1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (c) 2014-2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the BSD-type 10 * license below: 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 19 * Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials provided 22 * with the distribution. 23 * 24 * Neither the name of the Network Appliance, Inc. nor the names of 25 * its contributors may be used to endorse or promote products 26 * derived from this software without specific prior written 27 * permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42 /* 43 * verbs.c 44 * 45 * Encapsulates the major functions managing: 46 * o adapters 47 * o endpoints 48 * o connections 49 * o buffer memory 50 */ 51 52 #include <linux/interrupt.h> 53 #include <linux/slab.h> 54 #include <linux/sunrpc/addr.h> 55 #include <linux/sunrpc/svc_rdma.h> 56 57 #include <asm-generic/barrier.h> 58 #include <asm/bitops.h> 59 60 #include <rdma/ib_cm.h> 61 62 #include "xprt_rdma.h" 63 #include <trace/events/rpcrdma.h> 64 65 /* 66 * Globals/Macros 67 */ 68 69 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 70 # define RPCDBG_FACILITY RPCDBG_TRANS 71 #endif 72 73 /* 74 * internal functions 75 */ 76 static void rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc); 77 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt); 78 static void rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf); 79 static int rpcrdma_create_rep(struct rpcrdma_xprt *r_xprt, bool temp); 80 static void rpcrdma_dma_unmap_regbuf(struct rpcrdma_regbuf *rb); 81 static void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp); 82 83 /* Wait for outstanding transport work to finish. 84 */ 85 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt) 86 { 87 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 88 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 89 90 /* Flush Receives, then wait for deferred Reply work 91 * to complete. 92 */ 93 ib_drain_qp(ia->ri_id->qp); 94 drain_workqueue(buf->rb_completion_wq); 95 96 /* Deferred Reply processing might have scheduled 97 * local invalidations. 98 */ 99 ib_drain_sq(ia->ri_id->qp); 100 } 101 102 /** 103 * rpcrdma_qp_event_handler - Handle one QP event (error notification) 104 * @event: details of the event 105 * @context: ep that owns QP where event occurred 106 * 107 * Called from the RDMA provider (device driver) possibly in an interrupt 108 * context. 109 */ 110 static void 111 rpcrdma_qp_event_handler(struct ib_event *event, void *context) 112 { 113 struct rpcrdma_ep *ep = context; 114 struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt, 115 rx_ep); 116 117 trace_xprtrdma_qp_event(r_xprt, event); 118 } 119 120 /** 121 * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC 122 * @cq: completion queue (ignored) 123 * @wc: completed WR 124 * 125 */ 126 static void 127 rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc) 128 { 129 struct ib_cqe *cqe = wc->wr_cqe; 130 struct rpcrdma_sendctx *sc = 131 container_of(cqe, struct rpcrdma_sendctx, sc_cqe); 132 133 /* WARNING: Only wr_cqe and status are reliable at this point */ 134 trace_xprtrdma_wc_send(sc, wc); 135 if (wc->status != IB_WC_SUCCESS && wc->status != IB_WC_WR_FLUSH_ERR) 136 pr_err("rpcrdma: Send: %s (%u/0x%x)\n", 137 ib_wc_status_msg(wc->status), 138 wc->status, wc->vendor_err); 139 140 rpcrdma_sendctx_put_locked(sc); 141 } 142 143 /** 144 * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC 145 * @cq: completion queue (ignored) 146 * @wc: completed WR 147 * 148 */ 149 static void 150 rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc) 151 { 152 struct ib_cqe *cqe = wc->wr_cqe; 153 struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep, 154 rr_cqe); 155 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; 156 157 /* WARNING: Only wr_cqe and status are reliable at this point */ 158 trace_xprtrdma_wc_receive(wc); 159 --r_xprt->rx_ep.rep_receive_count; 160 if (wc->status != IB_WC_SUCCESS) 161 goto out_flushed; 162 163 /* status == SUCCESS means all fields in wc are trustworthy */ 164 rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len); 165 rep->rr_wc_flags = wc->wc_flags; 166 rep->rr_inv_rkey = wc->ex.invalidate_rkey; 167 168 ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf), 169 rdmab_addr(rep->rr_rdmabuf), 170 wc->byte_len, DMA_FROM_DEVICE); 171 172 rpcrdma_post_recvs(r_xprt, false); 173 rpcrdma_reply_handler(rep); 174 return; 175 176 out_flushed: 177 if (wc->status != IB_WC_WR_FLUSH_ERR) 178 pr_err("rpcrdma: Recv: %s (%u/0x%x)\n", 179 ib_wc_status_msg(wc->status), 180 wc->status, wc->vendor_err); 181 rpcrdma_recv_buffer_put(rep); 182 } 183 184 static void 185 rpcrdma_update_connect_private(struct rpcrdma_xprt *r_xprt, 186 struct rdma_conn_param *param) 187 { 188 struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; 189 const struct rpcrdma_connect_private *pmsg = param->private_data; 190 unsigned int rsize, wsize; 191 192 /* Default settings for RPC-over-RDMA Version One */ 193 r_xprt->rx_ia.ri_implicit_roundup = xprt_rdma_pad_optimize; 194 rsize = RPCRDMA_V1_DEF_INLINE_SIZE; 195 wsize = RPCRDMA_V1_DEF_INLINE_SIZE; 196 197 if (pmsg && 198 pmsg->cp_magic == rpcrdma_cmp_magic && 199 pmsg->cp_version == RPCRDMA_CMP_VERSION) { 200 r_xprt->rx_ia.ri_implicit_roundup = true; 201 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size); 202 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size); 203 } 204 205 if (rsize < cdata->inline_rsize) 206 cdata->inline_rsize = rsize; 207 if (wsize < cdata->inline_wsize) 208 cdata->inline_wsize = wsize; 209 dprintk("RPC: %s: max send %u, max recv %u\n", 210 __func__, cdata->inline_wsize, cdata->inline_rsize); 211 rpcrdma_set_max_header_sizes(r_xprt); 212 } 213 214 /** 215 * rpcrdma_cm_event_handler - Handle RDMA CM events 216 * @id: rdma_cm_id on which an event has occurred 217 * @event: details of the event 218 * 219 * Called with @id's mutex held. Returns 1 if caller should 220 * destroy @id, otherwise 0. 221 */ 222 static int 223 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event) 224 { 225 struct rpcrdma_xprt *r_xprt = id->context; 226 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 227 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 228 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 229 230 might_sleep(); 231 232 trace_xprtrdma_cm_event(r_xprt, event); 233 switch (event->event) { 234 case RDMA_CM_EVENT_ADDR_RESOLVED: 235 case RDMA_CM_EVENT_ROUTE_RESOLVED: 236 ia->ri_async_rc = 0; 237 complete(&ia->ri_done); 238 return 0; 239 case RDMA_CM_EVENT_ADDR_ERROR: 240 ia->ri_async_rc = -EPROTO; 241 complete(&ia->ri_done); 242 return 0; 243 case RDMA_CM_EVENT_ROUTE_ERROR: 244 ia->ri_async_rc = -ENETUNREACH; 245 complete(&ia->ri_done); 246 return 0; 247 case RDMA_CM_EVENT_DEVICE_REMOVAL: 248 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 249 pr_info("rpcrdma: removing device %s for %s:%s\n", 250 ia->ri_device->name, 251 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt)); 252 #endif 253 set_bit(RPCRDMA_IAF_REMOVING, &ia->ri_flags); 254 ep->rep_connected = -ENODEV; 255 xprt_force_disconnect(xprt); 256 wait_for_completion(&ia->ri_remove_done); 257 258 ia->ri_id = NULL; 259 ia->ri_device = NULL; 260 /* Return 1 to ensure the core destroys the id. */ 261 return 1; 262 case RDMA_CM_EVENT_ESTABLISHED: 263 ++xprt->connect_cookie; 264 ep->rep_connected = 1; 265 rpcrdma_update_connect_private(r_xprt, &event->param.conn); 266 wake_up_all(&ep->rep_connect_wait); 267 break; 268 case RDMA_CM_EVENT_CONNECT_ERROR: 269 ep->rep_connected = -ENOTCONN; 270 goto disconnected; 271 case RDMA_CM_EVENT_UNREACHABLE: 272 ep->rep_connected = -ENETUNREACH; 273 goto disconnected; 274 case RDMA_CM_EVENT_REJECTED: 275 dprintk("rpcrdma: connection to %s:%s rejected: %s\n", 276 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt), 277 rdma_reject_msg(id, event->status)); 278 ep->rep_connected = -ECONNREFUSED; 279 if (event->status == IB_CM_REJ_STALE_CONN) 280 ep->rep_connected = -EAGAIN; 281 goto disconnected; 282 case RDMA_CM_EVENT_DISCONNECTED: 283 ep->rep_connected = -ECONNABORTED; 284 disconnected: 285 xprt_force_disconnect(xprt); 286 wake_up_all(&ep->rep_connect_wait); 287 break; 288 default: 289 break; 290 } 291 292 dprintk("RPC: %s: %s:%s on %s/frwr: %s\n", __func__, 293 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt), 294 ia->ri_device->name, rdma_event_msg(event->event)); 295 return 0; 296 } 297 298 static struct rdma_cm_id * 299 rpcrdma_create_id(struct rpcrdma_xprt *xprt, struct rpcrdma_ia *ia) 300 { 301 unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1; 302 struct rdma_cm_id *id; 303 int rc; 304 305 trace_xprtrdma_conn_start(xprt); 306 307 init_completion(&ia->ri_done); 308 init_completion(&ia->ri_remove_done); 309 310 id = rdma_create_id(xprt->rx_xprt.xprt_net, rpcrdma_cm_event_handler, 311 xprt, RDMA_PS_TCP, IB_QPT_RC); 312 if (IS_ERR(id)) 313 return id; 314 315 ia->ri_async_rc = -ETIMEDOUT; 316 rc = rdma_resolve_addr(id, NULL, 317 (struct sockaddr *)&xprt->rx_xprt.addr, 318 RDMA_RESOLVE_TIMEOUT); 319 if (rc) 320 goto out; 321 rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout); 322 if (rc < 0) { 323 trace_xprtrdma_conn_tout(xprt); 324 goto out; 325 } 326 327 rc = ia->ri_async_rc; 328 if (rc) 329 goto out; 330 331 ia->ri_async_rc = -ETIMEDOUT; 332 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); 333 if (rc) 334 goto out; 335 rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout); 336 if (rc < 0) { 337 trace_xprtrdma_conn_tout(xprt); 338 goto out; 339 } 340 rc = ia->ri_async_rc; 341 if (rc) 342 goto out; 343 344 return id; 345 346 out: 347 rdma_destroy_id(id); 348 return ERR_PTR(rc); 349 } 350 351 /* 352 * Exported functions. 353 */ 354 355 /** 356 * rpcrdma_ia_open - Open and initialize an Interface Adapter. 357 * @xprt: transport with IA to (re)initialize 358 * 359 * Returns 0 on success, negative errno if an appropriate 360 * Interface Adapter could not be found and opened. 361 */ 362 int 363 rpcrdma_ia_open(struct rpcrdma_xprt *xprt) 364 { 365 struct rpcrdma_ia *ia = &xprt->rx_ia; 366 int rc; 367 368 ia->ri_id = rpcrdma_create_id(xprt, ia); 369 if (IS_ERR(ia->ri_id)) { 370 rc = PTR_ERR(ia->ri_id); 371 goto out_err; 372 } 373 ia->ri_device = ia->ri_id->device; 374 375 ia->ri_pd = ib_alloc_pd(ia->ri_device, 0); 376 if (IS_ERR(ia->ri_pd)) { 377 rc = PTR_ERR(ia->ri_pd); 378 pr_err("rpcrdma: ib_alloc_pd() returned %d\n", rc); 379 goto out_err; 380 } 381 382 switch (xprt_rdma_memreg_strategy) { 383 case RPCRDMA_FRWR: 384 if (frwr_is_supported(ia)) 385 break; 386 /*FALLTHROUGH*/ 387 default: 388 pr_err("rpcrdma: Device %s does not support memreg mode %d\n", 389 ia->ri_device->name, xprt_rdma_memreg_strategy); 390 rc = -EINVAL; 391 goto out_err; 392 } 393 394 return 0; 395 396 out_err: 397 rpcrdma_ia_close(ia); 398 return rc; 399 } 400 401 /** 402 * rpcrdma_ia_remove - Handle device driver unload 403 * @ia: interface adapter being removed 404 * 405 * Divest transport H/W resources associated with this adapter, 406 * but allow it to be restored later. 407 */ 408 void 409 rpcrdma_ia_remove(struct rpcrdma_ia *ia) 410 { 411 struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt, 412 rx_ia); 413 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 414 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 415 struct rpcrdma_req *req; 416 struct rpcrdma_rep *rep; 417 418 cancel_delayed_work_sync(&buf->rb_refresh_worker); 419 420 /* This is similar to rpcrdma_ep_destroy, but: 421 * - Don't cancel the connect worker. 422 * - Don't call rpcrdma_ep_disconnect, which waits 423 * for another conn upcall, which will deadlock. 424 * - rdma_disconnect is unneeded, the underlying 425 * connection is already gone. 426 */ 427 if (ia->ri_id->qp) { 428 rpcrdma_xprt_drain(r_xprt); 429 rdma_destroy_qp(ia->ri_id); 430 ia->ri_id->qp = NULL; 431 } 432 ib_free_cq(ep->rep_attr.recv_cq); 433 ep->rep_attr.recv_cq = NULL; 434 ib_free_cq(ep->rep_attr.send_cq); 435 ep->rep_attr.send_cq = NULL; 436 437 /* The ULP is responsible for ensuring all DMA 438 * mappings and MRs are gone. 439 */ 440 list_for_each_entry(rep, &buf->rb_recv_bufs, rr_list) 441 rpcrdma_dma_unmap_regbuf(rep->rr_rdmabuf); 442 list_for_each_entry(req, &buf->rb_allreqs, rl_all) { 443 rpcrdma_dma_unmap_regbuf(req->rl_rdmabuf); 444 rpcrdma_dma_unmap_regbuf(req->rl_sendbuf); 445 rpcrdma_dma_unmap_regbuf(req->rl_recvbuf); 446 } 447 rpcrdma_mrs_destroy(buf); 448 ib_dealloc_pd(ia->ri_pd); 449 ia->ri_pd = NULL; 450 451 /* Allow waiters to continue */ 452 complete(&ia->ri_remove_done); 453 454 trace_xprtrdma_remove(r_xprt); 455 } 456 457 /** 458 * rpcrdma_ia_close - Clean up/close an IA. 459 * @ia: interface adapter to close 460 * 461 */ 462 void 463 rpcrdma_ia_close(struct rpcrdma_ia *ia) 464 { 465 if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) { 466 if (ia->ri_id->qp) 467 rdma_destroy_qp(ia->ri_id); 468 rdma_destroy_id(ia->ri_id); 469 } 470 ia->ri_id = NULL; 471 ia->ri_device = NULL; 472 473 /* If the pd is still busy, xprtrdma missed freeing a resource */ 474 if (ia->ri_pd && !IS_ERR(ia->ri_pd)) 475 ib_dealloc_pd(ia->ri_pd); 476 ia->ri_pd = NULL; 477 } 478 479 /* 480 * Create unconnected endpoint. 481 */ 482 int 483 rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia, 484 struct rpcrdma_create_data_internal *cdata) 485 { 486 struct rpcrdma_connect_private *pmsg = &ep->rep_cm_private; 487 struct ib_cq *sendcq, *recvcq; 488 unsigned int max_sge; 489 int rc; 490 491 max_sge = min_t(unsigned int, ia->ri_device->attrs.max_send_sge, 492 RPCRDMA_MAX_SEND_SGES); 493 if (max_sge < RPCRDMA_MIN_SEND_SGES) { 494 pr_warn("rpcrdma: HCA provides only %d send SGEs\n", max_sge); 495 return -ENOMEM; 496 } 497 ia->ri_max_send_sges = max_sge; 498 499 rc = frwr_open(ia, ep, cdata); 500 if (rc) 501 return rc; 502 503 ep->rep_attr.event_handler = rpcrdma_qp_event_handler; 504 ep->rep_attr.qp_context = ep; 505 ep->rep_attr.srq = NULL; 506 ep->rep_attr.cap.max_send_sge = max_sge; 507 ep->rep_attr.cap.max_recv_sge = 1; 508 ep->rep_attr.cap.max_inline_data = 0; 509 ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 510 ep->rep_attr.qp_type = IB_QPT_RC; 511 ep->rep_attr.port_num = ~0; 512 513 dprintk("RPC: %s: requested max: dtos: send %d recv %d; " 514 "iovs: send %d recv %d\n", 515 __func__, 516 ep->rep_attr.cap.max_send_wr, 517 ep->rep_attr.cap.max_recv_wr, 518 ep->rep_attr.cap.max_send_sge, 519 ep->rep_attr.cap.max_recv_sge); 520 521 /* set trigger for requesting send completion */ 522 ep->rep_send_batch = min_t(unsigned int, RPCRDMA_MAX_SEND_BATCH, 523 cdata->max_requests >> 2); 524 ep->rep_send_count = ep->rep_send_batch; 525 init_waitqueue_head(&ep->rep_connect_wait); 526 ep->rep_receive_count = 0; 527 528 sendcq = ib_alloc_cq(ia->ri_device, NULL, 529 ep->rep_attr.cap.max_send_wr + 1, 530 1, IB_POLL_WORKQUEUE); 531 if (IS_ERR(sendcq)) { 532 rc = PTR_ERR(sendcq); 533 goto out1; 534 } 535 536 recvcq = ib_alloc_cq(ia->ri_device, NULL, 537 ep->rep_attr.cap.max_recv_wr + 1, 538 0, IB_POLL_WORKQUEUE); 539 if (IS_ERR(recvcq)) { 540 rc = PTR_ERR(recvcq); 541 goto out2; 542 } 543 544 ep->rep_attr.send_cq = sendcq; 545 ep->rep_attr.recv_cq = recvcq; 546 547 /* Initialize cma parameters */ 548 memset(&ep->rep_remote_cma, 0, sizeof(ep->rep_remote_cma)); 549 550 /* Prepare RDMA-CM private message */ 551 pmsg->cp_magic = rpcrdma_cmp_magic; 552 pmsg->cp_version = RPCRDMA_CMP_VERSION; 553 pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK; 554 pmsg->cp_send_size = rpcrdma_encode_buffer_size(cdata->inline_wsize); 555 pmsg->cp_recv_size = rpcrdma_encode_buffer_size(cdata->inline_rsize); 556 ep->rep_remote_cma.private_data = pmsg; 557 ep->rep_remote_cma.private_data_len = sizeof(*pmsg); 558 559 /* Client offers RDMA Read but does not initiate */ 560 ep->rep_remote_cma.initiator_depth = 0; 561 ep->rep_remote_cma.responder_resources = 562 min_t(int, U8_MAX, ia->ri_device->attrs.max_qp_rd_atom); 563 564 /* Limit transport retries so client can detect server 565 * GID changes quickly. RPC layer handles re-establishing 566 * transport connection and retransmission. 567 */ 568 ep->rep_remote_cma.retry_count = 6; 569 570 /* RPC-over-RDMA handles its own flow control. In addition, 571 * make all RNR NAKs visible so we know that RPC-over-RDMA 572 * flow control is working correctly (no NAKs should be seen). 573 */ 574 ep->rep_remote_cma.flow_control = 0; 575 ep->rep_remote_cma.rnr_retry_count = 0; 576 577 return 0; 578 579 out2: 580 ib_free_cq(sendcq); 581 out1: 582 return rc; 583 } 584 585 /* 586 * rpcrdma_ep_destroy 587 * 588 * Disconnect and destroy endpoint. After this, the only 589 * valid operations on the ep are to free it (if dynamically 590 * allocated) or re-create it. 591 */ 592 void 593 rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 594 { 595 if (ia->ri_id && ia->ri_id->qp) { 596 rpcrdma_ep_disconnect(ep, ia); 597 rdma_destroy_qp(ia->ri_id); 598 ia->ri_id->qp = NULL; 599 } 600 601 if (ep->rep_attr.recv_cq) 602 ib_free_cq(ep->rep_attr.recv_cq); 603 if (ep->rep_attr.send_cq) 604 ib_free_cq(ep->rep_attr.send_cq); 605 } 606 607 /* Re-establish a connection after a device removal event. 608 * Unlike a normal reconnection, a fresh PD and a new set 609 * of MRs and buffers is needed. 610 */ 611 static int 612 rpcrdma_ep_recreate_xprt(struct rpcrdma_xprt *r_xprt, 613 struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 614 { 615 int rc, err; 616 617 trace_xprtrdma_reinsert(r_xprt); 618 619 rc = -EHOSTUNREACH; 620 if (rpcrdma_ia_open(r_xprt)) 621 goto out1; 622 623 rc = -ENOMEM; 624 err = rpcrdma_ep_create(ep, ia, &r_xprt->rx_data); 625 if (err) { 626 pr_err("rpcrdma: rpcrdma_ep_create returned %d\n", err); 627 goto out2; 628 } 629 630 rc = -ENETUNREACH; 631 err = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr); 632 if (err) { 633 pr_err("rpcrdma: rdma_create_qp returned %d\n", err); 634 goto out3; 635 } 636 637 rpcrdma_mrs_create(r_xprt); 638 return 0; 639 640 out3: 641 rpcrdma_ep_destroy(ep, ia); 642 out2: 643 rpcrdma_ia_close(ia); 644 out1: 645 return rc; 646 } 647 648 static int 649 rpcrdma_ep_reconnect(struct rpcrdma_xprt *r_xprt, struct rpcrdma_ep *ep, 650 struct rpcrdma_ia *ia) 651 { 652 struct rdma_cm_id *id, *old; 653 int err, rc; 654 655 trace_xprtrdma_reconnect(r_xprt); 656 657 rpcrdma_ep_disconnect(ep, ia); 658 659 rc = -EHOSTUNREACH; 660 id = rpcrdma_create_id(r_xprt, ia); 661 if (IS_ERR(id)) 662 goto out; 663 664 /* As long as the new ID points to the same device as the 665 * old ID, we can reuse the transport's existing PD and all 666 * previously allocated MRs. Also, the same device means 667 * the transport's previous DMA mappings are still valid. 668 * 669 * This is a sanity check only. There should be no way these 670 * point to two different devices here. 671 */ 672 old = id; 673 rc = -ENETUNREACH; 674 if (ia->ri_device != id->device) { 675 pr_err("rpcrdma: can't reconnect on different device!\n"); 676 goto out_destroy; 677 } 678 679 err = rdma_create_qp(id, ia->ri_pd, &ep->rep_attr); 680 if (err) 681 goto out_destroy; 682 683 /* Atomically replace the transport's ID and QP. */ 684 rc = 0; 685 old = ia->ri_id; 686 ia->ri_id = id; 687 rdma_destroy_qp(old); 688 689 out_destroy: 690 rdma_destroy_id(old); 691 out: 692 return rc; 693 } 694 695 /* 696 * Connect unconnected endpoint. 697 */ 698 int 699 rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 700 { 701 struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt, 702 rx_ia); 703 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 704 int rc; 705 706 retry: 707 switch (ep->rep_connected) { 708 case 0: 709 dprintk("RPC: %s: connecting...\n", __func__); 710 rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr); 711 if (rc) { 712 rc = -ENETUNREACH; 713 goto out_noupdate; 714 } 715 break; 716 case -ENODEV: 717 rc = rpcrdma_ep_recreate_xprt(r_xprt, ep, ia); 718 if (rc) 719 goto out_noupdate; 720 break; 721 default: 722 rc = rpcrdma_ep_reconnect(r_xprt, ep, ia); 723 if (rc) 724 goto out; 725 } 726 727 ep->rep_connected = 0; 728 xprt_clear_connected(xprt); 729 730 rpcrdma_post_recvs(r_xprt, true); 731 732 rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma); 733 if (rc) 734 goto out; 735 736 wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0); 737 if (ep->rep_connected <= 0) { 738 if (ep->rep_connected == -EAGAIN) 739 goto retry; 740 rc = ep->rep_connected; 741 goto out; 742 } 743 744 dprintk("RPC: %s: connected\n", __func__); 745 746 out: 747 if (rc) 748 ep->rep_connected = rc; 749 750 out_noupdate: 751 return rc; 752 } 753 754 /** 755 * rpcrdma_ep_disconnect - Disconnect underlying transport 756 * @ep: endpoint to disconnect 757 * @ia: associated interface adapter 758 * 759 * This is separate from destroy to facilitate the ability 760 * to reconnect without recreating the endpoint. 761 * 762 * This call is not reentrant, and must not be made in parallel 763 * on the same endpoint. 764 */ 765 void 766 rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 767 { 768 struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt, 769 rx_ep); 770 int rc; 771 772 /* returns without wait if ID is not connected */ 773 rc = rdma_disconnect(ia->ri_id); 774 if (!rc) 775 wait_event_interruptible(ep->rep_connect_wait, 776 ep->rep_connected != 1); 777 else 778 ep->rep_connected = rc; 779 trace_xprtrdma_disconnect(r_xprt, rc); 780 781 rpcrdma_xprt_drain(r_xprt); 782 } 783 784 /* Fixed-size circular FIFO queue. This implementation is wait-free and 785 * lock-free. 786 * 787 * Consumer is the code path that posts Sends. This path dequeues a 788 * sendctx for use by a Send operation. Multiple consumer threads 789 * are serialized by the RPC transport lock, which allows only one 790 * ->send_request call at a time. 791 * 792 * Producer is the code path that handles Send completions. This path 793 * enqueues a sendctx that has been completed. Multiple producer 794 * threads are serialized by the ib_poll_cq() function. 795 */ 796 797 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced 798 * queue activity, and ib_drain_qp has flushed all remaining Send 799 * requests. 800 */ 801 static void rpcrdma_sendctxs_destroy(struct rpcrdma_buffer *buf) 802 { 803 unsigned long i; 804 805 for (i = 0; i <= buf->rb_sc_last; i++) 806 kfree(buf->rb_sc_ctxs[i]); 807 kfree(buf->rb_sc_ctxs); 808 } 809 810 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ia *ia) 811 { 812 struct rpcrdma_sendctx *sc; 813 814 sc = kzalloc(sizeof(*sc) + 815 ia->ri_max_send_sges * sizeof(struct ib_sge), 816 GFP_KERNEL); 817 if (!sc) 818 return NULL; 819 820 sc->sc_wr.wr_cqe = &sc->sc_cqe; 821 sc->sc_wr.sg_list = sc->sc_sges; 822 sc->sc_wr.opcode = IB_WR_SEND; 823 sc->sc_cqe.done = rpcrdma_wc_send; 824 return sc; 825 } 826 827 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt) 828 { 829 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 830 struct rpcrdma_sendctx *sc; 831 unsigned long i; 832 833 /* Maximum number of concurrent outstanding Send WRs. Capping 834 * the circular queue size stops Send Queue overflow by causing 835 * the ->send_request call to fail temporarily before too many 836 * Sends are posted. 837 */ 838 i = buf->rb_max_requests + RPCRDMA_MAX_BC_REQUESTS; 839 dprintk("RPC: %s: allocating %lu send_ctxs\n", __func__, i); 840 buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL); 841 if (!buf->rb_sc_ctxs) 842 return -ENOMEM; 843 844 buf->rb_sc_last = i - 1; 845 for (i = 0; i <= buf->rb_sc_last; i++) { 846 sc = rpcrdma_sendctx_create(&r_xprt->rx_ia); 847 if (!sc) 848 goto out_destroy; 849 850 sc->sc_xprt = r_xprt; 851 buf->rb_sc_ctxs[i] = sc; 852 } 853 854 return 0; 855 856 out_destroy: 857 rpcrdma_sendctxs_destroy(buf); 858 return -ENOMEM; 859 } 860 861 /* The sendctx queue is not guaranteed to have a size that is a 862 * power of two, thus the helpers in circ_buf.h cannot be used. 863 * The other option is to use modulus (%), which can be expensive. 864 */ 865 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf, 866 unsigned long item) 867 { 868 return likely(item < buf->rb_sc_last) ? item + 1 : 0; 869 } 870 871 /** 872 * rpcrdma_sendctx_get_locked - Acquire a send context 873 * @buf: transport buffers from which to acquire an unused context 874 * 875 * Returns pointer to a free send completion context; or NULL if 876 * the queue is empty. 877 * 878 * Usage: Called to acquire an SGE array before preparing a Send WR. 879 * 880 * The caller serializes calls to this function (per rpcrdma_buffer), 881 * and provides an effective memory barrier that flushes the new value 882 * of rb_sc_head. 883 */ 884 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_buffer *buf) 885 { 886 struct rpcrdma_xprt *r_xprt; 887 struct rpcrdma_sendctx *sc; 888 unsigned long next_head; 889 890 next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head); 891 892 if (next_head == READ_ONCE(buf->rb_sc_tail)) 893 goto out_emptyq; 894 895 /* ORDER: item must be accessed _before_ head is updated */ 896 sc = buf->rb_sc_ctxs[next_head]; 897 898 /* Releasing the lock in the caller acts as a memory 899 * barrier that flushes rb_sc_head. 900 */ 901 buf->rb_sc_head = next_head; 902 903 return sc; 904 905 out_emptyq: 906 /* The queue is "empty" if there have not been enough Send 907 * completions recently. This is a sign the Send Queue is 908 * backing up. Cause the caller to pause and try again. 909 */ 910 set_bit(RPCRDMA_BUF_F_EMPTY_SCQ, &buf->rb_flags); 911 r_xprt = container_of(buf, struct rpcrdma_xprt, rx_buf); 912 r_xprt->rx_stats.empty_sendctx_q++; 913 return NULL; 914 } 915 916 /** 917 * rpcrdma_sendctx_put_locked - Release a send context 918 * @sc: send context to release 919 * 920 * Usage: Called from Send completion to return a sendctxt 921 * to the queue. 922 * 923 * The caller serializes calls to this function (per rpcrdma_buffer). 924 */ 925 static void 926 rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc) 927 { 928 struct rpcrdma_buffer *buf = &sc->sc_xprt->rx_buf; 929 unsigned long next_tail; 930 931 /* Unmap SGEs of previously completed by unsignaled 932 * Sends by walking up the queue until @sc is found. 933 */ 934 next_tail = buf->rb_sc_tail; 935 do { 936 next_tail = rpcrdma_sendctx_next(buf, next_tail); 937 938 /* ORDER: item must be accessed _before_ tail is updated */ 939 rpcrdma_unmap_sendctx(buf->rb_sc_ctxs[next_tail]); 940 941 } while (buf->rb_sc_ctxs[next_tail] != sc); 942 943 /* Paired with READ_ONCE */ 944 smp_store_release(&buf->rb_sc_tail, next_tail); 945 946 if (test_and_clear_bit(RPCRDMA_BUF_F_EMPTY_SCQ, &buf->rb_flags)) { 947 smp_mb__after_atomic(); 948 xprt_write_space(&sc->sc_xprt->rx_xprt); 949 } 950 } 951 952 static void 953 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt) 954 { 955 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 956 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 957 unsigned int count; 958 LIST_HEAD(free); 959 LIST_HEAD(all); 960 961 for (count = 0; count < ia->ri_max_segs; count++) { 962 struct rpcrdma_mr *mr; 963 int rc; 964 965 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 966 if (!mr) 967 break; 968 969 rc = frwr_init_mr(ia, mr); 970 if (rc) { 971 kfree(mr); 972 break; 973 } 974 975 mr->mr_xprt = r_xprt; 976 977 list_add(&mr->mr_list, &free); 978 list_add(&mr->mr_all, &all); 979 } 980 981 spin_lock(&buf->rb_mrlock); 982 list_splice(&free, &buf->rb_mrs); 983 list_splice(&all, &buf->rb_all); 984 r_xprt->rx_stats.mrs_allocated += count; 985 spin_unlock(&buf->rb_mrlock); 986 trace_xprtrdma_createmrs(r_xprt, count); 987 988 xprt_write_space(&r_xprt->rx_xprt); 989 } 990 991 static void 992 rpcrdma_mr_refresh_worker(struct work_struct *work) 993 { 994 struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer, 995 rb_refresh_worker.work); 996 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, 997 rx_buf); 998 999 rpcrdma_mrs_create(r_xprt); 1000 } 1001 1002 struct rpcrdma_req * 1003 rpcrdma_create_req(struct rpcrdma_xprt *r_xprt) 1004 { 1005 struct rpcrdma_buffer *buffer = &r_xprt->rx_buf; 1006 struct rpcrdma_regbuf *rb; 1007 struct rpcrdma_req *req; 1008 1009 req = kzalloc(sizeof(*req), GFP_KERNEL); 1010 if (req == NULL) 1011 return ERR_PTR(-ENOMEM); 1012 1013 rb = rpcrdma_alloc_regbuf(RPCRDMA_HDRBUF_SIZE, 1014 DMA_TO_DEVICE, GFP_KERNEL); 1015 if (IS_ERR(rb)) { 1016 kfree(req); 1017 return ERR_PTR(-ENOMEM); 1018 } 1019 req->rl_rdmabuf = rb; 1020 xdr_buf_init(&req->rl_hdrbuf, rb->rg_base, rdmab_length(rb)); 1021 req->rl_buffer = buffer; 1022 INIT_LIST_HEAD(&req->rl_registered); 1023 1024 spin_lock(&buffer->rb_lock); 1025 list_add(&req->rl_all, &buffer->rb_allreqs); 1026 spin_unlock(&buffer->rb_lock); 1027 return req; 1028 } 1029 1030 static int 1031 rpcrdma_create_rep(struct rpcrdma_xprt *r_xprt, bool temp) 1032 { 1033 struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; 1034 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1035 struct rpcrdma_rep *rep; 1036 int rc; 1037 1038 rc = -ENOMEM; 1039 rep = kzalloc(sizeof(*rep), GFP_KERNEL); 1040 if (rep == NULL) 1041 goto out; 1042 1043 rep->rr_rdmabuf = rpcrdma_alloc_regbuf(cdata->inline_rsize, 1044 DMA_FROM_DEVICE, GFP_KERNEL); 1045 if (IS_ERR(rep->rr_rdmabuf)) { 1046 rc = PTR_ERR(rep->rr_rdmabuf); 1047 goto out_free; 1048 } 1049 xdr_buf_init(&rep->rr_hdrbuf, rep->rr_rdmabuf->rg_base, 1050 rdmab_length(rep->rr_rdmabuf)); 1051 1052 rep->rr_cqe.done = rpcrdma_wc_receive; 1053 rep->rr_rxprt = r_xprt; 1054 INIT_WORK(&rep->rr_work, rpcrdma_deferred_completion); 1055 rep->rr_recv_wr.next = NULL; 1056 rep->rr_recv_wr.wr_cqe = &rep->rr_cqe; 1057 rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov; 1058 rep->rr_recv_wr.num_sge = 1; 1059 rep->rr_temp = temp; 1060 1061 spin_lock(&buf->rb_lock); 1062 list_add(&rep->rr_list, &buf->rb_recv_bufs); 1063 spin_unlock(&buf->rb_lock); 1064 return 0; 1065 1066 out_free: 1067 kfree(rep); 1068 out: 1069 return rc; 1070 } 1071 1072 int 1073 rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt) 1074 { 1075 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1076 int i, rc; 1077 1078 buf->rb_flags = 0; 1079 buf->rb_max_requests = r_xprt->rx_data.max_requests; 1080 buf->rb_bc_srv_max_requests = 0; 1081 spin_lock_init(&buf->rb_mrlock); 1082 spin_lock_init(&buf->rb_lock); 1083 INIT_LIST_HEAD(&buf->rb_mrs); 1084 INIT_LIST_HEAD(&buf->rb_all); 1085 INIT_DELAYED_WORK(&buf->rb_refresh_worker, 1086 rpcrdma_mr_refresh_worker); 1087 1088 rpcrdma_mrs_create(r_xprt); 1089 1090 INIT_LIST_HEAD(&buf->rb_send_bufs); 1091 INIT_LIST_HEAD(&buf->rb_allreqs); 1092 for (i = 0; i < buf->rb_max_requests; i++) { 1093 struct rpcrdma_req *req; 1094 1095 req = rpcrdma_create_req(r_xprt); 1096 if (IS_ERR(req)) { 1097 dprintk("RPC: %s: request buffer %d alloc" 1098 " failed\n", __func__, i); 1099 rc = PTR_ERR(req); 1100 goto out; 1101 } 1102 list_add(&req->rl_list, &buf->rb_send_bufs); 1103 } 1104 1105 buf->rb_credits = 1; 1106 INIT_LIST_HEAD(&buf->rb_recv_bufs); 1107 1108 rc = rpcrdma_sendctxs_create(r_xprt); 1109 if (rc) 1110 goto out; 1111 1112 buf->rb_completion_wq = alloc_workqueue("rpcrdma-%s", 1113 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1114 0, 1115 r_xprt->rx_xprt.address_strings[RPC_DISPLAY_ADDR]); 1116 if (!buf->rb_completion_wq) 1117 goto out; 1118 1119 return 0; 1120 out: 1121 rpcrdma_buffer_destroy(buf); 1122 return rc; 1123 } 1124 1125 static void 1126 rpcrdma_destroy_rep(struct rpcrdma_rep *rep) 1127 { 1128 rpcrdma_free_regbuf(rep->rr_rdmabuf); 1129 kfree(rep); 1130 } 1131 1132 /** 1133 * rpcrdma_req_destroy - Destroy an rpcrdma_req object 1134 * @req: unused object to be destroyed 1135 * 1136 * This function assumes that the caller prevents concurrent device 1137 * unload and transport tear-down. 1138 */ 1139 void 1140 rpcrdma_req_destroy(struct rpcrdma_req *req) 1141 { 1142 list_del(&req->rl_all); 1143 1144 rpcrdma_free_regbuf(req->rl_recvbuf); 1145 rpcrdma_free_regbuf(req->rl_sendbuf); 1146 rpcrdma_free_regbuf(req->rl_rdmabuf); 1147 kfree(req); 1148 } 1149 1150 static void 1151 rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf) 1152 { 1153 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, 1154 rx_buf); 1155 struct rpcrdma_mr *mr; 1156 unsigned int count; 1157 1158 count = 0; 1159 spin_lock(&buf->rb_mrlock); 1160 while (!list_empty(&buf->rb_all)) { 1161 mr = list_entry(buf->rb_all.next, struct rpcrdma_mr, mr_all); 1162 list_del(&mr->mr_all); 1163 1164 spin_unlock(&buf->rb_mrlock); 1165 1166 /* Ensure MW is not on any rl_registered list */ 1167 if (!list_empty(&mr->mr_list)) 1168 list_del(&mr->mr_list); 1169 1170 frwr_release_mr(mr); 1171 count++; 1172 spin_lock(&buf->rb_mrlock); 1173 } 1174 spin_unlock(&buf->rb_mrlock); 1175 r_xprt->rx_stats.mrs_allocated = 0; 1176 1177 dprintk("RPC: %s: released %u MRs\n", __func__, count); 1178 } 1179 1180 /** 1181 * rpcrdma_buffer_destroy - Release all hw resources 1182 * @buf: root control block for resources 1183 * 1184 * ORDERING: relies on a prior ib_drain_qp : 1185 * - No more Send or Receive completions can occur 1186 * - All MRs, reps, and reqs are returned to their free lists 1187 */ 1188 void 1189 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf) 1190 { 1191 cancel_delayed_work_sync(&buf->rb_refresh_worker); 1192 1193 if (buf->rb_completion_wq) { 1194 destroy_workqueue(buf->rb_completion_wq); 1195 buf->rb_completion_wq = NULL; 1196 } 1197 1198 rpcrdma_sendctxs_destroy(buf); 1199 1200 while (!list_empty(&buf->rb_recv_bufs)) { 1201 struct rpcrdma_rep *rep; 1202 1203 rep = list_first_entry(&buf->rb_recv_bufs, 1204 struct rpcrdma_rep, rr_list); 1205 list_del(&rep->rr_list); 1206 rpcrdma_destroy_rep(rep); 1207 } 1208 1209 while (!list_empty(&buf->rb_send_bufs)) { 1210 struct rpcrdma_req *req; 1211 1212 req = list_first_entry(&buf->rb_send_bufs, 1213 struct rpcrdma_req, rl_list); 1214 list_del(&req->rl_list); 1215 rpcrdma_req_destroy(req); 1216 } 1217 1218 rpcrdma_mrs_destroy(buf); 1219 } 1220 1221 /** 1222 * rpcrdma_mr_get - Allocate an rpcrdma_mr object 1223 * @r_xprt: controlling transport 1224 * 1225 * Returns an initialized rpcrdma_mr or NULL if no free 1226 * rpcrdma_mr objects are available. 1227 */ 1228 struct rpcrdma_mr * 1229 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt) 1230 { 1231 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1232 struct rpcrdma_mr *mr = NULL; 1233 1234 spin_lock(&buf->rb_mrlock); 1235 if (!list_empty(&buf->rb_mrs)) 1236 mr = rpcrdma_mr_pop(&buf->rb_mrs); 1237 spin_unlock(&buf->rb_mrlock); 1238 1239 if (!mr) 1240 goto out_nomrs; 1241 return mr; 1242 1243 out_nomrs: 1244 trace_xprtrdma_nomrs(r_xprt); 1245 if (r_xprt->rx_ep.rep_connected != -ENODEV) 1246 schedule_delayed_work(&buf->rb_refresh_worker, 0); 1247 1248 /* Allow the reply handler and refresh worker to run */ 1249 cond_resched(); 1250 1251 return NULL; 1252 } 1253 1254 static void 1255 __rpcrdma_mr_put(struct rpcrdma_buffer *buf, struct rpcrdma_mr *mr) 1256 { 1257 spin_lock(&buf->rb_mrlock); 1258 rpcrdma_mr_push(mr, &buf->rb_mrs); 1259 spin_unlock(&buf->rb_mrlock); 1260 } 1261 1262 /** 1263 * rpcrdma_mr_put - Release an rpcrdma_mr object 1264 * @mr: object to release 1265 * 1266 */ 1267 void 1268 rpcrdma_mr_put(struct rpcrdma_mr *mr) 1269 { 1270 __rpcrdma_mr_put(&mr->mr_xprt->rx_buf, mr); 1271 } 1272 1273 /** 1274 * rpcrdma_mr_unmap_and_put - DMA unmap an MR and release it 1275 * @mr: object to release 1276 * 1277 */ 1278 void 1279 rpcrdma_mr_unmap_and_put(struct rpcrdma_mr *mr) 1280 { 1281 struct rpcrdma_xprt *r_xprt = mr->mr_xprt; 1282 1283 if (mr->mr_dir != DMA_NONE) { 1284 trace_xprtrdma_mr_unmap(mr); 1285 ib_dma_unmap_sg(r_xprt->rx_ia.ri_device, 1286 mr->mr_sg, mr->mr_nents, mr->mr_dir); 1287 mr->mr_dir = DMA_NONE; 1288 } 1289 __rpcrdma_mr_put(&r_xprt->rx_buf, mr); 1290 } 1291 1292 /** 1293 * rpcrdma_buffer_get - Get a request buffer 1294 * @buffers: Buffer pool from which to obtain a buffer 1295 * 1296 * Returns a fresh rpcrdma_req, or NULL if none are available. 1297 */ 1298 struct rpcrdma_req * 1299 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers) 1300 { 1301 struct rpcrdma_req *req; 1302 1303 spin_lock(&buffers->rb_lock); 1304 req = list_first_entry_or_null(&buffers->rb_send_bufs, 1305 struct rpcrdma_req, rl_list); 1306 if (req) 1307 list_del_init(&req->rl_list); 1308 spin_unlock(&buffers->rb_lock); 1309 return req; 1310 } 1311 1312 /** 1313 * rpcrdma_buffer_put - Put request/reply buffers back into pool 1314 * @req: object to return 1315 * 1316 */ 1317 void 1318 rpcrdma_buffer_put(struct rpcrdma_req *req) 1319 { 1320 struct rpcrdma_buffer *buffers = req->rl_buffer; 1321 struct rpcrdma_rep *rep = req->rl_reply; 1322 1323 req->rl_reply = NULL; 1324 1325 spin_lock(&buffers->rb_lock); 1326 list_add(&req->rl_list, &buffers->rb_send_bufs); 1327 if (rep) { 1328 if (!rep->rr_temp) { 1329 list_add(&rep->rr_list, &buffers->rb_recv_bufs); 1330 rep = NULL; 1331 } 1332 } 1333 spin_unlock(&buffers->rb_lock); 1334 if (rep) 1335 rpcrdma_destroy_rep(rep); 1336 } 1337 1338 /* 1339 * Put reply buffers back into pool when not attached to 1340 * request. This happens in error conditions. 1341 */ 1342 void 1343 rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep) 1344 { 1345 struct rpcrdma_buffer *buffers = &rep->rr_rxprt->rx_buf; 1346 1347 if (!rep->rr_temp) { 1348 spin_lock(&buffers->rb_lock); 1349 list_add(&rep->rr_list, &buffers->rb_recv_bufs); 1350 spin_unlock(&buffers->rb_lock); 1351 } else { 1352 rpcrdma_destroy_rep(rep); 1353 } 1354 } 1355 1356 /** 1357 * rpcrdma_alloc_regbuf - allocate and DMA-map memory for SEND/RECV buffers 1358 * @size: size of buffer to be allocated, in bytes 1359 * @direction: direction of data movement 1360 * @flags: GFP flags 1361 * 1362 * Returns an ERR_PTR, or a pointer to a regbuf, a buffer that 1363 * can be persistently DMA-mapped for I/O. 1364 * 1365 * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for 1366 * receiving the payload of RDMA RECV operations. During Long Calls 1367 * or Replies they may be registered externally via frwr_map. 1368 */ 1369 struct rpcrdma_regbuf * 1370 rpcrdma_alloc_regbuf(size_t size, enum dma_data_direction direction, 1371 gfp_t flags) 1372 { 1373 struct rpcrdma_regbuf *rb; 1374 1375 rb = kmalloc(sizeof(*rb) + size, flags); 1376 if (rb == NULL) 1377 return ERR_PTR(-ENOMEM); 1378 1379 rb->rg_device = NULL; 1380 rb->rg_direction = direction; 1381 rb->rg_iov.length = size; 1382 1383 return rb; 1384 } 1385 1386 /** 1387 * __rpcrdma_map_regbuf - DMA-map a regbuf 1388 * @ia: controlling rpcrdma_ia 1389 * @rb: regbuf to be mapped 1390 */ 1391 bool 1392 __rpcrdma_dma_map_regbuf(struct rpcrdma_ia *ia, struct rpcrdma_regbuf *rb) 1393 { 1394 struct ib_device *device = ia->ri_device; 1395 1396 if (rb->rg_direction == DMA_NONE) 1397 return false; 1398 1399 rb->rg_iov.addr = ib_dma_map_single(device, 1400 (void *)rb->rg_base, 1401 rdmab_length(rb), 1402 rb->rg_direction); 1403 if (ib_dma_mapping_error(device, rdmab_addr(rb))) { 1404 trace_xprtrdma_dma_maperr(rdmab_addr(rb)); 1405 return false; 1406 } 1407 1408 rb->rg_device = device; 1409 rb->rg_iov.lkey = ia->ri_pd->local_dma_lkey; 1410 return true; 1411 } 1412 1413 static void 1414 rpcrdma_dma_unmap_regbuf(struct rpcrdma_regbuf *rb) 1415 { 1416 if (!rb) 1417 return; 1418 1419 if (!rpcrdma_regbuf_is_mapped(rb)) 1420 return; 1421 1422 ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), 1423 rdmab_length(rb), rb->rg_direction); 1424 rb->rg_device = NULL; 1425 } 1426 1427 /** 1428 * rpcrdma_free_regbuf - deregister and free registered buffer 1429 * @rb: regbuf to be deregistered and freed 1430 */ 1431 void 1432 rpcrdma_free_regbuf(struct rpcrdma_regbuf *rb) 1433 { 1434 rpcrdma_dma_unmap_regbuf(rb); 1435 kfree(rb); 1436 } 1437 1438 /** 1439 * rpcrdma_ep_post - Post WRs to a transport's Send Queue 1440 * @ia: transport's device information 1441 * @ep: transport's RDMA endpoint information 1442 * @req: rpcrdma_req containing the Send WR to post 1443 * 1444 * Returns 0 if the post was successful, otherwise -ENOTCONN 1445 * is returned. 1446 */ 1447 int 1448 rpcrdma_ep_post(struct rpcrdma_ia *ia, 1449 struct rpcrdma_ep *ep, 1450 struct rpcrdma_req *req) 1451 { 1452 struct ib_send_wr *send_wr = &req->rl_sendctx->sc_wr; 1453 int rc; 1454 1455 if (!ep->rep_send_count || 1456 test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) { 1457 send_wr->send_flags |= IB_SEND_SIGNALED; 1458 ep->rep_send_count = ep->rep_send_batch; 1459 } else { 1460 send_wr->send_flags &= ~IB_SEND_SIGNALED; 1461 --ep->rep_send_count; 1462 } 1463 1464 rc = frwr_send(ia, req); 1465 trace_xprtrdma_post_send(req, rc); 1466 if (rc) 1467 return -ENOTCONN; 1468 return 0; 1469 } 1470 1471 static void 1472 rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp) 1473 { 1474 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1475 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 1476 struct ib_recv_wr *wr, *bad_wr; 1477 int needed, count, rc; 1478 1479 rc = 0; 1480 count = 0; 1481 needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1); 1482 if (ep->rep_receive_count > needed) 1483 goto out; 1484 needed -= ep->rep_receive_count; 1485 1486 count = 0; 1487 wr = NULL; 1488 while (needed) { 1489 struct rpcrdma_regbuf *rb; 1490 struct rpcrdma_rep *rep; 1491 1492 spin_lock(&buf->rb_lock); 1493 rep = list_first_entry_or_null(&buf->rb_recv_bufs, 1494 struct rpcrdma_rep, rr_list); 1495 if (likely(rep)) 1496 list_del(&rep->rr_list); 1497 spin_unlock(&buf->rb_lock); 1498 if (!rep) { 1499 if (rpcrdma_create_rep(r_xprt, temp)) 1500 break; 1501 continue; 1502 } 1503 1504 rb = rep->rr_rdmabuf; 1505 if (!rpcrdma_regbuf_is_mapped(rb)) { 1506 if (!__rpcrdma_dma_map_regbuf(&r_xprt->rx_ia, rb)) { 1507 rpcrdma_recv_buffer_put(rep); 1508 break; 1509 } 1510 } 1511 1512 trace_xprtrdma_post_recv(rep->rr_recv_wr.wr_cqe); 1513 rep->rr_recv_wr.next = wr; 1514 wr = &rep->rr_recv_wr; 1515 ++count; 1516 --needed; 1517 } 1518 if (!count) 1519 goto out; 1520 1521 rc = ib_post_recv(r_xprt->rx_ia.ri_id->qp, wr, 1522 (const struct ib_recv_wr **)&bad_wr); 1523 if (rc) { 1524 for (wr = bad_wr; wr; wr = wr->next) { 1525 struct rpcrdma_rep *rep; 1526 1527 rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr); 1528 rpcrdma_recv_buffer_put(rep); 1529 --count; 1530 } 1531 } 1532 ep->rep_receive_count += count; 1533 out: 1534 trace_xprtrdma_post_recvs(r_xprt, count, rc); 1535 } 1536