xref: /openbmc/linux/net/sunrpc/xprtrdma/verbs.c (revision ccb01374)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (c) 2014-2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the BSD-type
10  * license below:
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  *
16  *      Redistributions of source code must retain the above copyright
17  *      notice, this list of conditions and the following disclaimer.
18  *
19  *      Redistributions in binary form must reproduce the above
20  *      copyright notice, this list of conditions and the following
21  *      disclaimer in the documentation and/or other materials provided
22  *      with the distribution.
23  *
24  *      Neither the name of the Network Appliance, Inc. nor the names of
25  *      its contributors may be used to endorse or promote products
26  *      derived from this software without specific prior written
27  *      permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41 
42 /*
43  * verbs.c
44  *
45  * Encapsulates the major functions managing:
46  *  o adapters
47  *  o endpoints
48  *  o connections
49  *  o buffer memory
50  */
51 
52 #include <linux/interrupt.h>
53 #include <linux/slab.h>
54 #include <linux/sunrpc/addr.h>
55 #include <linux/sunrpc/svc_rdma.h>
56 
57 #include <asm-generic/barrier.h>
58 #include <asm/bitops.h>
59 
60 #include <rdma/ib_cm.h>
61 
62 #include "xprt_rdma.h"
63 #include <trace/events/rpcrdma.h>
64 
65 /*
66  * Globals/Macros
67  */
68 
69 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
70 # define RPCDBG_FACILITY	RPCDBG_TRANS
71 #endif
72 
73 /*
74  * internal functions
75  */
76 static void rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc);
77 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt);
78 static void rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf);
79 static int rpcrdma_create_rep(struct rpcrdma_xprt *r_xprt, bool temp);
80 static void rpcrdma_dma_unmap_regbuf(struct rpcrdma_regbuf *rb);
81 static void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp);
82 
83 /* Wait for outstanding transport work to finish.
84  */
85 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt)
86 {
87 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
88 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
89 
90 	/* Flush Receives, then wait for deferred Reply work
91 	 * to complete.
92 	 */
93 	ib_drain_qp(ia->ri_id->qp);
94 	drain_workqueue(buf->rb_completion_wq);
95 
96 	/* Deferred Reply processing might have scheduled
97 	 * local invalidations.
98 	 */
99 	ib_drain_sq(ia->ri_id->qp);
100 }
101 
102 /**
103  * rpcrdma_qp_event_handler - Handle one QP event (error notification)
104  * @event: details of the event
105  * @context: ep that owns QP where event occurred
106  *
107  * Called from the RDMA provider (device driver) possibly in an interrupt
108  * context.
109  */
110 static void
111 rpcrdma_qp_event_handler(struct ib_event *event, void *context)
112 {
113 	struct rpcrdma_ep *ep = context;
114 	struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt,
115 						   rx_ep);
116 
117 	trace_xprtrdma_qp_event(r_xprt, event);
118 }
119 
120 /**
121  * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
122  * @cq:	completion queue (ignored)
123  * @wc:	completed WR
124  *
125  */
126 static void
127 rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
128 {
129 	struct ib_cqe *cqe = wc->wr_cqe;
130 	struct rpcrdma_sendctx *sc =
131 		container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
132 
133 	/* WARNING: Only wr_cqe and status are reliable at this point */
134 	trace_xprtrdma_wc_send(sc, wc);
135 	if (wc->status != IB_WC_SUCCESS && wc->status != IB_WC_WR_FLUSH_ERR)
136 		pr_err("rpcrdma: Send: %s (%u/0x%x)\n",
137 		       ib_wc_status_msg(wc->status),
138 		       wc->status, wc->vendor_err);
139 
140 	rpcrdma_sendctx_put_locked(sc);
141 }
142 
143 /**
144  * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
145  * @cq:	completion queue (ignored)
146  * @wc:	completed WR
147  *
148  */
149 static void
150 rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
151 {
152 	struct ib_cqe *cqe = wc->wr_cqe;
153 	struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
154 					       rr_cqe);
155 	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
156 
157 	/* WARNING: Only wr_cqe and status are reliable at this point */
158 	trace_xprtrdma_wc_receive(wc);
159 	--r_xprt->rx_ep.rep_receive_count;
160 	if (wc->status != IB_WC_SUCCESS)
161 		goto out_flushed;
162 
163 	/* status == SUCCESS means all fields in wc are trustworthy */
164 	rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
165 	rep->rr_wc_flags = wc->wc_flags;
166 	rep->rr_inv_rkey = wc->ex.invalidate_rkey;
167 
168 	ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
169 				   rdmab_addr(rep->rr_rdmabuf),
170 				   wc->byte_len, DMA_FROM_DEVICE);
171 
172 	rpcrdma_post_recvs(r_xprt, false);
173 	rpcrdma_reply_handler(rep);
174 	return;
175 
176 out_flushed:
177 	if (wc->status != IB_WC_WR_FLUSH_ERR)
178 		pr_err("rpcrdma: Recv: %s (%u/0x%x)\n",
179 		       ib_wc_status_msg(wc->status),
180 		       wc->status, wc->vendor_err);
181 	rpcrdma_recv_buffer_put(rep);
182 }
183 
184 static void
185 rpcrdma_update_connect_private(struct rpcrdma_xprt *r_xprt,
186 			       struct rdma_conn_param *param)
187 {
188 	struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
189 	const struct rpcrdma_connect_private *pmsg = param->private_data;
190 	unsigned int rsize, wsize;
191 
192 	/* Default settings for RPC-over-RDMA Version One */
193 	r_xprt->rx_ia.ri_implicit_roundup = xprt_rdma_pad_optimize;
194 	rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
195 	wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
196 
197 	if (pmsg &&
198 	    pmsg->cp_magic == rpcrdma_cmp_magic &&
199 	    pmsg->cp_version == RPCRDMA_CMP_VERSION) {
200 		r_xprt->rx_ia.ri_implicit_roundup = true;
201 		rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
202 		wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
203 	}
204 
205 	if (rsize < cdata->inline_rsize)
206 		cdata->inline_rsize = rsize;
207 	if (wsize < cdata->inline_wsize)
208 		cdata->inline_wsize = wsize;
209 	dprintk("RPC:       %s: max send %u, max recv %u\n",
210 		__func__, cdata->inline_wsize, cdata->inline_rsize);
211 	rpcrdma_set_max_header_sizes(r_xprt);
212 }
213 
214 /**
215  * rpcrdma_cm_event_handler - Handle RDMA CM events
216  * @id: rdma_cm_id on which an event has occurred
217  * @event: details of the event
218  *
219  * Called with @id's mutex held. Returns 1 if caller should
220  * destroy @id, otherwise 0.
221  */
222 static int
223 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event)
224 {
225 	struct rpcrdma_xprt *r_xprt = id->context;
226 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
227 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
228 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
229 
230 	might_sleep();
231 
232 	trace_xprtrdma_cm_event(r_xprt, event);
233 	switch (event->event) {
234 	case RDMA_CM_EVENT_ADDR_RESOLVED:
235 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
236 		ia->ri_async_rc = 0;
237 		complete(&ia->ri_done);
238 		return 0;
239 	case RDMA_CM_EVENT_ADDR_ERROR:
240 		ia->ri_async_rc = -EPROTO;
241 		complete(&ia->ri_done);
242 		return 0;
243 	case RDMA_CM_EVENT_ROUTE_ERROR:
244 		ia->ri_async_rc = -ENETUNREACH;
245 		complete(&ia->ri_done);
246 		return 0;
247 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
248 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
249 		pr_info("rpcrdma: removing device %s for %s:%s\n",
250 			ia->ri_device->name,
251 			rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt));
252 #endif
253 		set_bit(RPCRDMA_IAF_REMOVING, &ia->ri_flags);
254 		ep->rep_connected = -ENODEV;
255 		xprt_force_disconnect(xprt);
256 		wait_for_completion(&ia->ri_remove_done);
257 
258 		ia->ri_id = NULL;
259 		ia->ri_device = NULL;
260 		/* Return 1 to ensure the core destroys the id. */
261 		return 1;
262 	case RDMA_CM_EVENT_ESTABLISHED:
263 		++xprt->connect_cookie;
264 		ep->rep_connected = 1;
265 		rpcrdma_update_connect_private(r_xprt, &event->param.conn);
266 		wake_up_all(&ep->rep_connect_wait);
267 		break;
268 	case RDMA_CM_EVENT_CONNECT_ERROR:
269 		ep->rep_connected = -ENOTCONN;
270 		goto disconnected;
271 	case RDMA_CM_EVENT_UNREACHABLE:
272 		ep->rep_connected = -ENETUNREACH;
273 		goto disconnected;
274 	case RDMA_CM_EVENT_REJECTED:
275 		dprintk("rpcrdma: connection to %s:%s rejected: %s\n",
276 			rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt),
277 			rdma_reject_msg(id, event->status));
278 		ep->rep_connected = -ECONNREFUSED;
279 		if (event->status == IB_CM_REJ_STALE_CONN)
280 			ep->rep_connected = -EAGAIN;
281 		goto disconnected;
282 	case RDMA_CM_EVENT_DISCONNECTED:
283 		ep->rep_connected = -ECONNABORTED;
284 disconnected:
285 		xprt_force_disconnect(xprt);
286 		wake_up_all(&ep->rep_connect_wait);
287 		break;
288 	default:
289 		break;
290 	}
291 
292 	dprintk("RPC:       %s: %s:%s on %s/frwr: %s\n", __func__,
293 		rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt),
294 		ia->ri_device->name, rdma_event_msg(event->event));
295 	return 0;
296 }
297 
298 static struct rdma_cm_id *
299 rpcrdma_create_id(struct rpcrdma_xprt *xprt, struct rpcrdma_ia *ia)
300 {
301 	unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
302 	struct rdma_cm_id *id;
303 	int rc;
304 
305 	trace_xprtrdma_conn_start(xprt);
306 
307 	init_completion(&ia->ri_done);
308 	init_completion(&ia->ri_remove_done);
309 
310 	id = rdma_create_id(xprt->rx_xprt.xprt_net, rpcrdma_cm_event_handler,
311 			    xprt, RDMA_PS_TCP, IB_QPT_RC);
312 	if (IS_ERR(id))
313 		return id;
314 
315 	ia->ri_async_rc = -ETIMEDOUT;
316 	rc = rdma_resolve_addr(id, NULL,
317 			       (struct sockaddr *)&xprt->rx_xprt.addr,
318 			       RDMA_RESOLVE_TIMEOUT);
319 	if (rc)
320 		goto out;
321 	rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout);
322 	if (rc < 0) {
323 		trace_xprtrdma_conn_tout(xprt);
324 		goto out;
325 	}
326 
327 	rc = ia->ri_async_rc;
328 	if (rc)
329 		goto out;
330 
331 	ia->ri_async_rc = -ETIMEDOUT;
332 	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
333 	if (rc)
334 		goto out;
335 	rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout);
336 	if (rc < 0) {
337 		trace_xprtrdma_conn_tout(xprt);
338 		goto out;
339 	}
340 	rc = ia->ri_async_rc;
341 	if (rc)
342 		goto out;
343 
344 	return id;
345 
346 out:
347 	rdma_destroy_id(id);
348 	return ERR_PTR(rc);
349 }
350 
351 /*
352  * Exported functions.
353  */
354 
355 /**
356  * rpcrdma_ia_open - Open and initialize an Interface Adapter.
357  * @xprt: transport with IA to (re)initialize
358  *
359  * Returns 0 on success, negative errno if an appropriate
360  * Interface Adapter could not be found and opened.
361  */
362 int
363 rpcrdma_ia_open(struct rpcrdma_xprt *xprt)
364 {
365 	struct rpcrdma_ia *ia = &xprt->rx_ia;
366 	int rc;
367 
368 	ia->ri_id = rpcrdma_create_id(xprt, ia);
369 	if (IS_ERR(ia->ri_id)) {
370 		rc = PTR_ERR(ia->ri_id);
371 		goto out_err;
372 	}
373 	ia->ri_device = ia->ri_id->device;
374 
375 	ia->ri_pd = ib_alloc_pd(ia->ri_device, 0);
376 	if (IS_ERR(ia->ri_pd)) {
377 		rc = PTR_ERR(ia->ri_pd);
378 		pr_err("rpcrdma: ib_alloc_pd() returned %d\n", rc);
379 		goto out_err;
380 	}
381 
382 	switch (xprt_rdma_memreg_strategy) {
383 	case RPCRDMA_FRWR:
384 		if (frwr_is_supported(ia))
385 			break;
386 		/*FALLTHROUGH*/
387 	default:
388 		pr_err("rpcrdma: Device %s does not support memreg mode %d\n",
389 		       ia->ri_device->name, xprt_rdma_memreg_strategy);
390 		rc = -EINVAL;
391 		goto out_err;
392 	}
393 
394 	return 0;
395 
396 out_err:
397 	rpcrdma_ia_close(ia);
398 	return rc;
399 }
400 
401 /**
402  * rpcrdma_ia_remove - Handle device driver unload
403  * @ia: interface adapter being removed
404  *
405  * Divest transport H/W resources associated with this adapter,
406  * but allow it to be restored later.
407  */
408 void
409 rpcrdma_ia_remove(struct rpcrdma_ia *ia)
410 {
411 	struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt,
412 						   rx_ia);
413 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
414 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
415 	struct rpcrdma_req *req;
416 	struct rpcrdma_rep *rep;
417 
418 	cancel_delayed_work_sync(&buf->rb_refresh_worker);
419 
420 	/* This is similar to rpcrdma_ep_destroy, but:
421 	 * - Don't cancel the connect worker.
422 	 * - Don't call rpcrdma_ep_disconnect, which waits
423 	 *   for another conn upcall, which will deadlock.
424 	 * - rdma_disconnect is unneeded, the underlying
425 	 *   connection is already gone.
426 	 */
427 	if (ia->ri_id->qp) {
428 		rpcrdma_xprt_drain(r_xprt);
429 		rdma_destroy_qp(ia->ri_id);
430 		ia->ri_id->qp = NULL;
431 	}
432 	ib_free_cq(ep->rep_attr.recv_cq);
433 	ep->rep_attr.recv_cq = NULL;
434 	ib_free_cq(ep->rep_attr.send_cq);
435 	ep->rep_attr.send_cq = NULL;
436 
437 	/* The ULP is responsible for ensuring all DMA
438 	 * mappings and MRs are gone.
439 	 */
440 	list_for_each_entry(rep, &buf->rb_recv_bufs, rr_list)
441 		rpcrdma_dma_unmap_regbuf(rep->rr_rdmabuf);
442 	list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
443 		rpcrdma_dma_unmap_regbuf(req->rl_rdmabuf);
444 		rpcrdma_dma_unmap_regbuf(req->rl_sendbuf);
445 		rpcrdma_dma_unmap_regbuf(req->rl_recvbuf);
446 	}
447 	rpcrdma_mrs_destroy(buf);
448 	ib_dealloc_pd(ia->ri_pd);
449 	ia->ri_pd = NULL;
450 
451 	/* Allow waiters to continue */
452 	complete(&ia->ri_remove_done);
453 
454 	trace_xprtrdma_remove(r_xprt);
455 }
456 
457 /**
458  * rpcrdma_ia_close - Clean up/close an IA.
459  * @ia: interface adapter to close
460  *
461  */
462 void
463 rpcrdma_ia_close(struct rpcrdma_ia *ia)
464 {
465 	if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) {
466 		if (ia->ri_id->qp)
467 			rdma_destroy_qp(ia->ri_id);
468 		rdma_destroy_id(ia->ri_id);
469 	}
470 	ia->ri_id = NULL;
471 	ia->ri_device = NULL;
472 
473 	/* If the pd is still busy, xprtrdma missed freeing a resource */
474 	if (ia->ri_pd && !IS_ERR(ia->ri_pd))
475 		ib_dealloc_pd(ia->ri_pd);
476 	ia->ri_pd = NULL;
477 }
478 
479 /*
480  * Create unconnected endpoint.
481  */
482 int
483 rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia,
484 		  struct rpcrdma_create_data_internal *cdata)
485 {
486 	struct rpcrdma_connect_private *pmsg = &ep->rep_cm_private;
487 	struct ib_cq *sendcq, *recvcq;
488 	unsigned int max_sge;
489 	int rc;
490 
491 	max_sge = min_t(unsigned int, ia->ri_device->attrs.max_send_sge,
492 			RPCRDMA_MAX_SEND_SGES);
493 	if (max_sge < RPCRDMA_MIN_SEND_SGES) {
494 		pr_warn("rpcrdma: HCA provides only %d send SGEs\n", max_sge);
495 		return -ENOMEM;
496 	}
497 	ia->ri_max_send_sges = max_sge;
498 
499 	rc = frwr_open(ia, ep, cdata);
500 	if (rc)
501 		return rc;
502 
503 	ep->rep_attr.event_handler = rpcrdma_qp_event_handler;
504 	ep->rep_attr.qp_context = ep;
505 	ep->rep_attr.srq = NULL;
506 	ep->rep_attr.cap.max_send_sge = max_sge;
507 	ep->rep_attr.cap.max_recv_sge = 1;
508 	ep->rep_attr.cap.max_inline_data = 0;
509 	ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
510 	ep->rep_attr.qp_type = IB_QPT_RC;
511 	ep->rep_attr.port_num = ~0;
512 
513 	dprintk("RPC:       %s: requested max: dtos: send %d recv %d; "
514 		"iovs: send %d recv %d\n",
515 		__func__,
516 		ep->rep_attr.cap.max_send_wr,
517 		ep->rep_attr.cap.max_recv_wr,
518 		ep->rep_attr.cap.max_send_sge,
519 		ep->rep_attr.cap.max_recv_sge);
520 
521 	/* set trigger for requesting send completion */
522 	ep->rep_send_batch = min_t(unsigned int, RPCRDMA_MAX_SEND_BATCH,
523 				   cdata->max_requests >> 2);
524 	ep->rep_send_count = ep->rep_send_batch;
525 	init_waitqueue_head(&ep->rep_connect_wait);
526 	ep->rep_receive_count = 0;
527 
528 	sendcq = ib_alloc_cq(ia->ri_device, NULL,
529 			     ep->rep_attr.cap.max_send_wr + 1,
530 			     1, IB_POLL_WORKQUEUE);
531 	if (IS_ERR(sendcq)) {
532 		rc = PTR_ERR(sendcq);
533 		goto out1;
534 	}
535 
536 	recvcq = ib_alloc_cq(ia->ri_device, NULL,
537 			     ep->rep_attr.cap.max_recv_wr + 1,
538 			     0, IB_POLL_WORKQUEUE);
539 	if (IS_ERR(recvcq)) {
540 		rc = PTR_ERR(recvcq);
541 		goto out2;
542 	}
543 
544 	ep->rep_attr.send_cq = sendcq;
545 	ep->rep_attr.recv_cq = recvcq;
546 
547 	/* Initialize cma parameters */
548 	memset(&ep->rep_remote_cma, 0, sizeof(ep->rep_remote_cma));
549 
550 	/* Prepare RDMA-CM private message */
551 	pmsg->cp_magic = rpcrdma_cmp_magic;
552 	pmsg->cp_version = RPCRDMA_CMP_VERSION;
553 	pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK;
554 	pmsg->cp_send_size = rpcrdma_encode_buffer_size(cdata->inline_wsize);
555 	pmsg->cp_recv_size = rpcrdma_encode_buffer_size(cdata->inline_rsize);
556 	ep->rep_remote_cma.private_data = pmsg;
557 	ep->rep_remote_cma.private_data_len = sizeof(*pmsg);
558 
559 	/* Client offers RDMA Read but does not initiate */
560 	ep->rep_remote_cma.initiator_depth = 0;
561 	ep->rep_remote_cma.responder_resources =
562 		min_t(int, U8_MAX, ia->ri_device->attrs.max_qp_rd_atom);
563 
564 	/* Limit transport retries so client can detect server
565 	 * GID changes quickly. RPC layer handles re-establishing
566 	 * transport connection and retransmission.
567 	 */
568 	ep->rep_remote_cma.retry_count = 6;
569 
570 	/* RPC-over-RDMA handles its own flow control. In addition,
571 	 * make all RNR NAKs visible so we know that RPC-over-RDMA
572 	 * flow control is working correctly (no NAKs should be seen).
573 	 */
574 	ep->rep_remote_cma.flow_control = 0;
575 	ep->rep_remote_cma.rnr_retry_count = 0;
576 
577 	return 0;
578 
579 out2:
580 	ib_free_cq(sendcq);
581 out1:
582 	return rc;
583 }
584 
585 /*
586  * rpcrdma_ep_destroy
587  *
588  * Disconnect and destroy endpoint. After this, the only
589  * valid operations on the ep are to free it (if dynamically
590  * allocated) or re-create it.
591  */
592 void
593 rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
594 {
595 	if (ia->ri_id && ia->ri_id->qp) {
596 		rpcrdma_ep_disconnect(ep, ia);
597 		rdma_destroy_qp(ia->ri_id);
598 		ia->ri_id->qp = NULL;
599 	}
600 
601 	if (ep->rep_attr.recv_cq)
602 		ib_free_cq(ep->rep_attr.recv_cq);
603 	if (ep->rep_attr.send_cq)
604 		ib_free_cq(ep->rep_attr.send_cq);
605 }
606 
607 /* Re-establish a connection after a device removal event.
608  * Unlike a normal reconnection, a fresh PD and a new set
609  * of MRs and buffers is needed.
610  */
611 static int
612 rpcrdma_ep_recreate_xprt(struct rpcrdma_xprt *r_xprt,
613 			 struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
614 {
615 	int rc, err;
616 
617 	trace_xprtrdma_reinsert(r_xprt);
618 
619 	rc = -EHOSTUNREACH;
620 	if (rpcrdma_ia_open(r_xprt))
621 		goto out1;
622 
623 	rc = -ENOMEM;
624 	err = rpcrdma_ep_create(ep, ia, &r_xprt->rx_data);
625 	if (err) {
626 		pr_err("rpcrdma: rpcrdma_ep_create returned %d\n", err);
627 		goto out2;
628 	}
629 
630 	rc = -ENETUNREACH;
631 	err = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr);
632 	if (err) {
633 		pr_err("rpcrdma: rdma_create_qp returned %d\n", err);
634 		goto out3;
635 	}
636 
637 	rpcrdma_mrs_create(r_xprt);
638 	return 0;
639 
640 out3:
641 	rpcrdma_ep_destroy(ep, ia);
642 out2:
643 	rpcrdma_ia_close(ia);
644 out1:
645 	return rc;
646 }
647 
648 static int
649 rpcrdma_ep_reconnect(struct rpcrdma_xprt *r_xprt, struct rpcrdma_ep *ep,
650 		     struct rpcrdma_ia *ia)
651 {
652 	struct rdma_cm_id *id, *old;
653 	int err, rc;
654 
655 	trace_xprtrdma_reconnect(r_xprt);
656 
657 	rpcrdma_ep_disconnect(ep, ia);
658 
659 	rc = -EHOSTUNREACH;
660 	id = rpcrdma_create_id(r_xprt, ia);
661 	if (IS_ERR(id))
662 		goto out;
663 
664 	/* As long as the new ID points to the same device as the
665 	 * old ID, we can reuse the transport's existing PD and all
666 	 * previously allocated MRs. Also, the same device means
667 	 * the transport's previous DMA mappings are still valid.
668 	 *
669 	 * This is a sanity check only. There should be no way these
670 	 * point to two different devices here.
671 	 */
672 	old = id;
673 	rc = -ENETUNREACH;
674 	if (ia->ri_device != id->device) {
675 		pr_err("rpcrdma: can't reconnect on different device!\n");
676 		goto out_destroy;
677 	}
678 
679 	err = rdma_create_qp(id, ia->ri_pd, &ep->rep_attr);
680 	if (err)
681 		goto out_destroy;
682 
683 	/* Atomically replace the transport's ID and QP. */
684 	rc = 0;
685 	old = ia->ri_id;
686 	ia->ri_id = id;
687 	rdma_destroy_qp(old);
688 
689 out_destroy:
690 	rdma_destroy_id(old);
691 out:
692 	return rc;
693 }
694 
695 /*
696  * Connect unconnected endpoint.
697  */
698 int
699 rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
700 {
701 	struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt,
702 						   rx_ia);
703 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
704 	int rc;
705 
706 retry:
707 	switch (ep->rep_connected) {
708 	case 0:
709 		dprintk("RPC:       %s: connecting...\n", __func__);
710 		rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr);
711 		if (rc) {
712 			rc = -ENETUNREACH;
713 			goto out_noupdate;
714 		}
715 		break;
716 	case -ENODEV:
717 		rc = rpcrdma_ep_recreate_xprt(r_xprt, ep, ia);
718 		if (rc)
719 			goto out_noupdate;
720 		break;
721 	default:
722 		rc = rpcrdma_ep_reconnect(r_xprt, ep, ia);
723 		if (rc)
724 			goto out;
725 	}
726 
727 	ep->rep_connected = 0;
728 	xprt_clear_connected(xprt);
729 
730 	rpcrdma_post_recvs(r_xprt, true);
731 
732 	rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma);
733 	if (rc)
734 		goto out;
735 
736 	wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0);
737 	if (ep->rep_connected <= 0) {
738 		if (ep->rep_connected == -EAGAIN)
739 			goto retry;
740 		rc = ep->rep_connected;
741 		goto out;
742 	}
743 
744 	dprintk("RPC:       %s: connected\n", __func__);
745 
746 out:
747 	if (rc)
748 		ep->rep_connected = rc;
749 
750 out_noupdate:
751 	return rc;
752 }
753 
754 /**
755  * rpcrdma_ep_disconnect - Disconnect underlying transport
756  * @ep: endpoint to disconnect
757  * @ia: associated interface adapter
758  *
759  * This is separate from destroy to facilitate the ability
760  * to reconnect without recreating the endpoint.
761  *
762  * This call is not reentrant, and must not be made in parallel
763  * on the same endpoint.
764  */
765 void
766 rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
767 {
768 	struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt,
769 						   rx_ep);
770 	int rc;
771 
772 	/* returns without wait if ID is not connected */
773 	rc = rdma_disconnect(ia->ri_id);
774 	if (!rc)
775 		wait_event_interruptible(ep->rep_connect_wait,
776 							ep->rep_connected != 1);
777 	else
778 		ep->rep_connected = rc;
779 	trace_xprtrdma_disconnect(r_xprt, rc);
780 
781 	rpcrdma_xprt_drain(r_xprt);
782 }
783 
784 /* Fixed-size circular FIFO queue. This implementation is wait-free and
785  * lock-free.
786  *
787  * Consumer is the code path that posts Sends. This path dequeues a
788  * sendctx for use by a Send operation. Multiple consumer threads
789  * are serialized by the RPC transport lock, which allows only one
790  * ->send_request call at a time.
791  *
792  * Producer is the code path that handles Send completions. This path
793  * enqueues a sendctx that has been completed. Multiple producer
794  * threads are serialized by the ib_poll_cq() function.
795  */
796 
797 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
798  * queue activity, and ib_drain_qp has flushed all remaining Send
799  * requests.
800  */
801 static void rpcrdma_sendctxs_destroy(struct rpcrdma_buffer *buf)
802 {
803 	unsigned long i;
804 
805 	for (i = 0; i <= buf->rb_sc_last; i++)
806 		kfree(buf->rb_sc_ctxs[i]);
807 	kfree(buf->rb_sc_ctxs);
808 }
809 
810 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ia *ia)
811 {
812 	struct rpcrdma_sendctx *sc;
813 
814 	sc = kzalloc(sizeof(*sc) +
815 		     ia->ri_max_send_sges * sizeof(struct ib_sge),
816 		     GFP_KERNEL);
817 	if (!sc)
818 		return NULL;
819 
820 	sc->sc_wr.wr_cqe = &sc->sc_cqe;
821 	sc->sc_wr.sg_list = sc->sc_sges;
822 	sc->sc_wr.opcode = IB_WR_SEND;
823 	sc->sc_cqe.done = rpcrdma_wc_send;
824 	return sc;
825 }
826 
827 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
828 {
829 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
830 	struct rpcrdma_sendctx *sc;
831 	unsigned long i;
832 
833 	/* Maximum number of concurrent outstanding Send WRs. Capping
834 	 * the circular queue size stops Send Queue overflow by causing
835 	 * the ->send_request call to fail temporarily before too many
836 	 * Sends are posted.
837 	 */
838 	i = buf->rb_max_requests + RPCRDMA_MAX_BC_REQUESTS;
839 	dprintk("RPC:       %s: allocating %lu send_ctxs\n", __func__, i);
840 	buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL);
841 	if (!buf->rb_sc_ctxs)
842 		return -ENOMEM;
843 
844 	buf->rb_sc_last = i - 1;
845 	for (i = 0; i <= buf->rb_sc_last; i++) {
846 		sc = rpcrdma_sendctx_create(&r_xprt->rx_ia);
847 		if (!sc)
848 			goto out_destroy;
849 
850 		sc->sc_xprt = r_xprt;
851 		buf->rb_sc_ctxs[i] = sc;
852 	}
853 
854 	return 0;
855 
856 out_destroy:
857 	rpcrdma_sendctxs_destroy(buf);
858 	return -ENOMEM;
859 }
860 
861 /* The sendctx queue is not guaranteed to have a size that is a
862  * power of two, thus the helpers in circ_buf.h cannot be used.
863  * The other option is to use modulus (%), which can be expensive.
864  */
865 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
866 					  unsigned long item)
867 {
868 	return likely(item < buf->rb_sc_last) ? item + 1 : 0;
869 }
870 
871 /**
872  * rpcrdma_sendctx_get_locked - Acquire a send context
873  * @buf: transport buffers from which to acquire an unused context
874  *
875  * Returns pointer to a free send completion context; or NULL if
876  * the queue is empty.
877  *
878  * Usage: Called to acquire an SGE array before preparing a Send WR.
879  *
880  * The caller serializes calls to this function (per rpcrdma_buffer),
881  * and provides an effective memory barrier that flushes the new value
882  * of rb_sc_head.
883  */
884 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_buffer *buf)
885 {
886 	struct rpcrdma_xprt *r_xprt;
887 	struct rpcrdma_sendctx *sc;
888 	unsigned long next_head;
889 
890 	next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
891 
892 	if (next_head == READ_ONCE(buf->rb_sc_tail))
893 		goto out_emptyq;
894 
895 	/* ORDER: item must be accessed _before_ head is updated */
896 	sc = buf->rb_sc_ctxs[next_head];
897 
898 	/* Releasing the lock in the caller acts as a memory
899 	 * barrier that flushes rb_sc_head.
900 	 */
901 	buf->rb_sc_head = next_head;
902 
903 	return sc;
904 
905 out_emptyq:
906 	/* The queue is "empty" if there have not been enough Send
907 	 * completions recently. This is a sign the Send Queue is
908 	 * backing up. Cause the caller to pause and try again.
909 	 */
910 	set_bit(RPCRDMA_BUF_F_EMPTY_SCQ, &buf->rb_flags);
911 	r_xprt = container_of(buf, struct rpcrdma_xprt, rx_buf);
912 	r_xprt->rx_stats.empty_sendctx_q++;
913 	return NULL;
914 }
915 
916 /**
917  * rpcrdma_sendctx_put_locked - Release a send context
918  * @sc: send context to release
919  *
920  * Usage: Called from Send completion to return a sendctxt
921  * to the queue.
922  *
923  * The caller serializes calls to this function (per rpcrdma_buffer).
924  */
925 static void
926 rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc)
927 {
928 	struct rpcrdma_buffer *buf = &sc->sc_xprt->rx_buf;
929 	unsigned long next_tail;
930 
931 	/* Unmap SGEs of previously completed by unsignaled
932 	 * Sends by walking up the queue until @sc is found.
933 	 */
934 	next_tail = buf->rb_sc_tail;
935 	do {
936 		next_tail = rpcrdma_sendctx_next(buf, next_tail);
937 
938 		/* ORDER: item must be accessed _before_ tail is updated */
939 		rpcrdma_unmap_sendctx(buf->rb_sc_ctxs[next_tail]);
940 
941 	} while (buf->rb_sc_ctxs[next_tail] != sc);
942 
943 	/* Paired with READ_ONCE */
944 	smp_store_release(&buf->rb_sc_tail, next_tail);
945 
946 	if (test_and_clear_bit(RPCRDMA_BUF_F_EMPTY_SCQ, &buf->rb_flags)) {
947 		smp_mb__after_atomic();
948 		xprt_write_space(&sc->sc_xprt->rx_xprt);
949 	}
950 }
951 
952 static void
953 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt)
954 {
955 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
956 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
957 	unsigned int count;
958 	LIST_HEAD(free);
959 	LIST_HEAD(all);
960 
961 	for (count = 0; count < ia->ri_max_segs; count++) {
962 		struct rpcrdma_mr *mr;
963 		int rc;
964 
965 		mr = kzalloc(sizeof(*mr), GFP_KERNEL);
966 		if (!mr)
967 			break;
968 
969 		rc = frwr_init_mr(ia, mr);
970 		if (rc) {
971 			kfree(mr);
972 			break;
973 		}
974 
975 		mr->mr_xprt = r_xprt;
976 
977 		list_add(&mr->mr_list, &free);
978 		list_add(&mr->mr_all, &all);
979 	}
980 
981 	spin_lock(&buf->rb_mrlock);
982 	list_splice(&free, &buf->rb_mrs);
983 	list_splice(&all, &buf->rb_all);
984 	r_xprt->rx_stats.mrs_allocated += count;
985 	spin_unlock(&buf->rb_mrlock);
986 	trace_xprtrdma_createmrs(r_xprt, count);
987 
988 	xprt_write_space(&r_xprt->rx_xprt);
989 }
990 
991 static void
992 rpcrdma_mr_refresh_worker(struct work_struct *work)
993 {
994 	struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
995 						  rb_refresh_worker.work);
996 	struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
997 						   rx_buf);
998 
999 	rpcrdma_mrs_create(r_xprt);
1000 }
1001 
1002 struct rpcrdma_req *
1003 rpcrdma_create_req(struct rpcrdma_xprt *r_xprt)
1004 {
1005 	struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
1006 	struct rpcrdma_regbuf *rb;
1007 	struct rpcrdma_req *req;
1008 
1009 	req = kzalloc(sizeof(*req), GFP_KERNEL);
1010 	if (req == NULL)
1011 		return ERR_PTR(-ENOMEM);
1012 
1013 	rb = rpcrdma_alloc_regbuf(RPCRDMA_HDRBUF_SIZE,
1014 				  DMA_TO_DEVICE, GFP_KERNEL);
1015 	if (IS_ERR(rb)) {
1016 		kfree(req);
1017 		return ERR_PTR(-ENOMEM);
1018 	}
1019 	req->rl_rdmabuf = rb;
1020 	xdr_buf_init(&req->rl_hdrbuf, rb->rg_base, rdmab_length(rb));
1021 	req->rl_buffer = buffer;
1022 	INIT_LIST_HEAD(&req->rl_registered);
1023 
1024 	spin_lock(&buffer->rb_lock);
1025 	list_add(&req->rl_all, &buffer->rb_allreqs);
1026 	spin_unlock(&buffer->rb_lock);
1027 	return req;
1028 }
1029 
1030 static int
1031 rpcrdma_create_rep(struct rpcrdma_xprt *r_xprt, bool temp)
1032 {
1033 	struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
1034 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1035 	struct rpcrdma_rep *rep;
1036 	int rc;
1037 
1038 	rc = -ENOMEM;
1039 	rep = kzalloc(sizeof(*rep), GFP_KERNEL);
1040 	if (rep == NULL)
1041 		goto out;
1042 
1043 	rep->rr_rdmabuf = rpcrdma_alloc_regbuf(cdata->inline_rsize,
1044 					       DMA_FROM_DEVICE, GFP_KERNEL);
1045 	if (IS_ERR(rep->rr_rdmabuf)) {
1046 		rc = PTR_ERR(rep->rr_rdmabuf);
1047 		goto out_free;
1048 	}
1049 	xdr_buf_init(&rep->rr_hdrbuf, rep->rr_rdmabuf->rg_base,
1050 		     rdmab_length(rep->rr_rdmabuf));
1051 
1052 	rep->rr_cqe.done = rpcrdma_wc_receive;
1053 	rep->rr_rxprt = r_xprt;
1054 	INIT_WORK(&rep->rr_work, rpcrdma_deferred_completion);
1055 	rep->rr_recv_wr.next = NULL;
1056 	rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
1057 	rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
1058 	rep->rr_recv_wr.num_sge = 1;
1059 	rep->rr_temp = temp;
1060 
1061 	spin_lock(&buf->rb_lock);
1062 	list_add(&rep->rr_list, &buf->rb_recv_bufs);
1063 	spin_unlock(&buf->rb_lock);
1064 	return 0;
1065 
1066 out_free:
1067 	kfree(rep);
1068 out:
1069 	return rc;
1070 }
1071 
1072 int
1073 rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1074 {
1075 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1076 	int i, rc;
1077 
1078 	buf->rb_flags = 0;
1079 	buf->rb_max_requests = r_xprt->rx_data.max_requests;
1080 	buf->rb_bc_srv_max_requests = 0;
1081 	spin_lock_init(&buf->rb_mrlock);
1082 	spin_lock_init(&buf->rb_lock);
1083 	INIT_LIST_HEAD(&buf->rb_mrs);
1084 	INIT_LIST_HEAD(&buf->rb_all);
1085 	INIT_DELAYED_WORK(&buf->rb_refresh_worker,
1086 			  rpcrdma_mr_refresh_worker);
1087 
1088 	rpcrdma_mrs_create(r_xprt);
1089 
1090 	INIT_LIST_HEAD(&buf->rb_send_bufs);
1091 	INIT_LIST_HEAD(&buf->rb_allreqs);
1092 	for (i = 0; i < buf->rb_max_requests; i++) {
1093 		struct rpcrdma_req *req;
1094 
1095 		req = rpcrdma_create_req(r_xprt);
1096 		if (IS_ERR(req)) {
1097 			dprintk("RPC:       %s: request buffer %d alloc"
1098 				" failed\n", __func__, i);
1099 			rc = PTR_ERR(req);
1100 			goto out;
1101 		}
1102 		list_add(&req->rl_list, &buf->rb_send_bufs);
1103 	}
1104 
1105 	buf->rb_credits = 1;
1106 	INIT_LIST_HEAD(&buf->rb_recv_bufs);
1107 
1108 	rc = rpcrdma_sendctxs_create(r_xprt);
1109 	if (rc)
1110 		goto out;
1111 
1112 	buf->rb_completion_wq = alloc_workqueue("rpcrdma-%s",
1113 						WQ_MEM_RECLAIM | WQ_HIGHPRI,
1114 						0,
1115 			r_xprt->rx_xprt.address_strings[RPC_DISPLAY_ADDR]);
1116 	if (!buf->rb_completion_wq)
1117 		goto out;
1118 
1119 	return 0;
1120 out:
1121 	rpcrdma_buffer_destroy(buf);
1122 	return rc;
1123 }
1124 
1125 static void
1126 rpcrdma_destroy_rep(struct rpcrdma_rep *rep)
1127 {
1128 	rpcrdma_free_regbuf(rep->rr_rdmabuf);
1129 	kfree(rep);
1130 }
1131 
1132 /**
1133  * rpcrdma_req_destroy - Destroy an rpcrdma_req object
1134  * @req: unused object to be destroyed
1135  *
1136  * This function assumes that the caller prevents concurrent device
1137  * unload and transport tear-down.
1138  */
1139 void
1140 rpcrdma_req_destroy(struct rpcrdma_req *req)
1141 {
1142 	list_del(&req->rl_all);
1143 
1144 	rpcrdma_free_regbuf(req->rl_recvbuf);
1145 	rpcrdma_free_regbuf(req->rl_sendbuf);
1146 	rpcrdma_free_regbuf(req->rl_rdmabuf);
1147 	kfree(req);
1148 }
1149 
1150 static void
1151 rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf)
1152 {
1153 	struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
1154 						   rx_buf);
1155 	struct rpcrdma_mr *mr;
1156 	unsigned int count;
1157 
1158 	count = 0;
1159 	spin_lock(&buf->rb_mrlock);
1160 	while (!list_empty(&buf->rb_all)) {
1161 		mr = list_entry(buf->rb_all.next, struct rpcrdma_mr, mr_all);
1162 		list_del(&mr->mr_all);
1163 
1164 		spin_unlock(&buf->rb_mrlock);
1165 
1166 		/* Ensure MW is not on any rl_registered list */
1167 		if (!list_empty(&mr->mr_list))
1168 			list_del(&mr->mr_list);
1169 
1170 		frwr_release_mr(mr);
1171 		count++;
1172 		spin_lock(&buf->rb_mrlock);
1173 	}
1174 	spin_unlock(&buf->rb_mrlock);
1175 	r_xprt->rx_stats.mrs_allocated = 0;
1176 
1177 	dprintk("RPC:       %s: released %u MRs\n", __func__, count);
1178 }
1179 
1180 /**
1181  * rpcrdma_buffer_destroy - Release all hw resources
1182  * @buf: root control block for resources
1183  *
1184  * ORDERING: relies on a prior ib_drain_qp :
1185  * - No more Send or Receive completions can occur
1186  * - All MRs, reps, and reqs are returned to their free lists
1187  */
1188 void
1189 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1190 {
1191 	cancel_delayed_work_sync(&buf->rb_refresh_worker);
1192 
1193 	if (buf->rb_completion_wq) {
1194 		destroy_workqueue(buf->rb_completion_wq);
1195 		buf->rb_completion_wq = NULL;
1196 	}
1197 
1198 	rpcrdma_sendctxs_destroy(buf);
1199 
1200 	while (!list_empty(&buf->rb_recv_bufs)) {
1201 		struct rpcrdma_rep *rep;
1202 
1203 		rep = list_first_entry(&buf->rb_recv_bufs,
1204 				       struct rpcrdma_rep, rr_list);
1205 		list_del(&rep->rr_list);
1206 		rpcrdma_destroy_rep(rep);
1207 	}
1208 
1209 	while (!list_empty(&buf->rb_send_bufs)) {
1210 		struct rpcrdma_req *req;
1211 
1212 		req = list_first_entry(&buf->rb_send_bufs,
1213 				       struct rpcrdma_req, rl_list);
1214 		list_del(&req->rl_list);
1215 		rpcrdma_req_destroy(req);
1216 	}
1217 
1218 	rpcrdma_mrs_destroy(buf);
1219 }
1220 
1221 /**
1222  * rpcrdma_mr_get - Allocate an rpcrdma_mr object
1223  * @r_xprt: controlling transport
1224  *
1225  * Returns an initialized rpcrdma_mr or NULL if no free
1226  * rpcrdma_mr objects are available.
1227  */
1228 struct rpcrdma_mr *
1229 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt)
1230 {
1231 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1232 	struct rpcrdma_mr *mr = NULL;
1233 
1234 	spin_lock(&buf->rb_mrlock);
1235 	if (!list_empty(&buf->rb_mrs))
1236 		mr = rpcrdma_mr_pop(&buf->rb_mrs);
1237 	spin_unlock(&buf->rb_mrlock);
1238 
1239 	if (!mr)
1240 		goto out_nomrs;
1241 	return mr;
1242 
1243 out_nomrs:
1244 	trace_xprtrdma_nomrs(r_xprt);
1245 	if (r_xprt->rx_ep.rep_connected != -ENODEV)
1246 		schedule_delayed_work(&buf->rb_refresh_worker, 0);
1247 
1248 	/* Allow the reply handler and refresh worker to run */
1249 	cond_resched();
1250 
1251 	return NULL;
1252 }
1253 
1254 static void
1255 __rpcrdma_mr_put(struct rpcrdma_buffer *buf, struct rpcrdma_mr *mr)
1256 {
1257 	spin_lock(&buf->rb_mrlock);
1258 	rpcrdma_mr_push(mr, &buf->rb_mrs);
1259 	spin_unlock(&buf->rb_mrlock);
1260 }
1261 
1262 /**
1263  * rpcrdma_mr_put - Release an rpcrdma_mr object
1264  * @mr: object to release
1265  *
1266  */
1267 void
1268 rpcrdma_mr_put(struct rpcrdma_mr *mr)
1269 {
1270 	__rpcrdma_mr_put(&mr->mr_xprt->rx_buf, mr);
1271 }
1272 
1273 /**
1274  * rpcrdma_mr_unmap_and_put - DMA unmap an MR and release it
1275  * @mr: object to release
1276  *
1277  */
1278 void
1279 rpcrdma_mr_unmap_and_put(struct rpcrdma_mr *mr)
1280 {
1281 	struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
1282 
1283 	if (mr->mr_dir != DMA_NONE) {
1284 		trace_xprtrdma_mr_unmap(mr);
1285 		ib_dma_unmap_sg(r_xprt->rx_ia.ri_device,
1286 				mr->mr_sg, mr->mr_nents, mr->mr_dir);
1287 		mr->mr_dir = DMA_NONE;
1288 	}
1289 	__rpcrdma_mr_put(&r_xprt->rx_buf, mr);
1290 }
1291 
1292 /**
1293  * rpcrdma_buffer_get - Get a request buffer
1294  * @buffers: Buffer pool from which to obtain a buffer
1295  *
1296  * Returns a fresh rpcrdma_req, or NULL if none are available.
1297  */
1298 struct rpcrdma_req *
1299 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1300 {
1301 	struct rpcrdma_req *req;
1302 
1303 	spin_lock(&buffers->rb_lock);
1304 	req = list_first_entry_or_null(&buffers->rb_send_bufs,
1305 				       struct rpcrdma_req, rl_list);
1306 	if (req)
1307 		list_del_init(&req->rl_list);
1308 	spin_unlock(&buffers->rb_lock);
1309 	return req;
1310 }
1311 
1312 /**
1313  * rpcrdma_buffer_put - Put request/reply buffers back into pool
1314  * @req: object to return
1315  *
1316  */
1317 void
1318 rpcrdma_buffer_put(struct rpcrdma_req *req)
1319 {
1320 	struct rpcrdma_buffer *buffers = req->rl_buffer;
1321 	struct rpcrdma_rep *rep = req->rl_reply;
1322 
1323 	req->rl_reply = NULL;
1324 
1325 	spin_lock(&buffers->rb_lock);
1326 	list_add(&req->rl_list, &buffers->rb_send_bufs);
1327 	if (rep) {
1328 		if (!rep->rr_temp) {
1329 			list_add(&rep->rr_list, &buffers->rb_recv_bufs);
1330 			rep = NULL;
1331 		}
1332 	}
1333 	spin_unlock(&buffers->rb_lock);
1334 	if (rep)
1335 		rpcrdma_destroy_rep(rep);
1336 }
1337 
1338 /*
1339  * Put reply buffers back into pool when not attached to
1340  * request. This happens in error conditions.
1341  */
1342 void
1343 rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
1344 {
1345 	struct rpcrdma_buffer *buffers = &rep->rr_rxprt->rx_buf;
1346 
1347 	if (!rep->rr_temp) {
1348 		spin_lock(&buffers->rb_lock);
1349 		list_add(&rep->rr_list, &buffers->rb_recv_bufs);
1350 		spin_unlock(&buffers->rb_lock);
1351 	} else {
1352 		rpcrdma_destroy_rep(rep);
1353 	}
1354 }
1355 
1356 /**
1357  * rpcrdma_alloc_regbuf - allocate and DMA-map memory for SEND/RECV buffers
1358  * @size: size of buffer to be allocated, in bytes
1359  * @direction: direction of data movement
1360  * @flags: GFP flags
1361  *
1362  * Returns an ERR_PTR, or a pointer to a regbuf, a buffer that
1363  * can be persistently DMA-mapped for I/O.
1364  *
1365  * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1366  * receiving the payload of RDMA RECV operations. During Long Calls
1367  * or Replies they may be registered externally via frwr_map.
1368  */
1369 struct rpcrdma_regbuf *
1370 rpcrdma_alloc_regbuf(size_t size, enum dma_data_direction direction,
1371 		     gfp_t flags)
1372 {
1373 	struct rpcrdma_regbuf *rb;
1374 
1375 	rb = kmalloc(sizeof(*rb) + size, flags);
1376 	if (rb == NULL)
1377 		return ERR_PTR(-ENOMEM);
1378 
1379 	rb->rg_device = NULL;
1380 	rb->rg_direction = direction;
1381 	rb->rg_iov.length = size;
1382 
1383 	return rb;
1384 }
1385 
1386 /**
1387  * __rpcrdma_map_regbuf - DMA-map a regbuf
1388  * @ia: controlling rpcrdma_ia
1389  * @rb: regbuf to be mapped
1390  */
1391 bool
1392 __rpcrdma_dma_map_regbuf(struct rpcrdma_ia *ia, struct rpcrdma_regbuf *rb)
1393 {
1394 	struct ib_device *device = ia->ri_device;
1395 
1396 	if (rb->rg_direction == DMA_NONE)
1397 		return false;
1398 
1399 	rb->rg_iov.addr = ib_dma_map_single(device,
1400 					    (void *)rb->rg_base,
1401 					    rdmab_length(rb),
1402 					    rb->rg_direction);
1403 	if (ib_dma_mapping_error(device, rdmab_addr(rb))) {
1404 		trace_xprtrdma_dma_maperr(rdmab_addr(rb));
1405 		return false;
1406 	}
1407 
1408 	rb->rg_device = device;
1409 	rb->rg_iov.lkey = ia->ri_pd->local_dma_lkey;
1410 	return true;
1411 }
1412 
1413 static void
1414 rpcrdma_dma_unmap_regbuf(struct rpcrdma_regbuf *rb)
1415 {
1416 	if (!rb)
1417 		return;
1418 
1419 	if (!rpcrdma_regbuf_is_mapped(rb))
1420 		return;
1421 
1422 	ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb),
1423 			    rdmab_length(rb), rb->rg_direction);
1424 	rb->rg_device = NULL;
1425 }
1426 
1427 /**
1428  * rpcrdma_free_regbuf - deregister and free registered buffer
1429  * @rb: regbuf to be deregistered and freed
1430  */
1431 void
1432 rpcrdma_free_regbuf(struct rpcrdma_regbuf *rb)
1433 {
1434 	rpcrdma_dma_unmap_regbuf(rb);
1435 	kfree(rb);
1436 }
1437 
1438 /**
1439  * rpcrdma_ep_post - Post WRs to a transport's Send Queue
1440  * @ia: transport's device information
1441  * @ep: transport's RDMA endpoint information
1442  * @req: rpcrdma_req containing the Send WR to post
1443  *
1444  * Returns 0 if the post was successful, otherwise -ENOTCONN
1445  * is returned.
1446  */
1447 int
1448 rpcrdma_ep_post(struct rpcrdma_ia *ia,
1449 		struct rpcrdma_ep *ep,
1450 		struct rpcrdma_req *req)
1451 {
1452 	struct ib_send_wr *send_wr = &req->rl_sendctx->sc_wr;
1453 	int rc;
1454 
1455 	if (!ep->rep_send_count ||
1456 	    test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) {
1457 		send_wr->send_flags |= IB_SEND_SIGNALED;
1458 		ep->rep_send_count = ep->rep_send_batch;
1459 	} else {
1460 		send_wr->send_flags &= ~IB_SEND_SIGNALED;
1461 		--ep->rep_send_count;
1462 	}
1463 
1464 	rc = frwr_send(ia, req);
1465 	trace_xprtrdma_post_send(req, rc);
1466 	if (rc)
1467 		return -ENOTCONN;
1468 	return 0;
1469 }
1470 
1471 static void
1472 rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp)
1473 {
1474 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1475 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
1476 	struct ib_recv_wr *wr, *bad_wr;
1477 	int needed, count, rc;
1478 
1479 	rc = 0;
1480 	count = 0;
1481 	needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1);
1482 	if (ep->rep_receive_count > needed)
1483 		goto out;
1484 	needed -= ep->rep_receive_count;
1485 
1486 	count = 0;
1487 	wr = NULL;
1488 	while (needed) {
1489 		struct rpcrdma_regbuf *rb;
1490 		struct rpcrdma_rep *rep;
1491 
1492 		spin_lock(&buf->rb_lock);
1493 		rep = list_first_entry_or_null(&buf->rb_recv_bufs,
1494 					       struct rpcrdma_rep, rr_list);
1495 		if (likely(rep))
1496 			list_del(&rep->rr_list);
1497 		spin_unlock(&buf->rb_lock);
1498 		if (!rep) {
1499 			if (rpcrdma_create_rep(r_xprt, temp))
1500 				break;
1501 			continue;
1502 		}
1503 
1504 		rb = rep->rr_rdmabuf;
1505 		if (!rpcrdma_regbuf_is_mapped(rb)) {
1506 			if (!__rpcrdma_dma_map_regbuf(&r_xprt->rx_ia, rb)) {
1507 				rpcrdma_recv_buffer_put(rep);
1508 				break;
1509 			}
1510 		}
1511 
1512 		trace_xprtrdma_post_recv(rep->rr_recv_wr.wr_cqe);
1513 		rep->rr_recv_wr.next = wr;
1514 		wr = &rep->rr_recv_wr;
1515 		++count;
1516 		--needed;
1517 	}
1518 	if (!count)
1519 		goto out;
1520 
1521 	rc = ib_post_recv(r_xprt->rx_ia.ri_id->qp, wr,
1522 			  (const struct ib_recv_wr **)&bad_wr);
1523 	if (rc) {
1524 		for (wr = bad_wr; wr; wr = wr->next) {
1525 			struct rpcrdma_rep *rep;
1526 
1527 			rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr);
1528 			rpcrdma_recv_buffer_put(rep);
1529 			--count;
1530 		}
1531 	}
1532 	ep->rep_receive_count += count;
1533 out:
1534 	trace_xprtrdma_post_recvs(r_xprt, count, rc);
1535 }
1536