay(xprt); 2756 xprt_reconnect_backoff(xprt, XS_TCP_INIT_REEST_TO); 2757 2758 } else 2759 dprintk("RPC: xs_connect scheduled xprt %p\n", xprt); 2760 2761 transport->clnt = task->tk_client; 2762 queue_delayed_work(xprtiod_workqueue, 2763 &transport->connect_worker, 2764 delay); 2765 } 2766 2767 static void xs_wake_disconnect(struct sock_xprt *transport) 2768 { 2769 if (test_and_clear_bit(XPRT_SOCK_WAKE_DISCONNECT, &transport->sock_state)) 2770 xs_tcp_force_close(&transport->xprt); 2771 } 2772 2773 static void xs_wake_write(struct sock_xprt *transport) 2774 { 2775 if (test_and_clear_bit(XPRT_SOCK_WAKE_WRITE, &transport->sock_state)) 2776 xprt_write_space(&transport->xprt); 2777 } 2778 2779 static void xs_wake_error(struct sock_xprt *transport) 2780 { 2781 int sockerr; 2782 2783 if (!test_bit(XPRT_SOCK_WAKE_ERROR, &transport->sock_state)) 2784 return; 2785 mutex_lock(&transport->recv_mutex); 2786 if (transport->sock == NULL) 2787 goto out; 2788 if (!test_and_clear_bit(XPRT_SOCK_WAKE_ERROR, &transport->sock_state)) 2789 goto out; 2790 sockerr = xchg(&transport->xprt_err, 0); 2791 if (sockerr < 0) 2792 xprt_wake_pending_tasks(&transport->xprt, sockerr); 2793 out: 2794 mutex_unlock(&transport->recv_mutex); 2795 } 2796 2797 static void xs_wake_pending(struct sock_xprt *transport) 2798 { 2799 if (test_and_clear_bit(XPRT_SOCK_WAKE_PENDING, &transport->sock_state)) 2800 xprt_wake_pending_tasks(&transport->xprt, -EAGAIN); 2801 } 2802 2803 static void xs_error_handle(struct work_struct *work) 2804 { 2805 struct sock_xprt *transport = container_of(work, 2806 struct sock_xprt, error_worker); 2807 2808 xs_wake_disconnect(transport); 2809 xs_wake_write(transport); 2810 xs_wake_error(transport); 2811 xs_wake_pending(transport); 2812 } 2813 2814 /** 2815 * xs_local_print_stats - display AF_LOCAL socket-specific stats 2816 * @xprt: rpc_xprt struct containing statistics 2817 * @seq: output file 2818 * 2819 */ 2820 static void xs_local_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 2821 { 2822 long idle_time = 0; 2823 2824 if (xprt_connected(xprt)) 2825 idle_time = (long)(jiffies - xprt->last_used) / HZ; 2826 2827 seq_printf(seq, "\txprt:\tlocal %lu %lu %lu %ld %lu %lu %lu " 2828 "%llu %llu %lu %llu %llu\n", 2829 xprt->stat.bind_count, 2830 xprt->stat.connect_count, 2831 xprt->stat.connect_time / HZ, 2832 idle_time, 2833 xprt->stat.sends, 2834 xprt->stat.recvs, 2835 xprt->stat.bad_xids, 2836 xprt->stat.req_u, 2837 xprt->stat.bklog_u, 2838 xprt->stat.max_slots, 2839 xprt->stat.sending_u, 2840 xprt->stat.pending_u); 2841 } 2842 2843 /** 2844 * xs_udp_print_stats - display UDP socket-specific stats 2845 * @xprt: rpc_xprt struct containing statistics 2846 * @seq: output file 2847 * 2848 */ 2849 static void xs_udp_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 2850 { 2851 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2852 2853 seq_printf(seq, "\txprt:\tudp %u %lu %lu %lu %lu %llu %llu " 2854 "%lu %llu %llu\n", 2855 transport->srcport, 2856 xprt->stat.bind_count, 2857 xprt->stat.sends, 2858 xprt->stat.recvs, 2859 xprt->stat.bad_xids, 2860 xprt->stat.req_u, 2861 xprt->stat.bklog_u, 2862 xprt->stat.max_slots, 2863 xprt->stat.sending_u, 2864 xprt->stat.pending_u); 2865 } 2866 2867 /** 2868 * xs_tcp_print_stats - display TCP socket-specific stats 2869 * @xprt: rpc_xprt struct containing statistics 2870 * @seq: output file 2871 * 2872 */ 2873 static void xs_tcp_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 2874 { 2875 struct sock_xprt *transport = container_of(xprt, struct sock_xprt, xprt); 2876 long idle_time = 0; 2877 2878 if (xprt_connected(xprt)) 2879 idle_time = (long)(jiffies - xprt->last_used) / HZ; 2880 2881 seq_printf(seq, "\txprt:\ttcp %u %lu %lu %lu %ld %lu %lu %lu " 2882 "%llu %llu %lu %llu %llu\n", 2883 transport->srcport, 2884 xprt->stat.bind_count, 2885 xprt->stat.connect_count, 2886 xprt->stat.connect_time / HZ, 2887 idle_time, 2888 xprt->stat.sends, 2889 xprt->stat.recvs, 2890 xprt->stat.bad_xids, 2891 xprt->stat.req_u, 2892 xprt->stat.bklog_u, 2893 xprt->stat.max_slots, 2894 xprt->stat.sending_u, 2895 xprt->stat.pending_u); 2896 } 2897 2898 /* 2899 * Allocate a bunch of pages for a scratch buffer for the rpc code. The reason 2900 * we allocate pages instead doing a kmalloc like rpc_malloc is because we want 2901 * to use the server side send routines. 2902 */ 2903 static int bc_malloc(struct rpc_task *task) 2904 { 2905 struct rpc_rqst *rqst = task->tk_rqstp; 2906 size_t size = rqst->rq_callsize; 2907 struct page *page; 2908 struct rpc_buffer *buf; 2909 2910 if (size > PAGE_SIZE - sizeof(struct rpc_buffer)) { 2911 WARN_ONCE(1, "xprtsock: large bc buffer request (size %zu)\n", 2912 size); 2913 return -EINVAL; 2914 } 2915 2916 page = alloc_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); 2917 if (!page) 2918 return -ENOMEM; 2919 2920 buf = page_address(page); 2921 buf->len = PAGE_SIZE; 2922 2923 rqst->rq_buffer = buf->data; 2924 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize; 2925 return 0; 2926 } 2927 2928 /* 2929 * Free the space allocated in the bc_alloc routine 2930 */ 2931 static void bc_free(struct rpc_task *task) 2932 { 2933 void *buffer = task->tk_rqstp->rq_buffer; 2934 struct rpc_buffer *buf; 2935 2936 buf = container_of(buffer, struct rpc_buffer, data); 2937 free_page((unsigned long)buf); 2938 } 2939 2940 static int bc_sendto(struct rpc_rqst *req) 2941 { 2942 struct xdr_buf *xdr = &req->rq_snd_buf; 2943 struct sock_xprt *transport = 2944 container_of(req->rq_xprt, struct sock_xprt, xprt); 2945 struct msghdr msg = { 2946 .msg_flags = 0, 2947 }; 2948 rpc_fraghdr marker = cpu_to_be32(RPC_LAST_STREAM_FRAGMENT | 2949 (u32)xdr->len); 2950 unsigned int sent = 0; 2951 int err; 2952 2953 req->rq_xtime = ktime_get(); 2954 err = xdr_alloc_bvec(xdr, rpc_task_gfp_mask()); 2955 if (err < 0) 2956 return err; 2957 err = xprt_sock_sendmsg(transport->sock, &msg, xdr, 0, marker, &sent); 2958 xdr_free_bvec(xdr); 2959 if (err < 0 || sent != (xdr->len + sizeof(marker))) 2960 return -EAGAIN; 2961 return sent; 2962 } 2963 2964 /** 2965 * bc_send_request - Send a backchannel Call on a TCP socket 2966 * @req: rpc_rqst containing Call message to be sent 2967 * 2968 * xpt_mutex ensures @rqstp's whole message is written to the socket 2969 * without interruption. 2970 * 2971 * Return values: 2972 * %0 if the message was sent successfully 2973 * %ENOTCONN if the message was not sent 2974 */ 2975 static int bc_send_request(struct rpc_rqst *req) 2976 { 2977 struct svc_xprt *xprt; 2978 int len; 2979 2980 /* 2981 * Get the server socket associated with this callback xprt 2982 */ 2983 xprt = req->rq_xprt->bc_xprt; 2984 2985 /* 2986 * Grab the mutex to serialize data as the connection is shared 2987 * with the fore channel 2988 */ 2989 mutex_lock(&xprt->xpt_mutex); 2990 if (test_bit(XPT_DEAD, &xprt->xpt_flags)) 2991 len = -ENOTCONN; 2992 else 2993 len = bc_sendto(req); 2994 mutex_unlock(&xprt->xpt_mutex); 2995 2996 if (len > 0) 2997 len = 0; 2998 2999 return len; 3000 } 3001 3002 /* 3003 * The close routine. Since this is client initiated, we do nothing 3004 */ 3005 3006 static void bc_close(struct rpc_xprt *xprt) 3007 { 3008 xprt_disconnect_done(xprt); 3009 } 3010 3011 /* 3012 * The xprt destroy routine. Again, because this connection is client 3013 * initiated, we do nothing 3014 */ 3015 3016 static void bc_destroy(struct rpc_xprt *xprt) 3017 { 3018 dprintk("RPC: bc_destroy xprt %p\n", xprt); 3019 3020 xs_xprt_free(xprt); 3021 module_put(THIS_MODULE); 3022 } 3023 3024 static const struct rpc_xprt_ops xs_local_ops = { 3025 .reserve_xprt = xprt_reserve_xprt, 3026 .release_xprt = xprt_release_xprt, 3027 .alloc_slot = xprt_alloc_slot, 3028 .free_slot = xprt_free_slot, 3029 .rpcbind = xs_local_rpcbind, 3030 .set_port = xs_local_set_port, 3031 .connect = xs_local_connect, 3032 .buf_alloc = rpc_malloc, 3033 .buf_free = rpc_free, 3034 .prepare_request = xs_stream_prepare_request, 3035 .send_request = xs_local_send_request, 3036 .wait_for_reply_request = xprt_wait_for_reply_request_def, 3037 .close = xs_close, 3038 .destroy = xs_destroy, 3039 .print_stats = xs_local_print_stats, 3040 .enable_swap = xs_enable_swap, 3041 .disable_swap = xs_disable_swap, 3042 }; 3043 3044 static const struct rpc_xprt_ops xs_udp_ops = { 3045 .set_buffer_size = xs_udp_set_buffer_size, 3046 .reserve_xprt = xprt_reserve_xprt_cong, 3047 .release_xprt = xprt_release_xprt_cong, 3048 .alloc_slot = xprt_alloc_slot, 3049 .free_slot = xprt_free_slot, 3050 .rpcbind = rpcb_getport_async, 3051 .set_port = xs_set_port, 3052 .connect = xs_connect, 3053 .get_srcaddr = xs_sock_srcaddr, 3054 .get_srcport = xs_sock_srcport, 3055 .buf_alloc = rpc_malloc, 3056 .buf_free = rpc_free, 3057 .send_request = xs_udp_send_request, 3058 .wait_for_reply_request = xprt_wait_for_reply_request_rtt, 3059 .timer = xs_udp_timer, 3060 .release_request = xprt_release_rqst_cong, 3061 .close = xs_close, 3062 .destroy = xs_destroy, 3063 .print_stats = xs_udp_print_stats, 3064 .enable_swap = xs_enable_swap, 3065 .disable_swap = xs_disable_swap, 3066 .inject_disconnect = xs_inject_disconnect, 3067 }; 3068 3069 static const struct rpc_xprt_ops xs_tcp_ops = { 3070 .reserve_xprt = xprt_reserve_xprt, 3071 .release_xprt = xprt_release_xprt, 3072 .alloc_slot = xprt_alloc_slot, 3073 .free_slot = xprt_free_slot, 3074 .rpcbind = rpcb_getport_async, 3075 .set_port = xs_set_port, 3076 .connect = xs_connect, 3077 .get_srcaddr = xs_sock_srcaddr, 3078 .get_srcport = xs_sock_srcport, 3079 .buf_alloc = rpc_malloc, 3080 .buf_free = rpc_free, 3081 .prepare_request = xs_stream_prepare_request, 3082 .send_request = xs_tcp_send_request, 3083 .wait_for_reply_request = xprt_wait_for_reply_request_def, 3084 .close = xs_tcp_shutdown, 3085 .destroy = xs_destroy, 3086 .set_connect_timeout = xs_tcp_set_connect_timeout, 3087 .print_stats = xs_tcp_print_stats, 3088 .enable_swap = xs_enable_swap, 3089 .disable_swap = xs_disable_swap, 3090 .inject_disconnect = xs_inject_disconnect, 3091 #ifdef CONFIG_SUNRPC_BACKCHANNEL 3092 .bc_setup = xprt_setup_bc, 3093 .bc_maxpayload = xs_tcp_bc_maxpayload, 3094 .bc_num_slots = xprt_bc_max_slots, 3095 .bc_free_rqst = xprt_free_bc_rqst, 3096 .bc_destroy = xprt_destroy_bc, 3097 #endif 3098 }; 3099 3100 /* 3101 * The rpc_xprt_ops for the server backchannel 3102 */ 3103 3104 static const struct rpc_xprt_ops bc_tcp_ops = { 3105 .reserve_xprt = xprt_reserve_xprt, 3106 .release_xprt = xprt_release_xprt, 3107 .alloc_slot = xprt_alloc_slot, 3108 .free_slot = xprt_free_slot, 3109 .buf_alloc = bc_malloc, 3110 .buf_free = bc_free, 3111 .send_request = bc_send_request, 3112 .wait_for_reply_request = xprt_wait_for_reply_request_def, 3113 .close = bc_close, 3114 .destroy = bc_destroy, 3115 .print_stats = xs_tcp_print_stats, 3116 .enable_swap = xs_enable_swap, 3117 .disable_swap = xs_disable_swap, 3118 .inject_disconnect = xs_inject_disconnect, 3119 }; 3120 3121 static int xs_init_anyaddr(const int family, struct sockaddr *sap) 3122 { 3123 static const struct sockaddr_in sin = { 3124 .sin_family = AF_INET, 3125 .sin_addr.s_addr = htonl(INADDR_ANY), 3126 }; 3127 static const struct sockaddr_in6 sin6 = { 3128 .sin6_family = AF_INET6, 3129 .sin6_addr = IN6ADDR_ANY_INIT, 3130 }; 3131 3132 switch (family) { 3133 case AF_LOCAL: 3134 break; 3135 case AF_INET: 3136 memcpy(sap, &sin, sizeof(sin)); 3137 break; 3138 case AF_INET6: 3139 memcpy(sap, &sin6, sizeof(sin6)); 3140 break; 3141 default: 3142 dprintk("RPC: %s: Bad address family\n", __func__); 3143 return -EAFNOSUPPORT; 3144 } 3145 return 0; 3146 } 3147 3148 static struct rpc_xprt *xs_setup_xprt(struct xprt_create *args, 3149 unsigned int slot_table_size, 3150 unsigned int max_slot_table_size) 3151 { 3152 struct rpc_xprt *xprt; 3153 struct sock_xprt *new; 3154 3155 if (args->addrlen > sizeof(xprt->addr)) { 3156 dprintk("RPC: xs_setup_xprt: address too large\n"); 3157 return ERR_PTR(-EBADF); 3158 } 3159 3160 xprt = xprt_alloc(args->net, sizeof(*new), slot_table_size, 3161 max_slot_table_size); 3162 if (xprt == NULL) { 3163 dprintk("RPC: xs_setup_xprt: couldn't allocate " 3164 "rpc_xprt\n"); 3165 return ERR_PTR(-ENOMEM); 3166 } 3167 3168 new = container_of(xprt, struct sock_xprt, xprt); 3169 mutex_init(&new->recv_mutex); 3170 memcpy(&xprt->addr, args->dstaddr, args->addrlen); 3171 xprt->addrlen = args->addrlen; 3172 if (args->srcaddr) 3173 memcpy(&new->srcaddr, args->srcaddr, args->addrlen); 3174 else { 3175 int err; 3176 err = xs_init_anyaddr(args->dstaddr->sa_family, 3177 (struct sockaddr *)&new->srcaddr); 3178 if (err != 0) { 3179 xprt_free(xprt); 3180 return ERR_PTR(err); 3181 } 3182 } 3183 3184 return xprt; 3185 } 3186 3187 static const struct rpc_timeout xs_local_default_timeout = { 3188 .to_initval = 10 * HZ, 3189 .to_maxval = 10 * HZ, 3190 .to_retries = 2, 3191 }; 3192 3193 /** 3194 * xs_setup_local - Set up transport to use an AF_LOCAL socket 3195 * @args: rpc transport creation arguments 3196 * 3197 * AF_LOCAL is a "tpi_cots_ord" transport, just like TCP 3198 */ 3199 static struct rpc_xprt *xs_setup_local(struct xprt_create *args) 3200 { 3201 struct sockaddr_un *sun = (struct sockaddr_un *)args->dstaddr; 3202 struct sock_xprt *transport; 3203 struct rpc_xprt *xprt; 3204 struct rpc_xprt *ret; 3205 3206 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries, 3207 xprt_max_tcp_slot_table_entries); 3208 if (IS_ERR(xprt)) 3209 return xprt; 3210 transport = container_of(xprt, struct sock_xprt, xprt); 3211 3212 xprt->prot = 0; 3213 xprt->xprt_class = &xs_local_transport; 3214 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE; 3215 3216 xprt->bind_timeout = XS_BIND_TO; 3217 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 3218 xprt->idle_timeout = XS_IDLE_DISC_TO; 3219 3220 xprt->ops = &xs_local_ops; 3221 xprt->timeout = &xs_local_default_timeout; 3222 3223 INIT_WORK(&transport->recv_worker, xs_stream_data_receive_workfn); 3224 INIT_WORK(&transport->error_worker, xs_error_handle); 3225 INIT_DELAYED_WORK(&transport->connect_worker, xs_dummy_setup_socket); 3226 3227 switch (sun->sun_family) { 3228 case AF_LOCAL: 3229 if (sun->sun_path[0] != '/' && sun->sun_path[0] != '\0') { 3230 dprintk("RPC: bad AF_LOCAL address: %s\n", 3231 sun->sun_path); 3232 ret = ERR_PTR(-EINVAL); 3233 goto out_err; 3234 } 3235 xprt_set_bound(xprt); 3236 xs_format_peer_addresses(xprt, "local", RPCBIND_NETID_LOCAL); 3237 break; 3238 default: 3239 ret = ERR_PTR(-EAFNOSUPPORT); 3240 goto out_err; 3241 } 3242 3243 dprintk("RPC: set up xprt to %s via AF_LOCAL\n", 3244 xprt->address_strings[RPC_DISPLAY_ADDR]); 3245 3246 if (try_module_get(THIS_MODULE)) 3247 return xprt; 3248 ret = ERR_PTR(-EINVAL); 3249 out_err: 3250 xs_xprt_free(xprt); 3251 return ret; 3252 } 3253 3254 static const struct rpc_timeout xs_udp_default_timeout = { 3255 .to_initval = 5 * HZ, 3256 .to_maxval = 30 * HZ, 3257 .to_increment = 5 * HZ, 3258 .to_retries = 5, 3259 }; 3260 3261 /** 3262 * xs_setup_udp - Set up transport to use a UDP socket 3263 * @args: rpc transport creation arguments 3264 * 3265 */ 3266 static struct rpc_xprt *xs_setup_udp(struct xprt_create *args) 3267 { 3268 struct sockaddr *addr = args->dstaddr; 3269 struct rpc_xprt *xprt; 3270 struct sock_xprt *transport; 3271 struct rpc_xprt *ret; 3272 3273 xprt = xs_setup_xprt(args, xprt_udp_slot_table_entries, 3274 xprt_udp_slot_table_entries); 3275 if (IS_ERR(xprt)) 3276 return xprt; 3277 transport = container_of(xprt, struct sock_xprt, xprt); 3278 3279 xprt->prot = IPPROTO_UDP; 3280 xprt->xprt_class = &xs_udp_transport; 3281 /* XXX: header size can vary due to auth type, IPv6, etc. */ 3282 xprt->max_payload = (1U << 16) - (MAX_HEADER << 3); 3283 3284 xprt->bind_timeout = XS_BIND_TO; 3285 xprt->reestablish_timeout = XS_UDP_REEST_TO; 3286 xprt->idle_timeout = XS_IDLE_DISC_TO; 3287 3288 xprt->ops = &xs_udp_ops; 3289 3290 xprt->timeout = &xs_udp_default_timeout; 3291 3292 INIT_WORK(&transport->recv_worker, xs_udp_data_receive_workfn); 3293 INIT_WORK(&transport->error_worker, xs_error_handle); 3294 INIT_DELAYED_WORK(&transport->connect_worker, xs_udp_setup_socket); 3295 3296 switch (addr->sa_family) { 3297 case AF_INET: 3298 if (((struct sockaddr_in *)addr)->sin_port != htons(0)) 3299 xprt_set_bound(xprt); 3300 3301 xs_format_peer_addresses(xprt, "udp", RPCBIND_NETID_UDP); 3302 break; 3303 case AF_INET6: 3304 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0)) 3305 xprt_set_bound(xprt); 3306 3307 xs_format_peer_addresses(xprt, "udp", RPCBIND_NETID_UDP6); 3308 break; 3309 default: 3310 ret = ERR_PTR(-EAFNOSUPPORT); 3311 goto out_err; 3312 } 3313 3314 if (xprt_bound(xprt)) 3315 dprintk("RPC: set up xprt to %s (port %s) via %s\n", 3316 xprt->address_strings[RPC_DISPLAY_ADDR], 3317 xprt->address_strings[RPC_DISPLAY_PORT], 3318 xprt->address_strings[RPC_DISPLAY_PROTO]); 3319 else 3320 dprintk("RPC: set up xprt to %s (autobind) via %s\n", 3321 xprt->address_strings[RPC_DISPLAY_ADDR], 3322 xprt->address_strings[RPC_DISPLAY_PROTO]); 3323 3324 if (try_module_get(THIS_MODULE)) 3325 return xprt; 3326 ret = ERR_PTR(-EINVAL); 3327 out_err: 3328 xs_xprt_free(xprt); 3329 return ret; 3330 } 3331 3332 static const struct rpc_timeout xs_tcp_default_timeout = { 3333 .to_initval = 60 * HZ, 3334 .to_maxval = 60 * HZ, 3335 .to_retries = 2, 3336 }; 3337 3338 /** 3339 * xs_setup_tcp - Set up transport to use a TCP socket 3340 * @args: rpc transport creation arguments 3341 * 3342 */ 3343 static struct rpc_xprt *xs_setup_tcp(struct xprt_create *args) 3344 { 3345 struct sockaddr *addr = args->dstaddr; 3346 struct rpc_xprt *xprt; 3347 struct sock_xprt *transport; 3348 struct rpc_xprt *ret; 3349 unsigned int max_slot_table_size = xprt_max_tcp_slot_table_entries; 3350 3351 if (args->flags & XPRT_CREATE_INFINITE_SLOTS) 3352 max_slot_table_size = RPC_MAX_SLOT_TABLE_LIMIT; 3353 3354 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries, 3355 max_slot_table_size); 3356 if (IS_ERR(xprt)) 3357 return xprt; 3358 transport = container_of(xprt, struct sock_xprt, xprt); 3359 3360 xprt->prot = IPPROTO_TCP; 3361 xprt->xprt_class = &xs_tcp_transport; 3362 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE; 3363 3364 xprt->bind_timeout = XS_BIND_TO; 3365 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 3366 xprt->idle_timeout = XS_IDLE_DISC_TO; 3367 3368 xprt->ops = &xs_tcp_ops; 3369 xprt->timeout = &xs_tcp_default_timeout; 3370 3371 xprt->max_reconnect_timeout = xprt->timeout->to_maxval; 3372 if (args->reconnect_timeout) 3373 xprt->max_reconnect_timeout = args->reconnect_timeout; 3374 3375 xprt->connect_timeout = xprt->timeout->to_initval * 3376 (xprt->timeout->to_retries + 1); 3377 if (args->connect_timeout) 3378 xs_tcp_do_set_connect_timeout(xprt, args->connect_timeout); 3379 3380 INIT_WORK(&transport->recv_worker, xs_stream_data_receive_workfn); 3381 INIT_WORK(&transport->error_worker, xs_error_handle); 3382 INIT_DELAYED_WORK(&transport->connect_worker, xs_tcp_setup_socket); 3383 3384 switch (addr->sa_family) { 3385 case AF_INET: 3386 if (((struct sockaddr_in *)addr)->sin_port != htons(0)) 3387 xprt_set_bound(xprt); 3388 3389 xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP); 3390 break; 3391 case AF_INET6: 3392 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0)) 3393 xprt_set_bound(xprt); 3394 3395 xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP6); 3396 break; 3397 default: 3398 ret = ERR_PTR(-EAFNOSUPPORT); 3399 goto out_err; 3400 } 3401 3402 if (xprt_bound(xprt)) 3403 dprintk("RPC: set up xprt to %s (port %s) via %s\n", 3404 xprt->address_strings[RPC_DISPLAY_ADDR], 3405 xprt->address_strings[RPC_DISPLAY_PORT], 3406 xprt->address_strings[RPC_DISPLAY_PROTO]); 3407 else 3408 dprintk("RPC: set up xprt to %s (autobind) via %s\n", 3409 xprt->address_strings[RPC_DISPLAY_ADDR], 3410 xprt->address_strings[RPC_DISPLAY_PROTO]); 3411 3412 if (try_module_get(THIS_MODULE)) 3413 return xprt; 3414 ret = ERR_PTR(-EINVAL); 3415 out_err: 3416 xs_xprt_free(xprt); 3417 return ret; 3418 } 3419 3420 /** 3421 * xs_setup_tcp_tls - Set up transport to use a TCP with TLS 3422 * @args: rpc transport creation arguments 3423 * 3424 */ 3425 static struct rpc_xprt *xs_setup_tcp_tls(struct xprt_create *args) 3426 { 3427 struct sockaddr *addr = args->dstaddr; 3428 struct rpc_xprt *xprt; 3429 struct sock_xprt *transport; 3430 struct rpc_xprt *ret; 3431 unsigned int max_slot_table_size = xprt_max_tcp_slot_table_entries; 3432 3433 if (args->flags & XPRT_CREATE_INFINITE_SLOTS) 3434 max_slot_table_size = RPC_MAX_SLOT_TABLE_LIMIT; 3435 3436 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries, 3437 max_slot_table_size); 3438 if (IS_ERR(xprt)) 3439 return xprt; 3440 transport = container_of(xprt, struct sock_xprt, xprt); 3441 3442 xprt->prot = IPPROTO_TCP; 3443 xprt->xprt_class = &xs_tcp_transport; 3444 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE; 3445 3446 xprt->bind_timeout = XS_BIND_TO; 3447 xprt->reestablish_timeout = XS_TCP_INIT_REEST_TO; 3448 xprt->idle_timeout = XS_IDLE_DISC_TO; 3449 3450 xprt->ops = &xs_tcp_ops; 3451 xprt->timeout = &xs_tcp_default_timeout; 3452 3453 xprt->max_reconnect_timeout = xprt->timeout->to_maxval; 3454 xprt->connect_timeout = xprt->timeout->to_initval * 3455 (xprt->timeout->to_retries + 1); 3456 3457 INIT_WORK(&transport->recv_worker, xs_stream_data_receive_workfn); 3458 INIT_WORK(&transport->error_worker, xs_error_handle); 3459 3460 switch (args->xprtsec.policy) { 3461 case RPC_XPRTSEC_TLS_ANON: 3462 case RPC_XPRTSEC_TLS_X509: 3463 xprt->xprtsec = args->xprtsec; 3464 INIT_DELAYED_WORK(&transport->connect_worker, 3465 xs_tcp_tls_setup_socket); 3466 break; 3467 default: 3468 ret = ERR_PTR(-EACCES); 3469 goto out_err; 3470 } 3471 3472 switch (addr->sa_family) { 3473 case AF_INET: 3474 if (((struct sockaddr_in *)addr)->sin_port != htons(0)) 3475 xprt_set_bound(xprt); 3476 3477 xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP); 3478 break; 3479 case AF_INET6: 3480 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0)) 3481 xprt_set_bound(xprt); 3482 3483 xs_format_peer_addresses(xprt, "tcp", RPCBIND_NETID_TCP6); 3484 break; 3485 default: 3486 ret = ERR_PTR(-EAFNOSUPPORT); 3487 goto out_err; 3488 } 3489 3490 if (xprt_bound(xprt)) 3491 dprintk("RPC: set up xprt to %s (port %s) via %s\n", 3492 xprt->address_strings[RPC_DISPLAY_ADDR], 3493 xprt->address_strings[RPC_DISPLAY_PORT], 3494 xprt->address_strings[RPC_DISPLAY_PROTO]); 3495 else 3496 dprintk("RPC: set up xprt to %s (autobind) via %s\n", 3497 xprt->address_strings[RPC_DISPLAY_ADDR], 3498 xprt->address_strings[RPC_DISPLAY_PROTO]); 3499 3500 if (try_module_get(THIS_MODULE)) 3501 return xprt; 3502 ret = ERR_PTR(-EINVAL); 3503 out_err: 3504 xs_xprt_free(xprt); 3505 return ret; 3506 } 3507 3508 /** 3509 * xs_setup_bc_tcp - Set up transport to use a TCP backchannel socket 3510 * @args: rpc transport creation arguments 3511 * 3512 */ 3513 static struct rpc_xprt *xs_setup_bc_tcp(struct xprt_create *args) 3514 { 3515 struct sockaddr *addr = args->dstaddr; 3516 struct rpc_xprt *xprt; 3517 struct sock_xprt *transport; 3518 struct svc_sock *bc_sock; 3519 struct rpc_xprt *ret; 3520 3521 xprt = xs_setup_xprt(args, xprt_tcp_slot_table_entries, 3522 xprt_tcp_slot_table_entries); 3523 if (IS_ERR(xprt)) 3524 return xprt; 3525 transport = container_of(xprt, struct sock_xprt, xprt); 3526 3527 xprt->prot = IPPROTO_TCP; 3528 xprt->xprt_class = &xs_bc_tcp_transport; 3529 xprt->max_payload = RPC_MAX_FRAGMENT_SIZE; 3530 xprt->timeout = &xs_tcp_default_timeout; 3531 3532 /* backchannel */ 3533 xprt_set_bound(xprt); 3534 xprt->bind_timeout = 0; 3535 xprt->reestablish_timeout = 0; 3536 xprt->idle_timeout = 0; 3537 3538 xprt->ops = &bc_tcp_ops; 3539 3540 switch (addr->sa_family) { 3541 case AF_INET: 3542 xs_format_peer_addresses(xprt, "tcp", 3543 RPCBIND_NETID_TCP); 3544 break; 3545 case AF_INET6: 3546 xs_format_peer_addresses(xprt, "tcp", 3547 RPCBIND_NETID_TCP6); 3548 break; 3549 default: 3550 ret = ERR_PTR(-EAFNOSUPPORT); 3551 goto out_err; 3552 } 3553 3554 dprintk("RPC: set up xprt to %s (port %s) via %s\n", 3555 xprt->address_strings[RPC_DISPLAY_ADDR], 3556 xprt->address_strings[RPC_DISPLAY_PORT], 3557 xprt->address_strings[RPC_DISPLAY_PROTO]); 3558 3559 /* 3560 * Once we've associated a backchannel xprt with a connection, 3561 * we want to keep it around as long as the connection lasts, 3562 * in case we need to start using it for a backchannel again; 3563 * this reference won't be dropped until bc_xprt is destroyed. 3564 */ 3565 xprt_get(xprt); 3566 args->bc_xprt->xpt_bc_xprt = xprt; 3567 xprt->bc_xprt = args->bc_xprt; 3568 bc_sock = container_of(args->bc_xprt, struct svc_sock, sk_xprt); 3569 transport->sock = bc_sock->sk_sock; 3570 transport->inet = bc_sock->sk_sk; 3571 3572 /* 3573 * Since we don't want connections for the backchannel, we set 3574 * the xprt status to connected 3575 */ 3576 xprt_set_connected(xprt); 3577 3578 if (try_module_get(THIS_MODULE)) 3579 return xprt; 3580 3581 args->bc_xprt->xpt_bc_xprt = NULL; 3582 args->bc_xprt->xpt_bc_xps = NULL; 3583 xprt_put(xprt); 3584 ret = ERR_PTR(-EINVAL); 3585 out_err: 3586 xs_xprt_free(xprt); 3587 return ret; 3588 } 3589 3590 static struct xprt_class xs_local_transport = { 3591 .list = LIST_HEAD_INIT(xs_local_transport.list), 3592 .name = "named UNIX socket", 3593 .owner = THIS_MODULE, 3594 .ident = XPRT_TRANSPORT_LOCAL, 3595 .setup = xs_setup_local, 3596 .netid = { "" }, 3597 }; 3598 3599 static struct xprt_class xs_udp_transport = { 3600 .list = LIST_HEAD_INIT(xs_udp_transport.list), 3601 .name = "udp", 3602 .owner = THIS_MODULE, 3603 .ident = XPRT_TRANSPORT_UDP, 3604 .setup = xs_setup_udp, 3605 .netid = { "udp", "udp6", "" }, 3606 }; 3607 3608 static struct xprt_class xs_tcp_transport = { 3609 .list = LIST_HEAD_INIT(xs_tcp_transport.list), 3610 .name = "tcp", 3611 .owner = THIS_MODULE, 3612 .ident = XPRT_TRANSPORT_TCP, 3613 .setup = xs_setup_tcp, 3614 .netid = { "tcp", "tcp6", "" }, 3615 }; 3616 3617 static struct xprt_class xs_tcp_tls_transport = { 3618 .list = LIST_HEAD_INIT(xs_tcp_tls_transport.list), 3619 .name = "tcp-with-tls", 3620 .owner = THIS_MODULE, 3621 .ident = XPRT_TRANSPORT_TCP_TLS, 3622 .setup = xs_setup_tcp_tls, 3623 .netid = { "tcp", "tcp6", "" }, 3624 }; 3625 3626 static struct xprt_class xs_bc_tcp_transport = { 3627 .list = LIST_HEAD_INIT(xs_bc_tcp_transport.list), 3628 .name = "tcp NFSv4.1 backchannel", 3629 .owner = THIS_MODULE, 3630 .ident = XPRT_TRANSPORT_BC_TCP, 3631 .setup = xs_setup_bc_tcp, 3632 .netid = { "" }, 3633 }; 3634 3635 /** 3636 * init_socket_xprt - set up xprtsock's sysctls, register with RPC client 3637 * 3638 */ 3639 int init_socket_xprt(void) 3640 { 3641 if (!sunrpc_table_header) 3642 sunrpc_table_header = register_sysctl("sunrpc", xs_tunables_table); 3643 3644 xprt_register_transport(&xs_local_transport); 3645 xprt_register_transport(&xs_udp_transport); 3646 xprt_register_transport(&xs_tcp_transport); 3647 xprt_register_transport(&xs_tcp_tls_transport); 3648 xprt_register_transport(&xs_bc_tcp_transport); 3649 3650 return 0; 3651 } 3652 3653 /** 3654 * cleanup_socket_xprt - remove xprtsock's sysctls, unregister 3655 * 3656 */ 3657 void cleanup_socket_xprt(void) 3658 { 3659 if (sunrpc_table_header) { 3660 unregister_sysctl_table(sunrpc_table_header); 3661 sunrpc_table_header = NULL; 3662 } 3663 3664 xprt_unregister_transport(&xs_local_transport); 3665 xprt_unregister_transport(&xs_udp_transport); 3666 xprt_unregister_transport(&xs_tcp_transport); 3667 xprt_unregister_transport(&xs_tcp_tls_transport); 3668 xprt_unregister_transport(&xs_bc_tcp_transport); 3669 } 3670 3671 static int param_set_portnr(const char *val, const struct kernel_param *kp) 3672 { 3673 return param_set_uint_minmax(val, kp, 3674 RPC_MIN_RESVPORT, 3675 RPC_MAX_RESVPORT); 3676 } 3677 3678 static const struct kernel_param_ops param_ops_portnr = { 3679 .set = param_set_portnr, 3680 .get = param_get_uint, 3681 }; 3682 3683 #define param_check_portnr(name, p) \ 3684 __param_check(name, p, unsigned int); 3685 3686 module_param_named(min_resvport, xprt_min_resvport, portnr, 0644); 3687 module_param_named(max_resvport, xprt_max_resvport, portnr, 0644); 3688 3689 static int param_set_slot_table_size(const char *val, 3690 const struct kernel_param *kp) 3691 { 3692 return param_set_uint_minmax(val, kp, 3693 RPC_MIN_SLOT_TABLE, 3694 RPC_MAX_SLOT_TABLE); 3695 } 3696 3697 static const struct kernel_param_ops param_ops_slot_table_size = { 3698 .set = param_set_slot_table_size, 3699 .get = param_get_uint, 3700 }; 3701 3702 #define param_check_slot_table_size(name, p) \ 3703 __param_check(name, p, unsigned int); 3704 3705 static int param_set_max_slot_table_size(const char *val, 3706 const struct kernel_param *kp) 3707 { 3708 return param_set_uint_minmax(val, kp, 3709 RPC_MIN_SLOT_TABLE, 3710 RPC_MAX_SLOT_TABLE_LIMIT); 3711 } 3712 3713 static const struct kernel_param_ops param_ops_max_slot_table_size = { 3714 .set = param_set_max_slot_table_size, 3715 .get = param_get_uint, 3716 }; 3717 3718 #define param_check_max_slot_table_size(name, p) \ 3719 __param_check(name, p, unsigned int); 3720 3721 module_param_named(tcp_slot_table_entries, xprt_tcp_slot_table_entries, 3722 slot_table_size, 0644); 3723 module_param_named(tcp_max_slot_table_entries, xprt_max_tcp_slot_table_entries, 3724 max_slot_table_size, 0644); 3725 module_param_named(udp_slot_table_entries, xprt_udp_slot_table_entries, 3726 slot_table_size, 0644); 3727