xref: /openbmc/linux/net/sunrpc/xprtrdma/verbs.c (revision 9cfc5c90)
1 /*
2  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  *      Redistributions of source code must retain the above copyright
15  *      notice, this list of conditions and the following disclaimer.
16  *
17  *      Redistributions in binary form must reproduce the above
18  *      copyright notice, this list of conditions and the following
19  *      disclaimer in the documentation and/or other materials provided
20  *      with the distribution.
21  *
22  *      Neither the name of the Network Appliance, Inc. nor the names of
23  *      its contributors may be used to endorse or promote products
24  *      derived from this software without specific prior written
25  *      permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * verbs.c
42  *
43  * Encapsulates the major functions managing:
44  *  o adapters
45  *  o endpoints
46  *  o connections
47  *  o buffer memory
48  */
49 
50 #include <linux/interrupt.h>
51 #include <linux/slab.h>
52 #include <linux/prefetch.h>
53 #include <linux/sunrpc/addr.h>
54 #include <asm/bitops.h>
55 #include <linux/module.h> /* try_module_get()/module_put() */
56 
57 #include "xprt_rdma.h"
58 
59 /*
60  * Globals/Macros
61  */
62 
63 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
64 # define RPCDBG_FACILITY	RPCDBG_TRANS
65 #endif
66 
67 /*
68  * internal functions
69  */
70 
71 static struct workqueue_struct *rpcrdma_receive_wq;
72 
73 int
74 rpcrdma_alloc_wq(void)
75 {
76 	struct workqueue_struct *recv_wq;
77 
78 	recv_wq = alloc_workqueue("xprtrdma_receive",
79 				  WQ_MEM_RECLAIM | WQ_UNBOUND | WQ_HIGHPRI,
80 				  0);
81 	if (!recv_wq)
82 		return -ENOMEM;
83 
84 	rpcrdma_receive_wq = recv_wq;
85 	return 0;
86 }
87 
88 void
89 rpcrdma_destroy_wq(void)
90 {
91 	struct workqueue_struct *wq;
92 
93 	if (rpcrdma_receive_wq) {
94 		wq = rpcrdma_receive_wq;
95 		rpcrdma_receive_wq = NULL;
96 		destroy_workqueue(wq);
97 	}
98 }
99 
100 static void
101 rpcrdma_qp_async_error_upcall(struct ib_event *event, void *context)
102 {
103 	struct rpcrdma_ep *ep = context;
104 
105 	pr_err("RPC:       %s: %s on device %s ep %p\n",
106 	       __func__, ib_event_msg(event->event),
107 		event->device->name, context);
108 	if (ep->rep_connected == 1) {
109 		ep->rep_connected = -EIO;
110 		rpcrdma_conn_func(ep);
111 		wake_up_all(&ep->rep_connect_wait);
112 	}
113 }
114 
115 static void
116 rpcrdma_cq_async_error_upcall(struct ib_event *event, void *context)
117 {
118 	struct rpcrdma_ep *ep = context;
119 
120 	pr_err("RPC:       %s: %s on device %s ep %p\n",
121 	       __func__, ib_event_msg(event->event),
122 		event->device->name, context);
123 	if (ep->rep_connected == 1) {
124 		ep->rep_connected = -EIO;
125 		rpcrdma_conn_func(ep);
126 		wake_up_all(&ep->rep_connect_wait);
127 	}
128 }
129 
130 static void
131 rpcrdma_sendcq_process_wc(struct ib_wc *wc)
132 {
133 	/* WARNING: Only wr_id and status are reliable at this point */
134 	if (wc->wr_id == RPCRDMA_IGNORE_COMPLETION) {
135 		if (wc->status != IB_WC_SUCCESS &&
136 		    wc->status != IB_WC_WR_FLUSH_ERR)
137 			pr_err("RPC:       %s: SEND: %s\n",
138 			       __func__, ib_wc_status_msg(wc->status));
139 	} else {
140 		struct rpcrdma_mw *r;
141 
142 		r = (struct rpcrdma_mw *)(unsigned long)wc->wr_id;
143 		r->mw_sendcompletion(wc);
144 	}
145 }
146 
147 /* The common case is a single send completion is waiting. By
148  * passing two WC entries to ib_poll_cq, a return code of 1
149  * means there is exactly one WC waiting and no more. We don't
150  * have to invoke ib_poll_cq again to know that the CQ has been
151  * properly drained.
152  */
153 static void
154 rpcrdma_sendcq_poll(struct ib_cq *cq)
155 {
156 	struct ib_wc *pos, wcs[2];
157 	int count, rc;
158 
159 	do {
160 		pos = wcs;
161 
162 		rc = ib_poll_cq(cq, ARRAY_SIZE(wcs), pos);
163 		if (rc < 0)
164 			break;
165 
166 		count = rc;
167 		while (count-- > 0)
168 			rpcrdma_sendcq_process_wc(pos++);
169 	} while (rc == ARRAY_SIZE(wcs));
170 	return;
171 }
172 
173 /* Handle provider send completion upcalls.
174  */
175 static void
176 rpcrdma_sendcq_upcall(struct ib_cq *cq, void *cq_context)
177 {
178 	do {
179 		rpcrdma_sendcq_poll(cq);
180 	} while (ib_req_notify_cq(cq, IB_CQ_NEXT_COMP |
181 				  IB_CQ_REPORT_MISSED_EVENTS) > 0);
182 }
183 
184 static void
185 rpcrdma_receive_worker(struct work_struct *work)
186 {
187 	struct rpcrdma_rep *rep =
188 			container_of(work, struct rpcrdma_rep, rr_work);
189 
190 	rpcrdma_reply_handler(rep);
191 }
192 
193 static void
194 rpcrdma_recvcq_process_wc(struct ib_wc *wc)
195 {
196 	struct rpcrdma_rep *rep =
197 			(struct rpcrdma_rep *)(unsigned long)wc->wr_id;
198 
199 	/* WARNING: Only wr_id and status are reliable at this point */
200 	if (wc->status != IB_WC_SUCCESS)
201 		goto out_fail;
202 
203 	/* status == SUCCESS means all fields in wc are trustworthy */
204 	if (wc->opcode != IB_WC_RECV)
205 		return;
206 
207 	dprintk("RPC:       %s: rep %p opcode 'recv', length %u: success\n",
208 		__func__, rep, wc->byte_len);
209 
210 	rep->rr_len = wc->byte_len;
211 	ib_dma_sync_single_for_cpu(rep->rr_device,
212 				   rdmab_addr(rep->rr_rdmabuf),
213 				   rep->rr_len, DMA_FROM_DEVICE);
214 	prefetch(rdmab_to_msg(rep->rr_rdmabuf));
215 
216 out_schedule:
217 	queue_work(rpcrdma_receive_wq, &rep->rr_work);
218 	return;
219 
220 out_fail:
221 	if (wc->status != IB_WC_WR_FLUSH_ERR)
222 		pr_err("RPC:       %s: rep %p: %s\n",
223 		       __func__, rep, ib_wc_status_msg(wc->status));
224 	rep->rr_len = RPCRDMA_BAD_LEN;
225 	goto out_schedule;
226 }
227 
228 /* The wc array is on stack: automatic memory is always CPU-local.
229  *
230  * struct ib_wc is 64 bytes, making the poll array potentially
231  * large. But this is at the bottom of the call chain. Further
232  * substantial work is done in another thread.
233  */
234 static void
235 rpcrdma_recvcq_poll(struct ib_cq *cq)
236 {
237 	struct ib_wc *pos, wcs[4];
238 	int count, rc;
239 
240 	do {
241 		pos = wcs;
242 
243 		rc = ib_poll_cq(cq, ARRAY_SIZE(wcs), pos);
244 		if (rc < 0)
245 			break;
246 
247 		count = rc;
248 		while (count-- > 0)
249 			rpcrdma_recvcq_process_wc(pos++);
250 	} while (rc == ARRAY_SIZE(wcs));
251 }
252 
253 /* Handle provider receive completion upcalls.
254  */
255 static void
256 rpcrdma_recvcq_upcall(struct ib_cq *cq, void *cq_context)
257 {
258 	do {
259 		rpcrdma_recvcq_poll(cq);
260 	} while (ib_req_notify_cq(cq, IB_CQ_NEXT_COMP |
261 				  IB_CQ_REPORT_MISSED_EVENTS) > 0);
262 }
263 
264 static void
265 rpcrdma_flush_cqs(struct rpcrdma_ep *ep)
266 {
267 	struct ib_wc wc;
268 
269 	while (ib_poll_cq(ep->rep_attr.recv_cq, 1, &wc) > 0)
270 		rpcrdma_recvcq_process_wc(&wc);
271 	while (ib_poll_cq(ep->rep_attr.send_cq, 1, &wc) > 0)
272 		rpcrdma_sendcq_process_wc(&wc);
273 }
274 
275 static int
276 rpcrdma_conn_upcall(struct rdma_cm_id *id, struct rdma_cm_event *event)
277 {
278 	struct rpcrdma_xprt *xprt = id->context;
279 	struct rpcrdma_ia *ia = &xprt->rx_ia;
280 	struct rpcrdma_ep *ep = &xprt->rx_ep;
281 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
282 	struct sockaddr *sap = (struct sockaddr *)&ep->rep_remote_addr;
283 #endif
284 	struct ib_qp_attr *attr = &ia->ri_qp_attr;
285 	struct ib_qp_init_attr *iattr = &ia->ri_qp_init_attr;
286 	int connstate = 0;
287 
288 	switch (event->event) {
289 	case RDMA_CM_EVENT_ADDR_RESOLVED:
290 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
291 		ia->ri_async_rc = 0;
292 		complete(&ia->ri_done);
293 		break;
294 	case RDMA_CM_EVENT_ADDR_ERROR:
295 		ia->ri_async_rc = -EHOSTUNREACH;
296 		dprintk("RPC:       %s: CM address resolution error, ep 0x%p\n",
297 			__func__, ep);
298 		complete(&ia->ri_done);
299 		break;
300 	case RDMA_CM_EVENT_ROUTE_ERROR:
301 		ia->ri_async_rc = -ENETUNREACH;
302 		dprintk("RPC:       %s: CM route resolution error, ep 0x%p\n",
303 			__func__, ep);
304 		complete(&ia->ri_done);
305 		break;
306 	case RDMA_CM_EVENT_ESTABLISHED:
307 		connstate = 1;
308 		ib_query_qp(ia->ri_id->qp, attr,
309 			    IB_QP_MAX_QP_RD_ATOMIC | IB_QP_MAX_DEST_RD_ATOMIC,
310 			    iattr);
311 		dprintk("RPC:       %s: %d responder resources"
312 			" (%d initiator)\n",
313 			__func__, attr->max_dest_rd_atomic,
314 			attr->max_rd_atomic);
315 		goto connected;
316 	case RDMA_CM_EVENT_CONNECT_ERROR:
317 		connstate = -ENOTCONN;
318 		goto connected;
319 	case RDMA_CM_EVENT_UNREACHABLE:
320 		connstate = -ENETDOWN;
321 		goto connected;
322 	case RDMA_CM_EVENT_REJECTED:
323 		connstate = -ECONNREFUSED;
324 		goto connected;
325 	case RDMA_CM_EVENT_DISCONNECTED:
326 		connstate = -ECONNABORTED;
327 		goto connected;
328 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
329 		connstate = -ENODEV;
330 connected:
331 		dprintk("RPC:       %s: %sconnected\n",
332 					__func__, connstate > 0 ? "" : "dis");
333 		ep->rep_connected = connstate;
334 		rpcrdma_conn_func(ep);
335 		wake_up_all(&ep->rep_connect_wait);
336 		/*FALLTHROUGH*/
337 	default:
338 		dprintk("RPC:       %s: %pIS:%u (ep 0x%p): %s\n",
339 			__func__, sap, rpc_get_port(sap), ep,
340 			rdma_event_msg(event->event));
341 		break;
342 	}
343 
344 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
345 	if (connstate == 1) {
346 		int ird = attr->max_dest_rd_atomic;
347 		int tird = ep->rep_remote_cma.responder_resources;
348 
349 		pr_info("rpcrdma: connection to %pIS:%u on %s, memreg '%s', %d credits, %d responders%s\n",
350 			sap, rpc_get_port(sap),
351 			ia->ri_device->name,
352 			ia->ri_ops->ro_displayname,
353 			xprt->rx_buf.rb_max_requests,
354 			ird, ird < 4 && ird < tird / 2 ? " (low!)" : "");
355 	} else if (connstate < 0) {
356 		pr_info("rpcrdma: connection to %pIS:%u closed (%d)\n",
357 			sap, rpc_get_port(sap), connstate);
358 	}
359 #endif
360 
361 	return 0;
362 }
363 
364 static void rpcrdma_destroy_id(struct rdma_cm_id *id)
365 {
366 	if (id) {
367 		module_put(id->device->owner);
368 		rdma_destroy_id(id);
369 	}
370 }
371 
372 static struct rdma_cm_id *
373 rpcrdma_create_id(struct rpcrdma_xprt *xprt,
374 			struct rpcrdma_ia *ia, struct sockaddr *addr)
375 {
376 	struct rdma_cm_id *id;
377 	int rc;
378 
379 	init_completion(&ia->ri_done);
380 
381 	id = rdma_create_id(&init_net, rpcrdma_conn_upcall, xprt, RDMA_PS_TCP,
382 			    IB_QPT_RC);
383 	if (IS_ERR(id)) {
384 		rc = PTR_ERR(id);
385 		dprintk("RPC:       %s: rdma_create_id() failed %i\n",
386 			__func__, rc);
387 		return id;
388 	}
389 
390 	ia->ri_async_rc = -ETIMEDOUT;
391 	rc = rdma_resolve_addr(id, NULL, addr, RDMA_RESOLVE_TIMEOUT);
392 	if (rc) {
393 		dprintk("RPC:       %s: rdma_resolve_addr() failed %i\n",
394 			__func__, rc);
395 		goto out;
396 	}
397 	wait_for_completion_interruptible_timeout(&ia->ri_done,
398 				msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1);
399 
400 	/* FIXME:
401 	 * Until xprtrdma supports DEVICE_REMOVAL, the provider must
402 	 * be pinned while there are active NFS/RDMA mounts to prevent
403 	 * hangs and crashes at umount time.
404 	 */
405 	if (!ia->ri_async_rc && !try_module_get(id->device->owner)) {
406 		dprintk("RPC:       %s: Failed to get device module\n",
407 			__func__);
408 		ia->ri_async_rc = -ENODEV;
409 	}
410 	rc = ia->ri_async_rc;
411 	if (rc)
412 		goto out;
413 
414 	ia->ri_async_rc = -ETIMEDOUT;
415 	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
416 	if (rc) {
417 		dprintk("RPC:       %s: rdma_resolve_route() failed %i\n",
418 			__func__, rc);
419 		goto put;
420 	}
421 	wait_for_completion_interruptible_timeout(&ia->ri_done,
422 				msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1);
423 	rc = ia->ri_async_rc;
424 	if (rc)
425 		goto put;
426 
427 	return id;
428 put:
429 	module_put(id->device->owner);
430 out:
431 	rdma_destroy_id(id);
432 	return ERR_PTR(rc);
433 }
434 
435 /*
436  * Drain any cq, prior to teardown.
437  */
438 static void
439 rpcrdma_clean_cq(struct ib_cq *cq)
440 {
441 	struct ib_wc wc;
442 	int count = 0;
443 
444 	while (1 == ib_poll_cq(cq, 1, &wc))
445 		++count;
446 
447 	if (count)
448 		dprintk("RPC:       %s: flushed %d events (last 0x%x)\n",
449 			__func__, count, wc.opcode);
450 }
451 
452 /*
453  * Exported functions.
454  */
455 
456 /*
457  * Open and initialize an Interface Adapter.
458  *  o initializes fields of struct rpcrdma_ia, including
459  *    interface and provider attributes and protection zone.
460  */
461 int
462 rpcrdma_ia_open(struct rpcrdma_xprt *xprt, struct sockaddr *addr, int memreg)
463 {
464 	struct rpcrdma_ia *ia = &xprt->rx_ia;
465 	struct ib_device_attr *devattr = &ia->ri_devattr;
466 	int rc;
467 
468 	ia->ri_dma_mr = NULL;
469 
470 	ia->ri_id = rpcrdma_create_id(xprt, ia, addr);
471 	if (IS_ERR(ia->ri_id)) {
472 		rc = PTR_ERR(ia->ri_id);
473 		goto out1;
474 	}
475 	ia->ri_device = ia->ri_id->device;
476 
477 	ia->ri_pd = ib_alloc_pd(ia->ri_device);
478 	if (IS_ERR(ia->ri_pd)) {
479 		rc = PTR_ERR(ia->ri_pd);
480 		dprintk("RPC:       %s: ib_alloc_pd() failed %i\n",
481 			__func__, rc);
482 		goto out2;
483 	}
484 
485 	rc = ib_query_device(ia->ri_device, devattr);
486 	if (rc) {
487 		dprintk("RPC:       %s: ib_query_device failed %d\n",
488 			__func__, rc);
489 		goto out3;
490 	}
491 
492 	if (memreg == RPCRDMA_FRMR) {
493 		if (!(devattr->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) ||
494 		    (devattr->max_fast_reg_page_list_len == 0)) {
495 			dprintk("RPC:       %s: FRMR registration "
496 				"not supported by HCA\n", __func__);
497 			memreg = RPCRDMA_MTHCAFMR;
498 		}
499 	}
500 	if (memreg == RPCRDMA_MTHCAFMR) {
501 		if (!ia->ri_device->alloc_fmr) {
502 			dprintk("RPC:       %s: MTHCAFMR registration "
503 				"not supported by HCA\n", __func__);
504 			rc = -EINVAL;
505 			goto out3;
506 		}
507 	}
508 
509 	switch (memreg) {
510 	case RPCRDMA_FRMR:
511 		ia->ri_ops = &rpcrdma_frwr_memreg_ops;
512 		break;
513 	case RPCRDMA_ALLPHYSICAL:
514 		ia->ri_ops = &rpcrdma_physical_memreg_ops;
515 		break;
516 	case RPCRDMA_MTHCAFMR:
517 		ia->ri_ops = &rpcrdma_fmr_memreg_ops;
518 		break;
519 	default:
520 		printk(KERN_ERR "RPC: Unsupported memory "
521 				"registration mode: %d\n", memreg);
522 		rc = -ENOMEM;
523 		goto out3;
524 	}
525 	dprintk("RPC:       %s: memory registration strategy is '%s'\n",
526 		__func__, ia->ri_ops->ro_displayname);
527 
528 	rwlock_init(&ia->ri_qplock);
529 	return 0;
530 
531 out3:
532 	ib_dealloc_pd(ia->ri_pd);
533 	ia->ri_pd = NULL;
534 out2:
535 	rpcrdma_destroy_id(ia->ri_id);
536 	ia->ri_id = NULL;
537 out1:
538 	return rc;
539 }
540 
541 /*
542  * Clean up/close an IA.
543  *   o if event handles and PD have been initialized, free them.
544  *   o close the IA
545  */
546 void
547 rpcrdma_ia_close(struct rpcrdma_ia *ia)
548 {
549 	dprintk("RPC:       %s: entering\n", __func__);
550 	if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) {
551 		if (ia->ri_id->qp)
552 			rdma_destroy_qp(ia->ri_id);
553 		rpcrdma_destroy_id(ia->ri_id);
554 		ia->ri_id = NULL;
555 	}
556 
557 	/* If the pd is still busy, xprtrdma missed freeing a resource */
558 	if (ia->ri_pd && !IS_ERR(ia->ri_pd))
559 		ib_dealloc_pd(ia->ri_pd);
560 }
561 
562 /*
563  * Create unconnected endpoint.
564  */
565 int
566 rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia,
567 				struct rpcrdma_create_data_internal *cdata)
568 {
569 	struct ib_device_attr *devattr = &ia->ri_devattr;
570 	struct ib_cq *sendcq, *recvcq;
571 	struct ib_cq_init_attr cq_attr = {};
572 	unsigned int max_qp_wr;
573 	int rc, err;
574 
575 	if (devattr->max_sge < RPCRDMA_MAX_IOVS) {
576 		dprintk("RPC:       %s: insufficient sge's available\n",
577 			__func__);
578 		return -ENOMEM;
579 	}
580 
581 	if (devattr->max_qp_wr <= RPCRDMA_BACKWARD_WRS) {
582 		dprintk("RPC:       %s: insufficient wqe's available\n",
583 			__func__);
584 		return -ENOMEM;
585 	}
586 	max_qp_wr = devattr->max_qp_wr - RPCRDMA_BACKWARD_WRS;
587 
588 	/* check provider's send/recv wr limits */
589 	if (cdata->max_requests > max_qp_wr)
590 		cdata->max_requests = max_qp_wr;
591 
592 	ep->rep_attr.event_handler = rpcrdma_qp_async_error_upcall;
593 	ep->rep_attr.qp_context = ep;
594 	ep->rep_attr.srq = NULL;
595 	ep->rep_attr.cap.max_send_wr = cdata->max_requests;
596 	ep->rep_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
597 	rc = ia->ri_ops->ro_open(ia, ep, cdata);
598 	if (rc)
599 		return rc;
600 	ep->rep_attr.cap.max_recv_wr = cdata->max_requests;
601 	ep->rep_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
602 	ep->rep_attr.cap.max_send_sge = RPCRDMA_MAX_IOVS;
603 	ep->rep_attr.cap.max_recv_sge = 1;
604 	ep->rep_attr.cap.max_inline_data = 0;
605 	ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
606 	ep->rep_attr.qp_type = IB_QPT_RC;
607 	ep->rep_attr.port_num = ~0;
608 
609 	dprintk("RPC:       %s: requested max: dtos: send %d recv %d; "
610 		"iovs: send %d recv %d\n",
611 		__func__,
612 		ep->rep_attr.cap.max_send_wr,
613 		ep->rep_attr.cap.max_recv_wr,
614 		ep->rep_attr.cap.max_send_sge,
615 		ep->rep_attr.cap.max_recv_sge);
616 
617 	/* set trigger for requesting send completion */
618 	ep->rep_cqinit = ep->rep_attr.cap.max_send_wr/2 - 1;
619 	if (ep->rep_cqinit > RPCRDMA_MAX_UNSIGNALED_SENDS)
620 		ep->rep_cqinit = RPCRDMA_MAX_UNSIGNALED_SENDS;
621 	else if (ep->rep_cqinit <= 2)
622 		ep->rep_cqinit = 0;
623 	INIT_CQCOUNT(ep);
624 	init_waitqueue_head(&ep->rep_connect_wait);
625 	INIT_DELAYED_WORK(&ep->rep_connect_worker, rpcrdma_connect_worker);
626 
627 	cq_attr.cqe = ep->rep_attr.cap.max_send_wr + 1;
628 	sendcq = ib_create_cq(ia->ri_device, rpcrdma_sendcq_upcall,
629 			      rpcrdma_cq_async_error_upcall, NULL, &cq_attr);
630 	if (IS_ERR(sendcq)) {
631 		rc = PTR_ERR(sendcq);
632 		dprintk("RPC:       %s: failed to create send CQ: %i\n",
633 			__func__, rc);
634 		goto out1;
635 	}
636 
637 	rc = ib_req_notify_cq(sendcq, IB_CQ_NEXT_COMP);
638 	if (rc) {
639 		dprintk("RPC:       %s: ib_req_notify_cq failed: %i\n",
640 			__func__, rc);
641 		goto out2;
642 	}
643 
644 	cq_attr.cqe = ep->rep_attr.cap.max_recv_wr + 1;
645 	recvcq = ib_create_cq(ia->ri_device, rpcrdma_recvcq_upcall,
646 			      rpcrdma_cq_async_error_upcall, NULL, &cq_attr);
647 	if (IS_ERR(recvcq)) {
648 		rc = PTR_ERR(recvcq);
649 		dprintk("RPC:       %s: failed to create recv CQ: %i\n",
650 			__func__, rc);
651 		goto out2;
652 	}
653 
654 	rc = ib_req_notify_cq(recvcq, IB_CQ_NEXT_COMP);
655 	if (rc) {
656 		dprintk("RPC:       %s: ib_req_notify_cq failed: %i\n",
657 			__func__, rc);
658 		ib_destroy_cq(recvcq);
659 		goto out2;
660 	}
661 
662 	ep->rep_attr.send_cq = sendcq;
663 	ep->rep_attr.recv_cq = recvcq;
664 
665 	/* Initialize cma parameters */
666 
667 	/* RPC/RDMA does not use private data */
668 	ep->rep_remote_cma.private_data = NULL;
669 	ep->rep_remote_cma.private_data_len = 0;
670 
671 	/* Client offers RDMA Read but does not initiate */
672 	ep->rep_remote_cma.initiator_depth = 0;
673 	if (devattr->max_qp_rd_atom > 32)	/* arbitrary but <= 255 */
674 		ep->rep_remote_cma.responder_resources = 32;
675 	else
676 		ep->rep_remote_cma.responder_resources =
677 						devattr->max_qp_rd_atom;
678 
679 	ep->rep_remote_cma.retry_count = 7;
680 	ep->rep_remote_cma.flow_control = 0;
681 	ep->rep_remote_cma.rnr_retry_count = 0;
682 
683 	return 0;
684 
685 out2:
686 	err = ib_destroy_cq(sendcq);
687 	if (err)
688 		dprintk("RPC:       %s: ib_destroy_cq returned %i\n",
689 			__func__, err);
690 out1:
691 	if (ia->ri_dma_mr)
692 		ib_dereg_mr(ia->ri_dma_mr);
693 	return rc;
694 }
695 
696 /*
697  * rpcrdma_ep_destroy
698  *
699  * Disconnect and destroy endpoint. After this, the only
700  * valid operations on the ep are to free it (if dynamically
701  * allocated) or re-create it.
702  */
703 void
704 rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
705 {
706 	int rc;
707 
708 	dprintk("RPC:       %s: entering, connected is %d\n",
709 		__func__, ep->rep_connected);
710 
711 	cancel_delayed_work_sync(&ep->rep_connect_worker);
712 
713 	if (ia->ri_id->qp)
714 		rpcrdma_ep_disconnect(ep, ia);
715 
716 	rpcrdma_clean_cq(ep->rep_attr.recv_cq);
717 	rpcrdma_clean_cq(ep->rep_attr.send_cq);
718 
719 	if (ia->ri_id->qp) {
720 		rdma_destroy_qp(ia->ri_id);
721 		ia->ri_id->qp = NULL;
722 	}
723 
724 	rc = ib_destroy_cq(ep->rep_attr.recv_cq);
725 	if (rc)
726 		dprintk("RPC:       %s: ib_destroy_cq returned %i\n",
727 			__func__, rc);
728 
729 	rc = ib_destroy_cq(ep->rep_attr.send_cq);
730 	if (rc)
731 		dprintk("RPC:       %s: ib_destroy_cq returned %i\n",
732 			__func__, rc);
733 
734 	if (ia->ri_dma_mr) {
735 		rc = ib_dereg_mr(ia->ri_dma_mr);
736 		dprintk("RPC:       %s: ib_dereg_mr returned %i\n",
737 			__func__, rc);
738 	}
739 }
740 
741 /*
742  * Connect unconnected endpoint.
743  */
744 int
745 rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
746 {
747 	struct rdma_cm_id *id, *old;
748 	int rc = 0;
749 	int retry_count = 0;
750 
751 	if (ep->rep_connected != 0) {
752 		struct rpcrdma_xprt *xprt;
753 retry:
754 		dprintk("RPC:       %s: reconnecting...\n", __func__);
755 
756 		rpcrdma_ep_disconnect(ep, ia);
757 		rpcrdma_flush_cqs(ep);
758 
759 		xprt = container_of(ia, struct rpcrdma_xprt, rx_ia);
760 		id = rpcrdma_create_id(xprt, ia,
761 				(struct sockaddr *)&xprt->rx_data.addr);
762 		if (IS_ERR(id)) {
763 			rc = -EHOSTUNREACH;
764 			goto out;
765 		}
766 		/* TEMP TEMP TEMP - fail if new device:
767 		 * Deregister/remarshal *all* requests!
768 		 * Close and recreate adapter, pd, etc!
769 		 * Re-determine all attributes still sane!
770 		 * More stuff I haven't thought of!
771 		 * Rrrgh!
772 		 */
773 		if (ia->ri_device != id->device) {
774 			printk("RPC:       %s: can't reconnect on "
775 				"different device!\n", __func__);
776 			rpcrdma_destroy_id(id);
777 			rc = -ENETUNREACH;
778 			goto out;
779 		}
780 		/* END TEMP */
781 		rc = rdma_create_qp(id, ia->ri_pd, &ep->rep_attr);
782 		if (rc) {
783 			dprintk("RPC:       %s: rdma_create_qp failed %i\n",
784 				__func__, rc);
785 			rpcrdma_destroy_id(id);
786 			rc = -ENETUNREACH;
787 			goto out;
788 		}
789 
790 		write_lock(&ia->ri_qplock);
791 		old = ia->ri_id;
792 		ia->ri_id = id;
793 		write_unlock(&ia->ri_qplock);
794 
795 		rdma_destroy_qp(old);
796 		rpcrdma_destroy_id(old);
797 	} else {
798 		dprintk("RPC:       %s: connecting...\n", __func__);
799 		rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr);
800 		if (rc) {
801 			dprintk("RPC:       %s: rdma_create_qp failed %i\n",
802 				__func__, rc);
803 			/* do not update ep->rep_connected */
804 			return -ENETUNREACH;
805 		}
806 	}
807 
808 	ep->rep_connected = 0;
809 
810 	rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma);
811 	if (rc) {
812 		dprintk("RPC:       %s: rdma_connect() failed with %i\n",
813 				__func__, rc);
814 		goto out;
815 	}
816 
817 	wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0);
818 
819 	/*
820 	 * Check state. A non-peer reject indicates no listener
821 	 * (ECONNREFUSED), which may be a transient state. All
822 	 * others indicate a transport condition which has already
823 	 * undergone a best-effort.
824 	 */
825 	if (ep->rep_connected == -ECONNREFUSED &&
826 	    ++retry_count <= RDMA_CONNECT_RETRY_MAX) {
827 		dprintk("RPC:       %s: non-peer_reject, retry\n", __func__);
828 		goto retry;
829 	}
830 	if (ep->rep_connected <= 0) {
831 		/* Sometimes, the only way to reliably connect to remote
832 		 * CMs is to use same nonzero values for ORD and IRD. */
833 		if (retry_count++ <= RDMA_CONNECT_RETRY_MAX + 1 &&
834 		    (ep->rep_remote_cma.responder_resources == 0 ||
835 		     ep->rep_remote_cma.initiator_depth !=
836 				ep->rep_remote_cma.responder_resources)) {
837 			if (ep->rep_remote_cma.responder_resources == 0)
838 				ep->rep_remote_cma.responder_resources = 1;
839 			ep->rep_remote_cma.initiator_depth =
840 				ep->rep_remote_cma.responder_resources;
841 			goto retry;
842 		}
843 		rc = ep->rep_connected;
844 	} else {
845 		struct rpcrdma_xprt *r_xprt;
846 		unsigned int extras;
847 
848 		dprintk("RPC:       %s: connected\n", __func__);
849 
850 		r_xprt = container_of(ia, struct rpcrdma_xprt, rx_ia);
851 		extras = r_xprt->rx_buf.rb_bc_srv_max_requests;
852 
853 		if (extras) {
854 			rc = rpcrdma_ep_post_extra_recv(r_xprt, extras);
855 			if (rc)
856 				pr_warn("%s: rpcrdma_ep_post_extra_recv: %i\n",
857 					__func__, rc);
858 				rc = 0;
859 		}
860 	}
861 
862 out:
863 	if (rc)
864 		ep->rep_connected = rc;
865 	return rc;
866 }
867 
868 /*
869  * rpcrdma_ep_disconnect
870  *
871  * This is separate from destroy to facilitate the ability
872  * to reconnect without recreating the endpoint.
873  *
874  * This call is not reentrant, and must not be made in parallel
875  * on the same endpoint.
876  */
877 void
878 rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
879 {
880 	int rc;
881 
882 	rpcrdma_flush_cqs(ep);
883 	rc = rdma_disconnect(ia->ri_id);
884 	if (!rc) {
885 		/* returns without wait if not connected */
886 		wait_event_interruptible(ep->rep_connect_wait,
887 							ep->rep_connected != 1);
888 		dprintk("RPC:       %s: after wait, %sconnected\n", __func__,
889 			(ep->rep_connected == 1) ? "still " : "dis");
890 	} else {
891 		dprintk("RPC:       %s: rdma_disconnect %i\n", __func__, rc);
892 		ep->rep_connected = rc;
893 	}
894 }
895 
896 struct rpcrdma_req *
897 rpcrdma_create_req(struct rpcrdma_xprt *r_xprt)
898 {
899 	struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
900 	struct rpcrdma_req *req;
901 
902 	req = kzalloc(sizeof(*req), GFP_KERNEL);
903 	if (req == NULL)
904 		return ERR_PTR(-ENOMEM);
905 
906 	INIT_LIST_HEAD(&req->rl_free);
907 	spin_lock(&buffer->rb_reqslock);
908 	list_add(&req->rl_all, &buffer->rb_allreqs);
909 	spin_unlock(&buffer->rb_reqslock);
910 	req->rl_buffer = &r_xprt->rx_buf;
911 	return req;
912 }
913 
914 struct rpcrdma_rep *
915 rpcrdma_create_rep(struct rpcrdma_xprt *r_xprt)
916 {
917 	struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
918 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
919 	struct rpcrdma_rep *rep;
920 	int rc;
921 
922 	rc = -ENOMEM;
923 	rep = kzalloc(sizeof(*rep), GFP_KERNEL);
924 	if (rep == NULL)
925 		goto out;
926 
927 	rep->rr_rdmabuf = rpcrdma_alloc_regbuf(ia, cdata->inline_rsize,
928 					       GFP_KERNEL);
929 	if (IS_ERR(rep->rr_rdmabuf)) {
930 		rc = PTR_ERR(rep->rr_rdmabuf);
931 		goto out_free;
932 	}
933 
934 	rep->rr_device = ia->ri_device;
935 	rep->rr_rxprt = r_xprt;
936 	INIT_WORK(&rep->rr_work, rpcrdma_receive_worker);
937 	return rep;
938 
939 out_free:
940 	kfree(rep);
941 out:
942 	return ERR_PTR(rc);
943 }
944 
945 int
946 rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
947 {
948 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
949 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
950 	int i, rc;
951 
952 	buf->rb_max_requests = r_xprt->rx_data.max_requests;
953 	buf->rb_bc_srv_max_requests = 0;
954 	spin_lock_init(&buf->rb_lock);
955 
956 	rc = ia->ri_ops->ro_init(r_xprt);
957 	if (rc)
958 		goto out;
959 
960 	INIT_LIST_HEAD(&buf->rb_send_bufs);
961 	INIT_LIST_HEAD(&buf->rb_allreqs);
962 	spin_lock_init(&buf->rb_reqslock);
963 	for (i = 0; i < buf->rb_max_requests; i++) {
964 		struct rpcrdma_req *req;
965 
966 		req = rpcrdma_create_req(r_xprt);
967 		if (IS_ERR(req)) {
968 			dprintk("RPC:       %s: request buffer %d alloc"
969 				" failed\n", __func__, i);
970 			rc = PTR_ERR(req);
971 			goto out;
972 		}
973 		req->rl_backchannel = false;
974 		list_add(&req->rl_free, &buf->rb_send_bufs);
975 	}
976 
977 	INIT_LIST_HEAD(&buf->rb_recv_bufs);
978 	for (i = 0; i < buf->rb_max_requests + 2; i++) {
979 		struct rpcrdma_rep *rep;
980 
981 		rep = rpcrdma_create_rep(r_xprt);
982 		if (IS_ERR(rep)) {
983 			dprintk("RPC:       %s: reply buffer %d alloc failed\n",
984 				__func__, i);
985 			rc = PTR_ERR(rep);
986 			goto out;
987 		}
988 		list_add(&rep->rr_list, &buf->rb_recv_bufs);
989 	}
990 
991 	return 0;
992 out:
993 	rpcrdma_buffer_destroy(buf);
994 	return rc;
995 }
996 
997 static struct rpcrdma_req *
998 rpcrdma_buffer_get_req_locked(struct rpcrdma_buffer *buf)
999 {
1000 	struct rpcrdma_req *req;
1001 
1002 	req = list_first_entry(&buf->rb_send_bufs,
1003 			       struct rpcrdma_req, rl_free);
1004 	list_del(&req->rl_free);
1005 	return req;
1006 }
1007 
1008 static struct rpcrdma_rep *
1009 rpcrdma_buffer_get_rep_locked(struct rpcrdma_buffer *buf)
1010 {
1011 	struct rpcrdma_rep *rep;
1012 
1013 	rep = list_first_entry(&buf->rb_recv_bufs,
1014 			       struct rpcrdma_rep, rr_list);
1015 	list_del(&rep->rr_list);
1016 	return rep;
1017 }
1018 
1019 static void
1020 rpcrdma_destroy_rep(struct rpcrdma_ia *ia, struct rpcrdma_rep *rep)
1021 {
1022 	rpcrdma_free_regbuf(ia, rep->rr_rdmabuf);
1023 	kfree(rep);
1024 }
1025 
1026 void
1027 rpcrdma_destroy_req(struct rpcrdma_ia *ia, struct rpcrdma_req *req)
1028 {
1029 	rpcrdma_free_regbuf(ia, req->rl_sendbuf);
1030 	rpcrdma_free_regbuf(ia, req->rl_rdmabuf);
1031 	kfree(req);
1032 }
1033 
1034 void
1035 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1036 {
1037 	struct rpcrdma_ia *ia = rdmab_to_ia(buf);
1038 
1039 	while (!list_empty(&buf->rb_recv_bufs)) {
1040 		struct rpcrdma_rep *rep;
1041 
1042 		rep = rpcrdma_buffer_get_rep_locked(buf);
1043 		rpcrdma_destroy_rep(ia, rep);
1044 	}
1045 
1046 	spin_lock(&buf->rb_reqslock);
1047 	while (!list_empty(&buf->rb_allreqs)) {
1048 		struct rpcrdma_req *req;
1049 
1050 		req = list_first_entry(&buf->rb_allreqs,
1051 				       struct rpcrdma_req, rl_all);
1052 		list_del(&req->rl_all);
1053 
1054 		spin_unlock(&buf->rb_reqslock);
1055 		rpcrdma_destroy_req(ia, req);
1056 		spin_lock(&buf->rb_reqslock);
1057 	}
1058 	spin_unlock(&buf->rb_reqslock);
1059 
1060 	ia->ri_ops->ro_destroy(buf);
1061 }
1062 
1063 struct rpcrdma_mw *
1064 rpcrdma_get_mw(struct rpcrdma_xprt *r_xprt)
1065 {
1066 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1067 	struct rpcrdma_mw *mw = NULL;
1068 
1069 	spin_lock(&buf->rb_mwlock);
1070 	if (!list_empty(&buf->rb_mws)) {
1071 		mw = list_first_entry(&buf->rb_mws,
1072 				      struct rpcrdma_mw, mw_list);
1073 		list_del_init(&mw->mw_list);
1074 	}
1075 	spin_unlock(&buf->rb_mwlock);
1076 
1077 	if (!mw)
1078 		pr_err("RPC:       %s: no MWs available\n", __func__);
1079 	return mw;
1080 }
1081 
1082 void
1083 rpcrdma_put_mw(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mw *mw)
1084 {
1085 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1086 
1087 	spin_lock(&buf->rb_mwlock);
1088 	list_add_tail(&mw->mw_list, &buf->rb_mws);
1089 	spin_unlock(&buf->rb_mwlock);
1090 }
1091 
1092 /*
1093  * Get a set of request/reply buffers.
1094  *
1095  * Reply buffer (if available) is attached to send buffer upon return.
1096  */
1097 struct rpcrdma_req *
1098 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1099 {
1100 	struct rpcrdma_req *req;
1101 
1102 	spin_lock(&buffers->rb_lock);
1103 	if (list_empty(&buffers->rb_send_bufs))
1104 		goto out_reqbuf;
1105 	req = rpcrdma_buffer_get_req_locked(buffers);
1106 	if (list_empty(&buffers->rb_recv_bufs))
1107 		goto out_repbuf;
1108 	req->rl_reply = rpcrdma_buffer_get_rep_locked(buffers);
1109 	spin_unlock(&buffers->rb_lock);
1110 	return req;
1111 
1112 out_reqbuf:
1113 	spin_unlock(&buffers->rb_lock);
1114 	pr_warn("RPC:       %s: out of request buffers\n", __func__);
1115 	return NULL;
1116 out_repbuf:
1117 	spin_unlock(&buffers->rb_lock);
1118 	pr_warn("RPC:       %s: out of reply buffers\n", __func__);
1119 	req->rl_reply = NULL;
1120 	return req;
1121 }
1122 
1123 /*
1124  * Put request/reply buffers back into pool.
1125  * Pre-decrement counter/array index.
1126  */
1127 void
1128 rpcrdma_buffer_put(struct rpcrdma_req *req)
1129 {
1130 	struct rpcrdma_buffer *buffers = req->rl_buffer;
1131 	struct rpcrdma_rep *rep = req->rl_reply;
1132 
1133 	req->rl_niovs = 0;
1134 	req->rl_reply = NULL;
1135 
1136 	spin_lock(&buffers->rb_lock);
1137 	list_add_tail(&req->rl_free, &buffers->rb_send_bufs);
1138 	if (rep)
1139 		list_add_tail(&rep->rr_list, &buffers->rb_recv_bufs);
1140 	spin_unlock(&buffers->rb_lock);
1141 }
1142 
1143 /*
1144  * Recover reply buffers from pool.
1145  * This happens when recovering from disconnect.
1146  */
1147 void
1148 rpcrdma_recv_buffer_get(struct rpcrdma_req *req)
1149 {
1150 	struct rpcrdma_buffer *buffers = req->rl_buffer;
1151 
1152 	spin_lock(&buffers->rb_lock);
1153 	if (!list_empty(&buffers->rb_recv_bufs))
1154 		req->rl_reply = rpcrdma_buffer_get_rep_locked(buffers);
1155 	spin_unlock(&buffers->rb_lock);
1156 }
1157 
1158 /*
1159  * Put reply buffers back into pool when not attached to
1160  * request. This happens in error conditions.
1161  */
1162 void
1163 rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
1164 {
1165 	struct rpcrdma_buffer *buffers = &rep->rr_rxprt->rx_buf;
1166 
1167 	spin_lock(&buffers->rb_lock);
1168 	list_add_tail(&rep->rr_list, &buffers->rb_recv_bufs);
1169 	spin_unlock(&buffers->rb_lock);
1170 }
1171 
1172 /*
1173  * Wrappers for internal-use kmalloc memory registration, used by buffer code.
1174  */
1175 
1176 void
1177 rpcrdma_mapping_error(struct rpcrdma_mr_seg *seg)
1178 {
1179 	dprintk("RPC:       map_one: offset %p iova %llx len %zu\n",
1180 		seg->mr_offset,
1181 		(unsigned long long)seg->mr_dma, seg->mr_dmalen);
1182 }
1183 
1184 /**
1185  * rpcrdma_alloc_regbuf - kmalloc and register memory for SEND/RECV buffers
1186  * @ia: controlling rpcrdma_ia
1187  * @size: size of buffer to be allocated, in bytes
1188  * @flags: GFP flags
1189  *
1190  * Returns pointer to private header of an area of internally
1191  * registered memory, or an ERR_PTR. The registered buffer follows
1192  * the end of the private header.
1193  *
1194  * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1195  * receiving the payload of RDMA RECV operations. regbufs are not
1196  * used for RDMA READ/WRITE operations, thus are registered only for
1197  * LOCAL access.
1198  */
1199 struct rpcrdma_regbuf *
1200 rpcrdma_alloc_regbuf(struct rpcrdma_ia *ia, size_t size, gfp_t flags)
1201 {
1202 	struct rpcrdma_regbuf *rb;
1203 	struct ib_sge *iov;
1204 
1205 	rb = kmalloc(sizeof(*rb) + size, flags);
1206 	if (rb == NULL)
1207 		goto out;
1208 
1209 	iov = &rb->rg_iov;
1210 	iov->addr = ib_dma_map_single(ia->ri_device,
1211 				      (void *)rb->rg_base, size,
1212 				      DMA_BIDIRECTIONAL);
1213 	if (ib_dma_mapping_error(ia->ri_device, iov->addr))
1214 		goto out_free;
1215 
1216 	iov->length = size;
1217 	iov->lkey = ia->ri_pd->local_dma_lkey;
1218 	rb->rg_size = size;
1219 	rb->rg_owner = NULL;
1220 	return rb;
1221 
1222 out_free:
1223 	kfree(rb);
1224 out:
1225 	return ERR_PTR(-ENOMEM);
1226 }
1227 
1228 /**
1229  * rpcrdma_free_regbuf - deregister and free registered buffer
1230  * @ia: controlling rpcrdma_ia
1231  * @rb: regbuf to be deregistered and freed
1232  */
1233 void
1234 rpcrdma_free_regbuf(struct rpcrdma_ia *ia, struct rpcrdma_regbuf *rb)
1235 {
1236 	struct ib_sge *iov;
1237 
1238 	if (!rb)
1239 		return;
1240 
1241 	iov = &rb->rg_iov;
1242 	ib_dma_unmap_single(ia->ri_device,
1243 			    iov->addr, iov->length, DMA_BIDIRECTIONAL);
1244 	kfree(rb);
1245 }
1246 
1247 /*
1248  * Prepost any receive buffer, then post send.
1249  *
1250  * Receive buffer is donated to hardware, reclaimed upon recv completion.
1251  */
1252 int
1253 rpcrdma_ep_post(struct rpcrdma_ia *ia,
1254 		struct rpcrdma_ep *ep,
1255 		struct rpcrdma_req *req)
1256 {
1257 	struct ib_device *device = ia->ri_device;
1258 	struct ib_send_wr send_wr, *send_wr_fail;
1259 	struct rpcrdma_rep *rep = req->rl_reply;
1260 	struct ib_sge *iov = req->rl_send_iov;
1261 	int i, rc;
1262 
1263 	if (rep) {
1264 		rc = rpcrdma_ep_post_recv(ia, ep, rep);
1265 		if (rc)
1266 			goto out;
1267 		req->rl_reply = NULL;
1268 	}
1269 
1270 	send_wr.next = NULL;
1271 	send_wr.wr_id = RPCRDMA_IGNORE_COMPLETION;
1272 	send_wr.sg_list = iov;
1273 	send_wr.num_sge = req->rl_niovs;
1274 	send_wr.opcode = IB_WR_SEND;
1275 
1276 	for (i = 0; i < send_wr.num_sge; i++)
1277 		ib_dma_sync_single_for_device(device, iov[i].addr,
1278 					      iov[i].length, DMA_TO_DEVICE);
1279 	dprintk("RPC:       %s: posting %d s/g entries\n",
1280 		__func__, send_wr.num_sge);
1281 
1282 	if (DECR_CQCOUNT(ep) > 0)
1283 		send_wr.send_flags = 0;
1284 	else { /* Provider must take a send completion every now and then */
1285 		INIT_CQCOUNT(ep);
1286 		send_wr.send_flags = IB_SEND_SIGNALED;
1287 	}
1288 
1289 	rc = ib_post_send(ia->ri_id->qp, &send_wr, &send_wr_fail);
1290 	if (rc)
1291 		dprintk("RPC:       %s: ib_post_send returned %i\n", __func__,
1292 			rc);
1293 out:
1294 	return rc;
1295 }
1296 
1297 /*
1298  * (Re)post a receive buffer.
1299  */
1300 int
1301 rpcrdma_ep_post_recv(struct rpcrdma_ia *ia,
1302 		     struct rpcrdma_ep *ep,
1303 		     struct rpcrdma_rep *rep)
1304 {
1305 	struct ib_recv_wr recv_wr, *recv_wr_fail;
1306 	int rc;
1307 
1308 	recv_wr.next = NULL;
1309 	recv_wr.wr_id = (u64) (unsigned long) rep;
1310 	recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
1311 	recv_wr.num_sge = 1;
1312 
1313 	ib_dma_sync_single_for_cpu(ia->ri_device,
1314 				   rdmab_addr(rep->rr_rdmabuf),
1315 				   rdmab_length(rep->rr_rdmabuf),
1316 				   DMA_BIDIRECTIONAL);
1317 
1318 	rc = ib_post_recv(ia->ri_id->qp, &recv_wr, &recv_wr_fail);
1319 
1320 	if (rc)
1321 		dprintk("RPC:       %s: ib_post_recv returned %i\n", __func__,
1322 			rc);
1323 	return rc;
1324 }
1325 
1326 /**
1327  * rpcrdma_ep_post_extra_recv - Post buffers for incoming backchannel requests
1328  * @r_xprt: transport associated with these backchannel resources
1329  * @min_reqs: minimum number of incoming requests expected
1330  *
1331  * Returns zero if all requested buffers were posted, or a negative errno.
1332  */
1333 int
1334 rpcrdma_ep_post_extra_recv(struct rpcrdma_xprt *r_xprt, unsigned int count)
1335 {
1336 	struct rpcrdma_buffer *buffers = &r_xprt->rx_buf;
1337 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
1338 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
1339 	struct rpcrdma_rep *rep;
1340 	unsigned long flags;
1341 	int rc;
1342 
1343 	while (count--) {
1344 		spin_lock_irqsave(&buffers->rb_lock, flags);
1345 		if (list_empty(&buffers->rb_recv_bufs))
1346 			goto out_reqbuf;
1347 		rep = rpcrdma_buffer_get_rep_locked(buffers);
1348 		spin_unlock_irqrestore(&buffers->rb_lock, flags);
1349 
1350 		rc = rpcrdma_ep_post_recv(ia, ep, rep);
1351 		if (rc)
1352 			goto out_rc;
1353 	}
1354 
1355 	return 0;
1356 
1357 out_reqbuf:
1358 	spin_unlock_irqrestore(&buffers->rb_lock, flags);
1359 	pr_warn("%s: no extra receive buffers\n", __func__);
1360 	return -ENOMEM;
1361 
1362 out_rc:
1363 	rpcrdma_recv_buffer_put(rep);
1364 	return rc;
1365 }
1366 
1367 /* How many chunk list items fit within our inline buffers?
1368  */
1369 unsigned int
1370 rpcrdma_max_segments(struct rpcrdma_xprt *r_xprt)
1371 {
1372 	struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
1373 	int bytes, segments;
1374 
1375 	bytes = min_t(unsigned int, cdata->inline_wsize, cdata->inline_rsize);
1376 	bytes -= RPCRDMA_HDRLEN_MIN;
1377 	if (bytes < sizeof(struct rpcrdma_segment) * 2) {
1378 		pr_warn("RPC:       %s: inline threshold too small\n",
1379 			__func__);
1380 		return 0;
1381 	}
1382 
1383 	segments = 1 << (fls(bytes / sizeof(struct rpcrdma_segment)) - 1);
1384 	dprintk("RPC:       %s: max chunk list size = %d segments\n",
1385 		__func__, segments);
1386 	return segments;
1387 }
1388