xref: /openbmc/linux/net/sunrpc/xprtrdma/verbs.c (revision e7253313)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (c) 2014-2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the BSD-type
10  * license below:
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  *
16  *      Redistributions of source code must retain the above copyright
17  *      notice, this list of conditions and the following disclaimer.
18  *
19  *      Redistributions in binary form must reproduce the above
20  *      copyright notice, this list of conditions and the following
21  *      disclaimer in the documentation and/or other materials provided
22  *      with the distribution.
23  *
24  *      Neither the name of the Network Appliance, Inc. nor the names of
25  *      its contributors may be used to endorse or promote products
26  *      derived from this software without specific prior written
27  *      permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41 
42 /*
43  * verbs.c
44  *
45  * Encapsulates the major functions managing:
46  *  o adapters
47  *  o endpoints
48  *  o connections
49  *  o buffer memory
50  */
51 
52 #include <linux/interrupt.h>
53 #include <linux/slab.h>
54 #include <linux/sunrpc/addr.h>
55 #include <linux/sunrpc/svc_rdma.h>
56 #include <linux/log2.h>
57 
58 #include <asm-generic/barrier.h>
59 #include <asm/bitops.h>
60 
61 #include <rdma/ib_cm.h>
62 
63 #include "xprt_rdma.h"
64 #include <trace/events/rpcrdma.h>
65 
66 /*
67  * Globals/Macros
68  */
69 
70 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
71 # define RPCDBG_FACILITY	RPCDBG_TRANS
72 #endif
73 
74 /*
75  * internal functions
76  */
77 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
78 				       struct rpcrdma_sendctx *sc);
79 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt);
80 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt);
81 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt);
82 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt);
83 static struct rpcrdma_regbuf *
84 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
85 		     gfp_t flags);
86 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb);
87 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb);
88 
89 /* Wait for outstanding transport work to finish. ib_drain_qp
90  * handles the drains in the wrong order for us, so open code
91  * them here.
92  */
93 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt)
94 {
95 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
96 
97 	/* Flush Receives, then wait for deferred Reply work
98 	 * to complete.
99 	 */
100 	ib_drain_rq(ia->ri_id->qp);
101 
102 	/* Deferred Reply processing might have scheduled
103 	 * local invalidations.
104 	 */
105 	ib_drain_sq(ia->ri_id->qp);
106 }
107 
108 /**
109  * rpcrdma_qp_event_handler - Handle one QP event (error notification)
110  * @event: details of the event
111  * @context: ep that owns QP where event occurred
112  *
113  * Called from the RDMA provider (device driver) possibly in an interrupt
114  * context.
115  */
116 static void
117 rpcrdma_qp_event_handler(struct ib_event *event, void *context)
118 {
119 	struct rpcrdma_ep *ep = context;
120 	struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt,
121 						   rx_ep);
122 
123 	trace_xprtrdma_qp_event(r_xprt, event);
124 }
125 
126 /**
127  * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
128  * @cq:	completion queue
129  * @wc:	completed WR
130  *
131  */
132 static void
133 rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
134 {
135 	struct ib_cqe *cqe = wc->wr_cqe;
136 	struct rpcrdma_sendctx *sc =
137 		container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
138 
139 	/* WARNING: Only wr_cqe and status are reliable at this point */
140 	trace_xprtrdma_wc_send(sc, wc);
141 	rpcrdma_sendctx_put_locked((struct rpcrdma_xprt *)cq->cq_context, sc);
142 }
143 
144 /**
145  * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
146  * @cq:	completion queue (ignored)
147  * @wc:	completed WR
148  *
149  */
150 static void
151 rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
152 {
153 	struct ib_cqe *cqe = wc->wr_cqe;
154 	struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
155 					       rr_cqe);
156 	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
157 
158 	/* WARNING: Only wr_cqe and status are reliable at this point */
159 	trace_xprtrdma_wc_receive(wc);
160 	--r_xprt->rx_ep.rep_receive_count;
161 	if (wc->status != IB_WC_SUCCESS)
162 		goto out_flushed;
163 
164 	/* status == SUCCESS means all fields in wc are trustworthy */
165 	rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
166 	rep->rr_wc_flags = wc->wc_flags;
167 	rep->rr_inv_rkey = wc->ex.invalidate_rkey;
168 
169 	ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
170 				   rdmab_addr(rep->rr_rdmabuf),
171 				   wc->byte_len, DMA_FROM_DEVICE);
172 
173 	rpcrdma_reply_handler(rep);
174 	return;
175 
176 out_flushed:
177 	rpcrdma_recv_buffer_put(rep);
178 }
179 
180 static void rpcrdma_update_cm_private(struct rpcrdma_xprt *r_xprt,
181 				      struct rdma_conn_param *param)
182 {
183 	const struct rpcrdma_connect_private *pmsg = param->private_data;
184 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
185 	unsigned int rsize, wsize;
186 
187 	/* Default settings for RPC-over-RDMA Version One */
188 	r_xprt->rx_ia.ri_implicit_roundup = xprt_rdma_pad_optimize;
189 	rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
190 	wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
191 
192 	if (pmsg &&
193 	    pmsg->cp_magic == rpcrdma_cmp_magic &&
194 	    pmsg->cp_version == RPCRDMA_CMP_VERSION) {
195 		r_xprt->rx_ia.ri_implicit_roundup = true;
196 		rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
197 		wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
198 	}
199 
200 	if (rsize < ep->rep_inline_recv)
201 		ep->rep_inline_recv = rsize;
202 	if (wsize < ep->rep_inline_send)
203 		ep->rep_inline_send = wsize;
204 
205 	rpcrdma_set_max_header_sizes(r_xprt);
206 }
207 
208 /**
209  * rpcrdma_cm_event_handler - Handle RDMA CM events
210  * @id: rdma_cm_id on which an event has occurred
211  * @event: details of the event
212  *
213  * Called with @id's mutex held. Returns 1 if caller should
214  * destroy @id, otherwise 0.
215  */
216 static int
217 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event)
218 {
219 	struct rpcrdma_xprt *r_xprt = id->context;
220 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
221 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
222 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
223 
224 	might_sleep();
225 
226 	trace_xprtrdma_cm_event(r_xprt, event);
227 	switch (event->event) {
228 	case RDMA_CM_EVENT_ADDR_RESOLVED:
229 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
230 		ia->ri_async_rc = 0;
231 		complete(&ia->ri_done);
232 		return 0;
233 	case RDMA_CM_EVENT_ADDR_ERROR:
234 		ia->ri_async_rc = -EPROTO;
235 		complete(&ia->ri_done);
236 		return 0;
237 	case RDMA_CM_EVENT_ROUTE_ERROR:
238 		ia->ri_async_rc = -ENETUNREACH;
239 		complete(&ia->ri_done);
240 		return 0;
241 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
242 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
243 		pr_info("rpcrdma: removing device %s for %s:%s\n",
244 			ia->ri_id->device->name,
245 			rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt));
246 #endif
247 		init_completion(&ia->ri_remove_done);
248 		set_bit(RPCRDMA_IAF_REMOVING, &ia->ri_flags);
249 		ep->rep_connected = -ENODEV;
250 		xprt_force_disconnect(xprt);
251 		wait_for_completion(&ia->ri_remove_done);
252 
253 		ia->ri_id = NULL;
254 		/* Return 1 to ensure the core destroys the id. */
255 		return 1;
256 	case RDMA_CM_EVENT_ESTABLISHED:
257 		++xprt->connect_cookie;
258 		ep->rep_connected = 1;
259 		rpcrdma_update_cm_private(r_xprt, &event->param.conn);
260 		trace_xprtrdma_inline_thresh(r_xprt);
261 		wake_up_all(&ep->rep_connect_wait);
262 		break;
263 	case RDMA_CM_EVENT_CONNECT_ERROR:
264 		ep->rep_connected = -ENOTCONN;
265 		goto disconnected;
266 	case RDMA_CM_EVENT_UNREACHABLE:
267 		ep->rep_connected = -ENETUNREACH;
268 		goto disconnected;
269 	case RDMA_CM_EVENT_REJECTED:
270 		dprintk("rpcrdma: connection to %s:%s rejected: %s\n",
271 			rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt),
272 			rdma_reject_msg(id, event->status));
273 		ep->rep_connected = -ECONNREFUSED;
274 		if (event->status == IB_CM_REJ_STALE_CONN)
275 			ep->rep_connected = -EAGAIN;
276 		goto disconnected;
277 	case RDMA_CM_EVENT_DISCONNECTED:
278 		ep->rep_connected = -ECONNABORTED;
279 disconnected:
280 		xprt_force_disconnect(xprt);
281 		wake_up_all(&ep->rep_connect_wait);
282 		break;
283 	default:
284 		break;
285 	}
286 
287 	dprintk("RPC:       %s: %s:%s on %s/frwr: %s\n", __func__,
288 		rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt),
289 		ia->ri_id->device->name, rdma_event_msg(event->event));
290 	return 0;
291 }
292 
293 static struct rdma_cm_id *
294 rpcrdma_create_id(struct rpcrdma_xprt *xprt, struct rpcrdma_ia *ia)
295 {
296 	unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
297 	struct rdma_cm_id *id;
298 	int rc;
299 
300 	init_completion(&ia->ri_done);
301 
302 	id = rdma_create_id(xprt->rx_xprt.xprt_net, rpcrdma_cm_event_handler,
303 			    xprt, RDMA_PS_TCP, IB_QPT_RC);
304 	if (IS_ERR(id))
305 		return id;
306 
307 	ia->ri_async_rc = -ETIMEDOUT;
308 	rc = rdma_resolve_addr(id, NULL,
309 			       (struct sockaddr *)&xprt->rx_xprt.addr,
310 			       RDMA_RESOLVE_TIMEOUT);
311 	if (rc)
312 		goto out;
313 	rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout);
314 	if (rc < 0)
315 		goto out;
316 
317 	rc = ia->ri_async_rc;
318 	if (rc)
319 		goto out;
320 
321 	ia->ri_async_rc = -ETIMEDOUT;
322 	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
323 	if (rc)
324 		goto out;
325 	rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout);
326 	if (rc < 0)
327 		goto out;
328 	rc = ia->ri_async_rc;
329 	if (rc)
330 		goto out;
331 
332 	return id;
333 
334 out:
335 	rdma_destroy_id(id);
336 	return ERR_PTR(rc);
337 }
338 
339 /*
340  * Exported functions.
341  */
342 
343 /**
344  * rpcrdma_ia_open - Open and initialize an Interface Adapter.
345  * @xprt: transport with IA to (re)initialize
346  *
347  * Returns 0 on success, negative errno if an appropriate
348  * Interface Adapter could not be found and opened.
349  */
350 int
351 rpcrdma_ia_open(struct rpcrdma_xprt *xprt)
352 {
353 	struct rpcrdma_ia *ia = &xprt->rx_ia;
354 	int rc;
355 
356 	ia->ri_id = rpcrdma_create_id(xprt, ia);
357 	if (IS_ERR(ia->ri_id)) {
358 		rc = PTR_ERR(ia->ri_id);
359 		goto out_err;
360 	}
361 
362 	ia->ri_pd = ib_alloc_pd(ia->ri_id->device, 0);
363 	if (IS_ERR(ia->ri_pd)) {
364 		rc = PTR_ERR(ia->ri_pd);
365 		pr_err("rpcrdma: ib_alloc_pd() returned %d\n", rc);
366 		goto out_err;
367 	}
368 
369 	switch (xprt_rdma_memreg_strategy) {
370 	case RPCRDMA_FRWR:
371 		if (frwr_is_supported(ia->ri_id->device))
372 			break;
373 		/*FALLTHROUGH*/
374 	default:
375 		pr_err("rpcrdma: Device %s does not support memreg mode %d\n",
376 		       ia->ri_id->device->name, xprt_rdma_memreg_strategy);
377 		rc = -EINVAL;
378 		goto out_err;
379 	}
380 
381 	return 0;
382 
383 out_err:
384 	rpcrdma_ia_close(ia);
385 	return rc;
386 }
387 
388 /**
389  * rpcrdma_ia_remove - Handle device driver unload
390  * @ia: interface adapter being removed
391  *
392  * Divest transport H/W resources associated with this adapter,
393  * but allow it to be restored later.
394  */
395 void
396 rpcrdma_ia_remove(struct rpcrdma_ia *ia)
397 {
398 	struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt,
399 						   rx_ia);
400 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
401 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
402 	struct rpcrdma_req *req;
403 
404 	/* This is similar to rpcrdma_ep_destroy, but:
405 	 * - Don't cancel the connect worker.
406 	 * - Don't call rpcrdma_ep_disconnect, which waits
407 	 *   for another conn upcall, which will deadlock.
408 	 * - rdma_disconnect is unneeded, the underlying
409 	 *   connection is already gone.
410 	 */
411 	if (ia->ri_id->qp) {
412 		rpcrdma_xprt_drain(r_xprt);
413 		rdma_destroy_qp(ia->ri_id);
414 		ia->ri_id->qp = NULL;
415 	}
416 	ib_free_cq(ep->rep_attr.recv_cq);
417 	ep->rep_attr.recv_cq = NULL;
418 	ib_free_cq(ep->rep_attr.send_cq);
419 	ep->rep_attr.send_cq = NULL;
420 
421 	/* The ULP is responsible for ensuring all DMA
422 	 * mappings and MRs are gone.
423 	 */
424 	rpcrdma_reps_unmap(r_xprt);
425 	list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
426 		rpcrdma_regbuf_dma_unmap(req->rl_rdmabuf);
427 		rpcrdma_regbuf_dma_unmap(req->rl_sendbuf);
428 		rpcrdma_regbuf_dma_unmap(req->rl_recvbuf);
429 	}
430 	rpcrdma_mrs_destroy(r_xprt);
431 	ib_dealloc_pd(ia->ri_pd);
432 	ia->ri_pd = NULL;
433 
434 	/* Allow waiters to continue */
435 	complete(&ia->ri_remove_done);
436 
437 	trace_xprtrdma_remove(r_xprt);
438 }
439 
440 /**
441  * rpcrdma_ia_close - Clean up/close an IA.
442  * @ia: interface adapter to close
443  *
444  */
445 void
446 rpcrdma_ia_close(struct rpcrdma_ia *ia)
447 {
448 	if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) {
449 		if (ia->ri_id->qp)
450 			rdma_destroy_qp(ia->ri_id);
451 		rdma_destroy_id(ia->ri_id);
452 	}
453 	ia->ri_id = NULL;
454 
455 	/* If the pd is still busy, xprtrdma missed freeing a resource */
456 	if (ia->ri_pd && !IS_ERR(ia->ri_pd))
457 		ib_dealloc_pd(ia->ri_pd);
458 	ia->ri_pd = NULL;
459 }
460 
461 /**
462  * rpcrdma_ep_create - Create unconnected endpoint
463  * @r_xprt: transport to instantiate
464  *
465  * Returns zero on success, or a negative errno.
466  */
467 int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt)
468 {
469 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
470 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
471 	struct rpcrdma_connect_private *pmsg = &ep->rep_cm_private;
472 	struct ib_cq *sendcq, *recvcq;
473 	unsigned int max_sge;
474 	int rc;
475 
476 	ep->rep_max_requests = xprt_rdma_slot_table_entries;
477 	ep->rep_inline_send = xprt_rdma_max_inline_write;
478 	ep->rep_inline_recv = xprt_rdma_max_inline_read;
479 
480 	max_sge = min_t(unsigned int, ia->ri_id->device->attrs.max_send_sge,
481 			RPCRDMA_MAX_SEND_SGES);
482 	if (max_sge < RPCRDMA_MIN_SEND_SGES) {
483 		pr_warn("rpcrdma: HCA provides only %d send SGEs\n", max_sge);
484 		return -ENOMEM;
485 	}
486 	ia->ri_max_send_sges = max_sge;
487 
488 	rc = frwr_open(ia, ep);
489 	if (rc)
490 		return rc;
491 
492 	ep->rep_attr.event_handler = rpcrdma_qp_event_handler;
493 	ep->rep_attr.qp_context = ep;
494 	ep->rep_attr.srq = NULL;
495 	ep->rep_attr.cap.max_send_sge = max_sge;
496 	ep->rep_attr.cap.max_recv_sge = 1;
497 	ep->rep_attr.cap.max_inline_data = 0;
498 	ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
499 	ep->rep_attr.qp_type = IB_QPT_RC;
500 	ep->rep_attr.port_num = ~0;
501 
502 	dprintk("RPC:       %s: requested max: dtos: send %d recv %d; "
503 		"iovs: send %d recv %d\n",
504 		__func__,
505 		ep->rep_attr.cap.max_send_wr,
506 		ep->rep_attr.cap.max_recv_wr,
507 		ep->rep_attr.cap.max_send_sge,
508 		ep->rep_attr.cap.max_recv_sge);
509 
510 	ep->rep_send_batch = ep->rep_max_requests >> 3;
511 	ep->rep_send_count = ep->rep_send_batch;
512 	init_waitqueue_head(&ep->rep_connect_wait);
513 	ep->rep_receive_count = 0;
514 
515 	sendcq = ib_alloc_cq_any(ia->ri_id->device, r_xprt,
516 				 ep->rep_attr.cap.max_send_wr + 1,
517 				 IB_POLL_WORKQUEUE);
518 	if (IS_ERR(sendcq)) {
519 		rc = PTR_ERR(sendcq);
520 		goto out1;
521 	}
522 
523 	recvcq = ib_alloc_cq_any(ia->ri_id->device, NULL,
524 				 ep->rep_attr.cap.max_recv_wr + 1,
525 				 IB_POLL_WORKQUEUE);
526 	if (IS_ERR(recvcq)) {
527 		rc = PTR_ERR(recvcq);
528 		goto out2;
529 	}
530 
531 	ep->rep_attr.send_cq = sendcq;
532 	ep->rep_attr.recv_cq = recvcq;
533 
534 	/* Initialize cma parameters */
535 	memset(&ep->rep_remote_cma, 0, sizeof(ep->rep_remote_cma));
536 
537 	/* Prepare RDMA-CM private message */
538 	pmsg->cp_magic = rpcrdma_cmp_magic;
539 	pmsg->cp_version = RPCRDMA_CMP_VERSION;
540 	pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK;
541 	pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->rep_inline_send);
542 	pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->rep_inline_recv);
543 	ep->rep_remote_cma.private_data = pmsg;
544 	ep->rep_remote_cma.private_data_len = sizeof(*pmsg);
545 
546 	/* Client offers RDMA Read but does not initiate */
547 	ep->rep_remote_cma.initiator_depth = 0;
548 	ep->rep_remote_cma.responder_resources =
549 		min_t(int, U8_MAX, ia->ri_id->device->attrs.max_qp_rd_atom);
550 
551 	/* Limit transport retries so client can detect server
552 	 * GID changes quickly. RPC layer handles re-establishing
553 	 * transport connection and retransmission.
554 	 */
555 	ep->rep_remote_cma.retry_count = 6;
556 
557 	/* RPC-over-RDMA handles its own flow control. In addition,
558 	 * make all RNR NAKs visible so we know that RPC-over-RDMA
559 	 * flow control is working correctly (no NAKs should be seen).
560 	 */
561 	ep->rep_remote_cma.flow_control = 0;
562 	ep->rep_remote_cma.rnr_retry_count = 0;
563 
564 	return 0;
565 
566 out2:
567 	ib_free_cq(sendcq);
568 out1:
569 	return rc;
570 }
571 
572 /**
573  * rpcrdma_ep_destroy - Disconnect and destroy endpoint.
574  * @r_xprt: transport instance to shut down
575  *
576  */
577 void rpcrdma_ep_destroy(struct rpcrdma_xprt *r_xprt)
578 {
579 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
580 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
581 
582 	if (ia->ri_id && ia->ri_id->qp) {
583 		rpcrdma_ep_disconnect(ep, ia);
584 		rdma_destroy_qp(ia->ri_id);
585 		ia->ri_id->qp = NULL;
586 	}
587 
588 	if (ep->rep_attr.recv_cq)
589 		ib_free_cq(ep->rep_attr.recv_cq);
590 	if (ep->rep_attr.send_cq)
591 		ib_free_cq(ep->rep_attr.send_cq);
592 }
593 
594 /* Re-establish a connection after a device removal event.
595  * Unlike a normal reconnection, a fresh PD and a new set
596  * of MRs and buffers is needed.
597  */
598 static int rpcrdma_ep_recreate_xprt(struct rpcrdma_xprt *r_xprt,
599 				    struct ib_qp_init_attr *qp_init_attr)
600 {
601 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
602 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
603 	int rc, err;
604 
605 	trace_xprtrdma_reinsert(r_xprt);
606 
607 	rc = -EHOSTUNREACH;
608 	if (rpcrdma_ia_open(r_xprt))
609 		goto out1;
610 
611 	rc = -ENOMEM;
612 	err = rpcrdma_ep_create(r_xprt);
613 	if (err) {
614 		pr_err("rpcrdma: rpcrdma_ep_create returned %d\n", err);
615 		goto out2;
616 	}
617 	memcpy(qp_init_attr, &ep->rep_attr, sizeof(*qp_init_attr));
618 
619 	rc = -ENETUNREACH;
620 	err = rdma_create_qp(ia->ri_id, ia->ri_pd, qp_init_attr);
621 	if (err) {
622 		pr_err("rpcrdma: rdma_create_qp returned %d\n", err);
623 		goto out3;
624 	}
625 	return 0;
626 
627 out3:
628 	rpcrdma_ep_destroy(r_xprt);
629 out2:
630 	rpcrdma_ia_close(ia);
631 out1:
632 	return rc;
633 }
634 
635 static int rpcrdma_ep_reconnect(struct rpcrdma_xprt *r_xprt,
636 				struct ib_qp_init_attr *qp_init_attr)
637 {
638 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
639 	struct rdma_cm_id *id, *old;
640 	int err, rc;
641 
642 	rpcrdma_ep_disconnect(&r_xprt->rx_ep, ia);
643 
644 	rc = -EHOSTUNREACH;
645 	id = rpcrdma_create_id(r_xprt, ia);
646 	if (IS_ERR(id))
647 		goto out;
648 
649 	/* As long as the new ID points to the same device as the
650 	 * old ID, we can reuse the transport's existing PD and all
651 	 * previously allocated MRs. Also, the same device means
652 	 * the transport's previous DMA mappings are still valid.
653 	 *
654 	 * This is a sanity check only. There should be no way these
655 	 * point to two different devices here.
656 	 */
657 	old = id;
658 	rc = -ENETUNREACH;
659 	if (ia->ri_id->device != id->device) {
660 		pr_err("rpcrdma: can't reconnect on different device!\n");
661 		goto out_destroy;
662 	}
663 
664 	err = rdma_create_qp(id, ia->ri_pd, qp_init_attr);
665 	if (err)
666 		goto out_destroy;
667 
668 	/* Atomically replace the transport's ID and QP. */
669 	rc = 0;
670 	old = ia->ri_id;
671 	ia->ri_id = id;
672 	rdma_destroy_qp(old);
673 
674 out_destroy:
675 	rdma_destroy_id(old);
676 out:
677 	return rc;
678 }
679 
680 /*
681  * Connect unconnected endpoint.
682  */
683 int
684 rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
685 {
686 	struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt,
687 						   rx_ia);
688 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
689 	struct ib_qp_init_attr qp_init_attr;
690 	int rc;
691 
692 retry:
693 	memcpy(&qp_init_attr, &ep->rep_attr, sizeof(qp_init_attr));
694 	switch (ep->rep_connected) {
695 	case 0:
696 		rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &qp_init_attr);
697 		if (rc) {
698 			rc = -ENETUNREACH;
699 			goto out_noupdate;
700 		}
701 		break;
702 	case -ENODEV:
703 		rc = rpcrdma_ep_recreate_xprt(r_xprt, &qp_init_attr);
704 		if (rc)
705 			goto out_noupdate;
706 		break;
707 	default:
708 		rc = rpcrdma_ep_reconnect(r_xprt, &qp_init_attr);
709 		if (rc)
710 			goto out;
711 	}
712 
713 	ep->rep_connected = 0;
714 	xprt_clear_connected(xprt);
715 
716 	rpcrdma_reset_cwnd(r_xprt);
717 	rpcrdma_post_recvs(r_xprt, true);
718 
719 	rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma);
720 	if (rc)
721 		goto out;
722 
723 	if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
724 		xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
725 	wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0);
726 	if (ep->rep_connected <= 0) {
727 		if (ep->rep_connected == -EAGAIN)
728 			goto retry;
729 		rc = ep->rep_connected;
730 		goto out;
731 	}
732 
733 	rpcrdma_mrs_create(r_xprt);
734 
735 out:
736 	if (rc)
737 		ep->rep_connected = rc;
738 
739 out_noupdate:
740 	trace_xprtrdma_connect(r_xprt, rc);
741 	return rc;
742 }
743 
744 /**
745  * rpcrdma_ep_disconnect - Disconnect underlying transport
746  * @ep: endpoint to disconnect
747  * @ia: associated interface adapter
748  *
749  * Caller serializes. Either the transport send lock is held,
750  * or we're being called to destroy the transport.
751  */
752 void
753 rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
754 {
755 	struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt,
756 						   rx_ep);
757 	int rc;
758 
759 	/* returns without wait if ID is not connected */
760 	rc = rdma_disconnect(ia->ri_id);
761 	if (!rc)
762 		wait_event_interruptible(ep->rep_connect_wait,
763 							ep->rep_connected != 1);
764 	else
765 		ep->rep_connected = rc;
766 	trace_xprtrdma_disconnect(r_xprt, rc);
767 
768 	rpcrdma_xprt_drain(r_xprt);
769 	rpcrdma_reqs_reset(r_xprt);
770 	rpcrdma_mrs_destroy(r_xprt);
771 }
772 
773 /* Fixed-size circular FIFO queue. This implementation is wait-free and
774  * lock-free.
775  *
776  * Consumer is the code path that posts Sends. This path dequeues a
777  * sendctx for use by a Send operation. Multiple consumer threads
778  * are serialized by the RPC transport lock, which allows only one
779  * ->send_request call at a time.
780  *
781  * Producer is the code path that handles Send completions. This path
782  * enqueues a sendctx that has been completed. Multiple producer
783  * threads are serialized by the ib_poll_cq() function.
784  */
785 
786 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
787  * queue activity, and rpcrdma_xprt_drain has flushed all remaining
788  * Send requests.
789  */
790 static void rpcrdma_sendctxs_destroy(struct rpcrdma_buffer *buf)
791 {
792 	unsigned long i;
793 
794 	for (i = 0; i <= buf->rb_sc_last; i++)
795 		kfree(buf->rb_sc_ctxs[i]);
796 	kfree(buf->rb_sc_ctxs);
797 }
798 
799 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ia *ia)
800 {
801 	struct rpcrdma_sendctx *sc;
802 
803 	sc = kzalloc(struct_size(sc, sc_sges, ia->ri_max_send_sges),
804 		     GFP_KERNEL);
805 	if (!sc)
806 		return NULL;
807 
808 	sc->sc_cqe.done = rpcrdma_wc_send;
809 	return sc;
810 }
811 
812 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
813 {
814 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
815 	struct rpcrdma_sendctx *sc;
816 	unsigned long i;
817 
818 	/* Maximum number of concurrent outstanding Send WRs. Capping
819 	 * the circular queue size stops Send Queue overflow by causing
820 	 * the ->send_request call to fail temporarily before too many
821 	 * Sends are posted.
822 	 */
823 	i = buf->rb_max_requests + RPCRDMA_MAX_BC_REQUESTS;
824 	dprintk("RPC:       %s: allocating %lu send_ctxs\n", __func__, i);
825 	buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL);
826 	if (!buf->rb_sc_ctxs)
827 		return -ENOMEM;
828 
829 	buf->rb_sc_last = i - 1;
830 	for (i = 0; i <= buf->rb_sc_last; i++) {
831 		sc = rpcrdma_sendctx_create(&r_xprt->rx_ia);
832 		if (!sc)
833 			return -ENOMEM;
834 
835 		buf->rb_sc_ctxs[i] = sc;
836 	}
837 
838 	return 0;
839 }
840 
841 /* The sendctx queue is not guaranteed to have a size that is a
842  * power of two, thus the helpers in circ_buf.h cannot be used.
843  * The other option is to use modulus (%), which can be expensive.
844  */
845 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
846 					  unsigned long item)
847 {
848 	return likely(item < buf->rb_sc_last) ? item + 1 : 0;
849 }
850 
851 /**
852  * rpcrdma_sendctx_get_locked - Acquire a send context
853  * @r_xprt: controlling transport instance
854  *
855  * Returns pointer to a free send completion context; or NULL if
856  * the queue is empty.
857  *
858  * Usage: Called to acquire an SGE array before preparing a Send WR.
859  *
860  * The caller serializes calls to this function (per transport), and
861  * provides an effective memory barrier that flushes the new value
862  * of rb_sc_head.
863  */
864 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt)
865 {
866 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
867 	struct rpcrdma_sendctx *sc;
868 	unsigned long next_head;
869 
870 	next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
871 
872 	if (next_head == READ_ONCE(buf->rb_sc_tail))
873 		goto out_emptyq;
874 
875 	/* ORDER: item must be accessed _before_ head is updated */
876 	sc = buf->rb_sc_ctxs[next_head];
877 
878 	/* Releasing the lock in the caller acts as a memory
879 	 * barrier that flushes rb_sc_head.
880 	 */
881 	buf->rb_sc_head = next_head;
882 
883 	return sc;
884 
885 out_emptyq:
886 	/* The queue is "empty" if there have not been enough Send
887 	 * completions recently. This is a sign the Send Queue is
888 	 * backing up. Cause the caller to pause and try again.
889 	 */
890 	xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
891 	r_xprt->rx_stats.empty_sendctx_q++;
892 	return NULL;
893 }
894 
895 /**
896  * rpcrdma_sendctx_put_locked - Release a send context
897  * @r_xprt: controlling transport instance
898  * @sc: send context to release
899  *
900  * Usage: Called from Send completion to return a sendctxt
901  * to the queue.
902  *
903  * The caller serializes calls to this function (per transport).
904  */
905 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
906 				       struct rpcrdma_sendctx *sc)
907 {
908 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
909 	unsigned long next_tail;
910 
911 	/* Unmap SGEs of previously completed but unsignaled
912 	 * Sends by walking up the queue until @sc is found.
913 	 */
914 	next_tail = buf->rb_sc_tail;
915 	do {
916 		next_tail = rpcrdma_sendctx_next(buf, next_tail);
917 
918 		/* ORDER: item must be accessed _before_ tail is updated */
919 		rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]);
920 
921 	} while (buf->rb_sc_ctxs[next_tail] != sc);
922 
923 	/* Paired with READ_ONCE */
924 	smp_store_release(&buf->rb_sc_tail, next_tail);
925 
926 	xprt_write_space(&r_xprt->rx_xprt);
927 }
928 
929 static void
930 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt)
931 {
932 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
933 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
934 	unsigned int count;
935 
936 	for (count = 0; count < ia->ri_max_segs; count++) {
937 		struct rpcrdma_mr *mr;
938 		int rc;
939 
940 		mr = kzalloc(sizeof(*mr), GFP_NOFS);
941 		if (!mr)
942 			break;
943 
944 		rc = frwr_init_mr(ia, mr);
945 		if (rc) {
946 			kfree(mr);
947 			break;
948 		}
949 
950 		mr->mr_xprt = r_xprt;
951 
952 		spin_lock(&buf->rb_lock);
953 		rpcrdma_mr_push(mr, &buf->rb_mrs);
954 		list_add(&mr->mr_all, &buf->rb_all_mrs);
955 		spin_unlock(&buf->rb_lock);
956 	}
957 
958 	r_xprt->rx_stats.mrs_allocated += count;
959 	trace_xprtrdma_createmrs(r_xprt, count);
960 }
961 
962 static void
963 rpcrdma_mr_refresh_worker(struct work_struct *work)
964 {
965 	struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
966 						  rb_refresh_worker);
967 	struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
968 						   rx_buf);
969 
970 	rpcrdma_mrs_create(r_xprt);
971 	xprt_write_space(&r_xprt->rx_xprt);
972 }
973 
974 /**
975  * rpcrdma_mrs_refresh - Wake the MR refresh worker
976  * @r_xprt: controlling transport instance
977  *
978  */
979 void rpcrdma_mrs_refresh(struct rpcrdma_xprt *r_xprt)
980 {
981 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
982 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
983 
984 	/* If there is no underlying device, it's no use to
985 	 * wake the refresh worker.
986 	 */
987 	if (ep->rep_connected != -ENODEV) {
988 		/* The work is scheduled on a WQ_MEM_RECLAIM
989 		 * workqueue in order to prevent MR allocation
990 		 * from recursing into NFS during direct reclaim.
991 		 */
992 		queue_work(xprtiod_workqueue, &buf->rb_refresh_worker);
993 	}
994 }
995 
996 /**
997  * rpcrdma_req_create - Allocate an rpcrdma_req object
998  * @r_xprt: controlling r_xprt
999  * @size: initial size, in bytes, of send and receive buffers
1000  * @flags: GFP flags passed to memory allocators
1001  *
1002  * Returns an allocated and fully initialized rpcrdma_req or NULL.
1003  */
1004 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size,
1005 				       gfp_t flags)
1006 {
1007 	struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
1008 	struct rpcrdma_regbuf *rb;
1009 	struct rpcrdma_req *req;
1010 	size_t maxhdrsize;
1011 
1012 	req = kzalloc(sizeof(*req), flags);
1013 	if (req == NULL)
1014 		goto out1;
1015 
1016 	/* Compute maximum header buffer size in bytes */
1017 	maxhdrsize = rpcrdma_fixed_maxsz + 3 +
1018 		     r_xprt->rx_ia.ri_max_segs * rpcrdma_readchunk_maxsz;
1019 	maxhdrsize *= sizeof(__be32);
1020 	rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize),
1021 				  DMA_TO_DEVICE, flags);
1022 	if (!rb)
1023 		goto out2;
1024 	req->rl_rdmabuf = rb;
1025 	xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb));
1026 
1027 	req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags);
1028 	if (!req->rl_sendbuf)
1029 		goto out3;
1030 
1031 	req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags);
1032 	if (!req->rl_recvbuf)
1033 		goto out4;
1034 
1035 	INIT_LIST_HEAD(&req->rl_free_mrs);
1036 	INIT_LIST_HEAD(&req->rl_registered);
1037 	spin_lock(&buffer->rb_lock);
1038 	list_add(&req->rl_all, &buffer->rb_allreqs);
1039 	spin_unlock(&buffer->rb_lock);
1040 	return req;
1041 
1042 out4:
1043 	kfree(req->rl_sendbuf);
1044 out3:
1045 	kfree(req->rl_rdmabuf);
1046 out2:
1047 	kfree(req);
1048 out1:
1049 	return NULL;
1050 }
1051 
1052 /**
1053  * rpcrdma_reqs_reset - Reset all reqs owned by a transport
1054  * @r_xprt: controlling transport instance
1055  *
1056  * ASSUMPTION: the rb_allreqs list is stable for the duration,
1057  * and thus can be walked without holding rb_lock. Eg. the
1058  * caller is holding the transport send lock to exclude
1059  * device removal or disconnection.
1060  */
1061 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt)
1062 {
1063 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1064 	struct rpcrdma_req *req;
1065 
1066 	list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
1067 		/* Credits are valid only for one connection */
1068 		req->rl_slot.rq_cong = 0;
1069 	}
1070 }
1071 
1072 static struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt,
1073 					      bool temp)
1074 {
1075 	struct rpcrdma_rep *rep;
1076 
1077 	rep = kzalloc(sizeof(*rep), GFP_KERNEL);
1078 	if (rep == NULL)
1079 		goto out;
1080 
1081 	rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep.rep_inline_recv,
1082 					       DMA_FROM_DEVICE, GFP_KERNEL);
1083 	if (!rep->rr_rdmabuf)
1084 		goto out_free;
1085 
1086 	xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf),
1087 		     rdmab_length(rep->rr_rdmabuf));
1088 	rep->rr_cqe.done = rpcrdma_wc_receive;
1089 	rep->rr_rxprt = r_xprt;
1090 	rep->rr_recv_wr.next = NULL;
1091 	rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
1092 	rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
1093 	rep->rr_recv_wr.num_sge = 1;
1094 	rep->rr_temp = temp;
1095 	list_add(&rep->rr_all, &r_xprt->rx_buf.rb_all_reps);
1096 	return rep;
1097 
1098 out_free:
1099 	kfree(rep);
1100 out:
1101 	return NULL;
1102 }
1103 
1104 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep)
1105 {
1106 	list_del(&rep->rr_all);
1107 	rpcrdma_regbuf_free(rep->rr_rdmabuf);
1108 	kfree(rep);
1109 }
1110 
1111 static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf)
1112 {
1113 	struct llist_node *node;
1114 
1115 	/* Calls to llist_del_first are required to be serialized */
1116 	node = llist_del_first(&buf->rb_free_reps);
1117 	if (!node)
1118 		return NULL;
1119 	return llist_entry(node, struct rpcrdma_rep, rr_node);
1120 }
1121 
1122 static void rpcrdma_rep_put(struct rpcrdma_buffer *buf,
1123 			    struct rpcrdma_rep *rep)
1124 {
1125 	llist_add(&rep->rr_node, &buf->rb_free_reps);
1126 }
1127 
1128 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt)
1129 {
1130 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1131 	struct rpcrdma_rep *rep;
1132 
1133 	list_for_each_entry(rep, &buf->rb_all_reps, rr_all)
1134 		rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf);
1135 }
1136 
1137 static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf)
1138 {
1139 	struct rpcrdma_rep *rep;
1140 
1141 	while ((rep = rpcrdma_rep_get_locked(buf)) != NULL)
1142 		rpcrdma_rep_destroy(rep);
1143 }
1144 
1145 /**
1146  * rpcrdma_buffer_create - Create initial set of req/rep objects
1147  * @r_xprt: transport instance to (re)initialize
1148  *
1149  * Returns zero on success, otherwise a negative errno.
1150  */
1151 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1152 {
1153 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1154 	int i, rc;
1155 
1156 	buf->rb_max_requests = r_xprt->rx_ep.rep_max_requests;
1157 	buf->rb_bc_srv_max_requests = 0;
1158 	spin_lock_init(&buf->rb_lock);
1159 	INIT_LIST_HEAD(&buf->rb_mrs);
1160 	INIT_LIST_HEAD(&buf->rb_all_mrs);
1161 	INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker);
1162 
1163 	INIT_LIST_HEAD(&buf->rb_send_bufs);
1164 	INIT_LIST_HEAD(&buf->rb_allreqs);
1165 	INIT_LIST_HEAD(&buf->rb_all_reps);
1166 
1167 	rc = -ENOMEM;
1168 	for (i = 0; i < buf->rb_max_requests; i++) {
1169 		struct rpcrdma_req *req;
1170 
1171 		req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE * 2,
1172 					 GFP_KERNEL);
1173 		if (!req)
1174 			goto out;
1175 		list_add(&req->rl_list, &buf->rb_send_bufs);
1176 	}
1177 
1178 	init_llist_head(&buf->rb_free_reps);
1179 
1180 	rc = rpcrdma_sendctxs_create(r_xprt);
1181 	if (rc)
1182 		goto out;
1183 
1184 	return 0;
1185 out:
1186 	rpcrdma_buffer_destroy(buf);
1187 	return rc;
1188 }
1189 
1190 /**
1191  * rpcrdma_req_destroy - Destroy an rpcrdma_req object
1192  * @req: unused object to be destroyed
1193  *
1194  * Relies on caller holding the transport send lock to protect
1195  * removing req->rl_all from buf->rb_all_reqs safely.
1196  */
1197 void rpcrdma_req_destroy(struct rpcrdma_req *req)
1198 {
1199 	struct rpcrdma_mr *mr;
1200 
1201 	list_del(&req->rl_all);
1202 
1203 	while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) {
1204 		struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf;
1205 
1206 		spin_lock(&buf->rb_lock);
1207 		list_del(&mr->mr_all);
1208 		spin_unlock(&buf->rb_lock);
1209 
1210 		frwr_release_mr(mr);
1211 	}
1212 
1213 	rpcrdma_regbuf_free(req->rl_recvbuf);
1214 	rpcrdma_regbuf_free(req->rl_sendbuf);
1215 	rpcrdma_regbuf_free(req->rl_rdmabuf);
1216 	kfree(req);
1217 }
1218 
1219 /**
1220  * rpcrdma_mrs_destroy - Release all of a transport's MRs
1221  * @r_xprt: controlling transport instance
1222  *
1223  * Relies on caller holding the transport send lock to protect
1224  * removing mr->mr_list from req->rl_free_mrs safely.
1225  */
1226 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt)
1227 {
1228 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1229 	struct rpcrdma_mr *mr;
1230 
1231 	cancel_work_sync(&buf->rb_refresh_worker);
1232 
1233 	spin_lock(&buf->rb_lock);
1234 	while ((mr = list_first_entry_or_null(&buf->rb_all_mrs,
1235 					      struct rpcrdma_mr,
1236 					      mr_all)) != NULL) {
1237 		list_del(&mr->mr_list);
1238 		list_del(&mr->mr_all);
1239 		spin_unlock(&buf->rb_lock);
1240 
1241 		frwr_release_mr(mr);
1242 
1243 		spin_lock(&buf->rb_lock);
1244 	}
1245 	spin_unlock(&buf->rb_lock);
1246 }
1247 
1248 /**
1249  * rpcrdma_buffer_destroy - Release all hw resources
1250  * @buf: root control block for resources
1251  *
1252  * ORDERING: relies on a prior rpcrdma_xprt_drain :
1253  * - No more Send or Receive completions can occur
1254  * - All MRs, reps, and reqs are returned to their free lists
1255  */
1256 void
1257 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1258 {
1259 	rpcrdma_sendctxs_destroy(buf);
1260 	rpcrdma_reps_destroy(buf);
1261 
1262 	while (!list_empty(&buf->rb_send_bufs)) {
1263 		struct rpcrdma_req *req;
1264 
1265 		req = list_first_entry(&buf->rb_send_bufs,
1266 				       struct rpcrdma_req, rl_list);
1267 		list_del(&req->rl_list);
1268 		rpcrdma_req_destroy(req);
1269 	}
1270 }
1271 
1272 /**
1273  * rpcrdma_mr_get - Allocate an rpcrdma_mr object
1274  * @r_xprt: controlling transport
1275  *
1276  * Returns an initialized rpcrdma_mr or NULL if no free
1277  * rpcrdma_mr objects are available.
1278  */
1279 struct rpcrdma_mr *
1280 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt)
1281 {
1282 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1283 	struct rpcrdma_mr *mr;
1284 
1285 	spin_lock(&buf->rb_lock);
1286 	mr = rpcrdma_mr_pop(&buf->rb_mrs);
1287 	spin_unlock(&buf->rb_lock);
1288 	return mr;
1289 }
1290 
1291 /**
1292  * rpcrdma_mr_put - DMA unmap an MR and release it
1293  * @mr: MR to release
1294  *
1295  */
1296 void rpcrdma_mr_put(struct rpcrdma_mr *mr)
1297 {
1298 	struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
1299 
1300 	if (mr->mr_dir != DMA_NONE) {
1301 		trace_xprtrdma_mr_unmap(mr);
1302 		ib_dma_unmap_sg(r_xprt->rx_ia.ri_id->device,
1303 				mr->mr_sg, mr->mr_nents, mr->mr_dir);
1304 		mr->mr_dir = DMA_NONE;
1305 	}
1306 
1307 	rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs);
1308 }
1309 
1310 /**
1311  * rpcrdma_buffer_get - Get a request buffer
1312  * @buffers: Buffer pool from which to obtain a buffer
1313  *
1314  * Returns a fresh rpcrdma_req, or NULL if none are available.
1315  */
1316 struct rpcrdma_req *
1317 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1318 {
1319 	struct rpcrdma_req *req;
1320 
1321 	spin_lock(&buffers->rb_lock);
1322 	req = list_first_entry_or_null(&buffers->rb_send_bufs,
1323 				       struct rpcrdma_req, rl_list);
1324 	if (req)
1325 		list_del_init(&req->rl_list);
1326 	spin_unlock(&buffers->rb_lock);
1327 	return req;
1328 }
1329 
1330 /**
1331  * rpcrdma_buffer_put - Put request/reply buffers back into pool
1332  * @buffers: buffer pool
1333  * @req: object to return
1334  *
1335  */
1336 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1337 {
1338 	if (req->rl_reply)
1339 		rpcrdma_rep_put(buffers, req->rl_reply);
1340 	req->rl_reply = NULL;
1341 
1342 	spin_lock(&buffers->rb_lock);
1343 	list_add(&req->rl_list, &buffers->rb_send_bufs);
1344 	spin_unlock(&buffers->rb_lock);
1345 }
1346 
1347 /**
1348  * rpcrdma_recv_buffer_put - Release rpcrdma_rep back to free list
1349  * @rep: rep to release
1350  *
1351  * Used after error conditions.
1352  */
1353 void rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
1354 {
1355 	rpcrdma_rep_put(&rep->rr_rxprt->rx_buf, rep);
1356 }
1357 
1358 /* Returns a pointer to a rpcrdma_regbuf object, or NULL.
1359  *
1360  * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1361  * receiving the payload of RDMA RECV operations. During Long Calls
1362  * or Replies they may be registered externally via frwr_map.
1363  */
1364 static struct rpcrdma_regbuf *
1365 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
1366 		     gfp_t flags)
1367 {
1368 	struct rpcrdma_regbuf *rb;
1369 
1370 	rb = kmalloc(sizeof(*rb), flags);
1371 	if (!rb)
1372 		return NULL;
1373 	rb->rg_data = kmalloc(size, flags);
1374 	if (!rb->rg_data) {
1375 		kfree(rb);
1376 		return NULL;
1377 	}
1378 
1379 	rb->rg_device = NULL;
1380 	rb->rg_direction = direction;
1381 	rb->rg_iov.length = size;
1382 	return rb;
1383 }
1384 
1385 /**
1386  * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer
1387  * @rb: regbuf to reallocate
1388  * @size: size of buffer to be allocated, in bytes
1389  * @flags: GFP flags
1390  *
1391  * Returns true if reallocation was successful. If false is
1392  * returned, @rb is left untouched.
1393  */
1394 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags)
1395 {
1396 	void *buf;
1397 
1398 	buf = kmalloc(size, flags);
1399 	if (!buf)
1400 		return false;
1401 
1402 	rpcrdma_regbuf_dma_unmap(rb);
1403 	kfree(rb->rg_data);
1404 
1405 	rb->rg_data = buf;
1406 	rb->rg_iov.length = size;
1407 	return true;
1408 }
1409 
1410 /**
1411  * __rpcrdma_regbuf_dma_map - DMA-map a regbuf
1412  * @r_xprt: controlling transport instance
1413  * @rb: regbuf to be mapped
1414  *
1415  * Returns true if the buffer is now DMA mapped to @r_xprt's device
1416  */
1417 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt,
1418 			      struct rpcrdma_regbuf *rb)
1419 {
1420 	struct ib_device *device = r_xprt->rx_ia.ri_id->device;
1421 
1422 	if (rb->rg_direction == DMA_NONE)
1423 		return false;
1424 
1425 	rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb),
1426 					    rdmab_length(rb), rb->rg_direction);
1427 	if (ib_dma_mapping_error(device, rdmab_addr(rb))) {
1428 		trace_xprtrdma_dma_maperr(rdmab_addr(rb));
1429 		return false;
1430 	}
1431 
1432 	rb->rg_device = device;
1433 	rb->rg_iov.lkey = r_xprt->rx_ia.ri_pd->local_dma_lkey;
1434 	return true;
1435 }
1436 
1437 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb)
1438 {
1439 	if (!rb)
1440 		return;
1441 
1442 	if (!rpcrdma_regbuf_is_mapped(rb))
1443 		return;
1444 
1445 	ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb),
1446 			    rb->rg_direction);
1447 	rb->rg_device = NULL;
1448 }
1449 
1450 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb)
1451 {
1452 	rpcrdma_regbuf_dma_unmap(rb);
1453 	if (rb)
1454 		kfree(rb->rg_data);
1455 	kfree(rb);
1456 }
1457 
1458 /**
1459  * rpcrdma_ep_post - Post WRs to a transport's Send Queue
1460  * @ia: transport's device information
1461  * @ep: transport's RDMA endpoint information
1462  * @req: rpcrdma_req containing the Send WR to post
1463  *
1464  * Returns 0 if the post was successful, otherwise -ENOTCONN
1465  * is returned.
1466  */
1467 int
1468 rpcrdma_ep_post(struct rpcrdma_ia *ia,
1469 		struct rpcrdma_ep *ep,
1470 		struct rpcrdma_req *req)
1471 {
1472 	struct ib_send_wr *send_wr = &req->rl_wr;
1473 	int rc;
1474 
1475 	if (!ep->rep_send_count || kref_read(&req->rl_kref) > 1) {
1476 		send_wr->send_flags |= IB_SEND_SIGNALED;
1477 		ep->rep_send_count = ep->rep_send_batch;
1478 	} else {
1479 		send_wr->send_flags &= ~IB_SEND_SIGNALED;
1480 		--ep->rep_send_count;
1481 	}
1482 
1483 	rc = frwr_send(ia, req);
1484 	trace_xprtrdma_post_send(req, rc);
1485 	if (rc)
1486 		return -ENOTCONN;
1487 	return 0;
1488 }
1489 
1490 /**
1491  * rpcrdma_post_recvs - Refill the Receive Queue
1492  * @r_xprt: controlling transport instance
1493  * @temp: mark Receive buffers to be deleted after use
1494  *
1495  */
1496 void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp)
1497 {
1498 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1499 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
1500 	struct ib_recv_wr *i, *wr, *bad_wr;
1501 	struct rpcrdma_rep *rep;
1502 	int needed, count, rc;
1503 
1504 	rc = 0;
1505 	count = 0;
1506 
1507 	needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1);
1508 	if (likely(ep->rep_receive_count > needed))
1509 		goto out;
1510 	needed -= ep->rep_receive_count;
1511 	if (!temp)
1512 		needed += RPCRDMA_MAX_RECV_BATCH;
1513 
1514 	/* fast path: all needed reps can be found on the free list */
1515 	wr = NULL;
1516 	while (needed) {
1517 		rep = rpcrdma_rep_get_locked(buf);
1518 		if (rep && rep->rr_temp) {
1519 			rpcrdma_rep_destroy(rep);
1520 			continue;
1521 		}
1522 		if (!rep)
1523 			rep = rpcrdma_rep_create(r_xprt, temp);
1524 		if (!rep)
1525 			break;
1526 
1527 		rep->rr_recv_wr.next = wr;
1528 		wr = &rep->rr_recv_wr;
1529 		--needed;
1530 	}
1531 	if (!wr)
1532 		goto out;
1533 
1534 	for (i = wr; i; i = i->next) {
1535 		rep = container_of(i, struct rpcrdma_rep, rr_recv_wr);
1536 
1537 		if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf))
1538 			goto release_wrs;
1539 
1540 		trace_xprtrdma_post_recv(rep);
1541 		++count;
1542 	}
1543 
1544 	rc = ib_post_recv(r_xprt->rx_ia.ri_id->qp, wr,
1545 			  (const struct ib_recv_wr **)&bad_wr);
1546 out:
1547 	trace_xprtrdma_post_recvs(r_xprt, count, rc);
1548 	if (rc) {
1549 		for (wr = bad_wr; wr;) {
1550 			struct rpcrdma_rep *rep;
1551 
1552 			rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr);
1553 			wr = wr->next;
1554 			rpcrdma_recv_buffer_put(rep);
1555 			--count;
1556 		}
1557 	}
1558 	ep->rep_receive_count += count;
1559 	return;
1560 
1561 release_wrs:
1562 	for (i = wr; i;) {
1563 		rep = container_of(i, struct rpcrdma_rep, rr_recv_wr);
1564 		i = i->next;
1565 		rpcrdma_recv_buffer_put(rep);
1566 	}
1567 }
1568