1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (c) 2014-2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the BSD-type 10 * license below: 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 19 * Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials provided 22 * with the distribution. 23 * 24 * Neither the name of the Network Appliance, Inc. nor the names of 25 * its contributors may be used to endorse or promote products 26 * derived from this software without specific prior written 27 * permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42 /* 43 * verbs.c 44 * 45 * Encapsulates the major functions managing: 46 * o adapters 47 * o endpoints 48 * o connections 49 * o buffer memory 50 */ 51 52 #include <linux/interrupt.h> 53 #include <linux/slab.h> 54 #include <linux/sunrpc/addr.h> 55 #include <linux/sunrpc/svc_rdma.h> 56 57 #include <asm-generic/barrier.h> 58 #include <asm/bitops.h> 59 60 #include <rdma/ib_cm.h> 61 62 #include "xprt_rdma.h" 63 #include <trace/events/rpcrdma.h> 64 65 /* 66 * Globals/Macros 67 */ 68 69 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 70 # define RPCDBG_FACILITY RPCDBG_TRANS 71 #endif 72 73 /* 74 * internal functions 75 */ 76 static void rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc); 77 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt); 78 static void rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf); 79 static struct rpcrdma_regbuf * 80 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction, 81 gfp_t flags); 82 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb); 83 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb); 84 static void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp); 85 86 /* Wait for outstanding transport work to finish. ib_drain_qp 87 * handles the drains in the wrong order for us, so open code 88 * them here. 89 */ 90 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt) 91 { 92 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 93 94 /* Flush Receives, then wait for deferred Reply work 95 * to complete. 96 */ 97 ib_drain_rq(ia->ri_id->qp); 98 99 /* Deferred Reply processing might have scheduled 100 * local invalidations. 101 */ 102 ib_drain_sq(ia->ri_id->qp); 103 } 104 105 /** 106 * rpcrdma_qp_event_handler - Handle one QP event (error notification) 107 * @event: details of the event 108 * @context: ep that owns QP where event occurred 109 * 110 * Called from the RDMA provider (device driver) possibly in an interrupt 111 * context. 112 */ 113 static void 114 rpcrdma_qp_event_handler(struct ib_event *event, void *context) 115 { 116 struct rpcrdma_ep *ep = context; 117 struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt, 118 rx_ep); 119 120 trace_xprtrdma_qp_event(r_xprt, event); 121 } 122 123 /** 124 * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC 125 * @cq: completion queue (ignored) 126 * @wc: completed WR 127 * 128 */ 129 static void 130 rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc) 131 { 132 struct ib_cqe *cqe = wc->wr_cqe; 133 struct rpcrdma_sendctx *sc = 134 container_of(cqe, struct rpcrdma_sendctx, sc_cqe); 135 136 /* WARNING: Only wr_cqe and status are reliable at this point */ 137 trace_xprtrdma_wc_send(sc, wc); 138 rpcrdma_sendctx_put_locked(sc); 139 } 140 141 /** 142 * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC 143 * @cq: completion queue (ignored) 144 * @wc: completed WR 145 * 146 */ 147 static void 148 rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc) 149 { 150 struct ib_cqe *cqe = wc->wr_cqe; 151 struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep, 152 rr_cqe); 153 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; 154 155 /* WARNING: Only wr_cqe and status are reliable at this point */ 156 trace_xprtrdma_wc_receive(wc); 157 --r_xprt->rx_ep.rep_receive_count; 158 if (wc->status != IB_WC_SUCCESS) 159 goto out_flushed; 160 161 /* status == SUCCESS means all fields in wc are trustworthy */ 162 rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len); 163 rep->rr_wc_flags = wc->wc_flags; 164 rep->rr_inv_rkey = wc->ex.invalidate_rkey; 165 166 ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf), 167 rdmab_addr(rep->rr_rdmabuf), 168 wc->byte_len, DMA_FROM_DEVICE); 169 170 rpcrdma_post_recvs(r_xprt, false); 171 rpcrdma_reply_handler(rep); 172 return; 173 174 out_flushed: 175 rpcrdma_recv_buffer_put(rep); 176 } 177 178 static void 179 rpcrdma_update_connect_private(struct rpcrdma_xprt *r_xprt, 180 struct rdma_conn_param *param) 181 { 182 const struct rpcrdma_connect_private *pmsg = param->private_data; 183 unsigned int rsize, wsize; 184 185 /* Default settings for RPC-over-RDMA Version One */ 186 r_xprt->rx_ia.ri_implicit_roundup = xprt_rdma_pad_optimize; 187 rsize = RPCRDMA_V1_DEF_INLINE_SIZE; 188 wsize = RPCRDMA_V1_DEF_INLINE_SIZE; 189 190 if (pmsg && 191 pmsg->cp_magic == rpcrdma_cmp_magic && 192 pmsg->cp_version == RPCRDMA_CMP_VERSION) { 193 r_xprt->rx_ia.ri_implicit_roundup = true; 194 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size); 195 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size); 196 } 197 198 if (rsize < r_xprt->rx_ep.rep_inline_recv) 199 r_xprt->rx_ep.rep_inline_recv = rsize; 200 if (wsize < r_xprt->rx_ep.rep_inline_send) 201 r_xprt->rx_ep.rep_inline_send = wsize; 202 dprintk("RPC: %s: max send %u, max recv %u\n", __func__, 203 r_xprt->rx_ep.rep_inline_send, 204 r_xprt->rx_ep.rep_inline_recv); 205 rpcrdma_set_max_header_sizes(r_xprt); 206 } 207 208 /** 209 * rpcrdma_cm_event_handler - Handle RDMA CM events 210 * @id: rdma_cm_id on which an event has occurred 211 * @event: details of the event 212 * 213 * Called with @id's mutex held. Returns 1 if caller should 214 * destroy @id, otherwise 0. 215 */ 216 static int 217 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event) 218 { 219 struct rpcrdma_xprt *r_xprt = id->context; 220 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 221 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 222 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 223 224 might_sleep(); 225 226 trace_xprtrdma_cm_event(r_xprt, event); 227 switch (event->event) { 228 case RDMA_CM_EVENT_ADDR_RESOLVED: 229 case RDMA_CM_EVENT_ROUTE_RESOLVED: 230 ia->ri_async_rc = 0; 231 complete(&ia->ri_done); 232 return 0; 233 case RDMA_CM_EVENT_ADDR_ERROR: 234 ia->ri_async_rc = -EPROTO; 235 complete(&ia->ri_done); 236 return 0; 237 case RDMA_CM_EVENT_ROUTE_ERROR: 238 ia->ri_async_rc = -ENETUNREACH; 239 complete(&ia->ri_done); 240 return 0; 241 case RDMA_CM_EVENT_DEVICE_REMOVAL: 242 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 243 pr_info("rpcrdma: removing device %s for %s:%s\n", 244 ia->ri_id->device->name, 245 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt)); 246 #endif 247 set_bit(RPCRDMA_IAF_REMOVING, &ia->ri_flags); 248 ep->rep_connected = -ENODEV; 249 xprt_force_disconnect(xprt); 250 wait_for_completion(&ia->ri_remove_done); 251 252 ia->ri_id = NULL; 253 /* Return 1 to ensure the core destroys the id. */ 254 return 1; 255 case RDMA_CM_EVENT_ESTABLISHED: 256 ++xprt->connect_cookie; 257 ep->rep_connected = 1; 258 rpcrdma_update_connect_private(r_xprt, &event->param.conn); 259 wake_up_all(&ep->rep_connect_wait); 260 break; 261 case RDMA_CM_EVENT_CONNECT_ERROR: 262 ep->rep_connected = -ENOTCONN; 263 goto disconnected; 264 case RDMA_CM_EVENT_UNREACHABLE: 265 ep->rep_connected = -ENETUNREACH; 266 goto disconnected; 267 case RDMA_CM_EVENT_REJECTED: 268 dprintk("rpcrdma: connection to %s:%s rejected: %s\n", 269 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt), 270 rdma_reject_msg(id, event->status)); 271 ep->rep_connected = -ECONNREFUSED; 272 if (event->status == IB_CM_REJ_STALE_CONN) 273 ep->rep_connected = -EAGAIN; 274 goto disconnected; 275 case RDMA_CM_EVENT_DISCONNECTED: 276 ep->rep_connected = -ECONNABORTED; 277 disconnected: 278 xprt_force_disconnect(xprt); 279 wake_up_all(&ep->rep_connect_wait); 280 break; 281 default: 282 break; 283 } 284 285 dprintk("RPC: %s: %s:%s on %s/frwr: %s\n", __func__, 286 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt), 287 ia->ri_id->device->name, rdma_event_msg(event->event)); 288 return 0; 289 } 290 291 static struct rdma_cm_id * 292 rpcrdma_create_id(struct rpcrdma_xprt *xprt, struct rpcrdma_ia *ia) 293 { 294 unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1; 295 struct rdma_cm_id *id; 296 int rc; 297 298 trace_xprtrdma_conn_start(xprt); 299 300 init_completion(&ia->ri_done); 301 init_completion(&ia->ri_remove_done); 302 303 id = rdma_create_id(xprt->rx_xprt.xprt_net, rpcrdma_cm_event_handler, 304 xprt, RDMA_PS_TCP, IB_QPT_RC); 305 if (IS_ERR(id)) 306 return id; 307 308 ia->ri_async_rc = -ETIMEDOUT; 309 rc = rdma_resolve_addr(id, NULL, 310 (struct sockaddr *)&xprt->rx_xprt.addr, 311 RDMA_RESOLVE_TIMEOUT); 312 if (rc) 313 goto out; 314 rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout); 315 if (rc < 0) { 316 trace_xprtrdma_conn_tout(xprt); 317 goto out; 318 } 319 320 rc = ia->ri_async_rc; 321 if (rc) 322 goto out; 323 324 ia->ri_async_rc = -ETIMEDOUT; 325 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); 326 if (rc) 327 goto out; 328 rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout); 329 if (rc < 0) { 330 trace_xprtrdma_conn_tout(xprt); 331 goto out; 332 } 333 rc = ia->ri_async_rc; 334 if (rc) 335 goto out; 336 337 return id; 338 339 out: 340 rdma_destroy_id(id); 341 return ERR_PTR(rc); 342 } 343 344 /* 345 * Exported functions. 346 */ 347 348 /** 349 * rpcrdma_ia_open - Open and initialize an Interface Adapter. 350 * @xprt: transport with IA to (re)initialize 351 * 352 * Returns 0 on success, negative errno if an appropriate 353 * Interface Adapter could not be found and opened. 354 */ 355 int 356 rpcrdma_ia_open(struct rpcrdma_xprt *xprt) 357 { 358 struct rpcrdma_ia *ia = &xprt->rx_ia; 359 int rc; 360 361 ia->ri_id = rpcrdma_create_id(xprt, ia); 362 if (IS_ERR(ia->ri_id)) { 363 rc = PTR_ERR(ia->ri_id); 364 goto out_err; 365 } 366 367 ia->ri_pd = ib_alloc_pd(ia->ri_id->device, 0); 368 if (IS_ERR(ia->ri_pd)) { 369 rc = PTR_ERR(ia->ri_pd); 370 pr_err("rpcrdma: ib_alloc_pd() returned %d\n", rc); 371 goto out_err; 372 } 373 374 switch (xprt_rdma_memreg_strategy) { 375 case RPCRDMA_FRWR: 376 if (frwr_is_supported(ia->ri_id->device)) 377 break; 378 /*FALLTHROUGH*/ 379 default: 380 pr_err("rpcrdma: Device %s does not support memreg mode %d\n", 381 ia->ri_id->device->name, xprt_rdma_memreg_strategy); 382 rc = -EINVAL; 383 goto out_err; 384 } 385 386 return 0; 387 388 out_err: 389 rpcrdma_ia_close(ia); 390 return rc; 391 } 392 393 /** 394 * rpcrdma_ia_remove - Handle device driver unload 395 * @ia: interface adapter being removed 396 * 397 * Divest transport H/W resources associated with this adapter, 398 * but allow it to be restored later. 399 */ 400 void 401 rpcrdma_ia_remove(struct rpcrdma_ia *ia) 402 { 403 struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt, 404 rx_ia); 405 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 406 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 407 struct rpcrdma_req *req; 408 struct rpcrdma_rep *rep; 409 410 cancel_delayed_work_sync(&buf->rb_refresh_worker); 411 412 /* This is similar to rpcrdma_ep_destroy, but: 413 * - Don't cancel the connect worker. 414 * - Don't call rpcrdma_ep_disconnect, which waits 415 * for another conn upcall, which will deadlock. 416 * - rdma_disconnect is unneeded, the underlying 417 * connection is already gone. 418 */ 419 if (ia->ri_id->qp) { 420 rpcrdma_xprt_drain(r_xprt); 421 rdma_destroy_qp(ia->ri_id); 422 ia->ri_id->qp = NULL; 423 } 424 ib_free_cq(ep->rep_attr.recv_cq); 425 ep->rep_attr.recv_cq = NULL; 426 ib_free_cq(ep->rep_attr.send_cq); 427 ep->rep_attr.send_cq = NULL; 428 429 /* The ULP is responsible for ensuring all DMA 430 * mappings and MRs are gone. 431 */ 432 list_for_each_entry(rep, &buf->rb_recv_bufs, rr_list) 433 rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf); 434 list_for_each_entry(req, &buf->rb_allreqs, rl_all) { 435 rpcrdma_regbuf_dma_unmap(req->rl_rdmabuf); 436 rpcrdma_regbuf_dma_unmap(req->rl_sendbuf); 437 rpcrdma_regbuf_dma_unmap(req->rl_recvbuf); 438 } 439 rpcrdma_mrs_destroy(buf); 440 ib_dealloc_pd(ia->ri_pd); 441 ia->ri_pd = NULL; 442 443 /* Allow waiters to continue */ 444 complete(&ia->ri_remove_done); 445 446 trace_xprtrdma_remove(r_xprt); 447 } 448 449 /** 450 * rpcrdma_ia_close - Clean up/close an IA. 451 * @ia: interface adapter to close 452 * 453 */ 454 void 455 rpcrdma_ia_close(struct rpcrdma_ia *ia) 456 { 457 if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) { 458 if (ia->ri_id->qp) 459 rdma_destroy_qp(ia->ri_id); 460 rdma_destroy_id(ia->ri_id); 461 } 462 ia->ri_id = NULL; 463 464 /* If the pd is still busy, xprtrdma missed freeing a resource */ 465 if (ia->ri_pd && !IS_ERR(ia->ri_pd)) 466 ib_dealloc_pd(ia->ri_pd); 467 ia->ri_pd = NULL; 468 } 469 470 /** 471 * rpcrdma_ep_create - Create unconnected endpoint 472 * @r_xprt: transport to instantiate 473 * 474 * Returns zero on success, or a negative errno. 475 */ 476 int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt) 477 { 478 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 479 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 480 struct rpcrdma_connect_private *pmsg = &ep->rep_cm_private; 481 struct ib_cq *sendcq, *recvcq; 482 unsigned int max_sge; 483 int rc; 484 485 ep->rep_max_requests = xprt_rdma_slot_table_entries; 486 ep->rep_inline_send = xprt_rdma_max_inline_write; 487 ep->rep_inline_recv = xprt_rdma_max_inline_read; 488 489 max_sge = min_t(unsigned int, ia->ri_id->device->attrs.max_send_sge, 490 RPCRDMA_MAX_SEND_SGES); 491 if (max_sge < RPCRDMA_MIN_SEND_SGES) { 492 pr_warn("rpcrdma: HCA provides only %d send SGEs\n", max_sge); 493 return -ENOMEM; 494 } 495 ia->ri_max_send_sges = max_sge; 496 497 rc = frwr_open(ia, ep); 498 if (rc) 499 return rc; 500 501 ep->rep_attr.event_handler = rpcrdma_qp_event_handler; 502 ep->rep_attr.qp_context = ep; 503 ep->rep_attr.srq = NULL; 504 ep->rep_attr.cap.max_send_sge = max_sge; 505 ep->rep_attr.cap.max_recv_sge = 1; 506 ep->rep_attr.cap.max_inline_data = 0; 507 ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 508 ep->rep_attr.qp_type = IB_QPT_RC; 509 ep->rep_attr.port_num = ~0; 510 511 dprintk("RPC: %s: requested max: dtos: send %d recv %d; " 512 "iovs: send %d recv %d\n", 513 __func__, 514 ep->rep_attr.cap.max_send_wr, 515 ep->rep_attr.cap.max_recv_wr, 516 ep->rep_attr.cap.max_send_sge, 517 ep->rep_attr.cap.max_recv_sge); 518 519 ep->rep_send_batch = ep->rep_max_requests >> 3; 520 ep->rep_send_count = ep->rep_send_batch; 521 init_waitqueue_head(&ep->rep_connect_wait); 522 ep->rep_receive_count = 0; 523 524 sendcq = ib_alloc_cq_any(ia->ri_id->device, NULL, 525 ep->rep_attr.cap.max_send_wr + 1, 526 IB_POLL_WORKQUEUE); 527 if (IS_ERR(sendcq)) { 528 rc = PTR_ERR(sendcq); 529 goto out1; 530 } 531 532 recvcq = ib_alloc_cq_any(ia->ri_id->device, NULL, 533 ep->rep_attr.cap.max_recv_wr + 1, 534 IB_POLL_WORKQUEUE); 535 if (IS_ERR(recvcq)) { 536 rc = PTR_ERR(recvcq); 537 goto out2; 538 } 539 540 ep->rep_attr.send_cq = sendcq; 541 ep->rep_attr.recv_cq = recvcq; 542 543 /* Initialize cma parameters */ 544 memset(&ep->rep_remote_cma, 0, sizeof(ep->rep_remote_cma)); 545 546 /* Prepare RDMA-CM private message */ 547 pmsg->cp_magic = rpcrdma_cmp_magic; 548 pmsg->cp_version = RPCRDMA_CMP_VERSION; 549 pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK; 550 pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->rep_inline_send); 551 pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->rep_inline_recv); 552 ep->rep_remote_cma.private_data = pmsg; 553 ep->rep_remote_cma.private_data_len = sizeof(*pmsg); 554 555 /* Client offers RDMA Read but does not initiate */ 556 ep->rep_remote_cma.initiator_depth = 0; 557 ep->rep_remote_cma.responder_resources = 558 min_t(int, U8_MAX, ia->ri_id->device->attrs.max_qp_rd_atom); 559 560 /* Limit transport retries so client can detect server 561 * GID changes quickly. RPC layer handles re-establishing 562 * transport connection and retransmission. 563 */ 564 ep->rep_remote_cma.retry_count = 6; 565 566 /* RPC-over-RDMA handles its own flow control. In addition, 567 * make all RNR NAKs visible so we know that RPC-over-RDMA 568 * flow control is working correctly (no NAKs should be seen). 569 */ 570 ep->rep_remote_cma.flow_control = 0; 571 ep->rep_remote_cma.rnr_retry_count = 0; 572 573 return 0; 574 575 out2: 576 ib_free_cq(sendcq); 577 out1: 578 return rc; 579 } 580 581 /** 582 * rpcrdma_ep_destroy - Disconnect and destroy endpoint. 583 * @r_xprt: transport instance to shut down 584 * 585 */ 586 void rpcrdma_ep_destroy(struct rpcrdma_xprt *r_xprt) 587 { 588 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 589 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 590 591 if (ia->ri_id && ia->ri_id->qp) { 592 rpcrdma_ep_disconnect(ep, ia); 593 rdma_destroy_qp(ia->ri_id); 594 ia->ri_id->qp = NULL; 595 } 596 597 if (ep->rep_attr.recv_cq) 598 ib_free_cq(ep->rep_attr.recv_cq); 599 if (ep->rep_attr.send_cq) 600 ib_free_cq(ep->rep_attr.send_cq); 601 } 602 603 /* Re-establish a connection after a device removal event. 604 * Unlike a normal reconnection, a fresh PD and a new set 605 * of MRs and buffers is needed. 606 */ 607 static int 608 rpcrdma_ep_recreate_xprt(struct rpcrdma_xprt *r_xprt, 609 struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 610 { 611 int rc, err; 612 613 trace_xprtrdma_reinsert(r_xprt); 614 615 rc = -EHOSTUNREACH; 616 if (rpcrdma_ia_open(r_xprt)) 617 goto out1; 618 619 rc = -ENOMEM; 620 err = rpcrdma_ep_create(r_xprt); 621 if (err) { 622 pr_err("rpcrdma: rpcrdma_ep_create returned %d\n", err); 623 goto out2; 624 } 625 626 rc = -ENETUNREACH; 627 err = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr); 628 if (err) { 629 pr_err("rpcrdma: rdma_create_qp returned %d\n", err); 630 goto out3; 631 } 632 633 rpcrdma_mrs_create(r_xprt); 634 return 0; 635 636 out3: 637 rpcrdma_ep_destroy(r_xprt); 638 out2: 639 rpcrdma_ia_close(ia); 640 out1: 641 return rc; 642 } 643 644 static int 645 rpcrdma_ep_reconnect(struct rpcrdma_xprt *r_xprt, struct rpcrdma_ep *ep, 646 struct rpcrdma_ia *ia) 647 { 648 struct rdma_cm_id *id, *old; 649 int err, rc; 650 651 trace_xprtrdma_reconnect(r_xprt); 652 653 rpcrdma_ep_disconnect(ep, ia); 654 655 rc = -EHOSTUNREACH; 656 id = rpcrdma_create_id(r_xprt, ia); 657 if (IS_ERR(id)) 658 goto out; 659 660 /* As long as the new ID points to the same device as the 661 * old ID, we can reuse the transport's existing PD and all 662 * previously allocated MRs. Also, the same device means 663 * the transport's previous DMA mappings are still valid. 664 * 665 * This is a sanity check only. There should be no way these 666 * point to two different devices here. 667 */ 668 old = id; 669 rc = -ENETUNREACH; 670 if (ia->ri_id->device != id->device) { 671 pr_err("rpcrdma: can't reconnect on different device!\n"); 672 goto out_destroy; 673 } 674 675 err = rdma_create_qp(id, ia->ri_pd, &ep->rep_attr); 676 if (err) 677 goto out_destroy; 678 679 /* Atomically replace the transport's ID and QP. */ 680 rc = 0; 681 old = ia->ri_id; 682 ia->ri_id = id; 683 rdma_destroy_qp(old); 684 685 out_destroy: 686 rdma_destroy_id(old); 687 out: 688 return rc; 689 } 690 691 /* 692 * Connect unconnected endpoint. 693 */ 694 int 695 rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 696 { 697 struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt, 698 rx_ia); 699 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 700 int rc; 701 702 retry: 703 switch (ep->rep_connected) { 704 case 0: 705 dprintk("RPC: %s: connecting...\n", __func__); 706 rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr); 707 if (rc) { 708 rc = -ENETUNREACH; 709 goto out_noupdate; 710 } 711 break; 712 case -ENODEV: 713 rc = rpcrdma_ep_recreate_xprt(r_xprt, ep, ia); 714 if (rc) 715 goto out_noupdate; 716 break; 717 default: 718 rc = rpcrdma_ep_reconnect(r_xprt, ep, ia); 719 if (rc) 720 goto out; 721 } 722 723 ep->rep_connected = 0; 724 xprt_clear_connected(xprt); 725 726 rpcrdma_post_recvs(r_xprt, true); 727 728 rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma); 729 if (rc) 730 goto out; 731 732 wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0); 733 if (ep->rep_connected <= 0) { 734 if (ep->rep_connected == -EAGAIN) 735 goto retry; 736 rc = ep->rep_connected; 737 goto out; 738 } 739 740 dprintk("RPC: %s: connected\n", __func__); 741 742 out: 743 if (rc) 744 ep->rep_connected = rc; 745 746 out_noupdate: 747 return rc; 748 } 749 750 /** 751 * rpcrdma_ep_disconnect - Disconnect underlying transport 752 * @ep: endpoint to disconnect 753 * @ia: associated interface adapter 754 * 755 * This is separate from destroy to facilitate the ability 756 * to reconnect without recreating the endpoint. 757 * 758 * This call is not reentrant, and must not be made in parallel 759 * on the same endpoint. 760 */ 761 void 762 rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 763 { 764 struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt, 765 rx_ep); 766 int rc; 767 768 /* returns without wait if ID is not connected */ 769 rc = rdma_disconnect(ia->ri_id); 770 if (!rc) 771 wait_event_interruptible(ep->rep_connect_wait, 772 ep->rep_connected != 1); 773 else 774 ep->rep_connected = rc; 775 trace_xprtrdma_disconnect(r_xprt, rc); 776 777 rpcrdma_xprt_drain(r_xprt); 778 } 779 780 /* Fixed-size circular FIFO queue. This implementation is wait-free and 781 * lock-free. 782 * 783 * Consumer is the code path that posts Sends. This path dequeues a 784 * sendctx for use by a Send operation. Multiple consumer threads 785 * are serialized by the RPC transport lock, which allows only one 786 * ->send_request call at a time. 787 * 788 * Producer is the code path that handles Send completions. This path 789 * enqueues a sendctx that has been completed. Multiple producer 790 * threads are serialized by the ib_poll_cq() function. 791 */ 792 793 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced 794 * queue activity, and rpcrdma_xprt_drain has flushed all remaining 795 * Send requests. 796 */ 797 static void rpcrdma_sendctxs_destroy(struct rpcrdma_buffer *buf) 798 { 799 unsigned long i; 800 801 for (i = 0; i <= buf->rb_sc_last; i++) 802 kfree(buf->rb_sc_ctxs[i]); 803 kfree(buf->rb_sc_ctxs); 804 } 805 806 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ia *ia) 807 { 808 struct rpcrdma_sendctx *sc; 809 810 sc = kzalloc(struct_size(sc, sc_sges, ia->ri_max_send_sges), 811 GFP_KERNEL); 812 if (!sc) 813 return NULL; 814 815 sc->sc_wr.wr_cqe = &sc->sc_cqe; 816 sc->sc_wr.sg_list = sc->sc_sges; 817 sc->sc_wr.opcode = IB_WR_SEND; 818 sc->sc_cqe.done = rpcrdma_wc_send; 819 return sc; 820 } 821 822 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt) 823 { 824 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 825 struct rpcrdma_sendctx *sc; 826 unsigned long i; 827 828 /* Maximum number of concurrent outstanding Send WRs. Capping 829 * the circular queue size stops Send Queue overflow by causing 830 * the ->send_request call to fail temporarily before too many 831 * Sends are posted. 832 */ 833 i = buf->rb_max_requests + RPCRDMA_MAX_BC_REQUESTS; 834 dprintk("RPC: %s: allocating %lu send_ctxs\n", __func__, i); 835 buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL); 836 if (!buf->rb_sc_ctxs) 837 return -ENOMEM; 838 839 buf->rb_sc_last = i - 1; 840 for (i = 0; i <= buf->rb_sc_last; i++) { 841 sc = rpcrdma_sendctx_create(&r_xprt->rx_ia); 842 if (!sc) 843 return -ENOMEM; 844 845 sc->sc_xprt = r_xprt; 846 buf->rb_sc_ctxs[i] = sc; 847 } 848 849 return 0; 850 } 851 852 /* The sendctx queue is not guaranteed to have a size that is a 853 * power of two, thus the helpers in circ_buf.h cannot be used. 854 * The other option is to use modulus (%), which can be expensive. 855 */ 856 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf, 857 unsigned long item) 858 { 859 return likely(item < buf->rb_sc_last) ? item + 1 : 0; 860 } 861 862 /** 863 * rpcrdma_sendctx_get_locked - Acquire a send context 864 * @r_xprt: controlling transport instance 865 * 866 * Returns pointer to a free send completion context; or NULL if 867 * the queue is empty. 868 * 869 * Usage: Called to acquire an SGE array before preparing a Send WR. 870 * 871 * The caller serializes calls to this function (per transport), and 872 * provides an effective memory barrier that flushes the new value 873 * of rb_sc_head. 874 */ 875 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt) 876 { 877 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 878 struct rpcrdma_sendctx *sc; 879 unsigned long next_head; 880 881 next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head); 882 883 if (next_head == READ_ONCE(buf->rb_sc_tail)) 884 goto out_emptyq; 885 886 /* ORDER: item must be accessed _before_ head is updated */ 887 sc = buf->rb_sc_ctxs[next_head]; 888 889 /* Releasing the lock in the caller acts as a memory 890 * barrier that flushes rb_sc_head. 891 */ 892 buf->rb_sc_head = next_head; 893 894 return sc; 895 896 out_emptyq: 897 /* The queue is "empty" if there have not been enough Send 898 * completions recently. This is a sign the Send Queue is 899 * backing up. Cause the caller to pause and try again. 900 */ 901 xprt_wait_for_buffer_space(&r_xprt->rx_xprt); 902 r_xprt->rx_stats.empty_sendctx_q++; 903 return NULL; 904 } 905 906 /** 907 * rpcrdma_sendctx_put_locked - Release a send context 908 * @sc: send context to release 909 * 910 * Usage: Called from Send completion to return a sendctxt 911 * to the queue. 912 * 913 * The caller serializes calls to this function (per transport). 914 */ 915 static void 916 rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc) 917 { 918 struct rpcrdma_buffer *buf = &sc->sc_xprt->rx_buf; 919 unsigned long next_tail; 920 921 /* Unmap SGEs of previously completed but unsignaled 922 * Sends by walking up the queue until @sc is found. 923 */ 924 next_tail = buf->rb_sc_tail; 925 do { 926 next_tail = rpcrdma_sendctx_next(buf, next_tail); 927 928 /* ORDER: item must be accessed _before_ tail is updated */ 929 rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]); 930 931 } while (buf->rb_sc_ctxs[next_tail] != sc); 932 933 /* Paired with READ_ONCE */ 934 smp_store_release(&buf->rb_sc_tail, next_tail); 935 936 xprt_write_space(&sc->sc_xprt->rx_xprt); 937 } 938 939 static void 940 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt) 941 { 942 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 943 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 944 unsigned int count; 945 LIST_HEAD(free); 946 LIST_HEAD(all); 947 948 for (count = 0; count < ia->ri_max_segs; count++) { 949 struct rpcrdma_mr *mr; 950 int rc; 951 952 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 953 if (!mr) 954 break; 955 956 rc = frwr_init_mr(ia, mr); 957 if (rc) { 958 kfree(mr); 959 break; 960 } 961 962 mr->mr_xprt = r_xprt; 963 964 list_add(&mr->mr_list, &free); 965 list_add(&mr->mr_all, &all); 966 } 967 968 spin_lock(&buf->rb_mrlock); 969 list_splice(&free, &buf->rb_mrs); 970 list_splice(&all, &buf->rb_all); 971 r_xprt->rx_stats.mrs_allocated += count; 972 spin_unlock(&buf->rb_mrlock); 973 trace_xprtrdma_createmrs(r_xprt, count); 974 } 975 976 static void 977 rpcrdma_mr_refresh_worker(struct work_struct *work) 978 { 979 struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer, 980 rb_refresh_worker.work); 981 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, 982 rx_buf); 983 984 rpcrdma_mrs_create(r_xprt); 985 xprt_write_space(&r_xprt->rx_xprt); 986 } 987 988 /** 989 * rpcrdma_req_create - Allocate an rpcrdma_req object 990 * @r_xprt: controlling r_xprt 991 * @size: initial size, in bytes, of send and receive buffers 992 * @flags: GFP flags passed to memory allocators 993 * 994 * Returns an allocated and fully initialized rpcrdma_req or NULL. 995 */ 996 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size, 997 gfp_t flags) 998 { 999 struct rpcrdma_buffer *buffer = &r_xprt->rx_buf; 1000 struct rpcrdma_regbuf *rb; 1001 struct rpcrdma_req *req; 1002 1003 req = kzalloc(sizeof(*req), flags); 1004 if (req == NULL) 1005 goto out1; 1006 1007 rb = rpcrdma_regbuf_alloc(RPCRDMA_HDRBUF_SIZE, DMA_TO_DEVICE, flags); 1008 if (!rb) 1009 goto out2; 1010 req->rl_rdmabuf = rb; 1011 xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb)); 1012 1013 req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags); 1014 if (!req->rl_sendbuf) 1015 goto out3; 1016 1017 req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags); 1018 if (!req->rl_recvbuf) 1019 goto out4; 1020 1021 INIT_LIST_HEAD(&req->rl_registered); 1022 spin_lock(&buffer->rb_lock); 1023 list_add(&req->rl_all, &buffer->rb_allreqs); 1024 spin_unlock(&buffer->rb_lock); 1025 return req; 1026 1027 out4: 1028 kfree(req->rl_sendbuf); 1029 out3: 1030 kfree(req->rl_rdmabuf); 1031 out2: 1032 kfree(req); 1033 out1: 1034 return NULL; 1035 } 1036 1037 static struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt, 1038 bool temp) 1039 { 1040 struct rpcrdma_rep *rep; 1041 1042 rep = kzalloc(sizeof(*rep), GFP_KERNEL); 1043 if (rep == NULL) 1044 goto out; 1045 1046 rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep.rep_inline_recv, 1047 DMA_FROM_DEVICE, GFP_KERNEL); 1048 if (!rep->rr_rdmabuf) 1049 goto out_free; 1050 1051 xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf), 1052 rdmab_length(rep->rr_rdmabuf)); 1053 rep->rr_cqe.done = rpcrdma_wc_receive; 1054 rep->rr_rxprt = r_xprt; 1055 rep->rr_recv_wr.next = NULL; 1056 rep->rr_recv_wr.wr_cqe = &rep->rr_cqe; 1057 rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov; 1058 rep->rr_recv_wr.num_sge = 1; 1059 rep->rr_temp = temp; 1060 return rep; 1061 1062 out_free: 1063 kfree(rep); 1064 out: 1065 return NULL; 1066 } 1067 1068 /** 1069 * rpcrdma_buffer_create - Create initial set of req/rep objects 1070 * @r_xprt: transport instance to (re)initialize 1071 * 1072 * Returns zero on success, otherwise a negative errno. 1073 */ 1074 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt) 1075 { 1076 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1077 int i, rc; 1078 1079 buf->rb_max_requests = r_xprt->rx_ep.rep_max_requests; 1080 buf->rb_bc_srv_max_requests = 0; 1081 spin_lock_init(&buf->rb_mrlock); 1082 spin_lock_init(&buf->rb_lock); 1083 INIT_LIST_HEAD(&buf->rb_mrs); 1084 INIT_LIST_HEAD(&buf->rb_all); 1085 INIT_DELAYED_WORK(&buf->rb_refresh_worker, 1086 rpcrdma_mr_refresh_worker); 1087 1088 rpcrdma_mrs_create(r_xprt); 1089 1090 INIT_LIST_HEAD(&buf->rb_send_bufs); 1091 INIT_LIST_HEAD(&buf->rb_allreqs); 1092 1093 rc = -ENOMEM; 1094 for (i = 0; i < buf->rb_max_requests; i++) { 1095 struct rpcrdma_req *req; 1096 1097 req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE, 1098 GFP_KERNEL); 1099 if (!req) 1100 goto out; 1101 list_add(&req->rl_list, &buf->rb_send_bufs); 1102 } 1103 1104 buf->rb_credits = 1; 1105 INIT_LIST_HEAD(&buf->rb_recv_bufs); 1106 1107 rc = rpcrdma_sendctxs_create(r_xprt); 1108 if (rc) 1109 goto out; 1110 1111 return 0; 1112 out: 1113 rpcrdma_buffer_destroy(buf); 1114 return rc; 1115 } 1116 1117 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep) 1118 { 1119 rpcrdma_regbuf_free(rep->rr_rdmabuf); 1120 kfree(rep); 1121 } 1122 1123 /** 1124 * rpcrdma_req_destroy - Destroy an rpcrdma_req object 1125 * @req: unused object to be destroyed 1126 * 1127 * This function assumes that the caller prevents concurrent device 1128 * unload and transport tear-down. 1129 */ 1130 void 1131 rpcrdma_req_destroy(struct rpcrdma_req *req) 1132 { 1133 list_del(&req->rl_all); 1134 1135 rpcrdma_regbuf_free(req->rl_recvbuf); 1136 rpcrdma_regbuf_free(req->rl_sendbuf); 1137 rpcrdma_regbuf_free(req->rl_rdmabuf); 1138 kfree(req); 1139 } 1140 1141 static void 1142 rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf) 1143 { 1144 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, 1145 rx_buf); 1146 struct rpcrdma_mr *mr; 1147 unsigned int count; 1148 1149 count = 0; 1150 spin_lock(&buf->rb_mrlock); 1151 while (!list_empty(&buf->rb_all)) { 1152 mr = list_entry(buf->rb_all.next, struct rpcrdma_mr, mr_all); 1153 list_del(&mr->mr_all); 1154 1155 spin_unlock(&buf->rb_mrlock); 1156 1157 /* Ensure MW is not on any rl_registered list */ 1158 if (!list_empty(&mr->mr_list)) 1159 list_del(&mr->mr_list); 1160 1161 frwr_release_mr(mr); 1162 count++; 1163 spin_lock(&buf->rb_mrlock); 1164 } 1165 spin_unlock(&buf->rb_mrlock); 1166 r_xprt->rx_stats.mrs_allocated = 0; 1167 1168 dprintk("RPC: %s: released %u MRs\n", __func__, count); 1169 } 1170 1171 /** 1172 * rpcrdma_buffer_destroy - Release all hw resources 1173 * @buf: root control block for resources 1174 * 1175 * ORDERING: relies on a prior rpcrdma_xprt_drain : 1176 * - No more Send or Receive completions can occur 1177 * - All MRs, reps, and reqs are returned to their free lists 1178 */ 1179 void 1180 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf) 1181 { 1182 cancel_delayed_work_sync(&buf->rb_refresh_worker); 1183 1184 rpcrdma_sendctxs_destroy(buf); 1185 1186 while (!list_empty(&buf->rb_recv_bufs)) { 1187 struct rpcrdma_rep *rep; 1188 1189 rep = list_first_entry(&buf->rb_recv_bufs, 1190 struct rpcrdma_rep, rr_list); 1191 list_del(&rep->rr_list); 1192 rpcrdma_rep_destroy(rep); 1193 } 1194 1195 while (!list_empty(&buf->rb_send_bufs)) { 1196 struct rpcrdma_req *req; 1197 1198 req = list_first_entry(&buf->rb_send_bufs, 1199 struct rpcrdma_req, rl_list); 1200 list_del(&req->rl_list); 1201 rpcrdma_req_destroy(req); 1202 } 1203 1204 rpcrdma_mrs_destroy(buf); 1205 } 1206 1207 /** 1208 * rpcrdma_mr_get - Allocate an rpcrdma_mr object 1209 * @r_xprt: controlling transport 1210 * 1211 * Returns an initialized rpcrdma_mr or NULL if no free 1212 * rpcrdma_mr objects are available. 1213 */ 1214 struct rpcrdma_mr * 1215 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt) 1216 { 1217 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1218 struct rpcrdma_mr *mr = NULL; 1219 1220 spin_lock(&buf->rb_mrlock); 1221 if (!list_empty(&buf->rb_mrs)) 1222 mr = rpcrdma_mr_pop(&buf->rb_mrs); 1223 spin_unlock(&buf->rb_mrlock); 1224 1225 if (!mr) 1226 goto out_nomrs; 1227 return mr; 1228 1229 out_nomrs: 1230 trace_xprtrdma_nomrs(r_xprt); 1231 if (r_xprt->rx_ep.rep_connected != -ENODEV) 1232 schedule_delayed_work(&buf->rb_refresh_worker, 0); 1233 1234 /* Allow the reply handler and refresh worker to run */ 1235 cond_resched(); 1236 1237 return NULL; 1238 } 1239 1240 static void 1241 __rpcrdma_mr_put(struct rpcrdma_buffer *buf, struct rpcrdma_mr *mr) 1242 { 1243 spin_lock(&buf->rb_mrlock); 1244 rpcrdma_mr_push(mr, &buf->rb_mrs); 1245 spin_unlock(&buf->rb_mrlock); 1246 } 1247 1248 /** 1249 * rpcrdma_mr_put - Release an rpcrdma_mr object 1250 * @mr: object to release 1251 * 1252 */ 1253 void 1254 rpcrdma_mr_put(struct rpcrdma_mr *mr) 1255 { 1256 __rpcrdma_mr_put(&mr->mr_xprt->rx_buf, mr); 1257 } 1258 1259 /** 1260 * rpcrdma_mr_unmap_and_put - DMA unmap an MR and release it 1261 * @mr: object to release 1262 * 1263 */ 1264 void 1265 rpcrdma_mr_unmap_and_put(struct rpcrdma_mr *mr) 1266 { 1267 struct rpcrdma_xprt *r_xprt = mr->mr_xprt; 1268 1269 if (mr->mr_dir != DMA_NONE) { 1270 trace_xprtrdma_mr_unmap(mr); 1271 ib_dma_unmap_sg(r_xprt->rx_ia.ri_id->device, 1272 mr->mr_sg, mr->mr_nents, mr->mr_dir); 1273 mr->mr_dir = DMA_NONE; 1274 } 1275 __rpcrdma_mr_put(&r_xprt->rx_buf, mr); 1276 } 1277 1278 /** 1279 * rpcrdma_buffer_get - Get a request buffer 1280 * @buffers: Buffer pool from which to obtain a buffer 1281 * 1282 * Returns a fresh rpcrdma_req, or NULL if none are available. 1283 */ 1284 struct rpcrdma_req * 1285 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers) 1286 { 1287 struct rpcrdma_req *req; 1288 1289 spin_lock(&buffers->rb_lock); 1290 req = list_first_entry_or_null(&buffers->rb_send_bufs, 1291 struct rpcrdma_req, rl_list); 1292 if (req) 1293 list_del_init(&req->rl_list); 1294 spin_unlock(&buffers->rb_lock); 1295 return req; 1296 } 1297 1298 /** 1299 * rpcrdma_buffer_put - Put request/reply buffers back into pool 1300 * @buffers: buffer pool 1301 * @req: object to return 1302 * 1303 */ 1304 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req) 1305 { 1306 struct rpcrdma_rep *rep = req->rl_reply; 1307 1308 req->rl_reply = NULL; 1309 1310 spin_lock(&buffers->rb_lock); 1311 list_add(&req->rl_list, &buffers->rb_send_bufs); 1312 if (rep) { 1313 if (!rep->rr_temp) { 1314 list_add(&rep->rr_list, &buffers->rb_recv_bufs); 1315 rep = NULL; 1316 } 1317 } 1318 spin_unlock(&buffers->rb_lock); 1319 if (rep) 1320 rpcrdma_rep_destroy(rep); 1321 } 1322 1323 /* 1324 * Put reply buffers back into pool when not attached to 1325 * request. This happens in error conditions. 1326 */ 1327 void 1328 rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep) 1329 { 1330 struct rpcrdma_buffer *buffers = &rep->rr_rxprt->rx_buf; 1331 1332 if (!rep->rr_temp) { 1333 spin_lock(&buffers->rb_lock); 1334 list_add(&rep->rr_list, &buffers->rb_recv_bufs); 1335 spin_unlock(&buffers->rb_lock); 1336 } else { 1337 rpcrdma_rep_destroy(rep); 1338 } 1339 } 1340 1341 /* Returns a pointer to a rpcrdma_regbuf object, or NULL. 1342 * 1343 * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for 1344 * receiving the payload of RDMA RECV operations. During Long Calls 1345 * or Replies they may be registered externally via frwr_map. 1346 */ 1347 static struct rpcrdma_regbuf * 1348 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction, 1349 gfp_t flags) 1350 { 1351 struct rpcrdma_regbuf *rb; 1352 1353 rb = kmalloc(sizeof(*rb), flags); 1354 if (!rb) 1355 return NULL; 1356 rb->rg_data = kmalloc(size, flags); 1357 if (!rb->rg_data) { 1358 kfree(rb); 1359 return NULL; 1360 } 1361 1362 rb->rg_device = NULL; 1363 rb->rg_direction = direction; 1364 rb->rg_iov.length = size; 1365 return rb; 1366 } 1367 1368 /** 1369 * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer 1370 * @rb: regbuf to reallocate 1371 * @size: size of buffer to be allocated, in bytes 1372 * @flags: GFP flags 1373 * 1374 * Returns true if reallocation was successful. If false is 1375 * returned, @rb is left untouched. 1376 */ 1377 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags) 1378 { 1379 void *buf; 1380 1381 buf = kmalloc(size, flags); 1382 if (!buf) 1383 return false; 1384 1385 rpcrdma_regbuf_dma_unmap(rb); 1386 kfree(rb->rg_data); 1387 1388 rb->rg_data = buf; 1389 rb->rg_iov.length = size; 1390 return true; 1391 } 1392 1393 /** 1394 * __rpcrdma_regbuf_dma_map - DMA-map a regbuf 1395 * @r_xprt: controlling transport instance 1396 * @rb: regbuf to be mapped 1397 * 1398 * Returns true if the buffer is now DMA mapped to @r_xprt's device 1399 */ 1400 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt, 1401 struct rpcrdma_regbuf *rb) 1402 { 1403 struct ib_device *device = r_xprt->rx_ia.ri_id->device; 1404 1405 if (rb->rg_direction == DMA_NONE) 1406 return false; 1407 1408 rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb), 1409 rdmab_length(rb), rb->rg_direction); 1410 if (ib_dma_mapping_error(device, rdmab_addr(rb))) { 1411 trace_xprtrdma_dma_maperr(rdmab_addr(rb)); 1412 return false; 1413 } 1414 1415 rb->rg_device = device; 1416 rb->rg_iov.lkey = r_xprt->rx_ia.ri_pd->local_dma_lkey; 1417 return true; 1418 } 1419 1420 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb) 1421 { 1422 if (!rb) 1423 return; 1424 1425 if (!rpcrdma_regbuf_is_mapped(rb)) 1426 return; 1427 1428 ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb), 1429 rb->rg_direction); 1430 rb->rg_device = NULL; 1431 } 1432 1433 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb) 1434 { 1435 rpcrdma_regbuf_dma_unmap(rb); 1436 if (rb) 1437 kfree(rb->rg_data); 1438 kfree(rb); 1439 } 1440 1441 /** 1442 * rpcrdma_ep_post - Post WRs to a transport's Send Queue 1443 * @ia: transport's device information 1444 * @ep: transport's RDMA endpoint information 1445 * @req: rpcrdma_req containing the Send WR to post 1446 * 1447 * Returns 0 if the post was successful, otherwise -ENOTCONN 1448 * is returned. 1449 */ 1450 int 1451 rpcrdma_ep_post(struct rpcrdma_ia *ia, 1452 struct rpcrdma_ep *ep, 1453 struct rpcrdma_req *req) 1454 { 1455 struct ib_send_wr *send_wr = &req->rl_sendctx->sc_wr; 1456 int rc; 1457 1458 if (!ep->rep_send_count || kref_read(&req->rl_kref) > 1) { 1459 send_wr->send_flags |= IB_SEND_SIGNALED; 1460 ep->rep_send_count = ep->rep_send_batch; 1461 } else { 1462 send_wr->send_flags &= ~IB_SEND_SIGNALED; 1463 --ep->rep_send_count; 1464 } 1465 1466 rc = frwr_send(ia, req); 1467 trace_xprtrdma_post_send(req, rc); 1468 if (rc) 1469 return -ENOTCONN; 1470 return 0; 1471 } 1472 1473 static void 1474 rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp) 1475 { 1476 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1477 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 1478 struct ib_recv_wr *i, *wr, *bad_wr; 1479 struct rpcrdma_rep *rep; 1480 int needed, count, rc; 1481 1482 rc = 0; 1483 count = 0; 1484 1485 needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1); 1486 if (ep->rep_receive_count > needed) 1487 goto out; 1488 needed -= ep->rep_receive_count; 1489 if (!temp) 1490 needed += RPCRDMA_MAX_RECV_BATCH; 1491 1492 /* fast path: all needed reps can be found on the free list */ 1493 wr = NULL; 1494 spin_lock(&buf->rb_lock); 1495 while (needed) { 1496 rep = list_first_entry_or_null(&buf->rb_recv_bufs, 1497 struct rpcrdma_rep, rr_list); 1498 if (!rep) 1499 break; 1500 1501 list_del(&rep->rr_list); 1502 rep->rr_recv_wr.next = wr; 1503 wr = &rep->rr_recv_wr; 1504 --needed; 1505 } 1506 spin_unlock(&buf->rb_lock); 1507 1508 while (needed) { 1509 rep = rpcrdma_rep_create(r_xprt, temp); 1510 if (!rep) 1511 break; 1512 1513 rep->rr_recv_wr.next = wr; 1514 wr = &rep->rr_recv_wr; 1515 --needed; 1516 } 1517 if (!wr) 1518 goto out; 1519 1520 for (i = wr; i; i = i->next) { 1521 rep = container_of(i, struct rpcrdma_rep, rr_recv_wr); 1522 1523 if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf)) 1524 goto release_wrs; 1525 1526 trace_xprtrdma_post_recv(rep->rr_recv_wr.wr_cqe); 1527 ++count; 1528 } 1529 1530 rc = ib_post_recv(r_xprt->rx_ia.ri_id->qp, wr, 1531 (const struct ib_recv_wr **)&bad_wr); 1532 out: 1533 trace_xprtrdma_post_recvs(r_xprt, count, rc); 1534 if (rc) { 1535 for (wr = bad_wr; wr;) { 1536 struct rpcrdma_rep *rep; 1537 1538 rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr); 1539 wr = wr->next; 1540 rpcrdma_recv_buffer_put(rep); 1541 --count; 1542 } 1543 } 1544 ep->rep_receive_count += count; 1545 return; 1546 1547 release_wrs: 1548 for (i = wr; i;) { 1549 rep = container_of(i, struct rpcrdma_rep, rr_recv_wr); 1550 i = i->next; 1551 rpcrdma_recv_buffer_put(rep); 1552 } 1553 } 1554