1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (c) 2014-2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the BSD-type 10 * license below: 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 19 * Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials provided 22 * with the distribution. 23 * 24 * Neither the name of the Network Appliance, Inc. nor the names of 25 * its contributors may be used to endorse or promote products 26 * derived from this software without specific prior written 27 * permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42 /* 43 * verbs.c 44 * 45 * Encapsulates the major functions managing: 46 * o adapters 47 * o endpoints 48 * o connections 49 * o buffer memory 50 */ 51 52 #include <linux/interrupt.h> 53 #include <linux/slab.h> 54 #include <linux/sunrpc/addr.h> 55 #include <linux/sunrpc/svc_rdma.h> 56 57 #include <asm-generic/barrier.h> 58 #include <asm/bitops.h> 59 60 #include <rdma/ib_cm.h> 61 62 #include "xprt_rdma.h" 63 #include <trace/events/rpcrdma.h> 64 65 /* 66 * Globals/Macros 67 */ 68 69 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 70 # define RPCDBG_FACILITY RPCDBG_TRANS 71 #endif 72 73 /* 74 * internal functions 75 */ 76 static void rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc); 77 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt); 78 static void rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf); 79 static struct rpcrdma_regbuf * 80 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction, 81 gfp_t flags); 82 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb); 83 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb); 84 static void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp); 85 86 /* Wait for outstanding transport work to finish. ib_drain_qp 87 * handles the drains in the wrong order for us, so open code 88 * them here. 89 */ 90 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt) 91 { 92 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 93 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 94 95 /* Flush Receives, then wait for deferred Reply work 96 * to complete. 97 */ 98 ib_drain_rq(ia->ri_id->qp); 99 drain_workqueue(buf->rb_completion_wq); 100 101 /* Deferred Reply processing might have scheduled 102 * local invalidations. 103 */ 104 ib_drain_sq(ia->ri_id->qp); 105 } 106 107 /** 108 * rpcrdma_qp_event_handler - Handle one QP event (error notification) 109 * @event: details of the event 110 * @context: ep that owns QP where event occurred 111 * 112 * Called from the RDMA provider (device driver) possibly in an interrupt 113 * context. 114 */ 115 static void 116 rpcrdma_qp_event_handler(struct ib_event *event, void *context) 117 { 118 struct rpcrdma_ep *ep = context; 119 struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt, 120 rx_ep); 121 122 trace_xprtrdma_qp_event(r_xprt, event); 123 } 124 125 /** 126 * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC 127 * @cq: completion queue (ignored) 128 * @wc: completed WR 129 * 130 */ 131 static void 132 rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc) 133 { 134 struct ib_cqe *cqe = wc->wr_cqe; 135 struct rpcrdma_sendctx *sc = 136 container_of(cqe, struct rpcrdma_sendctx, sc_cqe); 137 138 /* WARNING: Only wr_cqe and status are reliable at this point */ 139 trace_xprtrdma_wc_send(sc, wc); 140 rpcrdma_sendctx_put_locked(sc); 141 } 142 143 /** 144 * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC 145 * @cq: completion queue (ignored) 146 * @wc: completed WR 147 * 148 */ 149 static void 150 rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc) 151 { 152 struct ib_cqe *cqe = wc->wr_cqe; 153 struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep, 154 rr_cqe); 155 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; 156 157 /* WARNING: Only wr_cqe and status are reliable at this point */ 158 trace_xprtrdma_wc_receive(wc); 159 --r_xprt->rx_ep.rep_receive_count; 160 if (wc->status != IB_WC_SUCCESS) 161 goto out_flushed; 162 163 /* status == SUCCESS means all fields in wc are trustworthy */ 164 rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len); 165 rep->rr_wc_flags = wc->wc_flags; 166 rep->rr_inv_rkey = wc->ex.invalidate_rkey; 167 168 ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf), 169 rdmab_addr(rep->rr_rdmabuf), 170 wc->byte_len, DMA_FROM_DEVICE); 171 172 rpcrdma_post_recvs(r_xprt, false); 173 rpcrdma_reply_handler(rep); 174 return; 175 176 out_flushed: 177 rpcrdma_recv_buffer_put(rep); 178 } 179 180 static void 181 rpcrdma_update_connect_private(struct rpcrdma_xprt *r_xprt, 182 struct rdma_conn_param *param) 183 { 184 const struct rpcrdma_connect_private *pmsg = param->private_data; 185 unsigned int rsize, wsize; 186 187 /* Default settings for RPC-over-RDMA Version One */ 188 r_xprt->rx_ia.ri_implicit_roundup = xprt_rdma_pad_optimize; 189 rsize = RPCRDMA_V1_DEF_INLINE_SIZE; 190 wsize = RPCRDMA_V1_DEF_INLINE_SIZE; 191 192 if (pmsg && 193 pmsg->cp_magic == rpcrdma_cmp_magic && 194 pmsg->cp_version == RPCRDMA_CMP_VERSION) { 195 r_xprt->rx_ia.ri_implicit_roundup = true; 196 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size); 197 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size); 198 } 199 200 if (rsize < r_xprt->rx_ep.rep_inline_recv) 201 r_xprt->rx_ep.rep_inline_recv = rsize; 202 if (wsize < r_xprt->rx_ep.rep_inline_send) 203 r_xprt->rx_ep.rep_inline_send = wsize; 204 dprintk("RPC: %s: max send %u, max recv %u\n", __func__, 205 r_xprt->rx_ep.rep_inline_send, 206 r_xprt->rx_ep.rep_inline_recv); 207 rpcrdma_set_max_header_sizes(r_xprt); 208 } 209 210 /** 211 * rpcrdma_cm_event_handler - Handle RDMA CM events 212 * @id: rdma_cm_id on which an event has occurred 213 * @event: details of the event 214 * 215 * Called with @id's mutex held. Returns 1 if caller should 216 * destroy @id, otherwise 0. 217 */ 218 static int 219 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event) 220 { 221 struct rpcrdma_xprt *r_xprt = id->context; 222 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 223 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 224 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 225 226 might_sleep(); 227 228 trace_xprtrdma_cm_event(r_xprt, event); 229 switch (event->event) { 230 case RDMA_CM_EVENT_ADDR_RESOLVED: 231 case RDMA_CM_EVENT_ROUTE_RESOLVED: 232 ia->ri_async_rc = 0; 233 complete(&ia->ri_done); 234 return 0; 235 case RDMA_CM_EVENT_ADDR_ERROR: 236 ia->ri_async_rc = -EPROTO; 237 complete(&ia->ri_done); 238 return 0; 239 case RDMA_CM_EVENT_ROUTE_ERROR: 240 ia->ri_async_rc = -ENETUNREACH; 241 complete(&ia->ri_done); 242 return 0; 243 case RDMA_CM_EVENT_DEVICE_REMOVAL: 244 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 245 pr_info("rpcrdma: removing device %s for %s:%s\n", 246 ia->ri_id->device->name, 247 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt)); 248 #endif 249 set_bit(RPCRDMA_IAF_REMOVING, &ia->ri_flags); 250 ep->rep_connected = -ENODEV; 251 xprt_force_disconnect(xprt); 252 wait_for_completion(&ia->ri_remove_done); 253 254 ia->ri_id = NULL; 255 /* Return 1 to ensure the core destroys the id. */ 256 return 1; 257 case RDMA_CM_EVENT_ESTABLISHED: 258 ++xprt->connect_cookie; 259 ep->rep_connected = 1; 260 rpcrdma_update_connect_private(r_xprt, &event->param.conn); 261 wake_up_all(&ep->rep_connect_wait); 262 break; 263 case RDMA_CM_EVENT_CONNECT_ERROR: 264 ep->rep_connected = -ENOTCONN; 265 goto disconnected; 266 case RDMA_CM_EVENT_UNREACHABLE: 267 ep->rep_connected = -ENETUNREACH; 268 goto disconnected; 269 case RDMA_CM_EVENT_REJECTED: 270 dprintk("rpcrdma: connection to %s:%s rejected: %s\n", 271 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt), 272 rdma_reject_msg(id, event->status)); 273 ep->rep_connected = -ECONNREFUSED; 274 if (event->status == IB_CM_REJ_STALE_CONN) 275 ep->rep_connected = -EAGAIN; 276 goto disconnected; 277 case RDMA_CM_EVENT_DISCONNECTED: 278 ep->rep_connected = -ECONNABORTED; 279 disconnected: 280 xprt_force_disconnect(xprt); 281 wake_up_all(&ep->rep_connect_wait); 282 break; 283 default: 284 break; 285 } 286 287 dprintk("RPC: %s: %s:%s on %s/frwr: %s\n", __func__, 288 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt), 289 ia->ri_id->device->name, rdma_event_msg(event->event)); 290 return 0; 291 } 292 293 static struct rdma_cm_id * 294 rpcrdma_create_id(struct rpcrdma_xprt *xprt, struct rpcrdma_ia *ia) 295 { 296 unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1; 297 struct rdma_cm_id *id; 298 int rc; 299 300 trace_xprtrdma_conn_start(xprt); 301 302 init_completion(&ia->ri_done); 303 init_completion(&ia->ri_remove_done); 304 305 id = rdma_create_id(xprt->rx_xprt.xprt_net, rpcrdma_cm_event_handler, 306 xprt, RDMA_PS_TCP, IB_QPT_RC); 307 if (IS_ERR(id)) 308 return id; 309 310 ia->ri_async_rc = -ETIMEDOUT; 311 rc = rdma_resolve_addr(id, NULL, 312 (struct sockaddr *)&xprt->rx_xprt.addr, 313 RDMA_RESOLVE_TIMEOUT); 314 if (rc) 315 goto out; 316 rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout); 317 if (rc < 0) { 318 trace_xprtrdma_conn_tout(xprt); 319 goto out; 320 } 321 322 rc = ia->ri_async_rc; 323 if (rc) 324 goto out; 325 326 ia->ri_async_rc = -ETIMEDOUT; 327 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); 328 if (rc) 329 goto out; 330 rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout); 331 if (rc < 0) { 332 trace_xprtrdma_conn_tout(xprt); 333 goto out; 334 } 335 rc = ia->ri_async_rc; 336 if (rc) 337 goto out; 338 339 return id; 340 341 out: 342 rdma_destroy_id(id); 343 return ERR_PTR(rc); 344 } 345 346 /* 347 * Exported functions. 348 */ 349 350 /** 351 * rpcrdma_ia_open - Open and initialize an Interface Adapter. 352 * @xprt: transport with IA to (re)initialize 353 * 354 * Returns 0 on success, negative errno if an appropriate 355 * Interface Adapter could not be found and opened. 356 */ 357 int 358 rpcrdma_ia_open(struct rpcrdma_xprt *xprt) 359 { 360 struct rpcrdma_ia *ia = &xprt->rx_ia; 361 int rc; 362 363 ia->ri_id = rpcrdma_create_id(xprt, ia); 364 if (IS_ERR(ia->ri_id)) { 365 rc = PTR_ERR(ia->ri_id); 366 goto out_err; 367 } 368 369 ia->ri_pd = ib_alloc_pd(ia->ri_id->device, 0); 370 if (IS_ERR(ia->ri_pd)) { 371 rc = PTR_ERR(ia->ri_pd); 372 pr_err("rpcrdma: ib_alloc_pd() returned %d\n", rc); 373 goto out_err; 374 } 375 376 switch (xprt_rdma_memreg_strategy) { 377 case RPCRDMA_FRWR: 378 if (frwr_is_supported(ia->ri_id->device)) 379 break; 380 /*FALLTHROUGH*/ 381 default: 382 pr_err("rpcrdma: Device %s does not support memreg mode %d\n", 383 ia->ri_id->device->name, xprt_rdma_memreg_strategy); 384 rc = -EINVAL; 385 goto out_err; 386 } 387 388 return 0; 389 390 out_err: 391 rpcrdma_ia_close(ia); 392 return rc; 393 } 394 395 /** 396 * rpcrdma_ia_remove - Handle device driver unload 397 * @ia: interface adapter being removed 398 * 399 * Divest transport H/W resources associated with this adapter, 400 * but allow it to be restored later. 401 */ 402 void 403 rpcrdma_ia_remove(struct rpcrdma_ia *ia) 404 { 405 struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt, 406 rx_ia); 407 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 408 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 409 struct rpcrdma_req *req; 410 struct rpcrdma_rep *rep; 411 412 cancel_delayed_work_sync(&buf->rb_refresh_worker); 413 414 /* This is similar to rpcrdma_ep_destroy, but: 415 * - Don't cancel the connect worker. 416 * - Don't call rpcrdma_ep_disconnect, which waits 417 * for another conn upcall, which will deadlock. 418 * - rdma_disconnect is unneeded, the underlying 419 * connection is already gone. 420 */ 421 if (ia->ri_id->qp) { 422 rpcrdma_xprt_drain(r_xprt); 423 rdma_destroy_qp(ia->ri_id); 424 ia->ri_id->qp = NULL; 425 } 426 ib_free_cq(ep->rep_attr.recv_cq); 427 ep->rep_attr.recv_cq = NULL; 428 ib_free_cq(ep->rep_attr.send_cq); 429 ep->rep_attr.send_cq = NULL; 430 431 /* The ULP is responsible for ensuring all DMA 432 * mappings and MRs are gone. 433 */ 434 list_for_each_entry(rep, &buf->rb_recv_bufs, rr_list) 435 rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf); 436 list_for_each_entry(req, &buf->rb_allreqs, rl_all) { 437 rpcrdma_regbuf_dma_unmap(req->rl_rdmabuf); 438 rpcrdma_regbuf_dma_unmap(req->rl_sendbuf); 439 rpcrdma_regbuf_dma_unmap(req->rl_recvbuf); 440 } 441 rpcrdma_mrs_destroy(buf); 442 ib_dealloc_pd(ia->ri_pd); 443 ia->ri_pd = NULL; 444 445 /* Allow waiters to continue */ 446 complete(&ia->ri_remove_done); 447 448 trace_xprtrdma_remove(r_xprt); 449 } 450 451 /** 452 * rpcrdma_ia_close - Clean up/close an IA. 453 * @ia: interface adapter to close 454 * 455 */ 456 void 457 rpcrdma_ia_close(struct rpcrdma_ia *ia) 458 { 459 if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) { 460 if (ia->ri_id->qp) 461 rdma_destroy_qp(ia->ri_id); 462 rdma_destroy_id(ia->ri_id); 463 } 464 ia->ri_id = NULL; 465 466 /* If the pd is still busy, xprtrdma missed freeing a resource */ 467 if (ia->ri_pd && !IS_ERR(ia->ri_pd)) 468 ib_dealloc_pd(ia->ri_pd); 469 ia->ri_pd = NULL; 470 } 471 472 /** 473 * rpcrdma_ep_create - Create unconnected endpoint 474 * @r_xprt: transport to instantiate 475 * 476 * Returns zero on success, or a negative errno. 477 */ 478 int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt) 479 { 480 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 481 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 482 struct rpcrdma_connect_private *pmsg = &ep->rep_cm_private; 483 struct ib_cq *sendcq, *recvcq; 484 unsigned int max_sge; 485 int rc; 486 487 ep->rep_max_requests = xprt_rdma_slot_table_entries; 488 ep->rep_inline_send = xprt_rdma_max_inline_write; 489 ep->rep_inline_recv = xprt_rdma_max_inline_read; 490 491 max_sge = min_t(unsigned int, ia->ri_id->device->attrs.max_send_sge, 492 RPCRDMA_MAX_SEND_SGES); 493 if (max_sge < RPCRDMA_MIN_SEND_SGES) { 494 pr_warn("rpcrdma: HCA provides only %d send SGEs\n", max_sge); 495 return -ENOMEM; 496 } 497 ia->ri_max_send_sges = max_sge; 498 499 rc = frwr_open(ia, ep); 500 if (rc) 501 return rc; 502 503 ep->rep_attr.event_handler = rpcrdma_qp_event_handler; 504 ep->rep_attr.qp_context = ep; 505 ep->rep_attr.srq = NULL; 506 ep->rep_attr.cap.max_send_sge = max_sge; 507 ep->rep_attr.cap.max_recv_sge = 1; 508 ep->rep_attr.cap.max_inline_data = 0; 509 ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 510 ep->rep_attr.qp_type = IB_QPT_RC; 511 ep->rep_attr.port_num = ~0; 512 513 dprintk("RPC: %s: requested max: dtos: send %d recv %d; " 514 "iovs: send %d recv %d\n", 515 __func__, 516 ep->rep_attr.cap.max_send_wr, 517 ep->rep_attr.cap.max_recv_wr, 518 ep->rep_attr.cap.max_send_sge, 519 ep->rep_attr.cap.max_recv_sge); 520 521 ep->rep_send_batch = ep->rep_max_requests >> 3; 522 ep->rep_send_count = ep->rep_send_batch; 523 init_waitqueue_head(&ep->rep_connect_wait); 524 ep->rep_receive_count = 0; 525 526 sendcq = ib_alloc_cq(ia->ri_id->device, NULL, 527 ep->rep_attr.cap.max_send_wr + 1, 528 ia->ri_id->device->num_comp_vectors > 1 ? 1 : 0, 529 IB_POLL_WORKQUEUE); 530 if (IS_ERR(sendcq)) { 531 rc = PTR_ERR(sendcq); 532 goto out1; 533 } 534 535 recvcq = ib_alloc_cq(ia->ri_id->device, NULL, 536 ep->rep_attr.cap.max_recv_wr + 1, 537 0, IB_POLL_WORKQUEUE); 538 if (IS_ERR(recvcq)) { 539 rc = PTR_ERR(recvcq); 540 goto out2; 541 } 542 543 ep->rep_attr.send_cq = sendcq; 544 ep->rep_attr.recv_cq = recvcq; 545 546 /* Initialize cma parameters */ 547 memset(&ep->rep_remote_cma, 0, sizeof(ep->rep_remote_cma)); 548 549 /* Prepare RDMA-CM private message */ 550 pmsg->cp_magic = rpcrdma_cmp_magic; 551 pmsg->cp_version = RPCRDMA_CMP_VERSION; 552 pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK; 553 pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->rep_inline_send); 554 pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->rep_inline_recv); 555 ep->rep_remote_cma.private_data = pmsg; 556 ep->rep_remote_cma.private_data_len = sizeof(*pmsg); 557 558 /* Client offers RDMA Read but does not initiate */ 559 ep->rep_remote_cma.initiator_depth = 0; 560 ep->rep_remote_cma.responder_resources = 561 min_t(int, U8_MAX, ia->ri_id->device->attrs.max_qp_rd_atom); 562 563 /* Limit transport retries so client can detect server 564 * GID changes quickly. RPC layer handles re-establishing 565 * transport connection and retransmission. 566 */ 567 ep->rep_remote_cma.retry_count = 6; 568 569 /* RPC-over-RDMA handles its own flow control. In addition, 570 * make all RNR NAKs visible so we know that RPC-over-RDMA 571 * flow control is working correctly (no NAKs should be seen). 572 */ 573 ep->rep_remote_cma.flow_control = 0; 574 ep->rep_remote_cma.rnr_retry_count = 0; 575 576 return 0; 577 578 out2: 579 ib_free_cq(sendcq); 580 out1: 581 return rc; 582 } 583 584 /** 585 * rpcrdma_ep_destroy - Disconnect and destroy endpoint. 586 * @r_xprt: transport instance to shut down 587 * 588 */ 589 void rpcrdma_ep_destroy(struct rpcrdma_xprt *r_xprt) 590 { 591 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 592 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 593 594 if (ia->ri_id && ia->ri_id->qp) { 595 rpcrdma_ep_disconnect(ep, ia); 596 rdma_destroy_qp(ia->ri_id); 597 ia->ri_id->qp = NULL; 598 } 599 600 if (ep->rep_attr.recv_cq) 601 ib_free_cq(ep->rep_attr.recv_cq); 602 if (ep->rep_attr.send_cq) 603 ib_free_cq(ep->rep_attr.send_cq); 604 } 605 606 /* Re-establish a connection after a device removal event. 607 * Unlike a normal reconnection, a fresh PD and a new set 608 * of MRs and buffers is needed. 609 */ 610 static int 611 rpcrdma_ep_recreate_xprt(struct rpcrdma_xprt *r_xprt, 612 struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 613 { 614 int rc, err; 615 616 trace_xprtrdma_reinsert(r_xprt); 617 618 rc = -EHOSTUNREACH; 619 if (rpcrdma_ia_open(r_xprt)) 620 goto out1; 621 622 rc = -ENOMEM; 623 err = rpcrdma_ep_create(r_xprt); 624 if (err) { 625 pr_err("rpcrdma: rpcrdma_ep_create returned %d\n", err); 626 goto out2; 627 } 628 629 rc = -ENETUNREACH; 630 err = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr); 631 if (err) { 632 pr_err("rpcrdma: rdma_create_qp returned %d\n", err); 633 goto out3; 634 } 635 636 rpcrdma_mrs_create(r_xprt); 637 return 0; 638 639 out3: 640 rpcrdma_ep_destroy(r_xprt); 641 out2: 642 rpcrdma_ia_close(ia); 643 out1: 644 return rc; 645 } 646 647 static int 648 rpcrdma_ep_reconnect(struct rpcrdma_xprt *r_xprt, struct rpcrdma_ep *ep, 649 struct rpcrdma_ia *ia) 650 { 651 struct rdma_cm_id *id, *old; 652 int err, rc; 653 654 trace_xprtrdma_reconnect(r_xprt); 655 656 rpcrdma_ep_disconnect(ep, ia); 657 658 rc = -EHOSTUNREACH; 659 id = rpcrdma_create_id(r_xprt, ia); 660 if (IS_ERR(id)) 661 goto out; 662 663 /* As long as the new ID points to the same device as the 664 * old ID, we can reuse the transport's existing PD and all 665 * previously allocated MRs. Also, the same device means 666 * the transport's previous DMA mappings are still valid. 667 * 668 * This is a sanity check only. There should be no way these 669 * point to two different devices here. 670 */ 671 old = id; 672 rc = -ENETUNREACH; 673 if (ia->ri_id->device != id->device) { 674 pr_err("rpcrdma: can't reconnect on different device!\n"); 675 goto out_destroy; 676 } 677 678 err = rdma_create_qp(id, ia->ri_pd, &ep->rep_attr); 679 if (err) 680 goto out_destroy; 681 682 /* Atomically replace the transport's ID and QP. */ 683 rc = 0; 684 old = ia->ri_id; 685 ia->ri_id = id; 686 rdma_destroy_qp(old); 687 688 out_destroy: 689 rdma_destroy_id(old); 690 out: 691 return rc; 692 } 693 694 /* 695 * Connect unconnected endpoint. 696 */ 697 int 698 rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 699 { 700 struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt, 701 rx_ia); 702 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 703 int rc; 704 705 retry: 706 switch (ep->rep_connected) { 707 case 0: 708 dprintk("RPC: %s: connecting...\n", __func__); 709 rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr); 710 if (rc) { 711 rc = -ENETUNREACH; 712 goto out_noupdate; 713 } 714 break; 715 case -ENODEV: 716 rc = rpcrdma_ep_recreate_xprt(r_xprt, ep, ia); 717 if (rc) 718 goto out_noupdate; 719 break; 720 default: 721 rc = rpcrdma_ep_reconnect(r_xprt, ep, ia); 722 if (rc) 723 goto out; 724 } 725 726 ep->rep_connected = 0; 727 xprt_clear_connected(xprt); 728 729 rpcrdma_post_recvs(r_xprt, true); 730 731 rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma); 732 if (rc) 733 goto out; 734 735 wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0); 736 if (ep->rep_connected <= 0) { 737 if (ep->rep_connected == -EAGAIN) 738 goto retry; 739 rc = ep->rep_connected; 740 goto out; 741 } 742 743 dprintk("RPC: %s: connected\n", __func__); 744 745 out: 746 if (rc) 747 ep->rep_connected = rc; 748 749 out_noupdate: 750 return rc; 751 } 752 753 /** 754 * rpcrdma_ep_disconnect - Disconnect underlying transport 755 * @ep: endpoint to disconnect 756 * @ia: associated interface adapter 757 * 758 * This is separate from destroy to facilitate the ability 759 * to reconnect without recreating the endpoint. 760 * 761 * This call is not reentrant, and must not be made in parallel 762 * on the same endpoint. 763 */ 764 void 765 rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 766 { 767 struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt, 768 rx_ep); 769 int rc; 770 771 /* returns without wait if ID is not connected */ 772 rc = rdma_disconnect(ia->ri_id); 773 if (!rc) 774 wait_event_interruptible(ep->rep_connect_wait, 775 ep->rep_connected != 1); 776 else 777 ep->rep_connected = rc; 778 trace_xprtrdma_disconnect(r_xprt, rc); 779 780 rpcrdma_xprt_drain(r_xprt); 781 } 782 783 /* Fixed-size circular FIFO queue. This implementation is wait-free and 784 * lock-free. 785 * 786 * Consumer is the code path that posts Sends. This path dequeues a 787 * sendctx for use by a Send operation. Multiple consumer threads 788 * are serialized by the RPC transport lock, which allows only one 789 * ->send_request call at a time. 790 * 791 * Producer is the code path that handles Send completions. This path 792 * enqueues a sendctx that has been completed. Multiple producer 793 * threads are serialized by the ib_poll_cq() function. 794 */ 795 796 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced 797 * queue activity, and rpcrdma_xprt_drain has flushed all remaining 798 * Send requests. 799 */ 800 static void rpcrdma_sendctxs_destroy(struct rpcrdma_buffer *buf) 801 { 802 unsigned long i; 803 804 for (i = 0; i <= buf->rb_sc_last; i++) 805 kfree(buf->rb_sc_ctxs[i]); 806 kfree(buf->rb_sc_ctxs); 807 } 808 809 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ia *ia) 810 { 811 struct rpcrdma_sendctx *sc; 812 813 sc = kzalloc(sizeof(*sc) + 814 ia->ri_max_send_sges * sizeof(struct ib_sge), 815 GFP_KERNEL); 816 if (!sc) 817 return NULL; 818 819 sc->sc_wr.wr_cqe = &sc->sc_cqe; 820 sc->sc_wr.sg_list = sc->sc_sges; 821 sc->sc_wr.opcode = IB_WR_SEND; 822 sc->sc_cqe.done = rpcrdma_wc_send; 823 return sc; 824 } 825 826 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt) 827 { 828 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 829 struct rpcrdma_sendctx *sc; 830 unsigned long i; 831 832 /* Maximum number of concurrent outstanding Send WRs. Capping 833 * the circular queue size stops Send Queue overflow by causing 834 * the ->send_request call to fail temporarily before too many 835 * Sends are posted. 836 */ 837 i = buf->rb_max_requests + RPCRDMA_MAX_BC_REQUESTS; 838 dprintk("RPC: %s: allocating %lu send_ctxs\n", __func__, i); 839 buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL); 840 if (!buf->rb_sc_ctxs) 841 return -ENOMEM; 842 843 buf->rb_sc_last = i - 1; 844 for (i = 0; i <= buf->rb_sc_last; i++) { 845 sc = rpcrdma_sendctx_create(&r_xprt->rx_ia); 846 if (!sc) 847 return -ENOMEM; 848 849 sc->sc_xprt = r_xprt; 850 buf->rb_sc_ctxs[i] = sc; 851 } 852 853 return 0; 854 } 855 856 /* The sendctx queue is not guaranteed to have a size that is a 857 * power of two, thus the helpers in circ_buf.h cannot be used. 858 * The other option is to use modulus (%), which can be expensive. 859 */ 860 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf, 861 unsigned long item) 862 { 863 return likely(item < buf->rb_sc_last) ? item + 1 : 0; 864 } 865 866 /** 867 * rpcrdma_sendctx_get_locked - Acquire a send context 868 * @r_xprt: controlling transport instance 869 * 870 * Returns pointer to a free send completion context; or NULL if 871 * the queue is empty. 872 * 873 * Usage: Called to acquire an SGE array before preparing a Send WR. 874 * 875 * The caller serializes calls to this function (per transport), and 876 * provides an effective memory barrier that flushes the new value 877 * of rb_sc_head. 878 */ 879 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt) 880 { 881 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 882 struct rpcrdma_sendctx *sc; 883 unsigned long next_head; 884 885 next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head); 886 887 if (next_head == READ_ONCE(buf->rb_sc_tail)) 888 goto out_emptyq; 889 890 /* ORDER: item must be accessed _before_ head is updated */ 891 sc = buf->rb_sc_ctxs[next_head]; 892 893 /* Releasing the lock in the caller acts as a memory 894 * barrier that flushes rb_sc_head. 895 */ 896 buf->rb_sc_head = next_head; 897 898 return sc; 899 900 out_emptyq: 901 /* The queue is "empty" if there have not been enough Send 902 * completions recently. This is a sign the Send Queue is 903 * backing up. Cause the caller to pause and try again. 904 */ 905 set_bit(RPCRDMA_BUF_F_EMPTY_SCQ, &buf->rb_flags); 906 r_xprt->rx_stats.empty_sendctx_q++; 907 return NULL; 908 } 909 910 /** 911 * rpcrdma_sendctx_put_locked - Release a send context 912 * @sc: send context to release 913 * 914 * Usage: Called from Send completion to return a sendctxt 915 * to the queue. 916 * 917 * The caller serializes calls to this function (per transport). 918 */ 919 static void 920 rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc) 921 { 922 struct rpcrdma_buffer *buf = &sc->sc_xprt->rx_buf; 923 unsigned long next_tail; 924 925 /* Unmap SGEs of previously completed but unsignaled 926 * Sends by walking up the queue until @sc is found. 927 */ 928 next_tail = buf->rb_sc_tail; 929 do { 930 next_tail = rpcrdma_sendctx_next(buf, next_tail); 931 932 /* ORDER: item must be accessed _before_ tail is updated */ 933 rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]); 934 935 } while (buf->rb_sc_ctxs[next_tail] != sc); 936 937 /* Paired with READ_ONCE */ 938 smp_store_release(&buf->rb_sc_tail, next_tail); 939 940 if (test_and_clear_bit(RPCRDMA_BUF_F_EMPTY_SCQ, &buf->rb_flags)) { 941 smp_mb__after_atomic(); 942 xprt_write_space(&sc->sc_xprt->rx_xprt); 943 } 944 } 945 946 static void 947 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt) 948 { 949 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 950 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 951 unsigned int count; 952 LIST_HEAD(free); 953 LIST_HEAD(all); 954 955 for (count = 0; count < ia->ri_max_segs; count++) { 956 struct rpcrdma_mr *mr; 957 int rc; 958 959 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 960 if (!mr) 961 break; 962 963 rc = frwr_init_mr(ia, mr); 964 if (rc) { 965 kfree(mr); 966 break; 967 } 968 969 mr->mr_xprt = r_xprt; 970 971 list_add(&mr->mr_list, &free); 972 list_add(&mr->mr_all, &all); 973 } 974 975 spin_lock(&buf->rb_mrlock); 976 list_splice(&free, &buf->rb_mrs); 977 list_splice(&all, &buf->rb_all); 978 r_xprt->rx_stats.mrs_allocated += count; 979 spin_unlock(&buf->rb_mrlock); 980 trace_xprtrdma_createmrs(r_xprt, count); 981 982 xprt_write_space(&r_xprt->rx_xprt); 983 } 984 985 static void 986 rpcrdma_mr_refresh_worker(struct work_struct *work) 987 { 988 struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer, 989 rb_refresh_worker.work); 990 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, 991 rx_buf); 992 993 rpcrdma_mrs_create(r_xprt); 994 } 995 996 /** 997 * rpcrdma_req_create - Allocate an rpcrdma_req object 998 * @r_xprt: controlling r_xprt 999 * @size: initial size, in bytes, of send and receive buffers 1000 * @flags: GFP flags passed to memory allocators 1001 * 1002 * Returns an allocated and fully initialized rpcrdma_req or NULL. 1003 */ 1004 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size, 1005 gfp_t flags) 1006 { 1007 struct rpcrdma_buffer *buffer = &r_xprt->rx_buf; 1008 struct rpcrdma_regbuf *rb; 1009 struct rpcrdma_req *req; 1010 1011 req = kzalloc(sizeof(*req), flags); 1012 if (req == NULL) 1013 goto out1; 1014 1015 rb = rpcrdma_regbuf_alloc(RPCRDMA_HDRBUF_SIZE, DMA_TO_DEVICE, flags); 1016 if (!rb) 1017 goto out2; 1018 req->rl_rdmabuf = rb; 1019 xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb)); 1020 1021 req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags); 1022 if (!req->rl_sendbuf) 1023 goto out3; 1024 1025 req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags); 1026 if (!req->rl_recvbuf) 1027 goto out4; 1028 1029 req->rl_buffer = buffer; 1030 INIT_LIST_HEAD(&req->rl_registered); 1031 spin_lock(&buffer->rb_lock); 1032 list_add(&req->rl_all, &buffer->rb_allreqs); 1033 spin_unlock(&buffer->rb_lock); 1034 return req; 1035 1036 out4: 1037 kfree(req->rl_sendbuf); 1038 out3: 1039 kfree(req->rl_rdmabuf); 1040 out2: 1041 kfree(req); 1042 out1: 1043 return NULL; 1044 } 1045 1046 static bool rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt, bool temp) 1047 { 1048 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1049 struct rpcrdma_rep *rep; 1050 1051 rep = kzalloc(sizeof(*rep), GFP_KERNEL); 1052 if (rep == NULL) 1053 goto out; 1054 1055 rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep.rep_inline_recv, 1056 DMA_FROM_DEVICE, GFP_KERNEL); 1057 if (!rep->rr_rdmabuf) 1058 goto out_free; 1059 xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf), 1060 rdmab_length(rep->rr_rdmabuf)); 1061 1062 rep->rr_cqe.done = rpcrdma_wc_receive; 1063 rep->rr_rxprt = r_xprt; 1064 INIT_WORK(&rep->rr_work, rpcrdma_deferred_completion); 1065 rep->rr_recv_wr.next = NULL; 1066 rep->rr_recv_wr.wr_cqe = &rep->rr_cqe; 1067 rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov; 1068 rep->rr_recv_wr.num_sge = 1; 1069 rep->rr_temp = temp; 1070 1071 spin_lock(&buf->rb_lock); 1072 list_add(&rep->rr_list, &buf->rb_recv_bufs); 1073 spin_unlock(&buf->rb_lock); 1074 return true; 1075 1076 out_free: 1077 kfree(rep); 1078 out: 1079 return false; 1080 } 1081 1082 /** 1083 * rpcrdma_buffer_create - Create initial set of req/rep objects 1084 * @r_xprt: transport instance to (re)initialize 1085 * 1086 * Returns zero on success, otherwise a negative errno. 1087 */ 1088 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt) 1089 { 1090 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1091 int i, rc; 1092 1093 buf->rb_flags = 0; 1094 buf->rb_max_requests = r_xprt->rx_ep.rep_max_requests; 1095 buf->rb_bc_srv_max_requests = 0; 1096 spin_lock_init(&buf->rb_mrlock); 1097 spin_lock_init(&buf->rb_lock); 1098 INIT_LIST_HEAD(&buf->rb_mrs); 1099 INIT_LIST_HEAD(&buf->rb_all); 1100 INIT_DELAYED_WORK(&buf->rb_refresh_worker, 1101 rpcrdma_mr_refresh_worker); 1102 1103 rpcrdma_mrs_create(r_xprt); 1104 1105 INIT_LIST_HEAD(&buf->rb_send_bufs); 1106 INIT_LIST_HEAD(&buf->rb_allreqs); 1107 1108 rc = -ENOMEM; 1109 for (i = 0; i < buf->rb_max_requests; i++) { 1110 struct rpcrdma_req *req; 1111 1112 req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE, 1113 GFP_KERNEL); 1114 if (!req) 1115 goto out; 1116 list_add(&req->rl_list, &buf->rb_send_bufs); 1117 } 1118 1119 buf->rb_credits = 1; 1120 INIT_LIST_HEAD(&buf->rb_recv_bufs); 1121 1122 rc = rpcrdma_sendctxs_create(r_xprt); 1123 if (rc) 1124 goto out; 1125 1126 buf->rb_completion_wq = alloc_workqueue("rpcrdma-%s", 1127 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1128 0, 1129 r_xprt->rx_xprt.address_strings[RPC_DISPLAY_ADDR]); 1130 if (!buf->rb_completion_wq) { 1131 rc = -ENOMEM; 1132 goto out; 1133 } 1134 1135 return 0; 1136 out: 1137 rpcrdma_buffer_destroy(buf); 1138 return rc; 1139 } 1140 1141 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep) 1142 { 1143 rpcrdma_regbuf_free(rep->rr_rdmabuf); 1144 kfree(rep); 1145 } 1146 1147 /** 1148 * rpcrdma_req_destroy - Destroy an rpcrdma_req object 1149 * @req: unused object to be destroyed 1150 * 1151 * This function assumes that the caller prevents concurrent device 1152 * unload and transport tear-down. 1153 */ 1154 void 1155 rpcrdma_req_destroy(struct rpcrdma_req *req) 1156 { 1157 list_del(&req->rl_all); 1158 1159 rpcrdma_regbuf_free(req->rl_recvbuf); 1160 rpcrdma_regbuf_free(req->rl_sendbuf); 1161 rpcrdma_regbuf_free(req->rl_rdmabuf); 1162 kfree(req); 1163 } 1164 1165 static void 1166 rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf) 1167 { 1168 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, 1169 rx_buf); 1170 struct rpcrdma_mr *mr; 1171 unsigned int count; 1172 1173 count = 0; 1174 spin_lock(&buf->rb_mrlock); 1175 while (!list_empty(&buf->rb_all)) { 1176 mr = list_entry(buf->rb_all.next, struct rpcrdma_mr, mr_all); 1177 list_del(&mr->mr_all); 1178 1179 spin_unlock(&buf->rb_mrlock); 1180 1181 /* Ensure MW is not on any rl_registered list */ 1182 if (!list_empty(&mr->mr_list)) 1183 list_del(&mr->mr_list); 1184 1185 frwr_release_mr(mr); 1186 count++; 1187 spin_lock(&buf->rb_mrlock); 1188 } 1189 spin_unlock(&buf->rb_mrlock); 1190 r_xprt->rx_stats.mrs_allocated = 0; 1191 1192 dprintk("RPC: %s: released %u MRs\n", __func__, count); 1193 } 1194 1195 /** 1196 * rpcrdma_buffer_destroy - Release all hw resources 1197 * @buf: root control block for resources 1198 * 1199 * ORDERING: relies on a prior rpcrdma_xprt_drain : 1200 * - No more Send or Receive completions can occur 1201 * - All MRs, reps, and reqs are returned to their free lists 1202 */ 1203 void 1204 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf) 1205 { 1206 cancel_delayed_work_sync(&buf->rb_refresh_worker); 1207 1208 if (buf->rb_completion_wq) { 1209 destroy_workqueue(buf->rb_completion_wq); 1210 buf->rb_completion_wq = NULL; 1211 } 1212 1213 rpcrdma_sendctxs_destroy(buf); 1214 1215 while (!list_empty(&buf->rb_recv_bufs)) { 1216 struct rpcrdma_rep *rep; 1217 1218 rep = list_first_entry(&buf->rb_recv_bufs, 1219 struct rpcrdma_rep, rr_list); 1220 list_del(&rep->rr_list); 1221 rpcrdma_rep_destroy(rep); 1222 } 1223 1224 while (!list_empty(&buf->rb_send_bufs)) { 1225 struct rpcrdma_req *req; 1226 1227 req = list_first_entry(&buf->rb_send_bufs, 1228 struct rpcrdma_req, rl_list); 1229 list_del(&req->rl_list); 1230 rpcrdma_req_destroy(req); 1231 } 1232 1233 rpcrdma_mrs_destroy(buf); 1234 } 1235 1236 /** 1237 * rpcrdma_mr_get - Allocate an rpcrdma_mr object 1238 * @r_xprt: controlling transport 1239 * 1240 * Returns an initialized rpcrdma_mr or NULL if no free 1241 * rpcrdma_mr objects are available. 1242 */ 1243 struct rpcrdma_mr * 1244 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt) 1245 { 1246 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1247 struct rpcrdma_mr *mr = NULL; 1248 1249 spin_lock(&buf->rb_mrlock); 1250 if (!list_empty(&buf->rb_mrs)) 1251 mr = rpcrdma_mr_pop(&buf->rb_mrs); 1252 spin_unlock(&buf->rb_mrlock); 1253 1254 if (!mr) 1255 goto out_nomrs; 1256 return mr; 1257 1258 out_nomrs: 1259 trace_xprtrdma_nomrs(r_xprt); 1260 if (r_xprt->rx_ep.rep_connected != -ENODEV) 1261 schedule_delayed_work(&buf->rb_refresh_worker, 0); 1262 1263 /* Allow the reply handler and refresh worker to run */ 1264 cond_resched(); 1265 1266 return NULL; 1267 } 1268 1269 static void 1270 __rpcrdma_mr_put(struct rpcrdma_buffer *buf, struct rpcrdma_mr *mr) 1271 { 1272 spin_lock(&buf->rb_mrlock); 1273 rpcrdma_mr_push(mr, &buf->rb_mrs); 1274 spin_unlock(&buf->rb_mrlock); 1275 } 1276 1277 /** 1278 * rpcrdma_mr_put - Release an rpcrdma_mr object 1279 * @mr: object to release 1280 * 1281 */ 1282 void 1283 rpcrdma_mr_put(struct rpcrdma_mr *mr) 1284 { 1285 __rpcrdma_mr_put(&mr->mr_xprt->rx_buf, mr); 1286 } 1287 1288 /** 1289 * rpcrdma_mr_unmap_and_put - DMA unmap an MR and release it 1290 * @mr: object to release 1291 * 1292 */ 1293 void 1294 rpcrdma_mr_unmap_and_put(struct rpcrdma_mr *mr) 1295 { 1296 struct rpcrdma_xprt *r_xprt = mr->mr_xprt; 1297 1298 if (mr->mr_dir != DMA_NONE) { 1299 trace_xprtrdma_mr_unmap(mr); 1300 ib_dma_unmap_sg(r_xprt->rx_ia.ri_id->device, 1301 mr->mr_sg, mr->mr_nents, mr->mr_dir); 1302 mr->mr_dir = DMA_NONE; 1303 } 1304 __rpcrdma_mr_put(&r_xprt->rx_buf, mr); 1305 } 1306 1307 /** 1308 * rpcrdma_buffer_get - Get a request buffer 1309 * @buffers: Buffer pool from which to obtain a buffer 1310 * 1311 * Returns a fresh rpcrdma_req, or NULL if none are available. 1312 */ 1313 struct rpcrdma_req * 1314 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers) 1315 { 1316 struct rpcrdma_req *req; 1317 1318 spin_lock(&buffers->rb_lock); 1319 req = list_first_entry_or_null(&buffers->rb_send_bufs, 1320 struct rpcrdma_req, rl_list); 1321 if (req) 1322 list_del_init(&req->rl_list); 1323 spin_unlock(&buffers->rb_lock); 1324 return req; 1325 } 1326 1327 /** 1328 * rpcrdma_buffer_put - Put request/reply buffers back into pool 1329 * @req: object to return 1330 * 1331 */ 1332 void 1333 rpcrdma_buffer_put(struct rpcrdma_req *req) 1334 { 1335 struct rpcrdma_buffer *buffers = req->rl_buffer; 1336 struct rpcrdma_rep *rep = req->rl_reply; 1337 1338 req->rl_reply = NULL; 1339 1340 spin_lock(&buffers->rb_lock); 1341 list_add(&req->rl_list, &buffers->rb_send_bufs); 1342 if (rep) { 1343 if (!rep->rr_temp) { 1344 list_add(&rep->rr_list, &buffers->rb_recv_bufs); 1345 rep = NULL; 1346 } 1347 } 1348 spin_unlock(&buffers->rb_lock); 1349 if (rep) 1350 rpcrdma_rep_destroy(rep); 1351 } 1352 1353 /* 1354 * Put reply buffers back into pool when not attached to 1355 * request. This happens in error conditions. 1356 */ 1357 void 1358 rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep) 1359 { 1360 struct rpcrdma_buffer *buffers = &rep->rr_rxprt->rx_buf; 1361 1362 if (!rep->rr_temp) { 1363 spin_lock(&buffers->rb_lock); 1364 list_add(&rep->rr_list, &buffers->rb_recv_bufs); 1365 spin_unlock(&buffers->rb_lock); 1366 } else { 1367 rpcrdma_rep_destroy(rep); 1368 } 1369 } 1370 1371 /* Returns a pointer to a rpcrdma_regbuf object, or NULL. 1372 * 1373 * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for 1374 * receiving the payload of RDMA RECV operations. During Long Calls 1375 * or Replies they may be registered externally via frwr_map. 1376 */ 1377 static struct rpcrdma_regbuf * 1378 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction, 1379 gfp_t flags) 1380 { 1381 struct rpcrdma_regbuf *rb; 1382 1383 rb = kmalloc(sizeof(*rb), flags); 1384 if (!rb) 1385 return NULL; 1386 rb->rg_data = kmalloc(size, flags); 1387 if (!rb->rg_data) { 1388 kfree(rb); 1389 return NULL; 1390 } 1391 1392 rb->rg_device = NULL; 1393 rb->rg_direction = direction; 1394 rb->rg_iov.length = size; 1395 return rb; 1396 } 1397 1398 /** 1399 * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer 1400 * @rb: regbuf to reallocate 1401 * @size: size of buffer to be allocated, in bytes 1402 * @flags: GFP flags 1403 * 1404 * Returns true if reallocation was successful. If false is 1405 * returned, @rb is left untouched. 1406 */ 1407 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags) 1408 { 1409 void *buf; 1410 1411 buf = kmalloc(size, flags); 1412 if (!buf) 1413 return false; 1414 1415 rpcrdma_regbuf_dma_unmap(rb); 1416 kfree(rb->rg_data); 1417 1418 rb->rg_data = buf; 1419 rb->rg_iov.length = size; 1420 return true; 1421 } 1422 1423 /** 1424 * __rpcrdma_regbuf_dma_map - DMA-map a regbuf 1425 * @r_xprt: controlling transport instance 1426 * @rb: regbuf to be mapped 1427 * 1428 * Returns true if the buffer is now DMA mapped to @r_xprt's device 1429 */ 1430 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt, 1431 struct rpcrdma_regbuf *rb) 1432 { 1433 struct ib_device *device = r_xprt->rx_ia.ri_id->device; 1434 1435 if (rb->rg_direction == DMA_NONE) 1436 return false; 1437 1438 rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb), 1439 rdmab_length(rb), rb->rg_direction); 1440 if (ib_dma_mapping_error(device, rdmab_addr(rb))) { 1441 trace_xprtrdma_dma_maperr(rdmab_addr(rb)); 1442 return false; 1443 } 1444 1445 rb->rg_device = device; 1446 rb->rg_iov.lkey = r_xprt->rx_ia.ri_pd->local_dma_lkey; 1447 return true; 1448 } 1449 1450 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb) 1451 { 1452 if (!rb) 1453 return; 1454 1455 if (!rpcrdma_regbuf_is_mapped(rb)) 1456 return; 1457 1458 ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb), 1459 rb->rg_direction); 1460 rb->rg_device = NULL; 1461 } 1462 1463 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb) 1464 { 1465 rpcrdma_regbuf_dma_unmap(rb); 1466 if (rb) 1467 kfree(rb->rg_data); 1468 kfree(rb); 1469 } 1470 1471 /** 1472 * rpcrdma_ep_post - Post WRs to a transport's Send Queue 1473 * @ia: transport's device information 1474 * @ep: transport's RDMA endpoint information 1475 * @req: rpcrdma_req containing the Send WR to post 1476 * 1477 * Returns 0 if the post was successful, otherwise -ENOTCONN 1478 * is returned. 1479 */ 1480 int 1481 rpcrdma_ep_post(struct rpcrdma_ia *ia, 1482 struct rpcrdma_ep *ep, 1483 struct rpcrdma_req *req) 1484 { 1485 struct ib_send_wr *send_wr = &req->rl_sendctx->sc_wr; 1486 int rc; 1487 1488 if (!ep->rep_send_count || 1489 test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) { 1490 send_wr->send_flags |= IB_SEND_SIGNALED; 1491 ep->rep_send_count = ep->rep_send_batch; 1492 } else { 1493 send_wr->send_flags &= ~IB_SEND_SIGNALED; 1494 --ep->rep_send_count; 1495 } 1496 1497 rc = frwr_send(ia, req); 1498 trace_xprtrdma_post_send(req, rc); 1499 if (rc) 1500 return -ENOTCONN; 1501 return 0; 1502 } 1503 1504 static void 1505 rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp) 1506 { 1507 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1508 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 1509 struct ib_recv_wr *wr, *bad_wr; 1510 int needed, count, rc; 1511 1512 rc = 0; 1513 count = 0; 1514 needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1); 1515 if (ep->rep_receive_count > needed) 1516 goto out; 1517 needed -= ep->rep_receive_count; 1518 if (!temp) 1519 needed += RPCRDMA_MAX_RECV_BATCH; 1520 1521 count = 0; 1522 wr = NULL; 1523 while (needed) { 1524 struct rpcrdma_regbuf *rb; 1525 struct rpcrdma_rep *rep; 1526 1527 spin_lock(&buf->rb_lock); 1528 rep = list_first_entry_or_null(&buf->rb_recv_bufs, 1529 struct rpcrdma_rep, rr_list); 1530 if (likely(rep)) 1531 list_del(&rep->rr_list); 1532 spin_unlock(&buf->rb_lock); 1533 if (!rep) { 1534 if (!rpcrdma_rep_create(r_xprt, temp)) 1535 break; 1536 continue; 1537 } 1538 1539 rb = rep->rr_rdmabuf; 1540 if (!rpcrdma_regbuf_dma_map(r_xprt, rb)) { 1541 rpcrdma_recv_buffer_put(rep); 1542 break; 1543 } 1544 1545 trace_xprtrdma_post_recv(rep->rr_recv_wr.wr_cqe); 1546 rep->rr_recv_wr.next = wr; 1547 wr = &rep->rr_recv_wr; 1548 ++count; 1549 --needed; 1550 } 1551 if (!count) 1552 goto out; 1553 1554 rc = ib_post_recv(r_xprt->rx_ia.ri_id->qp, wr, 1555 (const struct ib_recv_wr **)&bad_wr); 1556 if (rc) { 1557 for (wr = bad_wr; wr; wr = wr->next) { 1558 struct rpcrdma_rep *rep; 1559 1560 rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr); 1561 rpcrdma_recv_buffer_put(rep); 1562 --count; 1563 } 1564 } 1565 ep->rep_receive_count += count; 1566 out: 1567 trace_xprtrdma_post_recvs(r_xprt, count, rc); 1568 } 1569