xref: /openbmc/linux/net/sunrpc/xprtrdma/verbs.c (revision f66501dc)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (c) 2014-2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the BSD-type
10  * license below:
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  *
16  *      Redistributions of source code must retain the above copyright
17  *      notice, this list of conditions and the following disclaimer.
18  *
19  *      Redistributions in binary form must reproduce the above
20  *      copyright notice, this list of conditions and the following
21  *      disclaimer in the documentation and/or other materials provided
22  *      with the distribution.
23  *
24  *      Neither the name of the Network Appliance, Inc. nor the names of
25  *      its contributors may be used to endorse or promote products
26  *      derived from this software without specific prior written
27  *      permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41 
42 /*
43  * verbs.c
44  *
45  * Encapsulates the major functions managing:
46  *  o adapters
47  *  o endpoints
48  *  o connections
49  *  o buffer memory
50  */
51 
52 #include <linux/interrupt.h>
53 #include <linux/slab.h>
54 #include <linux/sunrpc/addr.h>
55 #include <linux/sunrpc/svc_rdma.h>
56 
57 #include <asm-generic/barrier.h>
58 #include <asm/bitops.h>
59 
60 #include <rdma/ib_cm.h>
61 
62 #include "xprt_rdma.h"
63 #include <trace/events/rpcrdma.h>
64 
65 /*
66  * Globals/Macros
67  */
68 
69 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
70 # define RPCDBG_FACILITY	RPCDBG_TRANS
71 #endif
72 
73 /*
74  * internal functions
75  */
76 static void rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc);
77 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt);
78 static void rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf);
79 static struct rpcrdma_regbuf *
80 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
81 		     gfp_t flags);
82 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb);
83 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb);
84 static void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp);
85 
86 /* Wait for outstanding transport work to finish. ib_drain_qp
87  * handles the drains in the wrong order for us, so open code
88  * them here.
89  */
90 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt)
91 {
92 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
93 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
94 
95 	/* Flush Receives, then wait for deferred Reply work
96 	 * to complete.
97 	 */
98 	ib_drain_rq(ia->ri_id->qp);
99 	drain_workqueue(buf->rb_completion_wq);
100 
101 	/* Deferred Reply processing might have scheduled
102 	 * local invalidations.
103 	 */
104 	ib_drain_sq(ia->ri_id->qp);
105 }
106 
107 /**
108  * rpcrdma_qp_event_handler - Handle one QP event (error notification)
109  * @event: details of the event
110  * @context: ep that owns QP where event occurred
111  *
112  * Called from the RDMA provider (device driver) possibly in an interrupt
113  * context.
114  */
115 static void
116 rpcrdma_qp_event_handler(struct ib_event *event, void *context)
117 {
118 	struct rpcrdma_ep *ep = context;
119 	struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt,
120 						   rx_ep);
121 
122 	trace_xprtrdma_qp_event(r_xprt, event);
123 }
124 
125 /**
126  * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
127  * @cq:	completion queue (ignored)
128  * @wc:	completed WR
129  *
130  */
131 static void
132 rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
133 {
134 	struct ib_cqe *cqe = wc->wr_cqe;
135 	struct rpcrdma_sendctx *sc =
136 		container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
137 
138 	/* WARNING: Only wr_cqe and status are reliable at this point */
139 	trace_xprtrdma_wc_send(sc, wc);
140 	rpcrdma_sendctx_put_locked(sc);
141 }
142 
143 /**
144  * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
145  * @cq:	completion queue (ignored)
146  * @wc:	completed WR
147  *
148  */
149 static void
150 rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
151 {
152 	struct ib_cqe *cqe = wc->wr_cqe;
153 	struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
154 					       rr_cqe);
155 	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
156 
157 	/* WARNING: Only wr_cqe and status are reliable at this point */
158 	trace_xprtrdma_wc_receive(wc);
159 	--r_xprt->rx_ep.rep_receive_count;
160 	if (wc->status != IB_WC_SUCCESS)
161 		goto out_flushed;
162 
163 	/* status == SUCCESS means all fields in wc are trustworthy */
164 	rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
165 	rep->rr_wc_flags = wc->wc_flags;
166 	rep->rr_inv_rkey = wc->ex.invalidate_rkey;
167 
168 	ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
169 				   rdmab_addr(rep->rr_rdmabuf),
170 				   wc->byte_len, DMA_FROM_DEVICE);
171 
172 	rpcrdma_post_recvs(r_xprt, false);
173 	rpcrdma_reply_handler(rep);
174 	return;
175 
176 out_flushed:
177 	rpcrdma_recv_buffer_put(rep);
178 }
179 
180 static void
181 rpcrdma_update_connect_private(struct rpcrdma_xprt *r_xprt,
182 			       struct rdma_conn_param *param)
183 {
184 	const struct rpcrdma_connect_private *pmsg = param->private_data;
185 	unsigned int rsize, wsize;
186 
187 	/* Default settings for RPC-over-RDMA Version One */
188 	r_xprt->rx_ia.ri_implicit_roundup = xprt_rdma_pad_optimize;
189 	rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
190 	wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
191 
192 	if (pmsg &&
193 	    pmsg->cp_magic == rpcrdma_cmp_magic &&
194 	    pmsg->cp_version == RPCRDMA_CMP_VERSION) {
195 		r_xprt->rx_ia.ri_implicit_roundup = true;
196 		rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
197 		wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
198 	}
199 
200 	if (rsize < r_xprt->rx_ep.rep_inline_recv)
201 		r_xprt->rx_ep.rep_inline_recv = rsize;
202 	if (wsize < r_xprt->rx_ep.rep_inline_send)
203 		r_xprt->rx_ep.rep_inline_send = wsize;
204 	dprintk("RPC:       %s: max send %u, max recv %u\n", __func__,
205 		r_xprt->rx_ep.rep_inline_send,
206 		r_xprt->rx_ep.rep_inline_recv);
207 	rpcrdma_set_max_header_sizes(r_xprt);
208 }
209 
210 /**
211  * rpcrdma_cm_event_handler - Handle RDMA CM events
212  * @id: rdma_cm_id on which an event has occurred
213  * @event: details of the event
214  *
215  * Called with @id's mutex held. Returns 1 if caller should
216  * destroy @id, otherwise 0.
217  */
218 static int
219 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event)
220 {
221 	struct rpcrdma_xprt *r_xprt = id->context;
222 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
223 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
224 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
225 
226 	might_sleep();
227 
228 	trace_xprtrdma_cm_event(r_xprt, event);
229 	switch (event->event) {
230 	case RDMA_CM_EVENT_ADDR_RESOLVED:
231 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
232 		ia->ri_async_rc = 0;
233 		complete(&ia->ri_done);
234 		return 0;
235 	case RDMA_CM_EVENT_ADDR_ERROR:
236 		ia->ri_async_rc = -EPROTO;
237 		complete(&ia->ri_done);
238 		return 0;
239 	case RDMA_CM_EVENT_ROUTE_ERROR:
240 		ia->ri_async_rc = -ENETUNREACH;
241 		complete(&ia->ri_done);
242 		return 0;
243 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
244 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
245 		pr_info("rpcrdma: removing device %s for %s:%s\n",
246 			ia->ri_id->device->name,
247 			rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt));
248 #endif
249 		set_bit(RPCRDMA_IAF_REMOVING, &ia->ri_flags);
250 		ep->rep_connected = -ENODEV;
251 		xprt_force_disconnect(xprt);
252 		wait_for_completion(&ia->ri_remove_done);
253 
254 		ia->ri_id = NULL;
255 		/* Return 1 to ensure the core destroys the id. */
256 		return 1;
257 	case RDMA_CM_EVENT_ESTABLISHED:
258 		++xprt->connect_cookie;
259 		ep->rep_connected = 1;
260 		rpcrdma_update_connect_private(r_xprt, &event->param.conn);
261 		wake_up_all(&ep->rep_connect_wait);
262 		break;
263 	case RDMA_CM_EVENT_CONNECT_ERROR:
264 		ep->rep_connected = -ENOTCONN;
265 		goto disconnected;
266 	case RDMA_CM_EVENT_UNREACHABLE:
267 		ep->rep_connected = -ENETUNREACH;
268 		goto disconnected;
269 	case RDMA_CM_EVENT_REJECTED:
270 		dprintk("rpcrdma: connection to %s:%s rejected: %s\n",
271 			rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt),
272 			rdma_reject_msg(id, event->status));
273 		ep->rep_connected = -ECONNREFUSED;
274 		if (event->status == IB_CM_REJ_STALE_CONN)
275 			ep->rep_connected = -EAGAIN;
276 		goto disconnected;
277 	case RDMA_CM_EVENT_DISCONNECTED:
278 		ep->rep_connected = -ECONNABORTED;
279 disconnected:
280 		xprt_force_disconnect(xprt);
281 		wake_up_all(&ep->rep_connect_wait);
282 		break;
283 	default:
284 		break;
285 	}
286 
287 	dprintk("RPC:       %s: %s:%s on %s/frwr: %s\n", __func__,
288 		rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt),
289 		ia->ri_id->device->name, rdma_event_msg(event->event));
290 	return 0;
291 }
292 
293 static struct rdma_cm_id *
294 rpcrdma_create_id(struct rpcrdma_xprt *xprt, struct rpcrdma_ia *ia)
295 {
296 	unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
297 	struct rdma_cm_id *id;
298 	int rc;
299 
300 	trace_xprtrdma_conn_start(xprt);
301 
302 	init_completion(&ia->ri_done);
303 	init_completion(&ia->ri_remove_done);
304 
305 	id = rdma_create_id(xprt->rx_xprt.xprt_net, rpcrdma_cm_event_handler,
306 			    xprt, RDMA_PS_TCP, IB_QPT_RC);
307 	if (IS_ERR(id))
308 		return id;
309 
310 	ia->ri_async_rc = -ETIMEDOUT;
311 	rc = rdma_resolve_addr(id, NULL,
312 			       (struct sockaddr *)&xprt->rx_xprt.addr,
313 			       RDMA_RESOLVE_TIMEOUT);
314 	if (rc)
315 		goto out;
316 	rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout);
317 	if (rc < 0) {
318 		trace_xprtrdma_conn_tout(xprt);
319 		goto out;
320 	}
321 
322 	rc = ia->ri_async_rc;
323 	if (rc)
324 		goto out;
325 
326 	ia->ri_async_rc = -ETIMEDOUT;
327 	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
328 	if (rc)
329 		goto out;
330 	rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout);
331 	if (rc < 0) {
332 		trace_xprtrdma_conn_tout(xprt);
333 		goto out;
334 	}
335 	rc = ia->ri_async_rc;
336 	if (rc)
337 		goto out;
338 
339 	return id;
340 
341 out:
342 	rdma_destroy_id(id);
343 	return ERR_PTR(rc);
344 }
345 
346 /*
347  * Exported functions.
348  */
349 
350 /**
351  * rpcrdma_ia_open - Open and initialize an Interface Adapter.
352  * @xprt: transport with IA to (re)initialize
353  *
354  * Returns 0 on success, negative errno if an appropriate
355  * Interface Adapter could not be found and opened.
356  */
357 int
358 rpcrdma_ia_open(struct rpcrdma_xprt *xprt)
359 {
360 	struct rpcrdma_ia *ia = &xprt->rx_ia;
361 	int rc;
362 
363 	ia->ri_id = rpcrdma_create_id(xprt, ia);
364 	if (IS_ERR(ia->ri_id)) {
365 		rc = PTR_ERR(ia->ri_id);
366 		goto out_err;
367 	}
368 
369 	ia->ri_pd = ib_alloc_pd(ia->ri_id->device, 0);
370 	if (IS_ERR(ia->ri_pd)) {
371 		rc = PTR_ERR(ia->ri_pd);
372 		pr_err("rpcrdma: ib_alloc_pd() returned %d\n", rc);
373 		goto out_err;
374 	}
375 
376 	switch (xprt_rdma_memreg_strategy) {
377 	case RPCRDMA_FRWR:
378 		if (frwr_is_supported(ia->ri_id->device))
379 			break;
380 		/*FALLTHROUGH*/
381 	default:
382 		pr_err("rpcrdma: Device %s does not support memreg mode %d\n",
383 		       ia->ri_id->device->name, xprt_rdma_memreg_strategy);
384 		rc = -EINVAL;
385 		goto out_err;
386 	}
387 
388 	return 0;
389 
390 out_err:
391 	rpcrdma_ia_close(ia);
392 	return rc;
393 }
394 
395 /**
396  * rpcrdma_ia_remove - Handle device driver unload
397  * @ia: interface adapter being removed
398  *
399  * Divest transport H/W resources associated with this adapter,
400  * but allow it to be restored later.
401  */
402 void
403 rpcrdma_ia_remove(struct rpcrdma_ia *ia)
404 {
405 	struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt,
406 						   rx_ia);
407 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
408 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
409 	struct rpcrdma_req *req;
410 	struct rpcrdma_rep *rep;
411 
412 	cancel_delayed_work_sync(&buf->rb_refresh_worker);
413 
414 	/* This is similar to rpcrdma_ep_destroy, but:
415 	 * - Don't cancel the connect worker.
416 	 * - Don't call rpcrdma_ep_disconnect, which waits
417 	 *   for another conn upcall, which will deadlock.
418 	 * - rdma_disconnect is unneeded, the underlying
419 	 *   connection is already gone.
420 	 */
421 	if (ia->ri_id->qp) {
422 		rpcrdma_xprt_drain(r_xprt);
423 		rdma_destroy_qp(ia->ri_id);
424 		ia->ri_id->qp = NULL;
425 	}
426 	ib_free_cq(ep->rep_attr.recv_cq);
427 	ep->rep_attr.recv_cq = NULL;
428 	ib_free_cq(ep->rep_attr.send_cq);
429 	ep->rep_attr.send_cq = NULL;
430 
431 	/* The ULP is responsible for ensuring all DMA
432 	 * mappings and MRs are gone.
433 	 */
434 	list_for_each_entry(rep, &buf->rb_recv_bufs, rr_list)
435 		rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf);
436 	list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
437 		rpcrdma_regbuf_dma_unmap(req->rl_rdmabuf);
438 		rpcrdma_regbuf_dma_unmap(req->rl_sendbuf);
439 		rpcrdma_regbuf_dma_unmap(req->rl_recvbuf);
440 	}
441 	rpcrdma_mrs_destroy(buf);
442 	ib_dealloc_pd(ia->ri_pd);
443 	ia->ri_pd = NULL;
444 
445 	/* Allow waiters to continue */
446 	complete(&ia->ri_remove_done);
447 
448 	trace_xprtrdma_remove(r_xprt);
449 }
450 
451 /**
452  * rpcrdma_ia_close - Clean up/close an IA.
453  * @ia: interface adapter to close
454  *
455  */
456 void
457 rpcrdma_ia_close(struct rpcrdma_ia *ia)
458 {
459 	if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) {
460 		if (ia->ri_id->qp)
461 			rdma_destroy_qp(ia->ri_id);
462 		rdma_destroy_id(ia->ri_id);
463 	}
464 	ia->ri_id = NULL;
465 
466 	/* If the pd is still busy, xprtrdma missed freeing a resource */
467 	if (ia->ri_pd && !IS_ERR(ia->ri_pd))
468 		ib_dealloc_pd(ia->ri_pd);
469 	ia->ri_pd = NULL;
470 }
471 
472 /**
473  * rpcrdma_ep_create - Create unconnected endpoint
474  * @r_xprt: transport to instantiate
475  *
476  * Returns zero on success, or a negative errno.
477  */
478 int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt)
479 {
480 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
481 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
482 	struct rpcrdma_connect_private *pmsg = &ep->rep_cm_private;
483 	struct ib_cq *sendcq, *recvcq;
484 	unsigned int max_sge;
485 	int rc;
486 
487 	ep->rep_max_requests = xprt_rdma_slot_table_entries;
488 	ep->rep_inline_send = xprt_rdma_max_inline_write;
489 	ep->rep_inline_recv = xprt_rdma_max_inline_read;
490 
491 	max_sge = min_t(unsigned int, ia->ri_id->device->attrs.max_send_sge,
492 			RPCRDMA_MAX_SEND_SGES);
493 	if (max_sge < RPCRDMA_MIN_SEND_SGES) {
494 		pr_warn("rpcrdma: HCA provides only %d send SGEs\n", max_sge);
495 		return -ENOMEM;
496 	}
497 	ia->ri_max_send_sges = max_sge;
498 
499 	rc = frwr_open(ia, ep);
500 	if (rc)
501 		return rc;
502 
503 	ep->rep_attr.event_handler = rpcrdma_qp_event_handler;
504 	ep->rep_attr.qp_context = ep;
505 	ep->rep_attr.srq = NULL;
506 	ep->rep_attr.cap.max_send_sge = max_sge;
507 	ep->rep_attr.cap.max_recv_sge = 1;
508 	ep->rep_attr.cap.max_inline_data = 0;
509 	ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
510 	ep->rep_attr.qp_type = IB_QPT_RC;
511 	ep->rep_attr.port_num = ~0;
512 
513 	dprintk("RPC:       %s: requested max: dtos: send %d recv %d; "
514 		"iovs: send %d recv %d\n",
515 		__func__,
516 		ep->rep_attr.cap.max_send_wr,
517 		ep->rep_attr.cap.max_recv_wr,
518 		ep->rep_attr.cap.max_send_sge,
519 		ep->rep_attr.cap.max_recv_sge);
520 
521 	ep->rep_send_batch = ep->rep_max_requests >> 3;
522 	ep->rep_send_count = ep->rep_send_batch;
523 	init_waitqueue_head(&ep->rep_connect_wait);
524 	ep->rep_receive_count = 0;
525 
526 	sendcq = ib_alloc_cq(ia->ri_id->device, NULL,
527 			     ep->rep_attr.cap.max_send_wr + 1,
528 			     ia->ri_id->device->num_comp_vectors > 1 ? 1 : 0,
529 			     IB_POLL_WORKQUEUE);
530 	if (IS_ERR(sendcq)) {
531 		rc = PTR_ERR(sendcq);
532 		goto out1;
533 	}
534 
535 	recvcq = ib_alloc_cq(ia->ri_id->device, NULL,
536 			     ep->rep_attr.cap.max_recv_wr + 1,
537 			     0, IB_POLL_WORKQUEUE);
538 	if (IS_ERR(recvcq)) {
539 		rc = PTR_ERR(recvcq);
540 		goto out2;
541 	}
542 
543 	ep->rep_attr.send_cq = sendcq;
544 	ep->rep_attr.recv_cq = recvcq;
545 
546 	/* Initialize cma parameters */
547 	memset(&ep->rep_remote_cma, 0, sizeof(ep->rep_remote_cma));
548 
549 	/* Prepare RDMA-CM private message */
550 	pmsg->cp_magic = rpcrdma_cmp_magic;
551 	pmsg->cp_version = RPCRDMA_CMP_VERSION;
552 	pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK;
553 	pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->rep_inline_send);
554 	pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->rep_inline_recv);
555 	ep->rep_remote_cma.private_data = pmsg;
556 	ep->rep_remote_cma.private_data_len = sizeof(*pmsg);
557 
558 	/* Client offers RDMA Read but does not initiate */
559 	ep->rep_remote_cma.initiator_depth = 0;
560 	ep->rep_remote_cma.responder_resources =
561 		min_t(int, U8_MAX, ia->ri_id->device->attrs.max_qp_rd_atom);
562 
563 	/* Limit transport retries so client can detect server
564 	 * GID changes quickly. RPC layer handles re-establishing
565 	 * transport connection and retransmission.
566 	 */
567 	ep->rep_remote_cma.retry_count = 6;
568 
569 	/* RPC-over-RDMA handles its own flow control. In addition,
570 	 * make all RNR NAKs visible so we know that RPC-over-RDMA
571 	 * flow control is working correctly (no NAKs should be seen).
572 	 */
573 	ep->rep_remote_cma.flow_control = 0;
574 	ep->rep_remote_cma.rnr_retry_count = 0;
575 
576 	return 0;
577 
578 out2:
579 	ib_free_cq(sendcq);
580 out1:
581 	return rc;
582 }
583 
584 /**
585  * rpcrdma_ep_destroy - Disconnect and destroy endpoint.
586  * @r_xprt: transport instance to shut down
587  *
588  */
589 void rpcrdma_ep_destroy(struct rpcrdma_xprt *r_xprt)
590 {
591 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
592 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
593 
594 	if (ia->ri_id && ia->ri_id->qp) {
595 		rpcrdma_ep_disconnect(ep, ia);
596 		rdma_destroy_qp(ia->ri_id);
597 		ia->ri_id->qp = NULL;
598 	}
599 
600 	if (ep->rep_attr.recv_cq)
601 		ib_free_cq(ep->rep_attr.recv_cq);
602 	if (ep->rep_attr.send_cq)
603 		ib_free_cq(ep->rep_attr.send_cq);
604 }
605 
606 /* Re-establish a connection after a device removal event.
607  * Unlike a normal reconnection, a fresh PD and a new set
608  * of MRs and buffers is needed.
609  */
610 static int
611 rpcrdma_ep_recreate_xprt(struct rpcrdma_xprt *r_xprt,
612 			 struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
613 {
614 	int rc, err;
615 
616 	trace_xprtrdma_reinsert(r_xprt);
617 
618 	rc = -EHOSTUNREACH;
619 	if (rpcrdma_ia_open(r_xprt))
620 		goto out1;
621 
622 	rc = -ENOMEM;
623 	err = rpcrdma_ep_create(r_xprt);
624 	if (err) {
625 		pr_err("rpcrdma: rpcrdma_ep_create returned %d\n", err);
626 		goto out2;
627 	}
628 
629 	rc = -ENETUNREACH;
630 	err = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr);
631 	if (err) {
632 		pr_err("rpcrdma: rdma_create_qp returned %d\n", err);
633 		goto out3;
634 	}
635 
636 	rpcrdma_mrs_create(r_xprt);
637 	return 0;
638 
639 out3:
640 	rpcrdma_ep_destroy(r_xprt);
641 out2:
642 	rpcrdma_ia_close(ia);
643 out1:
644 	return rc;
645 }
646 
647 static int
648 rpcrdma_ep_reconnect(struct rpcrdma_xprt *r_xprt, struct rpcrdma_ep *ep,
649 		     struct rpcrdma_ia *ia)
650 {
651 	struct rdma_cm_id *id, *old;
652 	int err, rc;
653 
654 	trace_xprtrdma_reconnect(r_xprt);
655 
656 	rpcrdma_ep_disconnect(ep, ia);
657 
658 	rc = -EHOSTUNREACH;
659 	id = rpcrdma_create_id(r_xprt, ia);
660 	if (IS_ERR(id))
661 		goto out;
662 
663 	/* As long as the new ID points to the same device as the
664 	 * old ID, we can reuse the transport's existing PD and all
665 	 * previously allocated MRs. Also, the same device means
666 	 * the transport's previous DMA mappings are still valid.
667 	 *
668 	 * This is a sanity check only. There should be no way these
669 	 * point to two different devices here.
670 	 */
671 	old = id;
672 	rc = -ENETUNREACH;
673 	if (ia->ri_id->device != id->device) {
674 		pr_err("rpcrdma: can't reconnect on different device!\n");
675 		goto out_destroy;
676 	}
677 
678 	err = rdma_create_qp(id, ia->ri_pd, &ep->rep_attr);
679 	if (err)
680 		goto out_destroy;
681 
682 	/* Atomically replace the transport's ID and QP. */
683 	rc = 0;
684 	old = ia->ri_id;
685 	ia->ri_id = id;
686 	rdma_destroy_qp(old);
687 
688 out_destroy:
689 	rdma_destroy_id(old);
690 out:
691 	return rc;
692 }
693 
694 /*
695  * Connect unconnected endpoint.
696  */
697 int
698 rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
699 {
700 	struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt,
701 						   rx_ia);
702 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
703 	int rc;
704 
705 retry:
706 	switch (ep->rep_connected) {
707 	case 0:
708 		dprintk("RPC:       %s: connecting...\n", __func__);
709 		rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr);
710 		if (rc) {
711 			rc = -ENETUNREACH;
712 			goto out_noupdate;
713 		}
714 		break;
715 	case -ENODEV:
716 		rc = rpcrdma_ep_recreate_xprt(r_xprt, ep, ia);
717 		if (rc)
718 			goto out_noupdate;
719 		break;
720 	default:
721 		rc = rpcrdma_ep_reconnect(r_xprt, ep, ia);
722 		if (rc)
723 			goto out;
724 	}
725 
726 	ep->rep_connected = 0;
727 	xprt_clear_connected(xprt);
728 
729 	rpcrdma_post_recvs(r_xprt, true);
730 
731 	rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma);
732 	if (rc)
733 		goto out;
734 
735 	wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0);
736 	if (ep->rep_connected <= 0) {
737 		if (ep->rep_connected == -EAGAIN)
738 			goto retry;
739 		rc = ep->rep_connected;
740 		goto out;
741 	}
742 
743 	dprintk("RPC:       %s: connected\n", __func__);
744 
745 out:
746 	if (rc)
747 		ep->rep_connected = rc;
748 
749 out_noupdate:
750 	return rc;
751 }
752 
753 /**
754  * rpcrdma_ep_disconnect - Disconnect underlying transport
755  * @ep: endpoint to disconnect
756  * @ia: associated interface adapter
757  *
758  * This is separate from destroy to facilitate the ability
759  * to reconnect without recreating the endpoint.
760  *
761  * This call is not reentrant, and must not be made in parallel
762  * on the same endpoint.
763  */
764 void
765 rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
766 {
767 	struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt,
768 						   rx_ep);
769 	int rc;
770 
771 	/* returns without wait if ID is not connected */
772 	rc = rdma_disconnect(ia->ri_id);
773 	if (!rc)
774 		wait_event_interruptible(ep->rep_connect_wait,
775 							ep->rep_connected != 1);
776 	else
777 		ep->rep_connected = rc;
778 	trace_xprtrdma_disconnect(r_xprt, rc);
779 
780 	rpcrdma_xprt_drain(r_xprt);
781 }
782 
783 /* Fixed-size circular FIFO queue. This implementation is wait-free and
784  * lock-free.
785  *
786  * Consumer is the code path that posts Sends. This path dequeues a
787  * sendctx for use by a Send operation. Multiple consumer threads
788  * are serialized by the RPC transport lock, which allows only one
789  * ->send_request call at a time.
790  *
791  * Producer is the code path that handles Send completions. This path
792  * enqueues a sendctx that has been completed. Multiple producer
793  * threads are serialized by the ib_poll_cq() function.
794  */
795 
796 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
797  * queue activity, and rpcrdma_xprt_drain has flushed all remaining
798  * Send requests.
799  */
800 static void rpcrdma_sendctxs_destroy(struct rpcrdma_buffer *buf)
801 {
802 	unsigned long i;
803 
804 	for (i = 0; i <= buf->rb_sc_last; i++)
805 		kfree(buf->rb_sc_ctxs[i]);
806 	kfree(buf->rb_sc_ctxs);
807 }
808 
809 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ia *ia)
810 {
811 	struct rpcrdma_sendctx *sc;
812 
813 	sc = kzalloc(struct_size(sc, sc_sges, ia->ri_max_send_sges),
814 		     GFP_KERNEL);
815 	if (!sc)
816 		return NULL;
817 
818 	sc->sc_wr.wr_cqe = &sc->sc_cqe;
819 	sc->sc_wr.sg_list = sc->sc_sges;
820 	sc->sc_wr.opcode = IB_WR_SEND;
821 	sc->sc_cqe.done = rpcrdma_wc_send;
822 	return sc;
823 }
824 
825 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
826 {
827 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
828 	struct rpcrdma_sendctx *sc;
829 	unsigned long i;
830 
831 	/* Maximum number of concurrent outstanding Send WRs. Capping
832 	 * the circular queue size stops Send Queue overflow by causing
833 	 * the ->send_request call to fail temporarily before too many
834 	 * Sends are posted.
835 	 */
836 	i = buf->rb_max_requests + RPCRDMA_MAX_BC_REQUESTS;
837 	dprintk("RPC:       %s: allocating %lu send_ctxs\n", __func__, i);
838 	buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL);
839 	if (!buf->rb_sc_ctxs)
840 		return -ENOMEM;
841 
842 	buf->rb_sc_last = i - 1;
843 	for (i = 0; i <= buf->rb_sc_last; i++) {
844 		sc = rpcrdma_sendctx_create(&r_xprt->rx_ia);
845 		if (!sc)
846 			return -ENOMEM;
847 
848 		sc->sc_xprt = r_xprt;
849 		buf->rb_sc_ctxs[i] = sc;
850 	}
851 
852 	return 0;
853 }
854 
855 /* The sendctx queue is not guaranteed to have a size that is a
856  * power of two, thus the helpers in circ_buf.h cannot be used.
857  * The other option is to use modulus (%), which can be expensive.
858  */
859 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
860 					  unsigned long item)
861 {
862 	return likely(item < buf->rb_sc_last) ? item + 1 : 0;
863 }
864 
865 /**
866  * rpcrdma_sendctx_get_locked - Acquire a send context
867  * @r_xprt: controlling transport instance
868  *
869  * Returns pointer to a free send completion context; or NULL if
870  * the queue is empty.
871  *
872  * Usage: Called to acquire an SGE array before preparing a Send WR.
873  *
874  * The caller serializes calls to this function (per transport), and
875  * provides an effective memory barrier that flushes the new value
876  * of rb_sc_head.
877  */
878 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt)
879 {
880 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
881 	struct rpcrdma_sendctx *sc;
882 	unsigned long next_head;
883 
884 	next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
885 
886 	if (next_head == READ_ONCE(buf->rb_sc_tail))
887 		goto out_emptyq;
888 
889 	/* ORDER: item must be accessed _before_ head is updated */
890 	sc = buf->rb_sc_ctxs[next_head];
891 
892 	/* Releasing the lock in the caller acts as a memory
893 	 * barrier that flushes rb_sc_head.
894 	 */
895 	buf->rb_sc_head = next_head;
896 
897 	return sc;
898 
899 out_emptyq:
900 	/* The queue is "empty" if there have not been enough Send
901 	 * completions recently. This is a sign the Send Queue is
902 	 * backing up. Cause the caller to pause and try again.
903 	 */
904 	set_bit(RPCRDMA_BUF_F_EMPTY_SCQ, &buf->rb_flags);
905 	r_xprt->rx_stats.empty_sendctx_q++;
906 	return NULL;
907 }
908 
909 /**
910  * rpcrdma_sendctx_put_locked - Release a send context
911  * @sc: send context to release
912  *
913  * Usage: Called from Send completion to return a sendctxt
914  * to the queue.
915  *
916  * The caller serializes calls to this function (per transport).
917  */
918 static void
919 rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc)
920 {
921 	struct rpcrdma_buffer *buf = &sc->sc_xprt->rx_buf;
922 	unsigned long next_tail;
923 
924 	/* Unmap SGEs of previously completed but unsignaled
925 	 * Sends by walking up the queue until @sc is found.
926 	 */
927 	next_tail = buf->rb_sc_tail;
928 	do {
929 		next_tail = rpcrdma_sendctx_next(buf, next_tail);
930 
931 		/* ORDER: item must be accessed _before_ tail is updated */
932 		rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]);
933 
934 	} while (buf->rb_sc_ctxs[next_tail] != sc);
935 
936 	/* Paired with READ_ONCE */
937 	smp_store_release(&buf->rb_sc_tail, next_tail);
938 
939 	if (test_and_clear_bit(RPCRDMA_BUF_F_EMPTY_SCQ, &buf->rb_flags)) {
940 		smp_mb__after_atomic();
941 		xprt_write_space(&sc->sc_xprt->rx_xprt);
942 	}
943 }
944 
945 static void
946 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt)
947 {
948 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
949 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
950 	unsigned int count;
951 	LIST_HEAD(free);
952 	LIST_HEAD(all);
953 
954 	for (count = 0; count < ia->ri_max_segs; count++) {
955 		struct rpcrdma_mr *mr;
956 		int rc;
957 
958 		mr = kzalloc(sizeof(*mr), GFP_KERNEL);
959 		if (!mr)
960 			break;
961 
962 		rc = frwr_init_mr(ia, mr);
963 		if (rc) {
964 			kfree(mr);
965 			break;
966 		}
967 
968 		mr->mr_xprt = r_xprt;
969 
970 		list_add(&mr->mr_list, &free);
971 		list_add(&mr->mr_all, &all);
972 	}
973 
974 	spin_lock(&buf->rb_mrlock);
975 	list_splice(&free, &buf->rb_mrs);
976 	list_splice(&all, &buf->rb_all);
977 	r_xprt->rx_stats.mrs_allocated += count;
978 	spin_unlock(&buf->rb_mrlock);
979 	trace_xprtrdma_createmrs(r_xprt, count);
980 
981 	xprt_write_space(&r_xprt->rx_xprt);
982 }
983 
984 static void
985 rpcrdma_mr_refresh_worker(struct work_struct *work)
986 {
987 	struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
988 						  rb_refresh_worker.work);
989 	struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
990 						   rx_buf);
991 
992 	rpcrdma_mrs_create(r_xprt);
993 }
994 
995 /**
996  * rpcrdma_req_create - Allocate an rpcrdma_req object
997  * @r_xprt: controlling r_xprt
998  * @size: initial size, in bytes, of send and receive buffers
999  * @flags: GFP flags passed to memory allocators
1000  *
1001  * Returns an allocated and fully initialized rpcrdma_req or NULL.
1002  */
1003 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size,
1004 				       gfp_t flags)
1005 {
1006 	struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
1007 	struct rpcrdma_regbuf *rb;
1008 	struct rpcrdma_req *req;
1009 
1010 	req = kzalloc(sizeof(*req), flags);
1011 	if (req == NULL)
1012 		goto out1;
1013 
1014 	rb = rpcrdma_regbuf_alloc(RPCRDMA_HDRBUF_SIZE, DMA_TO_DEVICE, flags);
1015 	if (!rb)
1016 		goto out2;
1017 	req->rl_rdmabuf = rb;
1018 	xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb));
1019 
1020 	req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags);
1021 	if (!req->rl_sendbuf)
1022 		goto out3;
1023 
1024 	req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags);
1025 	if (!req->rl_recvbuf)
1026 		goto out4;
1027 
1028 	req->rl_buffer = buffer;
1029 	INIT_LIST_HEAD(&req->rl_registered);
1030 	spin_lock(&buffer->rb_lock);
1031 	list_add(&req->rl_all, &buffer->rb_allreqs);
1032 	spin_unlock(&buffer->rb_lock);
1033 	return req;
1034 
1035 out4:
1036 	kfree(req->rl_sendbuf);
1037 out3:
1038 	kfree(req->rl_rdmabuf);
1039 out2:
1040 	kfree(req);
1041 out1:
1042 	return NULL;
1043 }
1044 
1045 static bool rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt, bool temp)
1046 {
1047 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1048 	struct rpcrdma_rep *rep;
1049 
1050 	rep = kzalloc(sizeof(*rep), GFP_KERNEL);
1051 	if (rep == NULL)
1052 		goto out;
1053 
1054 	rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep.rep_inline_recv,
1055 					       DMA_FROM_DEVICE, GFP_KERNEL);
1056 	if (!rep->rr_rdmabuf)
1057 		goto out_free;
1058 	xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf),
1059 		     rdmab_length(rep->rr_rdmabuf));
1060 
1061 	rep->rr_cqe.done = rpcrdma_wc_receive;
1062 	rep->rr_rxprt = r_xprt;
1063 	INIT_WORK(&rep->rr_work, rpcrdma_deferred_completion);
1064 	rep->rr_recv_wr.next = NULL;
1065 	rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
1066 	rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
1067 	rep->rr_recv_wr.num_sge = 1;
1068 	rep->rr_temp = temp;
1069 
1070 	spin_lock(&buf->rb_lock);
1071 	list_add(&rep->rr_list, &buf->rb_recv_bufs);
1072 	spin_unlock(&buf->rb_lock);
1073 	return true;
1074 
1075 out_free:
1076 	kfree(rep);
1077 out:
1078 	return false;
1079 }
1080 
1081 /**
1082  * rpcrdma_buffer_create - Create initial set of req/rep objects
1083  * @r_xprt: transport instance to (re)initialize
1084  *
1085  * Returns zero on success, otherwise a negative errno.
1086  */
1087 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1088 {
1089 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1090 	int i, rc;
1091 
1092 	buf->rb_flags = 0;
1093 	buf->rb_max_requests = r_xprt->rx_ep.rep_max_requests;
1094 	buf->rb_bc_srv_max_requests = 0;
1095 	spin_lock_init(&buf->rb_mrlock);
1096 	spin_lock_init(&buf->rb_lock);
1097 	INIT_LIST_HEAD(&buf->rb_mrs);
1098 	INIT_LIST_HEAD(&buf->rb_all);
1099 	INIT_DELAYED_WORK(&buf->rb_refresh_worker,
1100 			  rpcrdma_mr_refresh_worker);
1101 
1102 	rpcrdma_mrs_create(r_xprt);
1103 
1104 	INIT_LIST_HEAD(&buf->rb_send_bufs);
1105 	INIT_LIST_HEAD(&buf->rb_allreqs);
1106 
1107 	rc = -ENOMEM;
1108 	for (i = 0; i < buf->rb_max_requests; i++) {
1109 		struct rpcrdma_req *req;
1110 
1111 		req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE,
1112 					 GFP_KERNEL);
1113 		if (!req)
1114 			goto out;
1115 		list_add(&req->rl_list, &buf->rb_send_bufs);
1116 	}
1117 
1118 	buf->rb_credits = 1;
1119 	INIT_LIST_HEAD(&buf->rb_recv_bufs);
1120 
1121 	rc = rpcrdma_sendctxs_create(r_xprt);
1122 	if (rc)
1123 		goto out;
1124 
1125 	buf->rb_completion_wq = alloc_workqueue("rpcrdma-%s",
1126 						WQ_MEM_RECLAIM | WQ_HIGHPRI,
1127 						0,
1128 			r_xprt->rx_xprt.address_strings[RPC_DISPLAY_ADDR]);
1129 	if (!buf->rb_completion_wq) {
1130 		rc = -ENOMEM;
1131 		goto out;
1132 	}
1133 
1134 	return 0;
1135 out:
1136 	rpcrdma_buffer_destroy(buf);
1137 	return rc;
1138 }
1139 
1140 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep)
1141 {
1142 	rpcrdma_regbuf_free(rep->rr_rdmabuf);
1143 	kfree(rep);
1144 }
1145 
1146 /**
1147  * rpcrdma_req_destroy - Destroy an rpcrdma_req object
1148  * @req: unused object to be destroyed
1149  *
1150  * This function assumes that the caller prevents concurrent device
1151  * unload and transport tear-down.
1152  */
1153 void
1154 rpcrdma_req_destroy(struct rpcrdma_req *req)
1155 {
1156 	list_del(&req->rl_all);
1157 
1158 	rpcrdma_regbuf_free(req->rl_recvbuf);
1159 	rpcrdma_regbuf_free(req->rl_sendbuf);
1160 	rpcrdma_regbuf_free(req->rl_rdmabuf);
1161 	kfree(req);
1162 }
1163 
1164 static void
1165 rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf)
1166 {
1167 	struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
1168 						   rx_buf);
1169 	struct rpcrdma_mr *mr;
1170 	unsigned int count;
1171 
1172 	count = 0;
1173 	spin_lock(&buf->rb_mrlock);
1174 	while (!list_empty(&buf->rb_all)) {
1175 		mr = list_entry(buf->rb_all.next, struct rpcrdma_mr, mr_all);
1176 		list_del(&mr->mr_all);
1177 
1178 		spin_unlock(&buf->rb_mrlock);
1179 
1180 		/* Ensure MW is not on any rl_registered list */
1181 		if (!list_empty(&mr->mr_list))
1182 			list_del(&mr->mr_list);
1183 
1184 		frwr_release_mr(mr);
1185 		count++;
1186 		spin_lock(&buf->rb_mrlock);
1187 	}
1188 	spin_unlock(&buf->rb_mrlock);
1189 	r_xprt->rx_stats.mrs_allocated = 0;
1190 
1191 	dprintk("RPC:       %s: released %u MRs\n", __func__, count);
1192 }
1193 
1194 /**
1195  * rpcrdma_buffer_destroy - Release all hw resources
1196  * @buf: root control block for resources
1197  *
1198  * ORDERING: relies on a prior rpcrdma_xprt_drain :
1199  * - No more Send or Receive completions can occur
1200  * - All MRs, reps, and reqs are returned to their free lists
1201  */
1202 void
1203 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1204 {
1205 	cancel_delayed_work_sync(&buf->rb_refresh_worker);
1206 
1207 	if (buf->rb_completion_wq) {
1208 		destroy_workqueue(buf->rb_completion_wq);
1209 		buf->rb_completion_wq = NULL;
1210 	}
1211 
1212 	rpcrdma_sendctxs_destroy(buf);
1213 
1214 	while (!list_empty(&buf->rb_recv_bufs)) {
1215 		struct rpcrdma_rep *rep;
1216 
1217 		rep = list_first_entry(&buf->rb_recv_bufs,
1218 				       struct rpcrdma_rep, rr_list);
1219 		list_del(&rep->rr_list);
1220 		rpcrdma_rep_destroy(rep);
1221 	}
1222 
1223 	while (!list_empty(&buf->rb_send_bufs)) {
1224 		struct rpcrdma_req *req;
1225 
1226 		req = list_first_entry(&buf->rb_send_bufs,
1227 				       struct rpcrdma_req, rl_list);
1228 		list_del(&req->rl_list);
1229 		rpcrdma_req_destroy(req);
1230 	}
1231 
1232 	rpcrdma_mrs_destroy(buf);
1233 }
1234 
1235 /**
1236  * rpcrdma_mr_get - Allocate an rpcrdma_mr object
1237  * @r_xprt: controlling transport
1238  *
1239  * Returns an initialized rpcrdma_mr or NULL if no free
1240  * rpcrdma_mr objects are available.
1241  */
1242 struct rpcrdma_mr *
1243 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt)
1244 {
1245 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1246 	struct rpcrdma_mr *mr = NULL;
1247 
1248 	spin_lock(&buf->rb_mrlock);
1249 	if (!list_empty(&buf->rb_mrs))
1250 		mr = rpcrdma_mr_pop(&buf->rb_mrs);
1251 	spin_unlock(&buf->rb_mrlock);
1252 
1253 	if (!mr)
1254 		goto out_nomrs;
1255 	return mr;
1256 
1257 out_nomrs:
1258 	trace_xprtrdma_nomrs(r_xprt);
1259 	if (r_xprt->rx_ep.rep_connected != -ENODEV)
1260 		schedule_delayed_work(&buf->rb_refresh_worker, 0);
1261 
1262 	/* Allow the reply handler and refresh worker to run */
1263 	cond_resched();
1264 
1265 	return NULL;
1266 }
1267 
1268 static void
1269 __rpcrdma_mr_put(struct rpcrdma_buffer *buf, struct rpcrdma_mr *mr)
1270 {
1271 	spin_lock(&buf->rb_mrlock);
1272 	rpcrdma_mr_push(mr, &buf->rb_mrs);
1273 	spin_unlock(&buf->rb_mrlock);
1274 }
1275 
1276 /**
1277  * rpcrdma_mr_put - Release an rpcrdma_mr object
1278  * @mr: object to release
1279  *
1280  */
1281 void
1282 rpcrdma_mr_put(struct rpcrdma_mr *mr)
1283 {
1284 	__rpcrdma_mr_put(&mr->mr_xprt->rx_buf, mr);
1285 }
1286 
1287 /**
1288  * rpcrdma_mr_unmap_and_put - DMA unmap an MR and release it
1289  * @mr: object to release
1290  *
1291  */
1292 void
1293 rpcrdma_mr_unmap_and_put(struct rpcrdma_mr *mr)
1294 {
1295 	struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
1296 
1297 	if (mr->mr_dir != DMA_NONE) {
1298 		trace_xprtrdma_mr_unmap(mr);
1299 		ib_dma_unmap_sg(r_xprt->rx_ia.ri_id->device,
1300 				mr->mr_sg, mr->mr_nents, mr->mr_dir);
1301 		mr->mr_dir = DMA_NONE;
1302 	}
1303 	__rpcrdma_mr_put(&r_xprt->rx_buf, mr);
1304 }
1305 
1306 /**
1307  * rpcrdma_buffer_get - Get a request buffer
1308  * @buffers: Buffer pool from which to obtain a buffer
1309  *
1310  * Returns a fresh rpcrdma_req, or NULL if none are available.
1311  */
1312 struct rpcrdma_req *
1313 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1314 {
1315 	struct rpcrdma_req *req;
1316 
1317 	spin_lock(&buffers->rb_lock);
1318 	req = list_first_entry_or_null(&buffers->rb_send_bufs,
1319 				       struct rpcrdma_req, rl_list);
1320 	if (req)
1321 		list_del_init(&req->rl_list);
1322 	spin_unlock(&buffers->rb_lock);
1323 	return req;
1324 }
1325 
1326 /**
1327  * rpcrdma_buffer_put - Put request/reply buffers back into pool
1328  * @req: object to return
1329  *
1330  */
1331 void
1332 rpcrdma_buffer_put(struct rpcrdma_req *req)
1333 {
1334 	struct rpcrdma_buffer *buffers = req->rl_buffer;
1335 	struct rpcrdma_rep *rep = req->rl_reply;
1336 
1337 	req->rl_reply = NULL;
1338 
1339 	spin_lock(&buffers->rb_lock);
1340 	list_add(&req->rl_list, &buffers->rb_send_bufs);
1341 	if (rep) {
1342 		if (!rep->rr_temp) {
1343 			list_add(&rep->rr_list, &buffers->rb_recv_bufs);
1344 			rep = NULL;
1345 		}
1346 	}
1347 	spin_unlock(&buffers->rb_lock);
1348 	if (rep)
1349 		rpcrdma_rep_destroy(rep);
1350 }
1351 
1352 /*
1353  * Put reply buffers back into pool when not attached to
1354  * request. This happens in error conditions.
1355  */
1356 void
1357 rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
1358 {
1359 	struct rpcrdma_buffer *buffers = &rep->rr_rxprt->rx_buf;
1360 
1361 	if (!rep->rr_temp) {
1362 		spin_lock(&buffers->rb_lock);
1363 		list_add(&rep->rr_list, &buffers->rb_recv_bufs);
1364 		spin_unlock(&buffers->rb_lock);
1365 	} else {
1366 		rpcrdma_rep_destroy(rep);
1367 	}
1368 }
1369 
1370 /* Returns a pointer to a rpcrdma_regbuf object, or NULL.
1371  *
1372  * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1373  * receiving the payload of RDMA RECV operations. During Long Calls
1374  * or Replies they may be registered externally via frwr_map.
1375  */
1376 static struct rpcrdma_regbuf *
1377 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
1378 		     gfp_t flags)
1379 {
1380 	struct rpcrdma_regbuf *rb;
1381 
1382 	rb = kmalloc(sizeof(*rb), flags);
1383 	if (!rb)
1384 		return NULL;
1385 	rb->rg_data = kmalloc(size, flags);
1386 	if (!rb->rg_data) {
1387 		kfree(rb);
1388 		return NULL;
1389 	}
1390 
1391 	rb->rg_device = NULL;
1392 	rb->rg_direction = direction;
1393 	rb->rg_iov.length = size;
1394 	return rb;
1395 }
1396 
1397 /**
1398  * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer
1399  * @rb: regbuf to reallocate
1400  * @size: size of buffer to be allocated, in bytes
1401  * @flags: GFP flags
1402  *
1403  * Returns true if reallocation was successful. If false is
1404  * returned, @rb is left untouched.
1405  */
1406 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags)
1407 {
1408 	void *buf;
1409 
1410 	buf = kmalloc(size, flags);
1411 	if (!buf)
1412 		return false;
1413 
1414 	rpcrdma_regbuf_dma_unmap(rb);
1415 	kfree(rb->rg_data);
1416 
1417 	rb->rg_data = buf;
1418 	rb->rg_iov.length = size;
1419 	return true;
1420 }
1421 
1422 /**
1423  * __rpcrdma_regbuf_dma_map - DMA-map a regbuf
1424  * @r_xprt: controlling transport instance
1425  * @rb: regbuf to be mapped
1426  *
1427  * Returns true if the buffer is now DMA mapped to @r_xprt's device
1428  */
1429 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt,
1430 			      struct rpcrdma_regbuf *rb)
1431 {
1432 	struct ib_device *device = r_xprt->rx_ia.ri_id->device;
1433 
1434 	if (rb->rg_direction == DMA_NONE)
1435 		return false;
1436 
1437 	rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb),
1438 					    rdmab_length(rb), rb->rg_direction);
1439 	if (ib_dma_mapping_error(device, rdmab_addr(rb))) {
1440 		trace_xprtrdma_dma_maperr(rdmab_addr(rb));
1441 		return false;
1442 	}
1443 
1444 	rb->rg_device = device;
1445 	rb->rg_iov.lkey = r_xprt->rx_ia.ri_pd->local_dma_lkey;
1446 	return true;
1447 }
1448 
1449 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb)
1450 {
1451 	if (!rb)
1452 		return;
1453 
1454 	if (!rpcrdma_regbuf_is_mapped(rb))
1455 		return;
1456 
1457 	ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb),
1458 			    rb->rg_direction);
1459 	rb->rg_device = NULL;
1460 }
1461 
1462 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb)
1463 {
1464 	rpcrdma_regbuf_dma_unmap(rb);
1465 	if (rb)
1466 		kfree(rb->rg_data);
1467 	kfree(rb);
1468 }
1469 
1470 /**
1471  * rpcrdma_ep_post - Post WRs to a transport's Send Queue
1472  * @ia: transport's device information
1473  * @ep: transport's RDMA endpoint information
1474  * @req: rpcrdma_req containing the Send WR to post
1475  *
1476  * Returns 0 if the post was successful, otherwise -ENOTCONN
1477  * is returned.
1478  */
1479 int
1480 rpcrdma_ep_post(struct rpcrdma_ia *ia,
1481 		struct rpcrdma_ep *ep,
1482 		struct rpcrdma_req *req)
1483 {
1484 	struct ib_send_wr *send_wr = &req->rl_sendctx->sc_wr;
1485 	int rc;
1486 
1487 	if (!ep->rep_send_count ||
1488 	    test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) {
1489 		send_wr->send_flags |= IB_SEND_SIGNALED;
1490 		ep->rep_send_count = ep->rep_send_batch;
1491 	} else {
1492 		send_wr->send_flags &= ~IB_SEND_SIGNALED;
1493 		--ep->rep_send_count;
1494 	}
1495 
1496 	rc = frwr_send(ia, req);
1497 	trace_xprtrdma_post_send(req, rc);
1498 	if (rc)
1499 		return -ENOTCONN;
1500 	return 0;
1501 }
1502 
1503 static void
1504 rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp)
1505 {
1506 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1507 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
1508 	struct ib_recv_wr *wr, *bad_wr;
1509 	int needed, count, rc;
1510 
1511 	rc = 0;
1512 	count = 0;
1513 	needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1);
1514 	if (ep->rep_receive_count > needed)
1515 		goto out;
1516 	needed -= ep->rep_receive_count;
1517 	if (!temp)
1518 		needed += RPCRDMA_MAX_RECV_BATCH;
1519 
1520 	count = 0;
1521 	wr = NULL;
1522 	while (needed) {
1523 		struct rpcrdma_regbuf *rb;
1524 		struct rpcrdma_rep *rep;
1525 
1526 		spin_lock(&buf->rb_lock);
1527 		rep = list_first_entry_or_null(&buf->rb_recv_bufs,
1528 					       struct rpcrdma_rep, rr_list);
1529 		if (likely(rep))
1530 			list_del(&rep->rr_list);
1531 		spin_unlock(&buf->rb_lock);
1532 		if (!rep) {
1533 			if (!rpcrdma_rep_create(r_xprt, temp))
1534 				break;
1535 			continue;
1536 		}
1537 
1538 		rb = rep->rr_rdmabuf;
1539 		if (!rpcrdma_regbuf_dma_map(r_xprt, rb)) {
1540 			rpcrdma_recv_buffer_put(rep);
1541 			break;
1542 		}
1543 
1544 		trace_xprtrdma_post_recv(rep->rr_recv_wr.wr_cqe);
1545 		rep->rr_recv_wr.next = wr;
1546 		wr = &rep->rr_recv_wr;
1547 		++count;
1548 		--needed;
1549 	}
1550 	if (!count)
1551 		goto out;
1552 
1553 	rc = ib_post_recv(r_xprt->rx_ia.ri_id->qp, wr,
1554 			  (const struct ib_recv_wr **)&bad_wr);
1555 	if (rc) {
1556 		for (wr = bad_wr; wr; wr = wr->next) {
1557 			struct rpcrdma_rep *rep;
1558 
1559 			rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr);
1560 			rpcrdma_recv_buffer_put(rep);
1561 			--count;
1562 		}
1563 	}
1564 	ep->rep_receive_count += count;
1565 out:
1566 	trace_xprtrdma_post_recvs(r_xprt, count, rc);
1567 }
1568