xref: /openbmc/linux/net/sunrpc/xprtrdma/verbs.c (revision 8e774e02)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (c) 2014-2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the BSD-type
10  * license below:
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  *
16  *      Redistributions of source code must retain the above copyright
17  *      notice, this list of conditions and the following disclaimer.
18  *
19  *      Redistributions in binary form must reproduce the above
20  *      copyright notice, this list of conditions and the following
21  *      disclaimer in the documentation and/or other materials provided
22  *      with the distribution.
23  *
24  *      Neither the name of the Network Appliance, Inc. nor the names of
25  *      its contributors may be used to endorse or promote products
26  *      derived from this software without specific prior written
27  *      permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41 
42 /*
43  * verbs.c
44  *
45  * Encapsulates the major functions managing:
46  *  o adapters
47  *  o endpoints
48  *  o connections
49  *  o buffer memory
50  */
51 
52 #include <linux/interrupt.h>
53 #include <linux/slab.h>
54 #include <linux/sunrpc/addr.h>
55 #include <linux/sunrpc/svc_rdma.h>
56 
57 #include <asm-generic/barrier.h>
58 #include <asm/bitops.h>
59 
60 #include <rdma/ib_cm.h>
61 
62 #include "xprt_rdma.h"
63 #include <trace/events/rpcrdma.h>
64 
65 /*
66  * Globals/Macros
67  */
68 
69 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
70 # define RPCDBG_FACILITY	RPCDBG_TRANS
71 #endif
72 
73 /*
74  * internal functions
75  */
76 static void rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc);
77 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt);
78 static void rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf);
79 static struct rpcrdma_regbuf *
80 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
81 		     gfp_t flags);
82 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb);
83 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb);
84 static void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp);
85 
86 /* Wait for outstanding transport work to finish. ib_drain_qp
87  * handles the drains in the wrong order for us, so open code
88  * them here.
89  */
90 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt)
91 {
92 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
93 
94 	/* Flush Receives, then wait for deferred Reply work
95 	 * to complete.
96 	 */
97 	ib_drain_rq(ia->ri_id->qp);
98 
99 	/* Deferred Reply processing might have scheduled
100 	 * local invalidations.
101 	 */
102 	ib_drain_sq(ia->ri_id->qp);
103 }
104 
105 /**
106  * rpcrdma_qp_event_handler - Handle one QP event (error notification)
107  * @event: details of the event
108  * @context: ep that owns QP where event occurred
109  *
110  * Called from the RDMA provider (device driver) possibly in an interrupt
111  * context.
112  */
113 static void
114 rpcrdma_qp_event_handler(struct ib_event *event, void *context)
115 {
116 	struct rpcrdma_ep *ep = context;
117 	struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt,
118 						   rx_ep);
119 
120 	trace_xprtrdma_qp_event(r_xprt, event);
121 }
122 
123 /**
124  * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
125  * @cq:	completion queue (ignored)
126  * @wc:	completed WR
127  *
128  */
129 static void
130 rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
131 {
132 	struct ib_cqe *cqe = wc->wr_cqe;
133 	struct rpcrdma_sendctx *sc =
134 		container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
135 
136 	/* WARNING: Only wr_cqe and status are reliable at this point */
137 	trace_xprtrdma_wc_send(sc, wc);
138 	rpcrdma_sendctx_put_locked(sc);
139 }
140 
141 /**
142  * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
143  * @cq:	completion queue (ignored)
144  * @wc:	completed WR
145  *
146  */
147 static void
148 rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
149 {
150 	struct ib_cqe *cqe = wc->wr_cqe;
151 	struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
152 					       rr_cqe);
153 	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
154 
155 	/* WARNING: Only wr_cqe and status are reliable at this point */
156 	trace_xprtrdma_wc_receive(wc);
157 	--r_xprt->rx_ep.rep_receive_count;
158 	if (wc->status != IB_WC_SUCCESS)
159 		goto out_flushed;
160 
161 	/* status == SUCCESS means all fields in wc are trustworthy */
162 	rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
163 	rep->rr_wc_flags = wc->wc_flags;
164 	rep->rr_inv_rkey = wc->ex.invalidate_rkey;
165 
166 	ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
167 				   rdmab_addr(rep->rr_rdmabuf),
168 				   wc->byte_len, DMA_FROM_DEVICE);
169 
170 	rpcrdma_post_recvs(r_xprt, false);
171 	rpcrdma_reply_handler(rep);
172 	return;
173 
174 out_flushed:
175 	rpcrdma_recv_buffer_put(rep);
176 }
177 
178 static void
179 rpcrdma_update_connect_private(struct rpcrdma_xprt *r_xprt,
180 			       struct rdma_conn_param *param)
181 {
182 	const struct rpcrdma_connect_private *pmsg = param->private_data;
183 	unsigned int rsize, wsize;
184 
185 	/* Default settings for RPC-over-RDMA Version One */
186 	r_xprt->rx_ia.ri_implicit_roundup = xprt_rdma_pad_optimize;
187 	rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
188 	wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
189 
190 	if (pmsg &&
191 	    pmsg->cp_magic == rpcrdma_cmp_magic &&
192 	    pmsg->cp_version == RPCRDMA_CMP_VERSION) {
193 		r_xprt->rx_ia.ri_implicit_roundup = true;
194 		rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
195 		wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
196 	}
197 
198 	if (rsize < r_xprt->rx_ep.rep_inline_recv)
199 		r_xprt->rx_ep.rep_inline_recv = rsize;
200 	if (wsize < r_xprt->rx_ep.rep_inline_send)
201 		r_xprt->rx_ep.rep_inline_send = wsize;
202 	dprintk("RPC:       %s: max send %u, max recv %u\n", __func__,
203 		r_xprt->rx_ep.rep_inline_send,
204 		r_xprt->rx_ep.rep_inline_recv);
205 	rpcrdma_set_max_header_sizes(r_xprt);
206 }
207 
208 /**
209  * rpcrdma_cm_event_handler - Handle RDMA CM events
210  * @id: rdma_cm_id on which an event has occurred
211  * @event: details of the event
212  *
213  * Called with @id's mutex held. Returns 1 if caller should
214  * destroy @id, otherwise 0.
215  */
216 static int
217 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event)
218 {
219 	struct rpcrdma_xprt *r_xprt = id->context;
220 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
221 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
222 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
223 
224 	might_sleep();
225 
226 	trace_xprtrdma_cm_event(r_xprt, event);
227 	switch (event->event) {
228 	case RDMA_CM_EVENT_ADDR_RESOLVED:
229 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
230 		ia->ri_async_rc = 0;
231 		complete(&ia->ri_done);
232 		return 0;
233 	case RDMA_CM_EVENT_ADDR_ERROR:
234 		ia->ri_async_rc = -EPROTO;
235 		complete(&ia->ri_done);
236 		return 0;
237 	case RDMA_CM_EVENT_ROUTE_ERROR:
238 		ia->ri_async_rc = -ENETUNREACH;
239 		complete(&ia->ri_done);
240 		return 0;
241 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
242 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
243 		pr_info("rpcrdma: removing device %s for %s:%s\n",
244 			ia->ri_id->device->name,
245 			rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt));
246 #endif
247 		set_bit(RPCRDMA_IAF_REMOVING, &ia->ri_flags);
248 		ep->rep_connected = -ENODEV;
249 		xprt_force_disconnect(xprt);
250 		wait_for_completion(&ia->ri_remove_done);
251 
252 		ia->ri_id = NULL;
253 		/* Return 1 to ensure the core destroys the id. */
254 		return 1;
255 	case RDMA_CM_EVENT_ESTABLISHED:
256 		++xprt->connect_cookie;
257 		ep->rep_connected = 1;
258 		rpcrdma_update_connect_private(r_xprt, &event->param.conn);
259 		wake_up_all(&ep->rep_connect_wait);
260 		break;
261 	case RDMA_CM_EVENT_CONNECT_ERROR:
262 		ep->rep_connected = -ENOTCONN;
263 		goto disconnected;
264 	case RDMA_CM_EVENT_UNREACHABLE:
265 		ep->rep_connected = -ENETUNREACH;
266 		goto disconnected;
267 	case RDMA_CM_EVENT_REJECTED:
268 		dprintk("rpcrdma: connection to %s:%s rejected: %s\n",
269 			rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt),
270 			rdma_reject_msg(id, event->status));
271 		ep->rep_connected = -ECONNREFUSED;
272 		if (event->status == IB_CM_REJ_STALE_CONN)
273 			ep->rep_connected = -EAGAIN;
274 		goto disconnected;
275 	case RDMA_CM_EVENT_DISCONNECTED:
276 		ep->rep_connected = -ECONNABORTED;
277 disconnected:
278 		xprt_force_disconnect(xprt);
279 		wake_up_all(&ep->rep_connect_wait);
280 		break;
281 	default:
282 		break;
283 	}
284 
285 	dprintk("RPC:       %s: %s:%s on %s/frwr: %s\n", __func__,
286 		rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt),
287 		ia->ri_id->device->name, rdma_event_msg(event->event));
288 	return 0;
289 }
290 
291 static struct rdma_cm_id *
292 rpcrdma_create_id(struct rpcrdma_xprt *xprt, struct rpcrdma_ia *ia)
293 {
294 	unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
295 	struct rdma_cm_id *id;
296 	int rc;
297 
298 	trace_xprtrdma_conn_start(xprt);
299 
300 	init_completion(&ia->ri_done);
301 	init_completion(&ia->ri_remove_done);
302 
303 	id = rdma_create_id(xprt->rx_xprt.xprt_net, rpcrdma_cm_event_handler,
304 			    xprt, RDMA_PS_TCP, IB_QPT_RC);
305 	if (IS_ERR(id))
306 		return id;
307 
308 	ia->ri_async_rc = -ETIMEDOUT;
309 	rc = rdma_resolve_addr(id, NULL,
310 			       (struct sockaddr *)&xprt->rx_xprt.addr,
311 			       RDMA_RESOLVE_TIMEOUT);
312 	if (rc)
313 		goto out;
314 	rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout);
315 	if (rc < 0) {
316 		trace_xprtrdma_conn_tout(xprt);
317 		goto out;
318 	}
319 
320 	rc = ia->ri_async_rc;
321 	if (rc)
322 		goto out;
323 
324 	ia->ri_async_rc = -ETIMEDOUT;
325 	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
326 	if (rc)
327 		goto out;
328 	rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout);
329 	if (rc < 0) {
330 		trace_xprtrdma_conn_tout(xprt);
331 		goto out;
332 	}
333 	rc = ia->ri_async_rc;
334 	if (rc)
335 		goto out;
336 
337 	return id;
338 
339 out:
340 	rdma_destroy_id(id);
341 	return ERR_PTR(rc);
342 }
343 
344 /*
345  * Exported functions.
346  */
347 
348 /**
349  * rpcrdma_ia_open - Open and initialize an Interface Adapter.
350  * @xprt: transport with IA to (re)initialize
351  *
352  * Returns 0 on success, negative errno if an appropriate
353  * Interface Adapter could not be found and opened.
354  */
355 int
356 rpcrdma_ia_open(struct rpcrdma_xprt *xprt)
357 {
358 	struct rpcrdma_ia *ia = &xprt->rx_ia;
359 	int rc;
360 
361 	ia->ri_id = rpcrdma_create_id(xprt, ia);
362 	if (IS_ERR(ia->ri_id)) {
363 		rc = PTR_ERR(ia->ri_id);
364 		goto out_err;
365 	}
366 
367 	ia->ri_pd = ib_alloc_pd(ia->ri_id->device, 0);
368 	if (IS_ERR(ia->ri_pd)) {
369 		rc = PTR_ERR(ia->ri_pd);
370 		pr_err("rpcrdma: ib_alloc_pd() returned %d\n", rc);
371 		goto out_err;
372 	}
373 
374 	switch (xprt_rdma_memreg_strategy) {
375 	case RPCRDMA_FRWR:
376 		if (frwr_is_supported(ia->ri_id->device))
377 			break;
378 		/*FALLTHROUGH*/
379 	default:
380 		pr_err("rpcrdma: Device %s does not support memreg mode %d\n",
381 		       ia->ri_id->device->name, xprt_rdma_memreg_strategy);
382 		rc = -EINVAL;
383 		goto out_err;
384 	}
385 
386 	return 0;
387 
388 out_err:
389 	rpcrdma_ia_close(ia);
390 	return rc;
391 }
392 
393 /**
394  * rpcrdma_ia_remove - Handle device driver unload
395  * @ia: interface adapter being removed
396  *
397  * Divest transport H/W resources associated with this adapter,
398  * but allow it to be restored later.
399  */
400 void
401 rpcrdma_ia_remove(struct rpcrdma_ia *ia)
402 {
403 	struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt,
404 						   rx_ia);
405 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
406 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
407 	struct rpcrdma_req *req;
408 	struct rpcrdma_rep *rep;
409 
410 	cancel_delayed_work_sync(&buf->rb_refresh_worker);
411 
412 	/* This is similar to rpcrdma_ep_destroy, but:
413 	 * - Don't cancel the connect worker.
414 	 * - Don't call rpcrdma_ep_disconnect, which waits
415 	 *   for another conn upcall, which will deadlock.
416 	 * - rdma_disconnect is unneeded, the underlying
417 	 *   connection is already gone.
418 	 */
419 	if (ia->ri_id->qp) {
420 		rpcrdma_xprt_drain(r_xprt);
421 		rdma_destroy_qp(ia->ri_id);
422 		ia->ri_id->qp = NULL;
423 	}
424 	ib_free_cq(ep->rep_attr.recv_cq);
425 	ep->rep_attr.recv_cq = NULL;
426 	ib_free_cq(ep->rep_attr.send_cq);
427 	ep->rep_attr.send_cq = NULL;
428 
429 	/* The ULP is responsible for ensuring all DMA
430 	 * mappings and MRs are gone.
431 	 */
432 	list_for_each_entry(rep, &buf->rb_recv_bufs, rr_list)
433 		rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf);
434 	list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
435 		rpcrdma_regbuf_dma_unmap(req->rl_rdmabuf);
436 		rpcrdma_regbuf_dma_unmap(req->rl_sendbuf);
437 		rpcrdma_regbuf_dma_unmap(req->rl_recvbuf);
438 	}
439 	rpcrdma_mrs_destroy(buf);
440 	ib_dealloc_pd(ia->ri_pd);
441 	ia->ri_pd = NULL;
442 
443 	/* Allow waiters to continue */
444 	complete(&ia->ri_remove_done);
445 
446 	trace_xprtrdma_remove(r_xprt);
447 }
448 
449 /**
450  * rpcrdma_ia_close - Clean up/close an IA.
451  * @ia: interface adapter to close
452  *
453  */
454 void
455 rpcrdma_ia_close(struct rpcrdma_ia *ia)
456 {
457 	if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) {
458 		if (ia->ri_id->qp)
459 			rdma_destroy_qp(ia->ri_id);
460 		rdma_destroy_id(ia->ri_id);
461 	}
462 	ia->ri_id = NULL;
463 
464 	/* If the pd is still busy, xprtrdma missed freeing a resource */
465 	if (ia->ri_pd && !IS_ERR(ia->ri_pd))
466 		ib_dealloc_pd(ia->ri_pd);
467 	ia->ri_pd = NULL;
468 }
469 
470 /**
471  * rpcrdma_ep_create - Create unconnected endpoint
472  * @r_xprt: transport to instantiate
473  *
474  * Returns zero on success, or a negative errno.
475  */
476 int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt)
477 {
478 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
479 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
480 	struct rpcrdma_connect_private *pmsg = &ep->rep_cm_private;
481 	struct ib_cq *sendcq, *recvcq;
482 	unsigned int max_sge;
483 	int rc;
484 
485 	ep->rep_max_requests = xprt_rdma_slot_table_entries;
486 	ep->rep_inline_send = xprt_rdma_max_inline_write;
487 	ep->rep_inline_recv = xprt_rdma_max_inline_read;
488 
489 	max_sge = min_t(unsigned int, ia->ri_id->device->attrs.max_send_sge,
490 			RPCRDMA_MAX_SEND_SGES);
491 	if (max_sge < RPCRDMA_MIN_SEND_SGES) {
492 		pr_warn("rpcrdma: HCA provides only %d send SGEs\n", max_sge);
493 		return -ENOMEM;
494 	}
495 	ia->ri_max_send_sges = max_sge;
496 
497 	rc = frwr_open(ia, ep);
498 	if (rc)
499 		return rc;
500 
501 	ep->rep_attr.event_handler = rpcrdma_qp_event_handler;
502 	ep->rep_attr.qp_context = ep;
503 	ep->rep_attr.srq = NULL;
504 	ep->rep_attr.cap.max_send_sge = max_sge;
505 	ep->rep_attr.cap.max_recv_sge = 1;
506 	ep->rep_attr.cap.max_inline_data = 0;
507 	ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
508 	ep->rep_attr.qp_type = IB_QPT_RC;
509 	ep->rep_attr.port_num = ~0;
510 
511 	dprintk("RPC:       %s: requested max: dtos: send %d recv %d; "
512 		"iovs: send %d recv %d\n",
513 		__func__,
514 		ep->rep_attr.cap.max_send_wr,
515 		ep->rep_attr.cap.max_recv_wr,
516 		ep->rep_attr.cap.max_send_sge,
517 		ep->rep_attr.cap.max_recv_sge);
518 
519 	ep->rep_send_batch = ep->rep_max_requests >> 3;
520 	ep->rep_send_count = ep->rep_send_batch;
521 	init_waitqueue_head(&ep->rep_connect_wait);
522 	ep->rep_receive_count = 0;
523 
524 	sendcq = ib_alloc_cq(ia->ri_id->device, NULL,
525 			     ep->rep_attr.cap.max_send_wr + 1,
526 			     ia->ri_id->device->num_comp_vectors > 1 ? 1 : 0,
527 			     IB_POLL_WORKQUEUE);
528 	if (IS_ERR(sendcq)) {
529 		rc = PTR_ERR(sendcq);
530 		goto out1;
531 	}
532 
533 	recvcq = ib_alloc_cq(ia->ri_id->device, NULL,
534 			     ep->rep_attr.cap.max_recv_wr + 1,
535 			     0, IB_POLL_WORKQUEUE);
536 	if (IS_ERR(recvcq)) {
537 		rc = PTR_ERR(recvcq);
538 		goto out2;
539 	}
540 
541 	ep->rep_attr.send_cq = sendcq;
542 	ep->rep_attr.recv_cq = recvcq;
543 
544 	/* Initialize cma parameters */
545 	memset(&ep->rep_remote_cma, 0, sizeof(ep->rep_remote_cma));
546 
547 	/* Prepare RDMA-CM private message */
548 	pmsg->cp_magic = rpcrdma_cmp_magic;
549 	pmsg->cp_version = RPCRDMA_CMP_VERSION;
550 	pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK;
551 	pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->rep_inline_send);
552 	pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->rep_inline_recv);
553 	ep->rep_remote_cma.private_data = pmsg;
554 	ep->rep_remote_cma.private_data_len = sizeof(*pmsg);
555 
556 	/* Client offers RDMA Read but does not initiate */
557 	ep->rep_remote_cma.initiator_depth = 0;
558 	ep->rep_remote_cma.responder_resources =
559 		min_t(int, U8_MAX, ia->ri_id->device->attrs.max_qp_rd_atom);
560 
561 	/* Limit transport retries so client can detect server
562 	 * GID changes quickly. RPC layer handles re-establishing
563 	 * transport connection and retransmission.
564 	 */
565 	ep->rep_remote_cma.retry_count = 6;
566 
567 	/* RPC-over-RDMA handles its own flow control. In addition,
568 	 * make all RNR NAKs visible so we know that RPC-over-RDMA
569 	 * flow control is working correctly (no NAKs should be seen).
570 	 */
571 	ep->rep_remote_cma.flow_control = 0;
572 	ep->rep_remote_cma.rnr_retry_count = 0;
573 
574 	return 0;
575 
576 out2:
577 	ib_free_cq(sendcq);
578 out1:
579 	return rc;
580 }
581 
582 /**
583  * rpcrdma_ep_destroy - Disconnect and destroy endpoint.
584  * @r_xprt: transport instance to shut down
585  *
586  */
587 void rpcrdma_ep_destroy(struct rpcrdma_xprt *r_xprt)
588 {
589 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
590 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
591 
592 	if (ia->ri_id && ia->ri_id->qp) {
593 		rpcrdma_ep_disconnect(ep, ia);
594 		rdma_destroy_qp(ia->ri_id);
595 		ia->ri_id->qp = NULL;
596 	}
597 
598 	if (ep->rep_attr.recv_cq)
599 		ib_free_cq(ep->rep_attr.recv_cq);
600 	if (ep->rep_attr.send_cq)
601 		ib_free_cq(ep->rep_attr.send_cq);
602 }
603 
604 /* Re-establish a connection after a device removal event.
605  * Unlike a normal reconnection, a fresh PD and a new set
606  * of MRs and buffers is needed.
607  */
608 static int
609 rpcrdma_ep_recreate_xprt(struct rpcrdma_xprt *r_xprt,
610 			 struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
611 {
612 	int rc, err;
613 
614 	trace_xprtrdma_reinsert(r_xprt);
615 
616 	rc = -EHOSTUNREACH;
617 	if (rpcrdma_ia_open(r_xprt))
618 		goto out1;
619 
620 	rc = -ENOMEM;
621 	err = rpcrdma_ep_create(r_xprt);
622 	if (err) {
623 		pr_err("rpcrdma: rpcrdma_ep_create returned %d\n", err);
624 		goto out2;
625 	}
626 
627 	rc = -ENETUNREACH;
628 	err = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr);
629 	if (err) {
630 		pr_err("rpcrdma: rdma_create_qp returned %d\n", err);
631 		goto out3;
632 	}
633 
634 	rpcrdma_mrs_create(r_xprt);
635 	return 0;
636 
637 out3:
638 	rpcrdma_ep_destroy(r_xprt);
639 out2:
640 	rpcrdma_ia_close(ia);
641 out1:
642 	return rc;
643 }
644 
645 static int
646 rpcrdma_ep_reconnect(struct rpcrdma_xprt *r_xprt, struct rpcrdma_ep *ep,
647 		     struct rpcrdma_ia *ia)
648 {
649 	struct rdma_cm_id *id, *old;
650 	int err, rc;
651 
652 	trace_xprtrdma_reconnect(r_xprt);
653 
654 	rpcrdma_ep_disconnect(ep, ia);
655 
656 	rc = -EHOSTUNREACH;
657 	id = rpcrdma_create_id(r_xprt, ia);
658 	if (IS_ERR(id))
659 		goto out;
660 
661 	/* As long as the new ID points to the same device as the
662 	 * old ID, we can reuse the transport's existing PD and all
663 	 * previously allocated MRs. Also, the same device means
664 	 * the transport's previous DMA mappings are still valid.
665 	 *
666 	 * This is a sanity check only. There should be no way these
667 	 * point to two different devices here.
668 	 */
669 	old = id;
670 	rc = -ENETUNREACH;
671 	if (ia->ri_id->device != id->device) {
672 		pr_err("rpcrdma: can't reconnect on different device!\n");
673 		goto out_destroy;
674 	}
675 
676 	err = rdma_create_qp(id, ia->ri_pd, &ep->rep_attr);
677 	if (err)
678 		goto out_destroy;
679 
680 	/* Atomically replace the transport's ID and QP. */
681 	rc = 0;
682 	old = ia->ri_id;
683 	ia->ri_id = id;
684 	rdma_destroy_qp(old);
685 
686 out_destroy:
687 	rdma_destroy_id(old);
688 out:
689 	return rc;
690 }
691 
692 /*
693  * Connect unconnected endpoint.
694  */
695 int
696 rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
697 {
698 	struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt,
699 						   rx_ia);
700 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
701 	int rc;
702 
703 retry:
704 	switch (ep->rep_connected) {
705 	case 0:
706 		dprintk("RPC:       %s: connecting...\n", __func__);
707 		rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr);
708 		if (rc) {
709 			rc = -ENETUNREACH;
710 			goto out_noupdate;
711 		}
712 		break;
713 	case -ENODEV:
714 		rc = rpcrdma_ep_recreate_xprt(r_xprt, ep, ia);
715 		if (rc)
716 			goto out_noupdate;
717 		break;
718 	default:
719 		rc = rpcrdma_ep_reconnect(r_xprt, ep, ia);
720 		if (rc)
721 			goto out;
722 	}
723 
724 	ep->rep_connected = 0;
725 	xprt_clear_connected(xprt);
726 
727 	rpcrdma_post_recvs(r_xprt, true);
728 
729 	rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma);
730 	if (rc)
731 		goto out;
732 
733 	wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0);
734 	if (ep->rep_connected <= 0) {
735 		if (ep->rep_connected == -EAGAIN)
736 			goto retry;
737 		rc = ep->rep_connected;
738 		goto out;
739 	}
740 
741 	dprintk("RPC:       %s: connected\n", __func__);
742 
743 out:
744 	if (rc)
745 		ep->rep_connected = rc;
746 
747 out_noupdate:
748 	return rc;
749 }
750 
751 /**
752  * rpcrdma_ep_disconnect - Disconnect underlying transport
753  * @ep: endpoint to disconnect
754  * @ia: associated interface adapter
755  *
756  * This is separate from destroy to facilitate the ability
757  * to reconnect without recreating the endpoint.
758  *
759  * This call is not reentrant, and must not be made in parallel
760  * on the same endpoint.
761  */
762 void
763 rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
764 {
765 	struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt,
766 						   rx_ep);
767 	int rc;
768 
769 	/* returns without wait if ID is not connected */
770 	rc = rdma_disconnect(ia->ri_id);
771 	if (!rc)
772 		wait_event_interruptible(ep->rep_connect_wait,
773 							ep->rep_connected != 1);
774 	else
775 		ep->rep_connected = rc;
776 	trace_xprtrdma_disconnect(r_xprt, rc);
777 
778 	rpcrdma_xprt_drain(r_xprt);
779 }
780 
781 /* Fixed-size circular FIFO queue. This implementation is wait-free and
782  * lock-free.
783  *
784  * Consumer is the code path that posts Sends. This path dequeues a
785  * sendctx for use by a Send operation. Multiple consumer threads
786  * are serialized by the RPC transport lock, which allows only one
787  * ->send_request call at a time.
788  *
789  * Producer is the code path that handles Send completions. This path
790  * enqueues a sendctx that has been completed. Multiple producer
791  * threads are serialized by the ib_poll_cq() function.
792  */
793 
794 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
795  * queue activity, and rpcrdma_xprt_drain has flushed all remaining
796  * Send requests.
797  */
798 static void rpcrdma_sendctxs_destroy(struct rpcrdma_buffer *buf)
799 {
800 	unsigned long i;
801 
802 	for (i = 0; i <= buf->rb_sc_last; i++)
803 		kfree(buf->rb_sc_ctxs[i]);
804 	kfree(buf->rb_sc_ctxs);
805 }
806 
807 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ia *ia)
808 {
809 	struct rpcrdma_sendctx *sc;
810 
811 	sc = kzalloc(struct_size(sc, sc_sges, ia->ri_max_send_sges),
812 		     GFP_KERNEL);
813 	if (!sc)
814 		return NULL;
815 
816 	sc->sc_wr.wr_cqe = &sc->sc_cqe;
817 	sc->sc_wr.sg_list = sc->sc_sges;
818 	sc->sc_wr.opcode = IB_WR_SEND;
819 	sc->sc_cqe.done = rpcrdma_wc_send;
820 	return sc;
821 }
822 
823 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
824 {
825 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
826 	struct rpcrdma_sendctx *sc;
827 	unsigned long i;
828 
829 	/* Maximum number of concurrent outstanding Send WRs. Capping
830 	 * the circular queue size stops Send Queue overflow by causing
831 	 * the ->send_request call to fail temporarily before too many
832 	 * Sends are posted.
833 	 */
834 	i = buf->rb_max_requests + RPCRDMA_MAX_BC_REQUESTS;
835 	dprintk("RPC:       %s: allocating %lu send_ctxs\n", __func__, i);
836 	buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL);
837 	if (!buf->rb_sc_ctxs)
838 		return -ENOMEM;
839 
840 	buf->rb_sc_last = i - 1;
841 	for (i = 0; i <= buf->rb_sc_last; i++) {
842 		sc = rpcrdma_sendctx_create(&r_xprt->rx_ia);
843 		if (!sc)
844 			return -ENOMEM;
845 
846 		sc->sc_xprt = r_xprt;
847 		buf->rb_sc_ctxs[i] = sc;
848 	}
849 
850 	return 0;
851 }
852 
853 /* The sendctx queue is not guaranteed to have a size that is a
854  * power of two, thus the helpers in circ_buf.h cannot be used.
855  * The other option is to use modulus (%), which can be expensive.
856  */
857 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
858 					  unsigned long item)
859 {
860 	return likely(item < buf->rb_sc_last) ? item + 1 : 0;
861 }
862 
863 /**
864  * rpcrdma_sendctx_get_locked - Acquire a send context
865  * @r_xprt: controlling transport instance
866  *
867  * Returns pointer to a free send completion context; or NULL if
868  * the queue is empty.
869  *
870  * Usage: Called to acquire an SGE array before preparing a Send WR.
871  *
872  * The caller serializes calls to this function (per transport), and
873  * provides an effective memory barrier that flushes the new value
874  * of rb_sc_head.
875  */
876 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt)
877 {
878 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
879 	struct rpcrdma_sendctx *sc;
880 	unsigned long next_head;
881 
882 	next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
883 
884 	if (next_head == READ_ONCE(buf->rb_sc_tail))
885 		goto out_emptyq;
886 
887 	/* ORDER: item must be accessed _before_ head is updated */
888 	sc = buf->rb_sc_ctxs[next_head];
889 
890 	/* Releasing the lock in the caller acts as a memory
891 	 * barrier that flushes rb_sc_head.
892 	 */
893 	buf->rb_sc_head = next_head;
894 
895 	return sc;
896 
897 out_emptyq:
898 	/* The queue is "empty" if there have not been enough Send
899 	 * completions recently. This is a sign the Send Queue is
900 	 * backing up. Cause the caller to pause and try again.
901 	 */
902 	xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
903 	r_xprt->rx_stats.empty_sendctx_q++;
904 	return NULL;
905 }
906 
907 /**
908  * rpcrdma_sendctx_put_locked - Release a send context
909  * @sc: send context to release
910  *
911  * Usage: Called from Send completion to return a sendctxt
912  * to the queue.
913  *
914  * The caller serializes calls to this function (per transport).
915  */
916 static void
917 rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc)
918 {
919 	struct rpcrdma_buffer *buf = &sc->sc_xprt->rx_buf;
920 	unsigned long next_tail;
921 
922 	/* Unmap SGEs of previously completed but unsignaled
923 	 * Sends by walking up the queue until @sc is found.
924 	 */
925 	next_tail = buf->rb_sc_tail;
926 	do {
927 		next_tail = rpcrdma_sendctx_next(buf, next_tail);
928 
929 		/* ORDER: item must be accessed _before_ tail is updated */
930 		rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]);
931 
932 	} while (buf->rb_sc_ctxs[next_tail] != sc);
933 
934 	/* Paired with READ_ONCE */
935 	smp_store_release(&buf->rb_sc_tail, next_tail);
936 
937 	xprt_write_space(&sc->sc_xprt->rx_xprt);
938 }
939 
940 static void
941 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt)
942 {
943 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
944 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
945 	unsigned int count;
946 	LIST_HEAD(free);
947 	LIST_HEAD(all);
948 
949 	for (count = 0; count < ia->ri_max_segs; count++) {
950 		struct rpcrdma_mr *mr;
951 		int rc;
952 
953 		mr = kzalloc(sizeof(*mr), GFP_KERNEL);
954 		if (!mr)
955 			break;
956 
957 		rc = frwr_init_mr(ia, mr);
958 		if (rc) {
959 			kfree(mr);
960 			break;
961 		}
962 
963 		mr->mr_xprt = r_xprt;
964 
965 		list_add(&mr->mr_list, &free);
966 		list_add(&mr->mr_all, &all);
967 	}
968 
969 	spin_lock(&buf->rb_mrlock);
970 	list_splice(&free, &buf->rb_mrs);
971 	list_splice(&all, &buf->rb_all);
972 	r_xprt->rx_stats.mrs_allocated += count;
973 	spin_unlock(&buf->rb_mrlock);
974 	trace_xprtrdma_createmrs(r_xprt, count);
975 }
976 
977 static void
978 rpcrdma_mr_refresh_worker(struct work_struct *work)
979 {
980 	struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
981 						  rb_refresh_worker.work);
982 	struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
983 						   rx_buf);
984 
985 	rpcrdma_mrs_create(r_xprt);
986 	xprt_write_space(&r_xprt->rx_xprt);
987 }
988 
989 /**
990  * rpcrdma_req_create - Allocate an rpcrdma_req object
991  * @r_xprt: controlling r_xprt
992  * @size: initial size, in bytes, of send and receive buffers
993  * @flags: GFP flags passed to memory allocators
994  *
995  * Returns an allocated and fully initialized rpcrdma_req or NULL.
996  */
997 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size,
998 				       gfp_t flags)
999 {
1000 	struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
1001 	struct rpcrdma_regbuf *rb;
1002 	struct rpcrdma_req *req;
1003 
1004 	req = kzalloc(sizeof(*req), flags);
1005 	if (req == NULL)
1006 		goto out1;
1007 
1008 	rb = rpcrdma_regbuf_alloc(RPCRDMA_HDRBUF_SIZE, DMA_TO_DEVICE, flags);
1009 	if (!rb)
1010 		goto out2;
1011 	req->rl_rdmabuf = rb;
1012 	xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb));
1013 
1014 	req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags);
1015 	if (!req->rl_sendbuf)
1016 		goto out3;
1017 
1018 	req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags);
1019 	if (!req->rl_recvbuf)
1020 		goto out4;
1021 
1022 	INIT_LIST_HEAD(&req->rl_registered);
1023 	spin_lock(&buffer->rb_lock);
1024 	list_add(&req->rl_all, &buffer->rb_allreqs);
1025 	spin_unlock(&buffer->rb_lock);
1026 	return req;
1027 
1028 out4:
1029 	kfree(req->rl_sendbuf);
1030 out3:
1031 	kfree(req->rl_rdmabuf);
1032 out2:
1033 	kfree(req);
1034 out1:
1035 	return NULL;
1036 }
1037 
1038 static struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt,
1039 					      bool temp)
1040 {
1041 	struct rpcrdma_rep *rep;
1042 
1043 	rep = kzalloc(sizeof(*rep), GFP_KERNEL);
1044 	if (rep == NULL)
1045 		goto out;
1046 
1047 	rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep.rep_inline_recv,
1048 					       DMA_FROM_DEVICE, GFP_KERNEL);
1049 	if (!rep->rr_rdmabuf)
1050 		goto out_free;
1051 
1052 	xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf),
1053 		     rdmab_length(rep->rr_rdmabuf));
1054 	rep->rr_cqe.done = rpcrdma_wc_receive;
1055 	rep->rr_rxprt = r_xprt;
1056 	rep->rr_recv_wr.next = NULL;
1057 	rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
1058 	rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
1059 	rep->rr_recv_wr.num_sge = 1;
1060 	rep->rr_temp = temp;
1061 	return rep;
1062 
1063 out_free:
1064 	kfree(rep);
1065 out:
1066 	return NULL;
1067 }
1068 
1069 /**
1070  * rpcrdma_buffer_create - Create initial set of req/rep objects
1071  * @r_xprt: transport instance to (re)initialize
1072  *
1073  * Returns zero on success, otherwise a negative errno.
1074  */
1075 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1076 {
1077 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1078 	int i, rc;
1079 
1080 	buf->rb_max_requests = r_xprt->rx_ep.rep_max_requests;
1081 	buf->rb_bc_srv_max_requests = 0;
1082 	spin_lock_init(&buf->rb_mrlock);
1083 	spin_lock_init(&buf->rb_lock);
1084 	INIT_LIST_HEAD(&buf->rb_mrs);
1085 	INIT_LIST_HEAD(&buf->rb_all);
1086 	INIT_DELAYED_WORK(&buf->rb_refresh_worker,
1087 			  rpcrdma_mr_refresh_worker);
1088 
1089 	rpcrdma_mrs_create(r_xprt);
1090 
1091 	INIT_LIST_HEAD(&buf->rb_send_bufs);
1092 	INIT_LIST_HEAD(&buf->rb_allreqs);
1093 
1094 	rc = -ENOMEM;
1095 	for (i = 0; i < buf->rb_max_requests; i++) {
1096 		struct rpcrdma_req *req;
1097 
1098 		req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE,
1099 					 GFP_KERNEL);
1100 		if (!req)
1101 			goto out;
1102 		list_add(&req->rl_list, &buf->rb_send_bufs);
1103 	}
1104 
1105 	buf->rb_credits = 1;
1106 	INIT_LIST_HEAD(&buf->rb_recv_bufs);
1107 
1108 	rc = rpcrdma_sendctxs_create(r_xprt);
1109 	if (rc)
1110 		goto out;
1111 
1112 	return 0;
1113 out:
1114 	rpcrdma_buffer_destroy(buf);
1115 	return rc;
1116 }
1117 
1118 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep)
1119 {
1120 	rpcrdma_regbuf_free(rep->rr_rdmabuf);
1121 	kfree(rep);
1122 }
1123 
1124 /**
1125  * rpcrdma_req_destroy - Destroy an rpcrdma_req object
1126  * @req: unused object to be destroyed
1127  *
1128  * This function assumes that the caller prevents concurrent device
1129  * unload and transport tear-down.
1130  */
1131 void
1132 rpcrdma_req_destroy(struct rpcrdma_req *req)
1133 {
1134 	list_del(&req->rl_all);
1135 
1136 	rpcrdma_regbuf_free(req->rl_recvbuf);
1137 	rpcrdma_regbuf_free(req->rl_sendbuf);
1138 	rpcrdma_regbuf_free(req->rl_rdmabuf);
1139 	kfree(req);
1140 }
1141 
1142 static void
1143 rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf)
1144 {
1145 	struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
1146 						   rx_buf);
1147 	struct rpcrdma_mr *mr;
1148 	unsigned int count;
1149 
1150 	count = 0;
1151 	spin_lock(&buf->rb_mrlock);
1152 	while (!list_empty(&buf->rb_all)) {
1153 		mr = list_entry(buf->rb_all.next, struct rpcrdma_mr, mr_all);
1154 		list_del(&mr->mr_all);
1155 
1156 		spin_unlock(&buf->rb_mrlock);
1157 
1158 		/* Ensure MW is not on any rl_registered list */
1159 		if (!list_empty(&mr->mr_list))
1160 			list_del(&mr->mr_list);
1161 
1162 		frwr_release_mr(mr);
1163 		count++;
1164 		spin_lock(&buf->rb_mrlock);
1165 	}
1166 	spin_unlock(&buf->rb_mrlock);
1167 	r_xprt->rx_stats.mrs_allocated = 0;
1168 
1169 	dprintk("RPC:       %s: released %u MRs\n", __func__, count);
1170 }
1171 
1172 /**
1173  * rpcrdma_buffer_destroy - Release all hw resources
1174  * @buf: root control block for resources
1175  *
1176  * ORDERING: relies on a prior rpcrdma_xprt_drain :
1177  * - No more Send or Receive completions can occur
1178  * - All MRs, reps, and reqs are returned to their free lists
1179  */
1180 void
1181 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1182 {
1183 	cancel_delayed_work_sync(&buf->rb_refresh_worker);
1184 
1185 	rpcrdma_sendctxs_destroy(buf);
1186 
1187 	while (!list_empty(&buf->rb_recv_bufs)) {
1188 		struct rpcrdma_rep *rep;
1189 
1190 		rep = list_first_entry(&buf->rb_recv_bufs,
1191 				       struct rpcrdma_rep, rr_list);
1192 		list_del(&rep->rr_list);
1193 		rpcrdma_rep_destroy(rep);
1194 	}
1195 
1196 	while (!list_empty(&buf->rb_send_bufs)) {
1197 		struct rpcrdma_req *req;
1198 
1199 		req = list_first_entry(&buf->rb_send_bufs,
1200 				       struct rpcrdma_req, rl_list);
1201 		list_del(&req->rl_list);
1202 		rpcrdma_req_destroy(req);
1203 	}
1204 
1205 	rpcrdma_mrs_destroy(buf);
1206 }
1207 
1208 /**
1209  * rpcrdma_mr_get - Allocate an rpcrdma_mr object
1210  * @r_xprt: controlling transport
1211  *
1212  * Returns an initialized rpcrdma_mr or NULL if no free
1213  * rpcrdma_mr objects are available.
1214  */
1215 struct rpcrdma_mr *
1216 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt)
1217 {
1218 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1219 	struct rpcrdma_mr *mr = NULL;
1220 
1221 	spin_lock(&buf->rb_mrlock);
1222 	if (!list_empty(&buf->rb_mrs))
1223 		mr = rpcrdma_mr_pop(&buf->rb_mrs);
1224 	spin_unlock(&buf->rb_mrlock);
1225 
1226 	if (!mr)
1227 		goto out_nomrs;
1228 	return mr;
1229 
1230 out_nomrs:
1231 	trace_xprtrdma_nomrs(r_xprt);
1232 	if (r_xprt->rx_ep.rep_connected != -ENODEV)
1233 		schedule_delayed_work(&buf->rb_refresh_worker, 0);
1234 
1235 	/* Allow the reply handler and refresh worker to run */
1236 	cond_resched();
1237 
1238 	return NULL;
1239 }
1240 
1241 static void
1242 __rpcrdma_mr_put(struct rpcrdma_buffer *buf, struct rpcrdma_mr *mr)
1243 {
1244 	spin_lock(&buf->rb_mrlock);
1245 	rpcrdma_mr_push(mr, &buf->rb_mrs);
1246 	spin_unlock(&buf->rb_mrlock);
1247 }
1248 
1249 /**
1250  * rpcrdma_mr_put - Release an rpcrdma_mr object
1251  * @mr: object to release
1252  *
1253  */
1254 void
1255 rpcrdma_mr_put(struct rpcrdma_mr *mr)
1256 {
1257 	__rpcrdma_mr_put(&mr->mr_xprt->rx_buf, mr);
1258 }
1259 
1260 /**
1261  * rpcrdma_mr_unmap_and_put - DMA unmap an MR and release it
1262  * @mr: object to release
1263  *
1264  */
1265 void
1266 rpcrdma_mr_unmap_and_put(struct rpcrdma_mr *mr)
1267 {
1268 	struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
1269 
1270 	if (mr->mr_dir != DMA_NONE) {
1271 		trace_xprtrdma_mr_unmap(mr);
1272 		ib_dma_unmap_sg(r_xprt->rx_ia.ri_id->device,
1273 				mr->mr_sg, mr->mr_nents, mr->mr_dir);
1274 		mr->mr_dir = DMA_NONE;
1275 	}
1276 	__rpcrdma_mr_put(&r_xprt->rx_buf, mr);
1277 }
1278 
1279 /**
1280  * rpcrdma_buffer_get - Get a request buffer
1281  * @buffers: Buffer pool from which to obtain a buffer
1282  *
1283  * Returns a fresh rpcrdma_req, or NULL if none are available.
1284  */
1285 struct rpcrdma_req *
1286 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1287 {
1288 	struct rpcrdma_req *req;
1289 
1290 	spin_lock(&buffers->rb_lock);
1291 	req = list_first_entry_or_null(&buffers->rb_send_bufs,
1292 				       struct rpcrdma_req, rl_list);
1293 	if (req)
1294 		list_del_init(&req->rl_list);
1295 	spin_unlock(&buffers->rb_lock);
1296 	return req;
1297 }
1298 
1299 /**
1300  * rpcrdma_buffer_put - Put request/reply buffers back into pool
1301  * @buffers: buffer pool
1302  * @req: object to return
1303  *
1304  */
1305 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1306 {
1307 	struct rpcrdma_rep *rep = req->rl_reply;
1308 
1309 	req->rl_reply = NULL;
1310 
1311 	spin_lock(&buffers->rb_lock);
1312 	list_add(&req->rl_list, &buffers->rb_send_bufs);
1313 	if (rep) {
1314 		if (!rep->rr_temp) {
1315 			list_add(&rep->rr_list, &buffers->rb_recv_bufs);
1316 			rep = NULL;
1317 		}
1318 	}
1319 	spin_unlock(&buffers->rb_lock);
1320 	if (rep)
1321 		rpcrdma_rep_destroy(rep);
1322 }
1323 
1324 /*
1325  * Put reply buffers back into pool when not attached to
1326  * request. This happens in error conditions.
1327  */
1328 void
1329 rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
1330 {
1331 	struct rpcrdma_buffer *buffers = &rep->rr_rxprt->rx_buf;
1332 
1333 	if (!rep->rr_temp) {
1334 		spin_lock(&buffers->rb_lock);
1335 		list_add(&rep->rr_list, &buffers->rb_recv_bufs);
1336 		spin_unlock(&buffers->rb_lock);
1337 	} else {
1338 		rpcrdma_rep_destroy(rep);
1339 	}
1340 }
1341 
1342 /* Returns a pointer to a rpcrdma_regbuf object, or NULL.
1343  *
1344  * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1345  * receiving the payload of RDMA RECV operations. During Long Calls
1346  * or Replies they may be registered externally via frwr_map.
1347  */
1348 static struct rpcrdma_regbuf *
1349 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
1350 		     gfp_t flags)
1351 {
1352 	struct rpcrdma_regbuf *rb;
1353 
1354 	rb = kmalloc(sizeof(*rb), flags);
1355 	if (!rb)
1356 		return NULL;
1357 	rb->rg_data = kmalloc(size, flags);
1358 	if (!rb->rg_data) {
1359 		kfree(rb);
1360 		return NULL;
1361 	}
1362 
1363 	rb->rg_device = NULL;
1364 	rb->rg_direction = direction;
1365 	rb->rg_iov.length = size;
1366 	return rb;
1367 }
1368 
1369 /**
1370  * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer
1371  * @rb: regbuf to reallocate
1372  * @size: size of buffer to be allocated, in bytes
1373  * @flags: GFP flags
1374  *
1375  * Returns true if reallocation was successful. If false is
1376  * returned, @rb is left untouched.
1377  */
1378 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags)
1379 {
1380 	void *buf;
1381 
1382 	buf = kmalloc(size, flags);
1383 	if (!buf)
1384 		return false;
1385 
1386 	rpcrdma_regbuf_dma_unmap(rb);
1387 	kfree(rb->rg_data);
1388 
1389 	rb->rg_data = buf;
1390 	rb->rg_iov.length = size;
1391 	return true;
1392 }
1393 
1394 /**
1395  * __rpcrdma_regbuf_dma_map - DMA-map a regbuf
1396  * @r_xprt: controlling transport instance
1397  * @rb: regbuf to be mapped
1398  *
1399  * Returns true if the buffer is now DMA mapped to @r_xprt's device
1400  */
1401 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt,
1402 			      struct rpcrdma_regbuf *rb)
1403 {
1404 	struct ib_device *device = r_xprt->rx_ia.ri_id->device;
1405 
1406 	if (rb->rg_direction == DMA_NONE)
1407 		return false;
1408 
1409 	rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb),
1410 					    rdmab_length(rb), rb->rg_direction);
1411 	if (ib_dma_mapping_error(device, rdmab_addr(rb))) {
1412 		trace_xprtrdma_dma_maperr(rdmab_addr(rb));
1413 		return false;
1414 	}
1415 
1416 	rb->rg_device = device;
1417 	rb->rg_iov.lkey = r_xprt->rx_ia.ri_pd->local_dma_lkey;
1418 	return true;
1419 }
1420 
1421 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb)
1422 {
1423 	if (!rb)
1424 		return;
1425 
1426 	if (!rpcrdma_regbuf_is_mapped(rb))
1427 		return;
1428 
1429 	ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb),
1430 			    rb->rg_direction);
1431 	rb->rg_device = NULL;
1432 }
1433 
1434 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb)
1435 {
1436 	rpcrdma_regbuf_dma_unmap(rb);
1437 	if (rb)
1438 		kfree(rb->rg_data);
1439 	kfree(rb);
1440 }
1441 
1442 /**
1443  * rpcrdma_ep_post - Post WRs to a transport's Send Queue
1444  * @ia: transport's device information
1445  * @ep: transport's RDMA endpoint information
1446  * @req: rpcrdma_req containing the Send WR to post
1447  *
1448  * Returns 0 if the post was successful, otherwise -ENOTCONN
1449  * is returned.
1450  */
1451 int
1452 rpcrdma_ep_post(struct rpcrdma_ia *ia,
1453 		struct rpcrdma_ep *ep,
1454 		struct rpcrdma_req *req)
1455 {
1456 	struct ib_send_wr *send_wr = &req->rl_sendctx->sc_wr;
1457 	int rc;
1458 
1459 	if (!ep->rep_send_count || kref_read(&req->rl_kref) > 1) {
1460 		send_wr->send_flags |= IB_SEND_SIGNALED;
1461 		ep->rep_send_count = ep->rep_send_batch;
1462 	} else {
1463 		send_wr->send_flags &= ~IB_SEND_SIGNALED;
1464 		--ep->rep_send_count;
1465 	}
1466 
1467 	rc = frwr_send(ia, req);
1468 	trace_xprtrdma_post_send(req, rc);
1469 	if (rc)
1470 		return -ENOTCONN;
1471 	return 0;
1472 }
1473 
1474 static void
1475 rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp)
1476 {
1477 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1478 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
1479 	struct ib_recv_wr *i, *wr, *bad_wr;
1480 	struct rpcrdma_rep *rep;
1481 	int needed, count, rc;
1482 
1483 	rc = 0;
1484 	count = 0;
1485 
1486 	needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1);
1487 	if (ep->rep_receive_count > needed)
1488 		goto out;
1489 	needed -= ep->rep_receive_count;
1490 	if (!temp)
1491 		needed += RPCRDMA_MAX_RECV_BATCH;
1492 
1493 	/* fast path: all needed reps can be found on the free list */
1494 	wr = NULL;
1495 	spin_lock(&buf->rb_lock);
1496 	while (needed) {
1497 		rep = list_first_entry_or_null(&buf->rb_recv_bufs,
1498 					       struct rpcrdma_rep, rr_list);
1499 		if (!rep)
1500 			break;
1501 
1502 		list_del(&rep->rr_list);
1503 		rep->rr_recv_wr.next = wr;
1504 		wr = &rep->rr_recv_wr;
1505 		--needed;
1506 	}
1507 	spin_unlock(&buf->rb_lock);
1508 
1509 	while (needed) {
1510 		rep = rpcrdma_rep_create(r_xprt, temp);
1511 		if (!rep)
1512 			break;
1513 
1514 		rep->rr_recv_wr.next = wr;
1515 		wr = &rep->rr_recv_wr;
1516 		--needed;
1517 	}
1518 	if (!wr)
1519 		goto out;
1520 
1521 	for (i = wr; i; i = i->next) {
1522 		rep = container_of(i, struct rpcrdma_rep, rr_recv_wr);
1523 
1524 		if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf))
1525 			goto release_wrs;
1526 
1527 		trace_xprtrdma_post_recv(rep->rr_recv_wr.wr_cqe);
1528 		++count;
1529 	}
1530 
1531 	rc = ib_post_recv(r_xprt->rx_ia.ri_id->qp, wr,
1532 			  (const struct ib_recv_wr **)&bad_wr);
1533 out:
1534 	trace_xprtrdma_post_recvs(r_xprt, count, rc);
1535 	if (rc) {
1536 		for (wr = bad_wr; wr;) {
1537 			struct rpcrdma_rep *rep;
1538 
1539 			rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr);
1540 			wr = wr->next;
1541 			rpcrdma_recv_buffer_put(rep);
1542 			--count;
1543 		}
1544 	}
1545 	ep->rep_receive_count += count;
1546 	return;
1547 
1548 release_wrs:
1549 	for (i = wr; i;) {
1550 		rep = container_of(i, struct rpcrdma_rep, rr_recv_wr);
1551 		i = i->next;
1552 		rpcrdma_recv_buffer_put(rep);
1553 	}
1554 }
1555