1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (c) 2014-2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the BSD-type 10 * license below: 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 19 * Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials provided 22 * with the distribution. 23 * 24 * Neither the name of the Network Appliance, Inc. nor the names of 25 * its contributors may be used to endorse or promote products 26 * derived from this software without specific prior written 27 * permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42 /* 43 * verbs.c 44 * 45 * Encapsulates the major functions managing: 46 * o adapters 47 * o endpoints 48 * o connections 49 * o buffer memory 50 */ 51 52 #include <linux/interrupt.h> 53 #include <linux/slab.h> 54 #include <linux/sunrpc/addr.h> 55 #include <linux/sunrpc/svc_rdma.h> 56 57 #include <asm-generic/barrier.h> 58 #include <asm/bitops.h> 59 60 #include <rdma/ib_cm.h> 61 62 #include "xprt_rdma.h" 63 #include <trace/events/rpcrdma.h> 64 65 /* 66 * Globals/Macros 67 */ 68 69 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 70 # define RPCDBG_FACILITY RPCDBG_TRANS 71 #endif 72 73 /* 74 * internal functions 75 */ 76 static void rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc); 77 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt); 78 static void rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf); 79 static int rpcrdma_create_rep(struct rpcrdma_xprt *r_xprt, bool temp); 80 static void rpcrdma_dma_unmap_regbuf(struct rpcrdma_regbuf *rb); 81 82 struct workqueue_struct *rpcrdma_receive_wq __read_mostly; 83 84 int 85 rpcrdma_alloc_wq(void) 86 { 87 struct workqueue_struct *recv_wq; 88 89 recv_wq = alloc_workqueue("xprtrdma_receive", 90 WQ_MEM_RECLAIM | WQ_HIGHPRI, 91 0); 92 if (!recv_wq) 93 return -ENOMEM; 94 95 rpcrdma_receive_wq = recv_wq; 96 return 0; 97 } 98 99 void 100 rpcrdma_destroy_wq(void) 101 { 102 struct workqueue_struct *wq; 103 104 if (rpcrdma_receive_wq) { 105 wq = rpcrdma_receive_wq; 106 rpcrdma_receive_wq = NULL; 107 destroy_workqueue(wq); 108 } 109 } 110 111 static void 112 rpcrdma_qp_async_error_upcall(struct ib_event *event, void *context) 113 { 114 struct rpcrdma_ep *ep = context; 115 struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt, 116 rx_ep); 117 118 trace_xprtrdma_qp_error(r_xprt, event); 119 pr_err("rpcrdma: %s on device %s ep %p\n", 120 ib_event_msg(event->event), event->device->name, context); 121 122 if (ep->rep_connected == 1) { 123 ep->rep_connected = -EIO; 124 rpcrdma_conn_func(ep); 125 wake_up_all(&ep->rep_connect_wait); 126 } 127 } 128 129 /** 130 * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC 131 * @cq: completion queue (ignored) 132 * @wc: completed WR 133 * 134 */ 135 static void 136 rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc) 137 { 138 struct ib_cqe *cqe = wc->wr_cqe; 139 struct rpcrdma_sendctx *sc = 140 container_of(cqe, struct rpcrdma_sendctx, sc_cqe); 141 142 /* WARNING: Only wr_cqe and status are reliable at this point */ 143 trace_xprtrdma_wc_send(sc, wc); 144 if (wc->status != IB_WC_SUCCESS && wc->status != IB_WC_WR_FLUSH_ERR) 145 pr_err("rpcrdma: Send: %s (%u/0x%x)\n", 146 ib_wc_status_msg(wc->status), 147 wc->status, wc->vendor_err); 148 149 rpcrdma_sendctx_put_locked(sc); 150 } 151 152 /** 153 * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC 154 * @cq: completion queue (ignored) 155 * @wc: completed WR 156 * 157 */ 158 static void 159 rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc) 160 { 161 struct ib_cqe *cqe = wc->wr_cqe; 162 struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep, 163 rr_cqe); 164 165 /* WARNING: Only wr_id and status are reliable at this point */ 166 trace_xprtrdma_wc_receive(wc); 167 if (wc->status != IB_WC_SUCCESS) 168 goto out_fail; 169 170 /* status == SUCCESS means all fields in wc are trustworthy */ 171 rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len); 172 rep->rr_wc_flags = wc->wc_flags; 173 rep->rr_inv_rkey = wc->ex.invalidate_rkey; 174 175 ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf), 176 rdmab_addr(rep->rr_rdmabuf), 177 wc->byte_len, DMA_FROM_DEVICE); 178 179 out_schedule: 180 rpcrdma_reply_handler(rep); 181 return; 182 183 out_fail: 184 if (wc->status != IB_WC_WR_FLUSH_ERR) 185 pr_err("rpcrdma: Recv: %s (%u/0x%x)\n", 186 ib_wc_status_msg(wc->status), 187 wc->status, wc->vendor_err); 188 rpcrdma_set_xdrlen(&rep->rr_hdrbuf, 0); 189 goto out_schedule; 190 } 191 192 static void 193 rpcrdma_update_connect_private(struct rpcrdma_xprt *r_xprt, 194 struct rdma_conn_param *param) 195 { 196 struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; 197 const struct rpcrdma_connect_private *pmsg = param->private_data; 198 unsigned int rsize, wsize; 199 200 /* Default settings for RPC-over-RDMA Version One */ 201 r_xprt->rx_ia.ri_implicit_roundup = xprt_rdma_pad_optimize; 202 rsize = RPCRDMA_V1_DEF_INLINE_SIZE; 203 wsize = RPCRDMA_V1_DEF_INLINE_SIZE; 204 205 if (pmsg && 206 pmsg->cp_magic == rpcrdma_cmp_magic && 207 pmsg->cp_version == RPCRDMA_CMP_VERSION) { 208 r_xprt->rx_ia.ri_implicit_roundup = true; 209 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size); 210 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size); 211 } 212 213 if (rsize < cdata->inline_rsize) 214 cdata->inline_rsize = rsize; 215 if (wsize < cdata->inline_wsize) 216 cdata->inline_wsize = wsize; 217 dprintk("RPC: %s: max send %u, max recv %u\n", 218 __func__, cdata->inline_wsize, cdata->inline_rsize); 219 rpcrdma_set_max_header_sizes(r_xprt); 220 } 221 222 static int 223 rpcrdma_conn_upcall(struct rdma_cm_id *id, struct rdma_cm_event *event) 224 { 225 struct rpcrdma_xprt *xprt = id->context; 226 struct rpcrdma_ia *ia = &xprt->rx_ia; 227 struct rpcrdma_ep *ep = &xprt->rx_ep; 228 int connstate = 0; 229 230 trace_xprtrdma_conn_upcall(xprt, event); 231 switch (event->event) { 232 case RDMA_CM_EVENT_ADDR_RESOLVED: 233 case RDMA_CM_EVENT_ROUTE_RESOLVED: 234 ia->ri_async_rc = 0; 235 complete(&ia->ri_done); 236 break; 237 case RDMA_CM_EVENT_ADDR_ERROR: 238 ia->ri_async_rc = -EPROTO; 239 complete(&ia->ri_done); 240 break; 241 case RDMA_CM_EVENT_ROUTE_ERROR: 242 ia->ri_async_rc = -ENETUNREACH; 243 complete(&ia->ri_done); 244 break; 245 case RDMA_CM_EVENT_DEVICE_REMOVAL: 246 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 247 pr_info("rpcrdma: removing device %s for %s:%s\n", 248 ia->ri_device->name, 249 rpcrdma_addrstr(xprt), rpcrdma_portstr(xprt)); 250 #endif 251 set_bit(RPCRDMA_IAF_REMOVING, &ia->ri_flags); 252 ep->rep_connected = -ENODEV; 253 xprt_force_disconnect(&xprt->rx_xprt); 254 wait_for_completion(&ia->ri_remove_done); 255 256 ia->ri_id = NULL; 257 ia->ri_device = NULL; 258 /* Return 1 to ensure the core destroys the id. */ 259 return 1; 260 case RDMA_CM_EVENT_ESTABLISHED: 261 ++xprt->rx_xprt.connect_cookie; 262 connstate = 1; 263 rpcrdma_update_connect_private(xprt, &event->param.conn); 264 goto connected; 265 case RDMA_CM_EVENT_CONNECT_ERROR: 266 connstate = -ENOTCONN; 267 goto connected; 268 case RDMA_CM_EVENT_UNREACHABLE: 269 connstate = -ENETUNREACH; 270 goto connected; 271 case RDMA_CM_EVENT_REJECTED: 272 dprintk("rpcrdma: connection to %s:%s rejected: %s\n", 273 rpcrdma_addrstr(xprt), rpcrdma_portstr(xprt), 274 rdma_reject_msg(id, event->status)); 275 connstate = -ECONNREFUSED; 276 if (event->status == IB_CM_REJ_STALE_CONN) 277 connstate = -EAGAIN; 278 goto connected; 279 case RDMA_CM_EVENT_DISCONNECTED: 280 ++xprt->rx_xprt.connect_cookie; 281 connstate = -ECONNABORTED; 282 connected: 283 xprt->rx_buf.rb_credits = 1; 284 ep->rep_connected = connstate; 285 rpcrdma_conn_func(ep); 286 wake_up_all(&ep->rep_connect_wait); 287 /*FALLTHROUGH*/ 288 default: 289 dprintk("RPC: %s: %s:%s on %s/%s (ep 0x%p): %s\n", 290 __func__, 291 rpcrdma_addrstr(xprt), rpcrdma_portstr(xprt), 292 ia->ri_device->name, ia->ri_ops->ro_displayname, 293 ep, rdma_event_msg(event->event)); 294 break; 295 } 296 297 return 0; 298 } 299 300 static struct rdma_cm_id * 301 rpcrdma_create_id(struct rpcrdma_xprt *xprt, struct rpcrdma_ia *ia) 302 { 303 unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1; 304 struct rdma_cm_id *id; 305 int rc; 306 307 trace_xprtrdma_conn_start(xprt); 308 309 init_completion(&ia->ri_done); 310 init_completion(&ia->ri_remove_done); 311 312 id = rdma_create_id(xprt->rx_xprt.xprt_net, rpcrdma_conn_upcall, 313 xprt, RDMA_PS_TCP, IB_QPT_RC); 314 if (IS_ERR(id)) { 315 rc = PTR_ERR(id); 316 dprintk("RPC: %s: rdma_create_id() failed %i\n", 317 __func__, rc); 318 return id; 319 } 320 321 ia->ri_async_rc = -ETIMEDOUT; 322 rc = rdma_resolve_addr(id, NULL, 323 (struct sockaddr *)&xprt->rx_xprt.addr, 324 RDMA_RESOLVE_TIMEOUT); 325 if (rc) { 326 dprintk("RPC: %s: rdma_resolve_addr() failed %i\n", 327 __func__, rc); 328 goto out; 329 } 330 rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout); 331 if (rc < 0) { 332 trace_xprtrdma_conn_tout(xprt); 333 goto out; 334 } 335 336 rc = ia->ri_async_rc; 337 if (rc) 338 goto out; 339 340 ia->ri_async_rc = -ETIMEDOUT; 341 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); 342 if (rc) { 343 dprintk("RPC: %s: rdma_resolve_route() failed %i\n", 344 __func__, rc); 345 goto out; 346 } 347 rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout); 348 if (rc < 0) { 349 trace_xprtrdma_conn_tout(xprt); 350 goto out; 351 } 352 rc = ia->ri_async_rc; 353 if (rc) 354 goto out; 355 356 return id; 357 358 out: 359 rdma_destroy_id(id); 360 return ERR_PTR(rc); 361 } 362 363 /* 364 * Exported functions. 365 */ 366 367 /** 368 * rpcrdma_ia_open - Open and initialize an Interface Adapter. 369 * @xprt: transport with IA to (re)initialize 370 * 371 * Returns 0 on success, negative errno if an appropriate 372 * Interface Adapter could not be found and opened. 373 */ 374 int 375 rpcrdma_ia_open(struct rpcrdma_xprt *xprt) 376 { 377 struct rpcrdma_ia *ia = &xprt->rx_ia; 378 int rc; 379 380 ia->ri_id = rpcrdma_create_id(xprt, ia); 381 if (IS_ERR(ia->ri_id)) { 382 rc = PTR_ERR(ia->ri_id); 383 goto out_err; 384 } 385 ia->ri_device = ia->ri_id->device; 386 387 ia->ri_pd = ib_alloc_pd(ia->ri_device, 0); 388 if (IS_ERR(ia->ri_pd)) { 389 rc = PTR_ERR(ia->ri_pd); 390 pr_err("rpcrdma: ib_alloc_pd() returned %d\n", rc); 391 goto out_err; 392 } 393 394 switch (xprt_rdma_memreg_strategy) { 395 case RPCRDMA_FRWR: 396 if (frwr_is_supported(ia)) { 397 ia->ri_ops = &rpcrdma_frwr_memreg_ops; 398 break; 399 } 400 /*FALLTHROUGH*/ 401 case RPCRDMA_MTHCAFMR: 402 if (fmr_is_supported(ia)) { 403 ia->ri_ops = &rpcrdma_fmr_memreg_ops; 404 break; 405 } 406 /*FALLTHROUGH*/ 407 default: 408 pr_err("rpcrdma: Device %s does not support memreg mode %d\n", 409 ia->ri_device->name, xprt_rdma_memreg_strategy); 410 rc = -EINVAL; 411 goto out_err; 412 } 413 414 return 0; 415 416 out_err: 417 rpcrdma_ia_close(ia); 418 return rc; 419 } 420 421 /** 422 * rpcrdma_ia_remove - Handle device driver unload 423 * @ia: interface adapter being removed 424 * 425 * Divest transport H/W resources associated with this adapter, 426 * but allow it to be restored later. 427 */ 428 void 429 rpcrdma_ia_remove(struct rpcrdma_ia *ia) 430 { 431 struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt, 432 rx_ia); 433 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 434 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 435 struct rpcrdma_req *req; 436 struct rpcrdma_rep *rep; 437 438 cancel_delayed_work_sync(&buf->rb_refresh_worker); 439 440 /* This is similar to rpcrdma_ep_destroy, but: 441 * - Don't cancel the connect worker. 442 * - Don't call rpcrdma_ep_disconnect, which waits 443 * for another conn upcall, which will deadlock. 444 * - rdma_disconnect is unneeded, the underlying 445 * connection is already gone. 446 */ 447 if (ia->ri_id->qp) { 448 ib_drain_qp(ia->ri_id->qp); 449 rdma_destroy_qp(ia->ri_id); 450 ia->ri_id->qp = NULL; 451 } 452 ib_free_cq(ep->rep_attr.recv_cq); 453 ep->rep_attr.recv_cq = NULL; 454 ib_free_cq(ep->rep_attr.send_cq); 455 ep->rep_attr.send_cq = NULL; 456 457 /* The ULP is responsible for ensuring all DMA 458 * mappings and MRs are gone. 459 */ 460 list_for_each_entry(rep, &buf->rb_recv_bufs, rr_list) 461 rpcrdma_dma_unmap_regbuf(rep->rr_rdmabuf); 462 list_for_each_entry(req, &buf->rb_allreqs, rl_all) { 463 rpcrdma_dma_unmap_regbuf(req->rl_rdmabuf); 464 rpcrdma_dma_unmap_regbuf(req->rl_sendbuf); 465 rpcrdma_dma_unmap_regbuf(req->rl_recvbuf); 466 } 467 rpcrdma_mrs_destroy(buf); 468 ib_dealloc_pd(ia->ri_pd); 469 ia->ri_pd = NULL; 470 471 /* Allow waiters to continue */ 472 complete(&ia->ri_remove_done); 473 474 trace_xprtrdma_remove(r_xprt); 475 } 476 477 /** 478 * rpcrdma_ia_close - Clean up/close an IA. 479 * @ia: interface adapter to close 480 * 481 */ 482 void 483 rpcrdma_ia_close(struct rpcrdma_ia *ia) 484 { 485 if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) { 486 if (ia->ri_id->qp) 487 rdma_destroy_qp(ia->ri_id); 488 rdma_destroy_id(ia->ri_id); 489 } 490 ia->ri_id = NULL; 491 ia->ri_device = NULL; 492 493 /* If the pd is still busy, xprtrdma missed freeing a resource */ 494 if (ia->ri_pd && !IS_ERR(ia->ri_pd)) 495 ib_dealloc_pd(ia->ri_pd); 496 ia->ri_pd = NULL; 497 } 498 499 /* 500 * Create unconnected endpoint. 501 */ 502 int 503 rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia, 504 struct rpcrdma_create_data_internal *cdata) 505 { 506 struct rpcrdma_connect_private *pmsg = &ep->rep_cm_private; 507 struct ib_cq *sendcq, *recvcq; 508 unsigned int max_sge; 509 int rc; 510 511 max_sge = min_t(unsigned int, ia->ri_device->attrs.max_send_sge, 512 RPCRDMA_MAX_SEND_SGES); 513 if (max_sge < RPCRDMA_MIN_SEND_SGES) { 514 pr_warn("rpcrdma: HCA provides only %d send SGEs\n", max_sge); 515 return -ENOMEM; 516 } 517 ia->ri_max_send_sges = max_sge; 518 519 rc = ia->ri_ops->ro_open(ia, ep, cdata); 520 if (rc) 521 return rc; 522 523 ep->rep_attr.event_handler = rpcrdma_qp_async_error_upcall; 524 ep->rep_attr.qp_context = ep; 525 ep->rep_attr.srq = NULL; 526 ep->rep_attr.cap.max_send_sge = max_sge; 527 ep->rep_attr.cap.max_recv_sge = 1; 528 ep->rep_attr.cap.max_inline_data = 0; 529 ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 530 ep->rep_attr.qp_type = IB_QPT_RC; 531 ep->rep_attr.port_num = ~0; 532 533 dprintk("RPC: %s: requested max: dtos: send %d recv %d; " 534 "iovs: send %d recv %d\n", 535 __func__, 536 ep->rep_attr.cap.max_send_wr, 537 ep->rep_attr.cap.max_recv_wr, 538 ep->rep_attr.cap.max_send_sge, 539 ep->rep_attr.cap.max_recv_sge); 540 541 /* set trigger for requesting send completion */ 542 ep->rep_send_batch = min_t(unsigned int, RPCRDMA_MAX_SEND_BATCH, 543 cdata->max_requests >> 2); 544 ep->rep_send_count = ep->rep_send_batch; 545 init_waitqueue_head(&ep->rep_connect_wait); 546 INIT_DELAYED_WORK(&ep->rep_connect_worker, rpcrdma_connect_worker); 547 548 sendcq = ib_alloc_cq(ia->ri_device, NULL, 549 ep->rep_attr.cap.max_send_wr + 1, 550 1, IB_POLL_WORKQUEUE); 551 if (IS_ERR(sendcq)) { 552 rc = PTR_ERR(sendcq); 553 dprintk("RPC: %s: failed to create send CQ: %i\n", 554 __func__, rc); 555 goto out1; 556 } 557 558 recvcq = ib_alloc_cq(ia->ri_device, NULL, 559 ep->rep_attr.cap.max_recv_wr + 1, 560 0, IB_POLL_WORKQUEUE); 561 if (IS_ERR(recvcq)) { 562 rc = PTR_ERR(recvcq); 563 dprintk("RPC: %s: failed to create recv CQ: %i\n", 564 __func__, rc); 565 goto out2; 566 } 567 568 ep->rep_attr.send_cq = sendcq; 569 ep->rep_attr.recv_cq = recvcq; 570 571 /* Initialize cma parameters */ 572 memset(&ep->rep_remote_cma, 0, sizeof(ep->rep_remote_cma)); 573 574 /* Prepare RDMA-CM private message */ 575 pmsg->cp_magic = rpcrdma_cmp_magic; 576 pmsg->cp_version = RPCRDMA_CMP_VERSION; 577 pmsg->cp_flags |= ia->ri_ops->ro_send_w_inv_ok; 578 pmsg->cp_send_size = rpcrdma_encode_buffer_size(cdata->inline_wsize); 579 pmsg->cp_recv_size = rpcrdma_encode_buffer_size(cdata->inline_rsize); 580 ep->rep_remote_cma.private_data = pmsg; 581 ep->rep_remote_cma.private_data_len = sizeof(*pmsg); 582 583 /* Client offers RDMA Read but does not initiate */ 584 ep->rep_remote_cma.initiator_depth = 0; 585 ep->rep_remote_cma.responder_resources = 586 min_t(int, U8_MAX, ia->ri_device->attrs.max_qp_rd_atom); 587 588 /* Limit transport retries so client can detect server 589 * GID changes quickly. RPC layer handles re-establishing 590 * transport connection and retransmission. 591 */ 592 ep->rep_remote_cma.retry_count = 6; 593 594 /* RPC-over-RDMA handles its own flow control. In addition, 595 * make all RNR NAKs visible so we know that RPC-over-RDMA 596 * flow control is working correctly (no NAKs should be seen). 597 */ 598 ep->rep_remote_cma.flow_control = 0; 599 ep->rep_remote_cma.rnr_retry_count = 0; 600 601 return 0; 602 603 out2: 604 ib_free_cq(sendcq); 605 out1: 606 return rc; 607 } 608 609 /* 610 * rpcrdma_ep_destroy 611 * 612 * Disconnect and destroy endpoint. After this, the only 613 * valid operations on the ep are to free it (if dynamically 614 * allocated) or re-create it. 615 */ 616 void 617 rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 618 { 619 cancel_delayed_work_sync(&ep->rep_connect_worker); 620 621 if (ia->ri_id && ia->ri_id->qp) { 622 rpcrdma_ep_disconnect(ep, ia); 623 rdma_destroy_qp(ia->ri_id); 624 ia->ri_id->qp = NULL; 625 } 626 627 if (ep->rep_attr.recv_cq) 628 ib_free_cq(ep->rep_attr.recv_cq); 629 if (ep->rep_attr.send_cq) 630 ib_free_cq(ep->rep_attr.send_cq); 631 } 632 633 /* Re-establish a connection after a device removal event. 634 * Unlike a normal reconnection, a fresh PD and a new set 635 * of MRs and buffers is needed. 636 */ 637 static int 638 rpcrdma_ep_recreate_xprt(struct rpcrdma_xprt *r_xprt, 639 struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 640 { 641 int rc, err; 642 643 trace_xprtrdma_reinsert(r_xprt); 644 645 rc = -EHOSTUNREACH; 646 if (rpcrdma_ia_open(r_xprt)) 647 goto out1; 648 649 rc = -ENOMEM; 650 err = rpcrdma_ep_create(ep, ia, &r_xprt->rx_data); 651 if (err) { 652 pr_err("rpcrdma: rpcrdma_ep_create returned %d\n", err); 653 goto out2; 654 } 655 656 rc = -ENETUNREACH; 657 err = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr); 658 if (err) { 659 pr_err("rpcrdma: rdma_create_qp returned %d\n", err); 660 goto out3; 661 } 662 663 rpcrdma_mrs_create(r_xprt); 664 return 0; 665 666 out3: 667 rpcrdma_ep_destroy(ep, ia); 668 out2: 669 rpcrdma_ia_close(ia); 670 out1: 671 return rc; 672 } 673 674 static int 675 rpcrdma_ep_reconnect(struct rpcrdma_xprt *r_xprt, struct rpcrdma_ep *ep, 676 struct rpcrdma_ia *ia) 677 { 678 struct rdma_cm_id *id, *old; 679 int err, rc; 680 681 trace_xprtrdma_reconnect(r_xprt); 682 683 rpcrdma_ep_disconnect(ep, ia); 684 685 rc = -EHOSTUNREACH; 686 id = rpcrdma_create_id(r_xprt, ia); 687 if (IS_ERR(id)) 688 goto out; 689 690 /* As long as the new ID points to the same device as the 691 * old ID, we can reuse the transport's existing PD and all 692 * previously allocated MRs. Also, the same device means 693 * the transport's previous DMA mappings are still valid. 694 * 695 * This is a sanity check only. There should be no way these 696 * point to two different devices here. 697 */ 698 old = id; 699 rc = -ENETUNREACH; 700 if (ia->ri_device != id->device) { 701 pr_err("rpcrdma: can't reconnect on different device!\n"); 702 goto out_destroy; 703 } 704 705 err = rdma_create_qp(id, ia->ri_pd, &ep->rep_attr); 706 if (err) { 707 dprintk("RPC: %s: rdma_create_qp returned %d\n", 708 __func__, err); 709 goto out_destroy; 710 } 711 712 /* Atomically replace the transport's ID and QP. */ 713 rc = 0; 714 old = ia->ri_id; 715 ia->ri_id = id; 716 rdma_destroy_qp(old); 717 718 out_destroy: 719 rdma_destroy_id(old); 720 out: 721 return rc; 722 } 723 724 /* 725 * Connect unconnected endpoint. 726 */ 727 int 728 rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 729 { 730 struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt, 731 rx_ia); 732 int rc; 733 734 retry: 735 switch (ep->rep_connected) { 736 case 0: 737 dprintk("RPC: %s: connecting...\n", __func__); 738 rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr); 739 if (rc) { 740 dprintk("RPC: %s: rdma_create_qp failed %i\n", 741 __func__, rc); 742 rc = -ENETUNREACH; 743 goto out_noupdate; 744 } 745 break; 746 case -ENODEV: 747 rc = rpcrdma_ep_recreate_xprt(r_xprt, ep, ia); 748 if (rc) 749 goto out_noupdate; 750 break; 751 default: 752 rc = rpcrdma_ep_reconnect(r_xprt, ep, ia); 753 if (rc) 754 goto out; 755 } 756 757 ep->rep_connected = 0; 758 759 rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma); 760 if (rc) { 761 dprintk("RPC: %s: rdma_connect() failed with %i\n", 762 __func__, rc); 763 goto out; 764 } 765 766 wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0); 767 if (ep->rep_connected <= 0) { 768 if (ep->rep_connected == -EAGAIN) 769 goto retry; 770 rc = ep->rep_connected; 771 goto out; 772 } 773 774 dprintk("RPC: %s: connected\n", __func__); 775 776 rpcrdma_post_recvs(r_xprt, true); 777 778 out: 779 if (rc) 780 ep->rep_connected = rc; 781 782 out_noupdate: 783 return rc; 784 } 785 786 /* 787 * rpcrdma_ep_disconnect 788 * 789 * This is separate from destroy to facilitate the ability 790 * to reconnect without recreating the endpoint. 791 * 792 * This call is not reentrant, and must not be made in parallel 793 * on the same endpoint. 794 */ 795 void 796 rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 797 { 798 int rc; 799 800 rc = rdma_disconnect(ia->ri_id); 801 if (!rc) 802 /* returns without wait if not connected */ 803 wait_event_interruptible(ep->rep_connect_wait, 804 ep->rep_connected != 1); 805 else 806 ep->rep_connected = rc; 807 trace_xprtrdma_disconnect(container_of(ep, struct rpcrdma_xprt, 808 rx_ep), rc); 809 810 ib_drain_qp(ia->ri_id->qp); 811 } 812 813 /* Fixed-size circular FIFO queue. This implementation is wait-free and 814 * lock-free. 815 * 816 * Consumer is the code path that posts Sends. This path dequeues a 817 * sendctx for use by a Send operation. Multiple consumer threads 818 * are serialized by the RPC transport lock, which allows only one 819 * ->send_request call at a time. 820 * 821 * Producer is the code path that handles Send completions. This path 822 * enqueues a sendctx that has been completed. Multiple producer 823 * threads are serialized by the ib_poll_cq() function. 824 */ 825 826 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced 827 * queue activity, and ib_drain_qp has flushed all remaining Send 828 * requests. 829 */ 830 static void rpcrdma_sendctxs_destroy(struct rpcrdma_buffer *buf) 831 { 832 unsigned long i; 833 834 for (i = 0; i <= buf->rb_sc_last; i++) 835 kfree(buf->rb_sc_ctxs[i]); 836 kfree(buf->rb_sc_ctxs); 837 } 838 839 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ia *ia) 840 { 841 struct rpcrdma_sendctx *sc; 842 843 sc = kzalloc(sizeof(*sc) + 844 ia->ri_max_send_sges * sizeof(struct ib_sge), 845 GFP_KERNEL); 846 if (!sc) 847 return NULL; 848 849 sc->sc_wr.wr_cqe = &sc->sc_cqe; 850 sc->sc_wr.sg_list = sc->sc_sges; 851 sc->sc_wr.opcode = IB_WR_SEND; 852 sc->sc_cqe.done = rpcrdma_wc_send; 853 return sc; 854 } 855 856 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt) 857 { 858 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 859 struct rpcrdma_sendctx *sc; 860 unsigned long i; 861 862 /* Maximum number of concurrent outstanding Send WRs. Capping 863 * the circular queue size stops Send Queue overflow by causing 864 * the ->send_request call to fail temporarily before too many 865 * Sends are posted. 866 */ 867 i = buf->rb_max_requests + RPCRDMA_MAX_BC_REQUESTS; 868 dprintk("RPC: %s: allocating %lu send_ctxs\n", __func__, i); 869 buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL); 870 if (!buf->rb_sc_ctxs) 871 return -ENOMEM; 872 873 buf->rb_sc_last = i - 1; 874 for (i = 0; i <= buf->rb_sc_last; i++) { 875 sc = rpcrdma_sendctx_create(&r_xprt->rx_ia); 876 if (!sc) 877 goto out_destroy; 878 879 sc->sc_xprt = r_xprt; 880 buf->rb_sc_ctxs[i] = sc; 881 } 882 buf->rb_flags = 0; 883 884 return 0; 885 886 out_destroy: 887 rpcrdma_sendctxs_destroy(buf); 888 return -ENOMEM; 889 } 890 891 /* The sendctx queue is not guaranteed to have a size that is a 892 * power of two, thus the helpers in circ_buf.h cannot be used. 893 * The other option is to use modulus (%), which can be expensive. 894 */ 895 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf, 896 unsigned long item) 897 { 898 return likely(item < buf->rb_sc_last) ? item + 1 : 0; 899 } 900 901 /** 902 * rpcrdma_sendctx_get_locked - Acquire a send context 903 * @buf: transport buffers from which to acquire an unused context 904 * 905 * Returns pointer to a free send completion context; or NULL if 906 * the queue is empty. 907 * 908 * Usage: Called to acquire an SGE array before preparing a Send WR. 909 * 910 * The caller serializes calls to this function (per rpcrdma_buffer), 911 * and provides an effective memory barrier that flushes the new value 912 * of rb_sc_head. 913 */ 914 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_buffer *buf) 915 { 916 struct rpcrdma_xprt *r_xprt; 917 struct rpcrdma_sendctx *sc; 918 unsigned long next_head; 919 920 next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head); 921 922 if (next_head == READ_ONCE(buf->rb_sc_tail)) 923 goto out_emptyq; 924 925 /* ORDER: item must be accessed _before_ head is updated */ 926 sc = buf->rb_sc_ctxs[next_head]; 927 928 /* Releasing the lock in the caller acts as a memory 929 * barrier that flushes rb_sc_head. 930 */ 931 buf->rb_sc_head = next_head; 932 933 return sc; 934 935 out_emptyq: 936 /* The queue is "empty" if there have not been enough Send 937 * completions recently. This is a sign the Send Queue is 938 * backing up. Cause the caller to pause and try again. 939 */ 940 set_bit(RPCRDMA_BUF_F_EMPTY_SCQ, &buf->rb_flags); 941 r_xprt = container_of(buf, struct rpcrdma_xprt, rx_buf); 942 r_xprt->rx_stats.empty_sendctx_q++; 943 return NULL; 944 } 945 946 /** 947 * rpcrdma_sendctx_put_locked - Release a send context 948 * @sc: send context to release 949 * 950 * Usage: Called from Send completion to return a sendctxt 951 * to the queue. 952 * 953 * The caller serializes calls to this function (per rpcrdma_buffer). 954 */ 955 static void 956 rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc) 957 { 958 struct rpcrdma_buffer *buf = &sc->sc_xprt->rx_buf; 959 unsigned long next_tail; 960 961 /* Unmap SGEs of previously completed by unsignaled 962 * Sends by walking up the queue until @sc is found. 963 */ 964 next_tail = buf->rb_sc_tail; 965 do { 966 next_tail = rpcrdma_sendctx_next(buf, next_tail); 967 968 /* ORDER: item must be accessed _before_ tail is updated */ 969 rpcrdma_unmap_sendctx(buf->rb_sc_ctxs[next_tail]); 970 971 } while (buf->rb_sc_ctxs[next_tail] != sc); 972 973 /* Paired with READ_ONCE */ 974 smp_store_release(&buf->rb_sc_tail, next_tail); 975 976 if (test_and_clear_bit(RPCRDMA_BUF_F_EMPTY_SCQ, &buf->rb_flags)) { 977 smp_mb__after_atomic(); 978 xprt_write_space(&sc->sc_xprt->rx_xprt); 979 } 980 } 981 982 static void 983 rpcrdma_mr_recovery_worker(struct work_struct *work) 984 { 985 struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer, 986 rb_recovery_worker.work); 987 struct rpcrdma_mr *mr; 988 989 spin_lock(&buf->rb_recovery_lock); 990 while (!list_empty(&buf->rb_stale_mrs)) { 991 mr = rpcrdma_mr_pop(&buf->rb_stale_mrs); 992 spin_unlock(&buf->rb_recovery_lock); 993 994 trace_xprtrdma_recover_mr(mr); 995 mr->mr_xprt->rx_ia.ri_ops->ro_recover_mr(mr); 996 997 spin_lock(&buf->rb_recovery_lock); 998 } 999 spin_unlock(&buf->rb_recovery_lock); 1000 } 1001 1002 void 1003 rpcrdma_mr_defer_recovery(struct rpcrdma_mr *mr) 1004 { 1005 struct rpcrdma_xprt *r_xprt = mr->mr_xprt; 1006 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1007 1008 spin_lock(&buf->rb_recovery_lock); 1009 rpcrdma_mr_push(mr, &buf->rb_stale_mrs); 1010 spin_unlock(&buf->rb_recovery_lock); 1011 1012 schedule_delayed_work(&buf->rb_recovery_worker, 0); 1013 } 1014 1015 static void 1016 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt) 1017 { 1018 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1019 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 1020 unsigned int count; 1021 LIST_HEAD(free); 1022 LIST_HEAD(all); 1023 1024 for (count = 0; count < 3; count++) { 1025 struct rpcrdma_mr *mr; 1026 int rc; 1027 1028 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 1029 if (!mr) 1030 break; 1031 1032 rc = ia->ri_ops->ro_init_mr(ia, mr); 1033 if (rc) { 1034 kfree(mr); 1035 break; 1036 } 1037 1038 mr->mr_xprt = r_xprt; 1039 1040 list_add(&mr->mr_list, &free); 1041 list_add(&mr->mr_all, &all); 1042 } 1043 1044 spin_lock(&buf->rb_mrlock); 1045 list_splice(&free, &buf->rb_mrs); 1046 list_splice(&all, &buf->rb_all); 1047 r_xprt->rx_stats.mrs_allocated += count; 1048 spin_unlock(&buf->rb_mrlock); 1049 trace_xprtrdma_createmrs(r_xprt, count); 1050 1051 xprt_write_space(&r_xprt->rx_xprt); 1052 } 1053 1054 static void 1055 rpcrdma_mr_refresh_worker(struct work_struct *work) 1056 { 1057 struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer, 1058 rb_refresh_worker.work); 1059 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, 1060 rx_buf); 1061 1062 rpcrdma_mrs_create(r_xprt); 1063 } 1064 1065 struct rpcrdma_req * 1066 rpcrdma_create_req(struct rpcrdma_xprt *r_xprt) 1067 { 1068 struct rpcrdma_buffer *buffer = &r_xprt->rx_buf; 1069 struct rpcrdma_regbuf *rb; 1070 struct rpcrdma_req *req; 1071 1072 req = kzalloc(sizeof(*req), GFP_KERNEL); 1073 if (req == NULL) 1074 return ERR_PTR(-ENOMEM); 1075 1076 rb = rpcrdma_alloc_regbuf(RPCRDMA_HDRBUF_SIZE, 1077 DMA_TO_DEVICE, GFP_KERNEL); 1078 if (IS_ERR(rb)) { 1079 kfree(req); 1080 return ERR_PTR(-ENOMEM); 1081 } 1082 req->rl_rdmabuf = rb; 1083 xdr_buf_init(&req->rl_hdrbuf, rb->rg_base, rdmab_length(rb)); 1084 req->rl_buffer = buffer; 1085 INIT_LIST_HEAD(&req->rl_registered); 1086 1087 spin_lock(&buffer->rb_reqslock); 1088 list_add(&req->rl_all, &buffer->rb_allreqs); 1089 spin_unlock(&buffer->rb_reqslock); 1090 return req; 1091 } 1092 1093 static int 1094 rpcrdma_create_rep(struct rpcrdma_xprt *r_xprt, bool temp) 1095 { 1096 struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; 1097 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1098 struct rpcrdma_rep *rep; 1099 int rc; 1100 1101 rc = -ENOMEM; 1102 rep = kzalloc(sizeof(*rep), GFP_KERNEL); 1103 if (rep == NULL) 1104 goto out; 1105 1106 rep->rr_rdmabuf = rpcrdma_alloc_regbuf(cdata->inline_rsize, 1107 DMA_FROM_DEVICE, GFP_KERNEL); 1108 if (IS_ERR(rep->rr_rdmabuf)) { 1109 rc = PTR_ERR(rep->rr_rdmabuf); 1110 goto out_free; 1111 } 1112 xdr_buf_init(&rep->rr_hdrbuf, rep->rr_rdmabuf->rg_base, 1113 rdmab_length(rep->rr_rdmabuf)); 1114 1115 rep->rr_cqe.done = rpcrdma_wc_receive; 1116 rep->rr_rxprt = r_xprt; 1117 INIT_WORK(&rep->rr_work, rpcrdma_deferred_completion); 1118 rep->rr_recv_wr.next = NULL; 1119 rep->rr_recv_wr.wr_cqe = &rep->rr_cqe; 1120 rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov; 1121 rep->rr_recv_wr.num_sge = 1; 1122 rep->rr_temp = temp; 1123 1124 spin_lock(&buf->rb_lock); 1125 list_add(&rep->rr_list, &buf->rb_recv_bufs); 1126 spin_unlock(&buf->rb_lock); 1127 return 0; 1128 1129 out_free: 1130 kfree(rep); 1131 out: 1132 dprintk("RPC: %s: reply buffer %d alloc failed\n", 1133 __func__, rc); 1134 return rc; 1135 } 1136 1137 int 1138 rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt) 1139 { 1140 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1141 int i, rc; 1142 1143 buf->rb_max_requests = r_xprt->rx_data.max_requests; 1144 buf->rb_bc_srv_max_requests = 0; 1145 spin_lock_init(&buf->rb_mrlock); 1146 spin_lock_init(&buf->rb_lock); 1147 spin_lock_init(&buf->rb_recovery_lock); 1148 INIT_LIST_HEAD(&buf->rb_mrs); 1149 INIT_LIST_HEAD(&buf->rb_all); 1150 INIT_LIST_HEAD(&buf->rb_stale_mrs); 1151 INIT_DELAYED_WORK(&buf->rb_refresh_worker, 1152 rpcrdma_mr_refresh_worker); 1153 INIT_DELAYED_WORK(&buf->rb_recovery_worker, 1154 rpcrdma_mr_recovery_worker); 1155 1156 rpcrdma_mrs_create(r_xprt); 1157 1158 INIT_LIST_HEAD(&buf->rb_send_bufs); 1159 INIT_LIST_HEAD(&buf->rb_allreqs); 1160 spin_lock_init(&buf->rb_reqslock); 1161 for (i = 0; i < buf->rb_max_requests; i++) { 1162 struct rpcrdma_req *req; 1163 1164 req = rpcrdma_create_req(r_xprt); 1165 if (IS_ERR(req)) { 1166 dprintk("RPC: %s: request buffer %d alloc" 1167 " failed\n", __func__, i); 1168 rc = PTR_ERR(req); 1169 goto out; 1170 } 1171 list_add(&req->rl_list, &buf->rb_send_bufs); 1172 } 1173 1174 buf->rb_posted_receives = 0; 1175 INIT_LIST_HEAD(&buf->rb_recv_bufs); 1176 1177 rc = rpcrdma_sendctxs_create(r_xprt); 1178 if (rc) 1179 goto out; 1180 1181 return 0; 1182 out: 1183 rpcrdma_buffer_destroy(buf); 1184 return rc; 1185 } 1186 1187 static void 1188 rpcrdma_destroy_rep(struct rpcrdma_rep *rep) 1189 { 1190 rpcrdma_free_regbuf(rep->rr_rdmabuf); 1191 kfree(rep); 1192 } 1193 1194 void 1195 rpcrdma_destroy_req(struct rpcrdma_req *req) 1196 { 1197 rpcrdma_free_regbuf(req->rl_recvbuf); 1198 rpcrdma_free_regbuf(req->rl_sendbuf); 1199 rpcrdma_free_regbuf(req->rl_rdmabuf); 1200 kfree(req); 1201 } 1202 1203 static void 1204 rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf) 1205 { 1206 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, 1207 rx_buf); 1208 struct rpcrdma_ia *ia = rdmab_to_ia(buf); 1209 struct rpcrdma_mr *mr; 1210 unsigned int count; 1211 1212 count = 0; 1213 spin_lock(&buf->rb_mrlock); 1214 while (!list_empty(&buf->rb_all)) { 1215 mr = list_entry(buf->rb_all.next, struct rpcrdma_mr, mr_all); 1216 list_del(&mr->mr_all); 1217 1218 spin_unlock(&buf->rb_mrlock); 1219 1220 /* Ensure MW is not on any rl_registered list */ 1221 if (!list_empty(&mr->mr_list)) 1222 list_del(&mr->mr_list); 1223 1224 ia->ri_ops->ro_release_mr(mr); 1225 count++; 1226 spin_lock(&buf->rb_mrlock); 1227 } 1228 spin_unlock(&buf->rb_mrlock); 1229 r_xprt->rx_stats.mrs_allocated = 0; 1230 1231 dprintk("RPC: %s: released %u MRs\n", __func__, count); 1232 } 1233 1234 void 1235 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf) 1236 { 1237 cancel_delayed_work_sync(&buf->rb_recovery_worker); 1238 cancel_delayed_work_sync(&buf->rb_refresh_worker); 1239 1240 rpcrdma_sendctxs_destroy(buf); 1241 1242 while (!list_empty(&buf->rb_recv_bufs)) { 1243 struct rpcrdma_rep *rep; 1244 1245 rep = list_first_entry(&buf->rb_recv_bufs, 1246 struct rpcrdma_rep, rr_list); 1247 list_del(&rep->rr_list); 1248 rpcrdma_destroy_rep(rep); 1249 } 1250 1251 spin_lock(&buf->rb_reqslock); 1252 while (!list_empty(&buf->rb_allreqs)) { 1253 struct rpcrdma_req *req; 1254 1255 req = list_first_entry(&buf->rb_allreqs, 1256 struct rpcrdma_req, rl_all); 1257 list_del(&req->rl_all); 1258 1259 spin_unlock(&buf->rb_reqslock); 1260 rpcrdma_destroy_req(req); 1261 spin_lock(&buf->rb_reqslock); 1262 } 1263 spin_unlock(&buf->rb_reqslock); 1264 1265 rpcrdma_mrs_destroy(buf); 1266 } 1267 1268 /** 1269 * rpcrdma_mr_get - Allocate an rpcrdma_mr object 1270 * @r_xprt: controlling transport 1271 * 1272 * Returns an initialized rpcrdma_mr or NULL if no free 1273 * rpcrdma_mr objects are available. 1274 */ 1275 struct rpcrdma_mr * 1276 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt) 1277 { 1278 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1279 struct rpcrdma_mr *mr = NULL; 1280 1281 spin_lock(&buf->rb_mrlock); 1282 if (!list_empty(&buf->rb_mrs)) 1283 mr = rpcrdma_mr_pop(&buf->rb_mrs); 1284 spin_unlock(&buf->rb_mrlock); 1285 1286 if (!mr) 1287 goto out_nomrs; 1288 return mr; 1289 1290 out_nomrs: 1291 trace_xprtrdma_nomrs(r_xprt); 1292 if (r_xprt->rx_ep.rep_connected != -ENODEV) 1293 schedule_delayed_work(&buf->rb_refresh_worker, 0); 1294 1295 /* Allow the reply handler and refresh worker to run */ 1296 cond_resched(); 1297 1298 return NULL; 1299 } 1300 1301 static void 1302 __rpcrdma_mr_put(struct rpcrdma_buffer *buf, struct rpcrdma_mr *mr) 1303 { 1304 spin_lock(&buf->rb_mrlock); 1305 rpcrdma_mr_push(mr, &buf->rb_mrs); 1306 spin_unlock(&buf->rb_mrlock); 1307 } 1308 1309 /** 1310 * rpcrdma_mr_put - Release an rpcrdma_mr object 1311 * @mr: object to release 1312 * 1313 */ 1314 void 1315 rpcrdma_mr_put(struct rpcrdma_mr *mr) 1316 { 1317 __rpcrdma_mr_put(&mr->mr_xprt->rx_buf, mr); 1318 } 1319 1320 /** 1321 * rpcrdma_mr_unmap_and_put - DMA unmap an MR and release it 1322 * @mr: object to release 1323 * 1324 */ 1325 void 1326 rpcrdma_mr_unmap_and_put(struct rpcrdma_mr *mr) 1327 { 1328 struct rpcrdma_xprt *r_xprt = mr->mr_xprt; 1329 1330 trace_xprtrdma_dma_unmap(mr); 1331 ib_dma_unmap_sg(r_xprt->rx_ia.ri_device, 1332 mr->mr_sg, mr->mr_nents, mr->mr_dir); 1333 __rpcrdma_mr_put(&r_xprt->rx_buf, mr); 1334 } 1335 1336 /** 1337 * rpcrdma_buffer_get - Get a request buffer 1338 * @buffers: Buffer pool from which to obtain a buffer 1339 * 1340 * Returns a fresh rpcrdma_req, or NULL if none are available. 1341 */ 1342 struct rpcrdma_req * 1343 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers) 1344 { 1345 struct rpcrdma_req *req; 1346 1347 spin_lock(&buffers->rb_lock); 1348 req = list_first_entry_or_null(&buffers->rb_send_bufs, 1349 struct rpcrdma_req, rl_list); 1350 if (req) 1351 list_del_init(&req->rl_list); 1352 spin_unlock(&buffers->rb_lock); 1353 return req; 1354 } 1355 1356 /** 1357 * rpcrdma_buffer_put - Put request/reply buffers back into pool 1358 * @req: object to return 1359 * 1360 */ 1361 void 1362 rpcrdma_buffer_put(struct rpcrdma_req *req) 1363 { 1364 struct rpcrdma_buffer *buffers = req->rl_buffer; 1365 struct rpcrdma_rep *rep = req->rl_reply; 1366 1367 req->rl_reply = NULL; 1368 1369 spin_lock(&buffers->rb_lock); 1370 list_add(&req->rl_list, &buffers->rb_send_bufs); 1371 if (rep) { 1372 if (!rep->rr_temp) { 1373 list_add(&rep->rr_list, &buffers->rb_recv_bufs); 1374 rep = NULL; 1375 } 1376 } 1377 spin_unlock(&buffers->rb_lock); 1378 if (rep) 1379 rpcrdma_destroy_rep(rep); 1380 } 1381 1382 /* 1383 * Put reply buffers back into pool when not attached to 1384 * request. This happens in error conditions. 1385 */ 1386 void 1387 rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep) 1388 { 1389 struct rpcrdma_buffer *buffers = &rep->rr_rxprt->rx_buf; 1390 1391 if (!rep->rr_temp) { 1392 spin_lock(&buffers->rb_lock); 1393 list_add(&rep->rr_list, &buffers->rb_recv_bufs); 1394 spin_unlock(&buffers->rb_lock); 1395 } else { 1396 rpcrdma_destroy_rep(rep); 1397 } 1398 } 1399 1400 /** 1401 * rpcrdma_alloc_regbuf - allocate and DMA-map memory for SEND/RECV buffers 1402 * @size: size of buffer to be allocated, in bytes 1403 * @direction: direction of data movement 1404 * @flags: GFP flags 1405 * 1406 * Returns an ERR_PTR, or a pointer to a regbuf, a buffer that 1407 * can be persistently DMA-mapped for I/O. 1408 * 1409 * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for 1410 * receiving the payload of RDMA RECV operations. During Long Calls 1411 * or Replies they may be registered externally via ro_map. 1412 */ 1413 struct rpcrdma_regbuf * 1414 rpcrdma_alloc_regbuf(size_t size, enum dma_data_direction direction, 1415 gfp_t flags) 1416 { 1417 struct rpcrdma_regbuf *rb; 1418 1419 rb = kmalloc(sizeof(*rb) + size, flags); 1420 if (rb == NULL) 1421 return ERR_PTR(-ENOMEM); 1422 1423 rb->rg_device = NULL; 1424 rb->rg_direction = direction; 1425 rb->rg_iov.length = size; 1426 1427 return rb; 1428 } 1429 1430 /** 1431 * __rpcrdma_map_regbuf - DMA-map a regbuf 1432 * @ia: controlling rpcrdma_ia 1433 * @rb: regbuf to be mapped 1434 */ 1435 bool 1436 __rpcrdma_dma_map_regbuf(struct rpcrdma_ia *ia, struct rpcrdma_regbuf *rb) 1437 { 1438 struct ib_device *device = ia->ri_device; 1439 1440 if (rb->rg_direction == DMA_NONE) 1441 return false; 1442 1443 rb->rg_iov.addr = ib_dma_map_single(device, 1444 (void *)rb->rg_base, 1445 rdmab_length(rb), 1446 rb->rg_direction); 1447 if (ib_dma_mapping_error(device, rdmab_addr(rb))) 1448 return false; 1449 1450 rb->rg_device = device; 1451 rb->rg_iov.lkey = ia->ri_pd->local_dma_lkey; 1452 return true; 1453 } 1454 1455 static void 1456 rpcrdma_dma_unmap_regbuf(struct rpcrdma_regbuf *rb) 1457 { 1458 if (!rb) 1459 return; 1460 1461 if (!rpcrdma_regbuf_is_mapped(rb)) 1462 return; 1463 1464 ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), 1465 rdmab_length(rb), rb->rg_direction); 1466 rb->rg_device = NULL; 1467 } 1468 1469 /** 1470 * rpcrdma_free_regbuf - deregister and free registered buffer 1471 * @rb: regbuf to be deregistered and freed 1472 */ 1473 void 1474 rpcrdma_free_regbuf(struct rpcrdma_regbuf *rb) 1475 { 1476 rpcrdma_dma_unmap_regbuf(rb); 1477 kfree(rb); 1478 } 1479 1480 /* 1481 * Prepost any receive buffer, then post send. 1482 * 1483 * Receive buffer is donated to hardware, reclaimed upon recv completion. 1484 */ 1485 int 1486 rpcrdma_ep_post(struct rpcrdma_ia *ia, 1487 struct rpcrdma_ep *ep, 1488 struct rpcrdma_req *req) 1489 { 1490 struct ib_send_wr *send_wr = &req->rl_sendctx->sc_wr; 1491 int rc; 1492 1493 if (!ep->rep_send_count || 1494 test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) { 1495 send_wr->send_flags |= IB_SEND_SIGNALED; 1496 ep->rep_send_count = ep->rep_send_batch; 1497 } else { 1498 send_wr->send_flags &= ~IB_SEND_SIGNALED; 1499 --ep->rep_send_count; 1500 } 1501 1502 rc = ia->ri_ops->ro_send(ia, req); 1503 trace_xprtrdma_post_send(req, rc); 1504 if (rc) 1505 return -ENOTCONN; 1506 return 0; 1507 } 1508 1509 /** 1510 * rpcrdma_post_recvs - Maybe post some Receive buffers 1511 * @r_xprt: controlling transport 1512 * @temp: when true, allocate temp rpcrdma_rep objects 1513 * 1514 */ 1515 void 1516 rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp) 1517 { 1518 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1519 struct ib_recv_wr *wr, *bad_wr; 1520 int needed, count, rc; 1521 1522 needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1); 1523 if (buf->rb_posted_receives > needed) 1524 return; 1525 needed -= buf->rb_posted_receives; 1526 1527 count = 0; 1528 wr = NULL; 1529 while (needed) { 1530 struct rpcrdma_regbuf *rb; 1531 struct rpcrdma_rep *rep; 1532 1533 spin_lock(&buf->rb_lock); 1534 rep = list_first_entry_or_null(&buf->rb_recv_bufs, 1535 struct rpcrdma_rep, rr_list); 1536 if (likely(rep)) 1537 list_del(&rep->rr_list); 1538 spin_unlock(&buf->rb_lock); 1539 if (!rep) { 1540 if (rpcrdma_create_rep(r_xprt, temp)) 1541 break; 1542 continue; 1543 } 1544 1545 rb = rep->rr_rdmabuf; 1546 if (!rpcrdma_regbuf_is_mapped(rb)) { 1547 if (!__rpcrdma_dma_map_regbuf(&r_xprt->rx_ia, rb)) { 1548 rpcrdma_recv_buffer_put(rep); 1549 break; 1550 } 1551 } 1552 1553 trace_xprtrdma_post_recv(rep->rr_recv_wr.wr_cqe); 1554 rep->rr_recv_wr.next = wr; 1555 wr = &rep->rr_recv_wr; 1556 ++count; 1557 --needed; 1558 } 1559 if (!count) 1560 return; 1561 1562 rc = ib_post_recv(r_xprt->rx_ia.ri_id->qp, wr, 1563 (const struct ib_recv_wr **)&bad_wr); 1564 if (rc) { 1565 for (wr = bad_wr; wr; wr = wr->next) { 1566 struct rpcrdma_rep *rep; 1567 1568 rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr); 1569 rpcrdma_recv_buffer_put(rep); 1570 --count; 1571 } 1572 } 1573 buf->rb_posted_receives += count; 1574 trace_xprtrdma_post_recvs(r_xprt, count, rc); 1575 } 1576