1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (c) 2014-2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the BSD-type 10 * license below: 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 19 * Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials provided 22 * with the distribution. 23 * 24 * Neither the name of the Network Appliance, Inc. nor the names of 25 * its contributors may be used to endorse or promote products 26 * derived from this software without specific prior written 27 * permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42 /* 43 * verbs.c 44 * 45 * Encapsulates the major functions managing: 46 * o adapters 47 * o endpoints 48 * o connections 49 * o buffer memory 50 */ 51 52 #include <linux/interrupt.h> 53 #include <linux/slab.h> 54 #include <linux/sunrpc/addr.h> 55 #include <linux/sunrpc/svc_rdma.h> 56 #include <linux/log2.h> 57 58 #include <asm-generic/barrier.h> 59 #include <asm/bitops.h> 60 61 #include <rdma/ib_cm.h> 62 63 #include "xprt_rdma.h" 64 #include <trace/events/rpcrdma.h> 65 66 /* 67 * Globals/Macros 68 */ 69 70 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 71 # define RPCDBG_FACILITY RPCDBG_TRANS 72 #endif 73 74 /* 75 * internal functions 76 */ 77 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt); 78 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt); 79 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt, 80 struct rpcrdma_sendctx *sc); 81 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt); 82 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt); 83 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep); 84 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt); 85 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt); 86 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt); 87 static void rpcrdma_ep_get(struct rpcrdma_ep *ep); 88 static int rpcrdma_ep_put(struct rpcrdma_ep *ep); 89 static struct rpcrdma_regbuf * 90 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction, 91 gfp_t flags); 92 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb); 93 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb); 94 95 /* Wait for outstanding transport work to finish. ib_drain_qp 96 * handles the drains in the wrong order for us, so open code 97 * them here. 98 */ 99 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt) 100 { 101 struct rpcrdma_ep *ep = r_xprt->rx_ep; 102 struct rdma_cm_id *id = ep->re_id; 103 104 /* Flush Receives, then wait for deferred Reply work 105 * to complete. 106 */ 107 ib_drain_rq(id->qp); 108 109 /* Deferred Reply processing might have scheduled 110 * local invalidations. 111 */ 112 ib_drain_sq(id->qp); 113 114 rpcrdma_ep_put(ep); 115 } 116 117 /** 118 * rpcrdma_qp_event_handler - Handle one QP event (error notification) 119 * @event: details of the event 120 * @context: ep that owns QP where event occurred 121 * 122 * Called from the RDMA provider (device driver) possibly in an interrupt 123 * context. The QP is always destroyed before the ID, so the ID will be 124 * reliably available when this handler is invoked. 125 */ 126 static void rpcrdma_qp_event_handler(struct ib_event *event, void *context) 127 { 128 struct rpcrdma_ep *ep = context; 129 130 trace_xprtrdma_qp_event(ep, event); 131 } 132 133 /* Ensure xprt_force_disconnect() is invoked exactly once when a 134 * connection is closed or lost. (The important thing is it needs 135 * to be invoked "at least" once). 136 */ 137 static void rpcrdma_force_disconnect(struct rpcrdma_ep *ep) 138 { 139 if (atomic_add_unless(&ep->re_force_disconnect, 1, 1)) 140 xprt_force_disconnect(ep->re_xprt); 141 } 142 143 /** 144 * rpcrdma_flush_disconnect - Disconnect on flushed completion 145 * @r_xprt: transport to disconnect 146 * @wc: work completion entry 147 * 148 * Must be called in process context. 149 */ 150 void rpcrdma_flush_disconnect(struct rpcrdma_xprt *r_xprt, struct ib_wc *wc) 151 { 152 if (wc->status != IB_WC_SUCCESS) 153 rpcrdma_force_disconnect(r_xprt->rx_ep); 154 } 155 156 /** 157 * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC 158 * @cq: completion queue 159 * @wc: WCE for a completed Send WR 160 * 161 */ 162 static void rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc) 163 { 164 struct ib_cqe *cqe = wc->wr_cqe; 165 struct rpcrdma_sendctx *sc = 166 container_of(cqe, struct rpcrdma_sendctx, sc_cqe); 167 struct rpcrdma_xprt *r_xprt = cq->cq_context; 168 169 /* WARNING: Only wr_cqe and status are reliable at this point */ 170 trace_xprtrdma_wc_send(wc, &sc->sc_cid); 171 rpcrdma_sendctx_put_locked(r_xprt, sc); 172 rpcrdma_flush_disconnect(r_xprt, wc); 173 } 174 175 /** 176 * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC 177 * @cq: completion queue 178 * @wc: WCE for a completed Receive WR 179 * 180 */ 181 static void rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc) 182 { 183 struct ib_cqe *cqe = wc->wr_cqe; 184 struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep, 185 rr_cqe); 186 struct rpcrdma_xprt *r_xprt = cq->cq_context; 187 188 /* WARNING: Only wr_cqe and status are reliable at this point */ 189 trace_xprtrdma_wc_receive(wc, &rep->rr_cid); 190 --r_xprt->rx_ep->re_receive_count; 191 if (wc->status != IB_WC_SUCCESS) 192 goto out_flushed; 193 194 /* status == SUCCESS means all fields in wc are trustworthy */ 195 rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len); 196 rep->rr_wc_flags = wc->wc_flags; 197 rep->rr_inv_rkey = wc->ex.invalidate_rkey; 198 199 ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf), 200 rdmab_addr(rep->rr_rdmabuf), 201 wc->byte_len, DMA_FROM_DEVICE); 202 203 rpcrdma_reply_handler(rep); 204 return; 205 206 out_flushed: 207 rpcrdma_flush_disconnect(r_xprt, wc); 208 rpcrdma_rep_destroy(rep); 209 } 210 211 static void rpcrdma_update_cm_private(struct rpcrdma_ep *ep, 212 struct rdma_conn_param *param) 213 { 214 const struct rpcrdma_connect_private *pmsg = param->private_data; 215 unsigned int rsize, wsize; 216 217 /* Default settings for RPC-over-RDMA Version One */ 218 ep->re_implicit_roundup = xprt_rdma_pad_optimize; 219 rsize = RPCRDMA_V1_DEF_INLINE_SIZE; 220 wsize = RPCRDMA_V1_DEF_INLINE_SIZE; 221 222 if (pmsg && 223 pmsg->cp_magic == rpcrdma_cmp_magic && 224 pmsg->cp_version == RPCRDMA_CMP_VERSION) { 225 ep->re_implicit_roundup = true; 226 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size); 227 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size); 228 } 229 230 if (rsize < ep->re_inline_recv) 231 ep->re_inline_recv = rsize; 232 if (wsize < ep->re_inline_send) 233 ep->re_inline_send = wsize; 234 235 rpcrdma_set_max_header_sizes(ep); 236 } 237 238 /** 239 * rpcrdma_cm_event_handler - Handle RDMA CM events 240 * @id: rdma_cm_id on which an event has occurred 241 * @event: details of the event 242 * 243 * Called with @id's mutex held. Returns 1 if caller should 244 * destroy @id, otherwise 0. 245 */ 246 static int 247 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event) 248 { 249 struct sockaddr *sap = (struct sockaddr *)&id->route.addr.dst_addr; 250 struct rpcrdma_ep *ep = id->context; 251 252 might_sleep(); 253 254 switch (event->event) { 255 case RDMA_CM_EVENT_ADDR_RESOLVED: 256 case RDMA_CM_EVENT_ROUTE_RESOLVED: 257 ep->re_async_rc = 0; 258 complete(&ep->re_done); 259 return 0; 260 case RDMA_CM_EVENT_ADDR_ERROR: 261 ep->re_async_rc = -EPROTO; 262 complete(&ep->re_done); 263 return 0; 264 case RDMA_CM_EVENT_ROUTE_ERROR: 265 ep->re_async_rc = -ENETUNREACH; 266 complete(&ep->re_done); 267 return 0; 268 case RDMA_CM_EVENT_DEVICE_REMOVAL: 269 pr_info("rpcrdma: removing device %s for %pISpc\n", 270 ep->re_id->device->name, sap); 271 fallthrough; 272 case RDMA_CM_EVENT_ADDR_CHANGE: 273 ep->re_connect_status = -ENODEV; 274 goto disconnected; 275 case RDMA_CM_EVENT_ESTABLISHED: 276 rpcrdma_ep_get(ep); 277 ep->re_connect_status = 1; 278 rpcrdma_update_cm_private(ep, &event->param.conn); 279 trace_xprtrdma_inline_thresh(ep); 280 wake_up_all(&ep->re_connect_wait); 281 break; 282 case RDMA_CM_EVENT_CONNECT_ERROR: 283 ep->re_connect_status = -ENOTCONN; 284 goto wake_connect_worker; 285 case RDMA_CM_EVENT_UNREACHABLE: 286 ep->re_connect_status = -ENETUNREACH; 287 goto wake_connect_worker; 288 case RDMA_CM_EVENT_REJECTED: 289 dprintk("rpcrdma: connection to %pISpc rejected: %s\n", 290 sap, rdma_reject_msg(id, event->status)); 291 ep->re_connect_status = -ECONNREFUSED; 292 if (event->status == IB_CM_REJ_STALE_CONN) 293 ep->re_connect_status = -ENOTCONN; 294 wake_connect_worker: 295 wake_up_all(&ep->re_connect_wait); 296 return 0; 297 case RDMA_CM_EVENT_DISCONNECTED: 298 ep->re_connect_status = -ECONNABORTED; 299 disconnected: 300 rpcrdma_force_disconnect(ep); 301 return rpcrdma_ep_put(ep); 302 default: 303 break; 304 } 305 306 dprintk("RPC: %s: %pISpc on %s/frwr: %s\n", __func__, sap, 307 ep->re_id->device->name, rdma_event_msg(event->event)); 308 return 0; 309 } 310 311 static struct rdma_cm_id *rpcrdma_create_id(struct rpcrdma_xprt *r_xprt, 312 struct rpcrdma_ep *ep) 313 { 314 unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1; 315 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 316 struct rdma_cm_id *id; 317 int rc; 318 319 init_completion(&ep->re_done); 320 321 id = rdma_create_id(xprt->xprt_net, rpcrdma_cm_event_handler, ep, 322 RDMA_PS_TCP, IB_QPT_RC); 323 if (IS_ERR(id)) 324 return id; 325 326 ep->re_async_rc = -ETIMEDOUT; 327 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)&xprt->addr, 328 RDMA_RESOLVE_TIMEOUT); 329 if (rc) 330 goto out; 331 rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout); 332 if (rc < 0) 333 goto out; 334 335 rc = ep->re_async_rc; 336 if (rc) 337 goto out; 338 339 ep->re_async_rc = -ETIMEDOUT; 340 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); 341 if (rc) 342 goto out; 343 rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout); 344 if (rc < 0) 345 goto out; 346 rc = ep->re_async_rc; 347 if (rc) 348 goto out; 349 350 return id; 351 352 out: 353 rdma_destroy_id(id); 354 return ERR_PTR(rc); 355 } 356 357 static void rpcrdma_ep_destroy(struct kref *kref) 358 { 359 struct rpcrdma_ep *ep = container_of(kref, struct rpcrdma_ep, re_kref); 360 361 if (ep->re_id->qp) { 362 rdma_destroy_qp(ep->re_id); 363 ep->re_id->qp = NULL; 364 } 365 366 if (ep->re_attr.recv_cq) 367 ib_free_cq(ep->re_attr.recv_cq); 368 ep->re_attr.recv_cq = NULL; 369 if (ep->re_attr.send_cq) 370 ib_free_cq(ep->re_attr.send_cq); 371 ep->re_attr.send_cq = NULL; 372 373 if (ep->re_pd) 374 ib_dealloc_pd(ep->re_pd); 375 ep->re_pd = NULL; 376 377 kfree(ep); 378 module_put(THIS_MODULE); 379 } 380 381 static noinline void rpcrdma_ep_get(struct rpcrdma_ep *ep) 382 { 383 kref_get(&ep->re_kref); 384 } 385 386 /* Returns: 387 * %0 if @ep still has a positive kref count, or 388 * %1 if @ep was destroyed successfully. 389 */ 390 static noinline int rpcrdma_ep_put(struct rpcrdma_ep *ep) 391 { 392 return kref_put(&ep->re_kref, rpcrdma_ep_destroy); 393 } 394 395 static int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt) 396 { 397 struct rpcrdma_connect_private *pmsg; 398 struct ib_device *device; 399 struct rdma_cm_id *id; 400 struct rpcrdma_ep *ep; 401 int rc; 402 403 ep = kzalloc(sizeof(*ep), GFP_NOFS); 404 if (!ep) 405 return -ENOTCONN; 406 ep->re_xprt = &r_xprt->rx_xprt; 407 kref_init(&ep->re_kref); 408 409 id = rpcrdma_create_id(r_xprt, ep); 410 if (IS_ERR(id)) { 411 kfree(ep); 412 return PTR_ERR(id); 413 } 414 __module_get(THIS_MODULE); 415 device = id->device; 416 ep->re_id = id; 417 418 ep->re_max_requests = r_xprt->rx_xprt.max_reqs; 419 ep->re_inline_send = xprt_rdma_max_inline_write; 420 ep->re_inline_recv = xprt_rdma_max_inline_read; 421 rc = frwr_query_device(ep, device); 422 if (rc) 423 goto out_destroy; 424 425 r_xprt->rx_buf.rb_max_requests = cpu_to_be32(ep->re_max_requests); 426 427 ep->re_attr.event_handler = rpcrdma_qp_event_handler; 428 ep->re_attr.qp_context = ep; 429 ep->re_attr.srq = NULL; 430 ep->re_attr.cap.max_inline_data = 0; 431 ep->re_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 432 ep->re_attr.qp_type = IB_QPT_RC; 433 ep->re_attr.port_num = ~0; 434 435 dprintk("RPC: %s: requested max: dtos: send %d recv %d; " 436 "iovs: send %d recv %d\n", 437 __func__, 438 ep->re_attr.cap.max_send_wr, 439 ep->re_attr.cap.max_recv_wr, 440 ep->re_attr.cap.max_send_sge, 441 ep->re_attr.cap.max_recv_sge); 442 443 ep->re_send_batch = ep->re_max_requests >> 3; 444 ep->re_send_count = ep->re_send_batch; 445 init_waitqueue_head(&ep->re_connect_wait); 446 447 ep->re_attr.send_cq = ib_alloc_cq_any(device, r_xprt, 448 ep->re_attr.cap.max_send_wr, 449 IB_POLL_WORKQUEUE); 450 if (IS_ERR(ep->re_attr.send_cq)) { 451 rc = PTR_ERR(ep->re_attr.send_cq); 452 goto out_destroy; 453 } 454 455 ep->re_attr.recv_cq = ib_alloc_cq_any(device, r_xprt, 456 ep->re_attr.cap.max_recv_wr, 457 IB_POLL_WORKQUEUE); 458 if (IS_ERR(ep->re_attr.recv_cq)) { 459 rc = PTR_ERR(ep->re_attr.recv_cq); 460 goto out_destroy; 461 } 462 ep->re_receive_count = 0; 463 464 /* Initialize cma parameters */ 465 memset(&ep->re_remote_cma, 0, sizeof(ep->re_remote_cma)); 466 467 /* Prepare RDMA-CM private message */ 468 pmsg = &ep->re_cm_private; 469 pmsg->cp_magic = rpcrdma_cmp_magic; 470 pmsg->cp_version = RPCRDMA_CMP_VERSION; 471 pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK; 472 pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->re_inline_send); 473 pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->re_inline_recv); 474 ep->re_remote_cma.private_data = pmsg; 475 ep->re_remote_cma.private_data_len = sizeof(*pmsg); 476 477 /* Client offers RDMA Read but does not initiate */ 478 ep->re_remote_cma.initiator_depth = 0; 479 ep->re_remote_cma.responder_resources = 480 min_t(int, U8_MAX, device->attrs.max_qp_rd_atom); 481 482 /* Limit transport retries so client can detect server 483 * GID changes quickly. RPC layer handles re-establishing 484 * transport connection and retransmission. 485 */ 486 ep->re_remote_cma.retry_count = 6; 487 488 /* RPC-over-RDMA handles its own flow control. In addition, 489 * make all RNR NAKs visible so we know that RPC-over-RDMA 490 * flow control is working correctly (no NAKs should be seen). 491 */ 492 ep->re_remote_cma.flow_control = 0; 493 ep->re_remote_cma.rnr_retry_count = 0; 494 495 ep->re_pd = ib_alloc_pd(device, 0); 496 if (IS_ERR(ep->re_pd)) { 497 rc = PTR_ERR(ep->re_pd); 498 goto out_destroy; 499 } 500 501 rc = rdma_create_qp(id, ep->re_pd, &ep->re_attr); 502 if (rc) 503 goto out_destroy; 504 505 r_xprt->rx_ep = ep; 506 return 0; 507 508 out_destroy: 509 rpcrdma_ep_put(ep); 510 rdma_destroy_id(id); 511 return rc; 512 } 513 514 /** 515 * rpcrdma_xprt_connect - Connect an unconnected transport 516 * @r_xprt: controlling transport instance 517 * 518 * Returns 0 on success or a negative errno. 519 */ 520 int rpcrdma_xprt_connect(struct rpcrdma_xprt *r_xprt) 521 { 522 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 523 struct rpcrdma_ep *ep; 524 int rc; 525 526 rc = rpcrdma_ep_create(r_xprt); 527 if (rc) 528 return rc; 529 ep = r_xprt->rx_ep; 530 531 xprt_clear_connected(xprt); 532 rpcrdma_reset_cwnd(r_xprt); 533 534 /* Bump the ep's reference count while there are 535 * outstanding Receives. 536 */ 537 rpcrdma_ep_get(ep); 538 rpcrdma_post_recvs(r_xprt, true); 539 540 rc = rdma_connect(ep->re_id, &ep->re_remote_cma); 541 if (rc) 542 goto out; 543 544 if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO) 545 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO; 546 wait_event_interruptible(ep->re_connect_wait, 547 ep->re_connect_status != 0); 548 if (ep->re_connect_status <= 0) { 549 rc = ep->re_connect_status; 550 goto out; 551 } 552 553 rc = rpcrdma_sendctxs_create(r_xprt); 554 if (rc) { 555 rc = -ENOTCONN; 556 goto out; 557 } 558 559 rc = rpcrdma_reqs_setup(r_xprt); 560 if (rc) { 561 rc = -ENOTCONN; 562 goto out; 563 } 564 rpcrdma_mrs_create(r_xprt); 565 566 out: 567 trace_xprtrdma_connect(r_xprt, rc); 568 return rc; 569 } 570 571 /** 572 * rpcrdma_xprt_disconnect - Disconnect underlying transport 573 * @r_xprt: controlling transport instance 574 * 575 * Caller serializes. Either the transport send lock is held, 576 * or we're being called to destroy the transport. 577 * 578 * On return, @r_xprt is completely divested of all hardware 579 * resources and prepared for the next ->connect operation. 580 */ 581 void rpcrdma_xprt_disconnect(struct rpcrdma_xprt *r_xprt) 582 { 583 struct rpcrdma_ep *ep = r_xprt->rx_ep; 584 struct rdma_cm_id *id; 585 int rc; 586 587 if (!ep) 588 return; 589 590 id = ep->re_id; 591 rc = rdma_disconnect(id); 592 trace_xprtrdma_disconnect(r_xprt, rc); 593 594 rpcrdma_xprt_drain(r_xprt); 595 rpcrdma_reps_unmap(r_xprt); 596 rpcrdma_reqs_reset(r_xprt); 597 rpcrdma_mrs_destroy(r_xprt); 598 rpcrdma_sendctxs_destroy(r_xprt); 599 600 if (rpcrdma_ep_put(ep)) 601 rdma_destroy_id(id); 602 603 r_xprt->rx_ep = NULL; 604 } 605 606 /* Fixed-size circular FIFO queue. This implementation is wait-free and 607 * lock-free. 608 * 609 * Consumer is the code path that posts Sends. This path dequeues a 610 * sendctx for use by a Send operation. Multiple consumer threads 611 * are serialized by the RPC transport lock, which allows only one 612 * ->send_request call at a time. 613 * 614 * Producer is the code path that handles Send completions. This path 615 * enqueues a sendctx that has been completed. Multiple producer 616 * threads are serialized by the ib_poll_cq() function. 617 */ 618 619 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced 620 * queue activity, and rpcrdma_xprt_drain has flushed all remaining 621 * Send requests. 622 */ 623 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt) 624 { 625 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 626 unsigned long i; 627 628 if (!buf->rb_sc_ctxs) 629 return; 630 for (i = 0; i <= buf->rb_sc_last; i++) 631 kfree(buf->rb_sc_ctxs[i]); 632 kfree(buf->rb_sc_ctxs); 633 buf->rb_sc_ctxs = NULL; 634 } 635 636 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ep *ep) 637 { 638 struct rpcrdma_sendctx *sc; 639 640 sc = kzalloc(struct_size(sc, sc_sges, ep->re_attr.cap.max_send_sge), 641 GFP_KERNEL); 642 if (!sc) 643 return NULL; 644 645 sc->sc_cqe.done = rpcrdma_wc_send; 646 sc->sc_cid.ci_queue_id = ep->re_attr.send_cq->res.id; 647 sc->sc_cid.ci_completion_id = 648 atomic_inc_return(&ep->re_completion_ids); 649 return sc; 650 } 651 652 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt) 653 { 654 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 655 struct rpcrdma_sendctx *sc; 656 unsigned long i; 657 658 /* Maximum number of concurrent outstanding Send WRs. Capping 659 * the circular queue size stops Send Queue overflow by causing 660 * the ->send_request call to fail temporarily before too many 661 * Sends are posted. 662 */ 663 i = r_xprt->rx_ep->re_max_requests + RPCRDMA_MAX_BC_REQUESTS; 664 buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL); 665 if (!buf->rb_sc_ctxs) 666 return -ENOMEM; 667 668 buf->rb_sc_last = i - 1; 669 for (i = 0; i <= buf->rb_sc_last; i++) { 670 sc = rpcrdma_sendctx_create(r_xprt->rx_ep); 671 if (!sc) 672 return -ENOMEM; 673 674 buf->rb_sc_ctxs[i] = sc; 675 } 676 677 buf->rb_sc_head = 0; 678 buf->rb_sc_tail = 0; 679 return 0; 680 } 681 682 /* The sendctx queue is not guaranteed to have a size that is a 683 * power of two, thus the helpers in circ_buf.h cannot be used. 684 * The other option is to use modulus (%), which can be expensive. 685 */ 686 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf, 687 unsigned long item) 688 { 689 return likely(item < buf->rb_sc_last) ? item + 1 : 0; 690 } 691 692 /** 693 * rpcrdma_sendctx_get_locked - Acquire a send context 694 * @r_xprt: controlling transport instance 695 * 696 * Returns pointer to a free send completion context; or NULL if 697 * the queue is empty. 698 * 699 * Usage: Called to acquire an SGE array before preparing a Send WR. 700 * 701 * The caller serializes calls to this function (per transport), and 702 * provides an effective memory barrier that flushes the new value 703 * of rb_sc_head. 704 */ 705 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt) 706 { 707 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 708 struct rpcrdma_sendctx *sc; 709 unsigned long next_head; 710 711 next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head); 712 713 if (next_head == READ_ONCE(buf->rb_sc_tail)) 714 goto out_emptyq; 715 716 /* ORDER: item must be accessed _before_ head is updated */ 717 sc = buf->rb_sc_ctxs[next_head]; 718 719 /* Releasing the lock in the caller acts as a memory 720 * barrier that flushes rb_sc_head. 721 */ 722 buf->rb_sc_head = next_head; 723 724 return sc; 725 726 out_emptyq: 727 /* The queue is "empty" if there have not been enough Send 728 * completions recently. This is a sign the Send Queue is 729 * backing up. Cause the caller to pause and try again. 730 */ 731 xprt_wait_for_buffer_space(&r_xprt->rx_xprt); 732 r_xprt->rx_stats.empty_sendctx_q++; 733 return NULL; 734 } 735 736 /** 737 * rpcrdma_sendctx_put_locked - Release a send context 738 * @r_xprt: controlling transport instance 739 * @sc: send context to release 740 * 741 * Usage: Called from Send completion to return a sendctxt 742 * to the queue. 743 * 744 * The caller serializes calls to this function (per transport). 745 */ 746 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt, 747 struct rpcrdma_sendctx *sc) 748 { 749 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 750 unsigned long next_tail; 751 752 /* Unmap SGEs of previously completed but unsignaled 753 * Sends by walking up the queue until @sc is found. 754 */ 755 next_tail = buf->rb_sc_tail; 756 do { 757 next_tail = rpcrdma_sendctx_next(buf, next_tail); 758 759 /* ORDER: item must be accessed _before_ tail is updated */ 760 rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]); 761 762 } while (buf->rb_sc_ctxs[next_tail] != sc); 763 764 /* Paired with READ_ONCE */ 765 smp_store_release(&buf->rb_sc_tail, next_tail); 766 767 xprt_write_space(&r_xprt->rx_xprt); 768 } 769 770 static void 771 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt) 772 { 773 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 774 struct rpcrdma_ep *ep = r_xprt->rx_ep; 775 unsigned int count; 776 777 for (count = 0; count < ep->re_max_rdma_segs; count++) { 778 struct rpcrdma_mr *mr; 779 int rc; 780 781 mr = kzalloc(sizeof(*mr), GFP_NOFS); 782 if (!mr) 783 break; 784 785 rc = frwr_mr_init(r_xprt, mr); 786 if (rc) { 787 kfree(mr); 788 break; 789 } 790 791 spin_lock(&buf->rb_lock); 792 rpcrdma_mr_push(mr, &buf->rb_mrs); 793 list_add(&mr->mr_all, &buf->rb_all_mrs); 794 spin_unlock(&buf->rb_lock); 795 } 796 797 r_xprt->rx_stats.mrs_allocated += count; 798 trace_xprtrdma_createmrs(r_xprt, count); 799 } 800 801 static void 802 rpcrdma_mr_refresh_worker(struct work_struct *work) 803 { 804 struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer, 805 rb_refresh_worker); 806 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, 807 rx_buf); 808 809 rpcrdma_mrs_create(r_xprt); 810 xprt_write_space(&r_xprt->rx_xprt); 811 } 812 813 /** 814 * rpcrdma_mrs_refresh - Wake the MR refresh worker 815 * @r_xprt: controlling transport instance 816 * 817 */ 818 void rpcrdma_mrs_refresh(struct rpcrdma_xprt *r_xprt) 819 { 820 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 821 struct rpcrdma_ep *ep = r_xprt->rx_ep; 822 823 /* If there is no underlying connection, it's no use 824 * to wake the refresh worker. 825 */ 826 if (ep->re_connect_status == 1) { 827 /* The work is scheduled on a WQ_MEM_RECLAIM 828 * workqueue in order to prevent MR allocation 829 * from recursing into NFS during direct reclaim. 830 */ 831 queue_work(xprtiod_workqueue, &buf->rb_refresh_worker); 832 } 833 } 834 835 /** 836 * rpcrdma_req_create - Allocate an rpcrdma_req object 837 * @r_xprt: controlling r_xprt 838 * @size: initial size, in bytes, of send and receive buffers 839 * @flags: GFP flags passed to memory allocators 840 * 841 * Returns an allocated and fully initialized rpcrdma_req or NULL. 842 */ 843 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size, 844 gfp_t flags) 845 { 846 struct rpcrdma_buffer *buffer = &r_xprt->rx_buf; 847 struct rpcrdma_req *req; 848 849 req = kzalloc(sizeof(*req), flags); 850 if (req == NULL) 851 goto out1; 852 853 req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags); 854 if (!req->rl_sendbuf) 855 goto out2; 856 857 req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags); 858 if (!req->rl_recvbuf) 859 goto out3; 860 861 INIT_LIST_HEAD(&req->rl_free_mrs); 862 INIT_LIST_HEAD(&req->rl_registered); 863 spin_lock(&buffer->rb_lock); 864 list_add(&req->rl_all, &buffer->rb_allreqs); 865 spin_unlock(&buffer->rb_lock); 866 return req; 867 868 out3: 869 kfree(req->rl_sendbuf); 870 out2: 871 kfree(req); 872 out1: 873 return NULL; 874 } 875 876 /** 877 * rpcrdma_req_setup - Per-connection instance setup of an rpcrdma_req object 878 * @r_xprt: controlling transport instance 879 * @req: rpcrdma_req object to set up 880 * 881 * Returns zero on success, and a negative errno on failure. 882 */ 883 int rpcrdma_req_setup(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 884 { 885 struct rpcrdma_regbuf *rb; 886 size_t maxhdrsize; 887 888 /* Compute maximum header buffer size in bytes */ 889 maxhdrsize = rpcrdma_fixed_maxsz + 3 + 890 r_xprt->rx_ep->re_max_rdma_segs * rpcrdma_readchunk_maxsz; 891 maxhdrsize *= sizeof(__be32); 892 rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize), 893 DMA_TO_DEVICE, GFP_KERNEL); 894 if (!rb) 895 goto out; 896 897 if (!__rpcrdma_regbuf_dma_map(r_xprt, rb)) 898 goto out_free; 899 900 req->rl_rdmabuf = rb; 901 xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb)); 902 return 0; 903 904 out_free: 905 rpcrdma_regbuf_free(rb); 906 out: 907 return -ENOMEM; 908 } 909 910 /* ASSUMPTION: the rb_allreqs list is stable for the duration, 911 * and thus can be walked without holding rb_lock. Eg. the 912 * caller is holding the transport send lock to exclude 913 * device removal or disconnection. 914 */ 915 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt) 916 { 917 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 918 struct rpcrdma_req *req; 919 int rc; 920 921 list_for_each_entry(req, &buf->rb_allreqs, rl_all) { 922 rc = rpcrdma_req_setup(r_xprt, req); 923 if (rc) 924 return rc; 925 } 926 return 0; 927 } 928 929 static void rpcrdma_req_reset(struct rpcrdma_req *req) 930 { 931 /* Credits are valid for only one connection */ 932 req->rl_slot.rq_cong = 0; 933 934 rpcrdma_regbuf_free(req->rl_rdmabuf); 935 req->rl_rdmabuf = NULL; 936 937 rpcrdma_regbuf_dma_unmap(req->rl_sendbuf); 938 rpcrdma_regbuf_dma_unmap(req->rl_recvbuf); 939 940 frwr_reset(req); 941 } 942 943 /* ASSUMPTION: the rb_allreqs list is stable for the duration, 944 * and thus can be walked without holding rb_lock. Eg. the 945 * caller is holding the transport send lock to exclude 946 * device removal or disconnection. 947 */ 948 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt) 949 { 950 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 951 struct rpcrdma_req *req; 952 953 list_for_each_entry(req, &buf->rb_allreqs, rl_all) 954 rpcrdma_req_reset(req); 955 } 956 957 /* No locking needed here. This function is called only by the 958 * Receive completion handler. 959 */ 960 static noinline 961 struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt, 962 bool temp) 963 { 964 struct rpcrdma_rep *rep; 965 966 rep = kzalloc(sizeof(*rep), GFP_KERNEL); 967 if (rep == NULL) 968 goto out; 969 970 rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep->re_inline_recv, 971 DMA_FROM_DEVICE, GFP_KERNEL); 972 if (!rep->rr_rdmabuf) 973 goto out_free; 974 975 if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf)) 976 goto out_free_regbuf; 977 978 rep->rr_cid.ci_completion_id = 979 atomic_inc_return(&r_xprt->rx_ep->re_completion_ids); 980 981 xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf), 982 rdmab_length(rep->rr_rdmabuf)); 983 rep->rr_cqe.done = rpcrdma_wc_receive; 984 rep->rr_rxprt = r_xprt; 985 rep->rr_recv_wr.next = NULL; 986 rep->rr_recv_wr.wr_cqe = &rep->rr_cqe; 987 rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov; 988 rep->rr_recv_wr.num_sge = 1; 989 rep->rr_temp = temp; 990 list_add(&rep->rr_all, &r_xprt->rx_buf.rb_all_reps); 991 return rep; 992 993 out_free_regbuf: 994 rpcrdma_regbuf_free(rep->rr_rdmabuf); 995 out_free: 996 kfree(rep); 997 out: 998 return NULL; 999 } 1000 1001 /* No locking needed here. This function is invoked only by the 1002 * Receive completion handler, or during transport shutdown. 1003 */ 1004 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep) 1005 { 1006 list_del(&rep->rr_all); 1007 rpcrdma_regbuf_free(rep->rr_rdmabuf); 1008 kfree(rep); 1009 } 1010 1011 static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf) 1012 { 1013 struct llist_node *node; 1014 1015 /* Calls to llist_del_first are required to be serialized */ 1016 node = llist_del_first(&buf->rb_free_reps); 1017 if (!node) 1018 return NULL; 1019 return llist_entry(node, struct rpcrdma_rep, rr_node); 1020 } 1021 1022 static void rpcrdma_rep_put(struct rpcrdma_buffer *buf, 1023 struct rpcrdma_rep *rep) 1024 { 1025 llist_add(&rep->rr_node, &buf->rb_free_reps); 1026 } 1027 1028 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt) 1029 { 1030 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1031 struct rpcrdma_rep *rep; 1032 1033 list_for_each_entry(rep, &buf->rb_all_reps, rr_all) { 1034 rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf); 1035 rep->rr_temp = true; 1036 } 1037 } 1038 1039 static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf) 1040 { 1041 struct rpcrdma_rep *rep; 1042 1043 while ((rep = rpcrdma_rep_get_locked(buf)) != NULL) 1044 rpcrdma_rep_destroy(rep); 1045 } 1046 1047 /** 1048 * rpcrdma_buffer_create - Create initial set of req/rep objects 1049 * @r_xprt: transport instance to (re)initialize 1050 * 1051 * Returns zero on success, otherwise a negative errno. 1052 */ 1053 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt) 1054 { 1055 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1056 int i, rc; 1057 1058 buf->rb_bc_srv_max_requests = 0; 1059 spin_lock_init(&buf->rb_lock); 1060 INIT_LIST_HEAD(&buf->rb_mrs); 1061 INIT_LIST_HEAD(&buf->rb_all_mrs); 1062 INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker); 1063 1064 INIT_LIST_HEAD(&buf->rb_send_bufs); 1065 INIT_LIST_HEAD(&buf->rb_allreqs); 1066 INIT_LIST_HEAD(&buf->rb_all_reps); 1067 1068 rc = -ENOMEM; 1069 for (i = 0; i < r_xprt->rx_xprt.max_reqs; i++) { 1070 struct rpcrdma_req *req; 1071 1072 req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE * 2, 1073 GFP_KERNEL); 1074 if (!req) 1075 goto out; 1076 list_add(&req->rl_list, &buf->rb_send_bufs); 1077 } 1078 1079 init_llist_head(&buf->rb_free_reps); 1080 1081 return 0; 1082 out: 1083 rpcrdma_buffer_destroy(buf); 1084 return rc; 1085 } 1086 1087 /** 1088 * rpcrdma_req_destroy - Destroy an rpcrdma_req object 1089 * @req: unused object to be destroyed 1090 * 1091 * Relies on caller holding the transport send lock to protect 1092 * removing req->rl_all from buf->rb_all_reqs safely. 1093 */ 1094 void rpcrdma_req_destroy(struct rpcrdma_req *req) 1095 { 1096 struct rpcrdma_mr *mr; 1097 1098 list_del(&req->rl_all); 1099 1100 while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) { 1101 struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf; 1102 1103 spin_lock(&buf->rb_lock); 1104 list_del(&mr->mr_all); 1105 spin_unlock(&buf->rb_lock); 1106 1107 frwr_release_mr(mr); 1108 } 1109 1110 rpcrdma_regbuf_free(req->rl_recvbuf); 1111 rpcrdma_regbuf_free(req->rl_sendbuf); 1112 rpcrdma_regbuf_free(req->rl_rdmabuf); 1113 kfree(req); 1114 } 1115 1116 /** 1117 * rpcrdma_mrs_destroy - Release all of a transport's MRs 1118 * @r_xprt: controlling transport instance 1119 * 1120 * Relies on caller holding the transport send lock to protect 1121 * removing mr->mr_list from req->rl_free_mrs safely. 1122 */ 1123 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt) 1124 { 1125 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1126 struct rpcrdma_mr *mr; 1127 1128 cancel_work_sync(&buf->rb_refresh_worker); 1129 1130 spin_lock(&buf->rb_lock); 1131 while ((mr = list_first_entry_or_null(&buf->rb_all_mrs, 1132 struct rpcrdma_mr, 1133 mr_all)) != NULL) { 1134 list_del(&mr->mr_list); 1135 list_del(&mr->mr_all); 1136 spin_unlock(&buf->rb_lock); 1137 1138 frwr_release_mr(mr); 1139 1140 spin_lock(&buf->rb_lock); 1141 } 1142 spin_unlock(&buf->rb_lock); 1143 } 1144 1145 /** 1146 * rpcrdma_buffer_destroy - Release all hw resources 1147 * @buf: root control block for resources 1148 * 1149 * ORDERING: relies on a prior rpcrdma_xprt_drain : 1150 * - No more Send or Receive completions can occur 1151 * - All MRs, reps, and reqs are returned to their free lists 1152 */ 1153 void 1154 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf) 1155 { 1156 rpcrdma_reps_destroy(buf); 1157 1158 while (!list_empty(&buf->rb_send_bufs)) { 1159 struct rpcrdma_req *req; 1160 1161 req = list_first_entry(&buf->rb_send_bufs, 1162 struct rpcrdma_req, rl_list); 1163 list_del(&req->rl_list); 1164 rpcrdma_req_destroy(req); 1165 } 1166 } 1167 1168 /** 1169 * rpcrdma_mr_get - Allocate an rpcrdma_mr object 1170 * @r_xprt: controlling transport 1171 * 1172 * Returns an initialized rpcrdma_mr or NULL if no free 1173 * rpcrdma_mr objects are available. 1174 */ 1175 struct rpcrdma_mr * 1176 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt) 1177 { 1178 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1179 struct rpcrdma_mr *mr; 1180 1181 spin_lock(&buf->rb_lock); 1182 mr = rpcrdma_mr_pop(&buf->rb_mrs); 1183 spin_unlock(&buf->rb_lock); 1184 return mr; 1185 } 1186 1187 /** 1188 * rpcrdma_buffer_get - Get a request buffer 1189 * @buffers: Buffer pool from which to obtain a buffer 1190 * 1191 * Returns a fresh rpcrdma_req, or NULL if none are available. 1192 */ 1193 struct rpcrdma_req * 1194 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers) 1195 { 1196 struct rpcrdma_req *req; 1197 1198 spin_lock(&buffers->rb_lock); 1199 req = list_first_entry_or_null(&buffers->rb_send_bufs, 1200 struct rpcrdma_req, rl_list); 1201 if (req) 1202 list_del_init(&req->rl_list); 1203 spin_unlock(&buffers->rb_lock); 1204 return req; 1205 } 1206 1207 /** 1208 * rpcrdma_buffer_put - Put request/reply buffers back into pool 1209 * @buffers: buffer pool 1210 * @req: object to return 1211 * 1212 */ 1213 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req) 1214 { 1215 if (req->rl_reply) 1216 rpcrdma_rep_put(buffers, req->rl_reply); 1217 req->rl_reply = NULL; 1218 1219 spin_lock(&buffers->rb_lock); 1220 list_add(&req->rl_list, &buffers->rb_send_bufs); 1221 spin_unlock(&buffers->rb_lock); 1222 } 1223 1224 /** 1225 * rpcrdma_recv_buffer_put - Release rpcrdma_rep back to free list 1226 * @rep: rep to release 1227 * 1228 * Used after error conditions. 1229 */ 1230 void rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep) 1231 { 1232 rpcrdma_rep_put(&rep->rr_rxprt->rx_buf, rep); 1233 } 1234 1235 /* Returns a pointer to a rpcrdma_regbuf object, or NULL. 1236 * 1237 * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for 1238 * receiving the payload of RDMA RECV operations. During Long Calls 1239 * or Replies they may be registered externally via frwr_map. 1240 */ 1241 static struct rpcrdma_regbuf * 1242 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction, 1243 gfp_t flags) 1244 { 1245 struct rpcrdma_regbuf *rb; 1246 1247 rb = kmalloc(sizeof(*rb), flags); 1248 if (!rb) 1249 return NULL; 1250 rb->rg_data = kmalloc(size, flags); 1251 if (!rb->rg_data) { 1252 kfree(rb); 1253 return NULL; 1254 } 1255 1256 rb->rg_device = NULL; 1257 rb->rg_direction = direction; 1258 rb->rg_iov.length = size; 1259 return rb; 1260 } 1261 1262 /** 1263 * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer 1264 * @rb: regbuf to reallocate 1265 * @size: size of buffer to be allocated, in bytes 1266 * @flags: GFP flags 1267 * 1268 * Returns true if reallocation was successful. If false is 1269 * returned, @rb is left untouched. 1270 */ 1271 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags) 1272 { 1273 void *buf; 1274 1275 buf = kmalloc(size, flags); 1276 if (!buf) 1277 return false; 1278 1279 rpcrdma_regbuf_dma_unmap(rb); 1280 kfree(rb->rg_data); 1281 1282 rb->rg_data = buf; 1283 rb->rg_iov.length = size; 1284 return true; 1285 } 1286 1287 /** 1288 * __rpcrdma_regbuf_dma_map - DMA-map a regbuf 1289 * @r_xprt: controlling transport instance 1290 * @rb: regbuf to be mapped 1291 * 1292 * Returns true if the buffer is now DMA mapped to @r_xprt's device 1293 */ 1294 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt, 1295 struct rpcrdma_regbuf *rb) 1296 { 1297 struct ib_device *device = r_xprt->rx_ep->re_id->device; 1298 1299 if (rb->rg_direction == DMA_NONE) 1300 return false; 1301 1302 rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb), 1303 rdmab_length(rb), rb->rg_direction); 1304 if (ib_dma_mapping_error(device, rdmab_addr(rb))) { 1305 trace_xprtrdma_dma_maperr(rdmab_addr(rb)); 1306 return false; 1307 } 1308 1309 rb->rg_device = device; 1310 rb->rg_iov.lkey = r_xprt->rx_ep->re_pd->local_dma_lkey; 1311 return true; 1312 } 1313 1314 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb) 1315 { 1316 if (!rb) 1317 return; 1318 1319 if (!rpcrdma_regbuf_is_mapped(rb)) 1320 return; 1321 1322 ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb), 1323 rb->rg_direction); 1324 rb->rg_device = NULL; 1325 } 1326 1327 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb) 1328 { 1329 rpcrdma_regbuf_dma_unmap(rb); 1330 if (rb) 1331 kfree(rb->rg_data); 1332 kfree(rb); 1333 } 1334 1335 /** 1336 * rpcrdma_post_sends - Post WRs to a transport's Send Queue 1337 * @r_xprt: controlling transport instance 1338 * @req: rpcrdma_req containing the Send WR to post 1339 * 1340 * Returns 0 if the post was successful, otherwise -ENOTCONN 1341 * is returned. 1342 */ 1343 int rpcrdma_post_sends(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 1344 { 1345 struct ib_send_wr *send_wr = &req->rl_wr; 1346 struct rpcrdma_ep *ep = r_xprt->rx_ep; 1347 int rc; 1348 1349 if (!ep->re_send_count || kref_read(&req->rl_kref) > 1) { 1350 send_wr->send_flags |= IB_SEND_SIGNALED; 1351 ep->re_send_count = ep->re_send_batch; 1352 } else { 1353 send_wr->send_flags &= ~IB_SEND_SIGNALED; 1354 --ep->re_send_count; 1355 } 1356 1357 trace_xprtrdma_post_send(req); 1358 rc = frwr_send(r_xprt, req); 1359 if (rc) 1360 return -ENOTCONN; 1361 return 0; 1362 } 1363 1364 /** 1365 * rpcrdma_post_recvs - Refill the Receive Queue 1366 * @r_xprt: controlling transport instance 1367 * @temp: mark Receive buffers to be deleted after use 1368 * 1369 */ 1370 void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp) 1371 { 1372 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1373 struct rpcrdma_ep *ep = r_xprt->rx_ep; 1374 struct ib_recv_wr *wr, *bad_wr; 1375 struct rpcrdma_rep *rep; 1376 int needed, count, rc; 1377 1378 rc = 0; 1379 count = 0; 1380 1381 needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1); 1382 if (likely(ep->re_receive_count > needed)) 1383 goto out; 1384 needed -= ep->re_receive_count; 1385 if (!temp) 1386 needed += RPCRDMA_MAX_RECV_BATCH; 1387 1388 /* fast path: all needed reps can be found on the free list */ 1389 wr = NULL; 1390 while (needed) { 1391 rep = rpcrdma_rep_get_locked(buf); 1392 if (rep && rep->rr_temp) { 1393 rpcrdma_rep_destroy(rep); 1394 continue; 1395 } 1396 if (!rep) 1397 rep = rpcrdma_rep_create(r_xprt, temp); 1398 if (!rep) 1399 break; 1400 1401 rep->rr_cid.ci_queue_id = ep->re_attr.recv_cq->res.id; 1402 trace_xprtrdma_post_recv(rep); 1403 rep->rr_recv_wr.next = wr; 1404 wr = &rep->rr_recv_wr; 1405 --needed; 1406 ++count; 1407 } 1408 if (!wr) 1409 goto out; 1410 1411 rc = ib_post_recv(ep->re_id->qp, wr, 1412 (const struct ib_recv_wr **)&bad_wr); 1413 out: 1414 trace_xprtrdma_post_recvs(r_xprt, count, rc); 1415 if (rc) { 1416 for (wr = bad_wr; wr;) { 1417 struct rpcrdma_rep *rep; 1418 1419 rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr); 1420 wr = wr->next; 1421 rpcrdma_recv_buffer_put(rep); 1422 --count; 1423 } 1424 } 1425 ep->re_receive_count += count; 1426 return; 1427 } 1428