xref: /openbmc/linux/net/sunrpc/xprtrdma/verbs.c (revision 894f3009)
1 /*
2  * Copyright (c) 2014-2017 Oracle.  All rights reserved.
3  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the BSD-type
9  * license below:
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  *      Redistributions of source code must retain the above copyright
16  *      notice, this list of conditions and the following disclaimer.
17  *
18  *      Redistributions in binary form must reproduce the above
19  *      copyright notice, this list of conditions and the following
20  *      disclaimer in the documentation and/or other materials provided
21  *      with the distribution.
22  *
23  *      Neither the name of the Network Appliance, Inc. nor the names of
24  *      its contributors may be used to endorse or promote products
25  *      derived from this software without specific prior written
26  *      permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39  */
40 
41 /*
42  * verbs.c
43  *
44  * Encapsulates the major functions managing:
45  *  o adapters
46  *  o endpoints
47  *  o connections
48  *  o buffer memory
49  */
50 
51 #include <linux/interrupt.h>
52 #include <linux/slab.h>
53 #include <linux/sunrpc/addr.h>
54 #include <linux/sunrpc/svc_rdma.h>
55 
56 #include <asm-generic/barrier.h>
57 #include <asm/bitops.h>
58 
59 #include <rdma/ib_cm.h>
60 
61 #include "xprt_rdma.h"
62 
63 /*
64  * Globals/Macros
65  */
66 
67 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
68 # define RPCDBG_FACILITY	RPCDBG_TRANS
69 #endif
70 
71 /*
72  * internal functions
73  */
74 static void rpcrdma_create_mrs(struct rpcrdma_xprt *r_xprt);
75 static void rpcrdma_destroy_mrs(struct rpcrdma_buffer *buf);
76 static void rpcrdma_dma_unmap_regbuf(struct rpcrdma_regbuf *rb);
77 
78 struct workqueue_struct *rpcrdma_receive_wq __read_mostly;
79 
80 int
81 rpcrdma_alloc_wq(void)
82 {
83 	struct workqueue_struct *recv_wq;
84 
85 	recv_wq = alloc_workqueue("xprtrdma_receive",
86 				  WQ_MEM_RECLAIM | WQ_HIGHPRI,
87 				  0);
88 	if (!recv_wq)
89 		return -ENOMEM;
90 
91 	rpcrdma_receive_wq = recv_wq;
92 	return 0;
93 }
94 
95 void
96 rpcrdma_destroy_wq(void)
97 {
98 	struct workqueue_struct *wq;
99 
100 	if (rpcrdma_receive_wq) {
101 		wq = rpcrdma_receive_wq;
102 		rpcrdma_receive_wq = NULL;
103 		destroy_workqueue(wq);
104 	}
105 }
106 
107 static void
108 rpcrdma_qp_async_error_upcall(struct ib_event *event, void *context)
109 {
110 	struct rpcrdma_ep *ep = context;
111 
112 	pr_err("rpcrdma: %s on device %s ep %p\n",
113 	       ib_event_msg(event->event), event->device->name, context);
114 
115 	if (ep->rep_connected == 1) {
116 		ep->rep_connected = -EIO;
117 		rpcrdma_conn_func(ep);
118 		wake_up_all(&ep->rep_connect_wait);
119 	}
120 }
121 
122 /**
123  * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
124  * @cq:	completion queue (ignored)
125  * @wc:	completed WR
126  *
127  */
128 static void
129 rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
130 {
131 	struct ib_cqe *cqe = wc->wr_cqe;
132 	struct rpcrdma_sendctx *sc =
133 		container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
134 
135 	/* WARNING: Only wr_cqe and status are reliable at this point */
136 	if (wc->status != IB_WC_SUCCESS && wc->status != IB_WC_WR_FLUSH_ERR)
137 		pr_err("rpcrdma: Send: %s (%u/0x%x)\n",
138 		       ib_wc_status_msg(wc->status),
139 		       wc->status, wc->vendor_err);
140 
141 	rpcrdma_sendctx_put_locked(sc);
142 }
143 
144 /**
145  * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
146  * @cq:	completion queue (ignored)
147  * @wc:	completed WR
148  *
149  */
150 static void
151 rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
152 {
153 	struct ib_cqe *cqe = wc->wr_cqe;
154 	struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
155 					       rr_cqe);
156 
157 	/* WARNING: Only wr_id and status are reliable at this point */
158 	if (wc->status != IB_WC_SUCCESS)
159 		goto out_fail;
160 
161 	/* status == SUCCESS means all fields in wc are trustworthy */
162 	dprintk("RPC:       %s: rep %p opcode 'recv', length %u: success\n",
163 		__func__, rep, wc->byte_len);
164 
165 	rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
166 	rep->rr_wc_flags = wc->wc_flags;
167 	rep->rr_inv_rkey = wc->ex.invalidate_rkey;
168 
169 	ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
170 				   rdmab_addr(rep->rr_rdmabuf),
171 				   wc->byte_len, DMA_FROM_DEVICE);
172 
173 out_schedule:
174 	rpcrdma_reply_handler(rep);
175 	return;
176 
177 out_fail:
178 	if (wc->status != IB_WC_WR_FLUSH_ERR)
179 		pr_err("rpcrdma: Recv: %s (%u/0x%x)\n",
180 		       ib_wc_status_msg(wc->status),
181 		       wc->status, wc->vendor_err);
182 	rpcrdma_set_xdrlen(&rep->rr_hdrbuf, 0);
183 	goto out_schedule;
184 }
185 
186 static void
187 rpcrdma_update_connect_private(struct rpcrdma_xprt *r_xprt,
188 			       struct rdma_conn_param *param)
189 {
190 	struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
191 	const struct rpcrdma_connect_private *pmsg = param->private_data;
192 	unsigned int rsize, wsize;
193 
194 	/* Default settings for RPC-over-RDMA Version One */
195 	r_xprt->rx_ia.ri_reminv_expected = false;
196 	r_xprt->rx_ia.ri_implicit_roundup = xprt_rdma_pad_optimize;
197 	rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
198 	wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
199 
200 	if (pmsg &&
201 	    pmsg->cp_magic == rpcrdma_cmp_magic &&
202 	    pmsg->cp_version == RPCRDMA_CMP_VERSION) {
203 		r_xprt->rx_ia.ri_reminv_expected = true;
204 		r_xprt->rx_ia.ri_implicit_roundup = true;
205 		rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
206 		wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
207 	}
208 
209 	if (rsize < cdata->inline_rsize)
210 		cdata->inline_rsize = rsize;
211 	if (wsize < cdata->inline_wsize)
212 		cdata->inline_wsize = wsize;
213 	dprintk("RPC:       %s: max send %u, max recv %u\n",
214 		__func__, cdata->inline_wsize, cdata->inline_rsize);
215 	rpcrdma_set_max_header_sizes(r_xprt);
216 }
217 
218 static int
219 rpcrdma_conn_upcall(struct rdma_cm_id *id, struct rdma_cm_event *event)
220 {
221 	struct rpcrdma_xprt *xprt = id->context;
222 	struct rpcrdma_ia *ia = &xprt->rx_ia;
223 	struct rpcrdma_ep *ep = &xprt->rx_ep;
224 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
225 	struct sockaddr *sap = (struct sockaddr *)&ep->rep_remote_addr;
226 #endif
227 	int connstate = 0;
228 
229 	switch (event->event) {
230 	case RDMA_CM_EVENT_ADDR_RESOLVED:
231 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
232 		ia->ri_async_rc = 0;
233 		complete(&ia->ri_done);
234 		break;
235 	case RDMA_CM_EVENT_ADDR_ERROR:
236 		ia->ri_async_rc = -EHOSTUNREACH;
237 		dprintk("RPC:       %s: CM address resolution error, ep 0x%p\n",
238 			__func__, ep);
239 		complete(&ia->ri_done);
240 		break;
241 	case RDMA_CM_EVENT_ROUTE_ERROR:
242 		ia->ri_async_rc = -ENETUNREACH;
243 		dprintk("RPC:       %s: CM route resolution error, ep 0x%p\n",
244 			__func__, ep);
245 		complete(&ia->ri_done);
246 		break;
247 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
248 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
249 		pr_info("rpcrdma: removing device %s for %pIS:%u\n",
250 			ia->ri_device->name,
251 			sap, rpc_get_port(sap));
252 #endif
253 		set_bit(RPCRDMA_IAF_REMOVING, &ia->ri_flags);
254 		ep->rep_connected = -ENODEV;
255 		xprt_force_disconnect(&xprt->rx_xprt);
256 		wait_for_completion(&ia->ri_remove_done);
257 
258 		ia->ri_id = NULL;
259 		ia->ri_pd = NULL;
260 		ia->ri_device = NULL;
261 		/* Return 1 to ensure the core destroys the id. */
262 		return 1;
263 	case RDMA_CM_EVENT_ESTABLISHED:
264 		connstate = 1;
265 		rpcrdma_update_connect_private(xprt, &event->param.conn);
266 		goto connected;
267 	case RDMA_CM_EVENT_CONNECT_ERROR:
268 		connstate = -ENOTCONN;
269 		goto connected;
270 	case RDMA_CM_EVENT_UNREACHABLE:
271 		connstate = -ENETDOWN;
272 		goto connected;
273 	case RDMA_CM_EVENT_REJECTED:
274 		dprintk("rpcrdma: connection to %pIS:%u rejected: %s\n",
275 			sap, rpc_get_port(sap),
276 			rdma_reject_msg(id, event->status));
277 		connstate = -ECONNREFUSED;
278 		if (event->status == IB_CM_REJ_STALE_CONN)
279 			connstate = -EAGAIN;
280 		goto connected;
281 	case RDMA_CM_EVENT_DISCONNECTED:
282 		connstate = -ECONNABORTED;
283 connected:
284 		xprt->rx_buf.rb_credits = 1;
285 		ep->rep_connected = connstate;
286 		rpcrdma_conn_func(ep);
287 		wake_up_all(&ep->rep_connect_wait);
288 		/*FALLTHROUGH*/
289 	default:
290 		dprintk("RPC:       %s: %pIS:%u on %s/%s (ep 0x%p): %s\n",
291 			__func__, sap, rpc_get_port(sap),
292 			ia->ri_device->name, ia->ri_ops->ro_displayname,
293 			ep, rdma_event_msg(event->event));
294 		break;
295 	}
296 
297 	return 0;
298 }
299 
300 static struct rdma_cm_id *
301 rpcrdma_create_id(struct rpcrdma_xprt *xprt,
302 			struct rpcrdma_ia *ia, struct sockaddr *addr)
303 {
304 	unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
305 	struct rdma_cm_id *id;
306 	int rc;
307 
308 	init_completion(&ia->ri_done);
309 	init_completion(&ia->ri_remove_done);
310 
311 	id = rdma_create_id(&init_net, rpcrdma_conn_upcall, xprt, RDMA_PS_TCP,
312 			    IB_QPT_RC);
313 	if (IS_ERR(id)) {
314 		rc = PTR_ERR(id);
315 		dprintk("RPC:       %s: rdma_create_id() failed %i\n",
316 			__func__, rc);
317 		return id;
318 	}
319 
320 	ia->ri_async_rc = -ETIMEDOUT;
321 	rc = rdma_resolve_addr(id, NULL, addr, RDMA_RESOLVE_TIMEOUT);
322 	if (rc) {
323 		dprintk("RPC:       %s: rdma_resolve_addr() failed %i\n",
324 			__func__, rc);
325 		goto out;
326 	}
327 	rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout);
328 	if (rc < 0) {
329 		dprintk("RPC:       %s: wait() exited: %i\n",
330 			__func__, rc);
331 		goto out;
332 	}
333 
334 	rc = ia->ri_async_rc;
335 	if (rc)
336 		goto out;
337 
338 	ia->ri_async_rc = -ETIMEDOUT;
339 	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
340 	if (rc) {
341 		dprintk("RPC:       %s: rdma_resolve_route() failed %i\n",
342 			__func__, rc);
343 		goto out;
344 	}
345 	rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout);
346 	if (rc < 0) {
347 		dprintk("RPC:       %s: wait() exited: %i\n",
348 			__func__, rc);
349 		goto out;
350 	}
351 	rc = ia->ri_async_rc;
352 	if (rc)
353 		goto out;
354 
355 	return id;
356 
357 out:
358 	rdma_destroy_id(id);
359 	return ERR_PTR(rc);
360 }
361 
362 /*
363  * Exported functions.
364  */
365 
366 /**
367  * rpcrdma_ia_open - Open and initialize an Interface Adapter.
368  * @xprt: controlling transport
369  * @addr: IP address of remote peer
370  *
371  * Returns 0 on success, negative errno if an appropriate
372  * Interface Adapter could not be found and opened.
373  */
374 int
375 rpcrdma_ia_open(struct rpcrdma_xprt *xprt, struct sockaddr *addr)
376 {
377 	struct rpcrdma_ia *ia = &xprt->rx_ia;
378 	int rc;
379 
380 	ia->ri_id = rpcrdma_create_id(xprt, ia, addr);
381 	if (IS_ERR(ia->ri_id)) {
382 		rc = PTR_ERR(ia->ri_id);
383 		goto out_err;
384 	}
385 	ia->ri_device = ia->ri_id->device;
386 
387 	ia->ri_pd = ib_alloc_pd(ia->ri_device, 0);
388 	if (IS_ERR(ia->ri_pd)) {
389 		rc = PTR_ERR(ia->ri_pd);
390 		pr_err("rpcrdma: ib_alloc_pd() returned %d\n", rc);
391 		goto out_err;
392 	}
393 
394 	switch (xprt_rdma_memreg_strategy) {
395 	case RPCRDMA_FRMR:
396 		if (frwr_is_supported(ia)) {
397 			ia->ri_ops = &rpcrdma_frwr_memreg_ops;
398 			break;
399 		}
400 		/*FALLTHROUGH*/
401 	case RPCRDMA_MTHCAFMR:
402 		if (fmr_is_supported(ia)) {
403 			ia->ri_ops = &rpcrdma_fmr_memreg_ops;
404 			break;
405 		}
406 		/*FALLTHROUGH*/
407 	default:
408 		pr_err("rpcrdma: Device %s does not support memreg mode %d\n",
409 		       ia->ri_device->name, xprt_rdma_memreg_strategy);
410 		rc = -EINVAL;
411 		goto out_err;
412 	}
413 
414 	return 0;
415 
416 out_err:
417 	rpcrdma_ia_close(ia);
418 	return rc;
419 }
420 
421 /**
422  * rpcrdma_ia_remove - Handle device driver unload
423  * @ia: interface adapter being removed
424  *
425  * Divest transport H/W resources associated with this adapter,
426  * but allow it to be restored later.
427  */
428 void
429 rpcrdma_ia_remove(struct rpcrdma_ia *ia)
430 {
431 	struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt,
432 						   rx_ia);
433 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
434 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
435 	struct rpcrdma_req *req;
436 	struct rpcrdma_rep *rep;
437 
438 	cancel_delayed_work_sync(&buf->rb_refresh_worker);
439 
440 	/* This is similar to rpcrdma_ep_destroy, but:
441 	 * - Don't cancel the connect worker.
442 	 * - Don't call rpcrdma_ep_disconnect, which waits
443 	 *   for another conn upcall, which will deadlock.
444 	 * - rdma_disconnect is unneeded, the underlying
445 	 *   connection is already gone.
446 	 */
447 	if (ia->ri_id->qp) {
448 		ib_drain_qp(ia->ri_id->qp);
449 		rdma_destroy_qp(ia->ri_id);
450 		ia->ri_id->qp = NULL;
451 	}
452 	ib_free_cq(ep->rep_attr.recv_cq);
453 	ib_free_cq(ep->rep_attr.send_cq);
454 
455 	/* The ULP is responsible for ensuring all DMA
456 	 * mappings and MRs are gone.
457 	 */
458 	list_for_each_entry(rep, &buf->rb_recv_bufs, rr_list)
459 		rpcrdma_dma_unmap_regbuf(rep->rr_rdmabuf);
460 	list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
461 		rpcrdma_dma_unmap_regbuf(req->rl_rdmabuf);
462 		rpcrdma_dma_unmap_regbuf(req->rl_sendbuf);
463 		rpcrdma_dma_unmap_regbuf(req->rl_recvbuf);
464 	}
465 	rpcrdma_destroy_mrs(buf);
466 
467 	/* Allow waiters to continue */
468 	complete(&ia->ri_remove_done);
469 }
470 
471 /**
472  * rpcrdma_ia_close - Clean up/close an IA.
473  * @ia: interface adapter to close
474  *
475  */
476 void
477 rpcrdma_ia_close(struct rpcrdma_ia *ia)
478 {
479 	dprintk("RPC:       %s: entering\n", __func__);
480 	if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) {
481 		if (ia->ri_id->qp)
482 			rdma_destroy_qp(ia->ri_id);
483 		rdma_destroy_id(ia->ri_id);
484 	}
485 	ia->ri_id = NULL;
486 	ia->ri_device = NULL;
487 
488 	/* If the pd is still busy, xprtrdma missed freeing a resource */
489 	if (ia->ri_pd && !IS_ERR(ia->ri_pd))
490 		ib_dealloc_pd(ia->ri_pd);
491 	ia->ri_pd = NULL;
492 }
493 
494 /*
495  * Create unconnected endpoint.
496  */
497 int
498 rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia,
499 		  struct rpcrdma_create_data_internal *cdata)
500 {
501 	struct rpcrdma_connect_private *pmsg = &ep->rep_cm_private;
502 	unsigned int max_qp_wr, max_sge;
503 	struct ib_cq *sendcq, *recvcq;
504 	int rc;
505 
506 	max_sge = min_t(unsigned int, ia->ri_device->attrs.max_sge,
507 			RPCRDMA_MAX_SEND_SGES);
508 	if (max_sge < RPCRDMA_MIN_SEND_SGES) {
509 		pr_warn("rpcrdma: HCA provides only %d send SGEs\n", max_sge);
510 		return -ENOMEM;
511 	}
512 	ia->ri_max_send_sges = max_sge - RPCRDMA_MIN_SEND_SGES;
513 
514 	if (ia->ri_device->attrs.max_qp_wr <= RPCRDMA_BACKWARD_WRS) {
515 		dprintk("RPC:       %s: insufficient wqe's available\n",
516 			__func__);
517 		return -ENOMEM;
518 	}
519 	max_qp_wr = ia->ri_device->attrs.max_qp_wr - RPCRDMA_BACKWARD_WRS - 1;
520 
521 	/* check provider's send/recv wr limits */
522 	if (cdata->max_requests > max_qp_wr)
523 		cdata->max_requests = max_qp_wr;
524 
525 	ep->rep_attr.event_handler = rpcrdma_qp_async_error_upcall;
526 	ep->rep_attr.qp_context = ep;
527 	ep->rep_attr.srq = NULL;
528 	ep->rep_attr.cap.max_send_wr = cdata->max_requests;
529 	ep->rep_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
530 	ep->rep_attr.cap.max_send_wr += 1;	/* drain cqe */
531 	rc = ia->ri_ops->ro_open(ia, ep, cdata);
532 	if (rc)
533 		return rc;
534 	ep->rep_attr.cap.max_recv_wr = cdata->max_requests;
535 	ep->rep_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
536 	ep->rep_attr.cap.max_recv_wr += 1;	/* drain cqe */
537 	ep->rep_attr.cap.max_send_sge = max_sge;
538 	ep->rep_attr.cap.max_recv_sge = 1;
539 	ep->rep_attr.cap.max_inline_data = 0;
540 	ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
541 	ep->rep_attr.qp_type = IB_QPT_RC;
542 	ep->rep_attr.port_num = ~0;
543 
544 	dprintk("RPC:       %s: requested max: dtos: send %d recv %d; "
545 		"iovs: send %d recv %d\n",
546 		__func__,
547 		ep->rep_attr.cap.max_send_wr,
548 		ep->rep_attr.cap.max_recv_wr,
549 		ep->rep_attr.cap.max_send_sge,
550 		ep->rep_attr.cap.max_recv_sge);
551 
552 	/* set trigger for requesting send completion */
553 	ep->rep_send_batch = min_t(unsigned int, RPCRDMA_MAX_SEND_BATCH,
554 				   cdata->max_requests >> 2);
555 	ep->rep_send_count = ep->rep_send_batch;
556 	init_waitqueue_head(&ep->rep_connect_wait);
557 	INIT_DELAYED_WORK(&ep->rep_connect_worker, rpcrdma_connect_worker);
558 
559 	sendcq = ib_alloc_cq(ia->ri_device, NULL,
560 			     ep->rep_attr.cap.max_send_wr + 1,
561 			     1, IB_POLL_WORKQUEUE);
562 	if (IS_ERR(sendcq)) {
563 		rc = PTR_ERR(sendcq);
564 		dprintk("RPC:       %s: failed to create send CQ: %i\n",
565 			__func__, rc);
566 		goto out1;
567 	}
568 
569 	recvcq = ib_alloc_cq(ia->ri_device, NULL,
570 			     ep->rep_attr.cap.max_recv_wr + 1,
571 			     0, IB_POLL_WORKQUEUE);
572 	if (IS_ERR(recvcq)) {
573 		rc = PTR_ERR(recvcq);
574 		dprintk("RPC:       %s: failed to create recv CQ: %i\n",
575 			__func__, rc);
576 		goto out2;
577 	}
578 
579 	ep->rep_attr.send_cq = sendcq;
580 	ep->rep_attr.recv_cq = recvcq;
581 
582 	/* Initialize cma parameters */
583 	memset(&ep->rep_remote_cma, 0, sizeof(ep->rep_remote_cma));
584 
585 	/* Prepare RDMA-CM private message */
586 	pmsg->cp_magic = rpcrdma_cmp_magic;
587 	pmsg->cp_version = RPCRDMA_CMP_VERSION;
588 	pmsg->cp_flags |= ia->ri_ops->ro_send_w_inv_ok;
589 	pmsg->cp_send_size = rpcrdma_encode_buffer_size(cdata->inline_wsize);
590 	pmsg->cp_recv_size = rpcrdma_encode_buffer_size(cdata->inline_rsize);
591 	ep->rep_remote_cma.private_data = pmsg;
592 	ep->rep_remote_cma.private_data_len = sizeof(*pmsg);
593 
594 	/* Client offers RDMA Read but does not initiate */
595 	ep->rep_remote_cma.initiator_depth = 0;
596 	if (ia->ri_device->attrs.max_qp_rd_atom > 32)	/* arbitrary but <= 255 */
597 		ep->rep_remote_cma.responder_resources = 32;
598 	else
599 		ep->rep_remote_cma.responder_resources =
600 						ia->ri_device->attrs.max_qp_rd_atom;
601 
602 	/* Limit transport retries so client can detect server
603 	 * GID changes quickly. RPC layer handles re-establishing
604 	 * transport connection and retransmission.
605 	 */
606 	ep->rep_remote_cma.retry_count = 6;
607 
608 	/* RPC-over-RDMA handles its own flow control. In addition,
609 	 * make all RNR NAKs visible so we know that RPC-over-RDMA
610 	 * flow control is working correctly (no NAKs should be seen).
611 	 */
612 	ep->rep_remote_cma.flow_control = 0;
613 	ep->rep_remote_cma.rnr_retry_count = 0;
614 
615 	return 0;
616 
617 out2:
618 	ib_free_cq(sendcq);
619 out1:
620 	return rc;
621 }
622 
623 /*
624  * rpcrdma_ep_destroy
625  *
626  * Disconnect and destroy endpoint. After this, the only
627  * valid operations on the ep are to free it (if dynamically
628  * allocated) or re-create it.
629  */
630 void
631 rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
632 {
633 	dprintk("RPC:       %s: entering, connected is %d\n",
634 		__func__, ep->rep_connected);
635 
636 	cancel_delayed_work_sync(&ep->rep_connect_worker);
637 
638 	if (ia->ri_id->qp) {
639 		rpcrdma_ep_disconnect(ep, ia);
640 		rdma_destroy_qp(ia->ri_id);
641 		ia->ri_id->qp = NULL;
642 	}
643 
644 	ib_free_cq(ep->rep_attr.recv_cq);
645 	ib_free_cq(ep->rep_attr.send_cq);
646 }
647 
648 /* Re-establish a connection after a device removal event.
649  * Unlike a normal reconnection, a fresh PD and a new set
650  * of MRs and buffers is needed.
651  */
652 static int
653 rpcrdma_ep_recreate_xprt(struct rpcrdma_xprt *r_xprt,
654 			 struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
655 {
656 	struct sockaddr *sap = (struct sockaddr *)&r_xprt->rx_data.addr;
657 	int rc, err;
658 
659 	pr_info("%s: r_xprt = %p\n", __func__, r_xprt);
660 
661 	rc = -EHOSTUNREACH;
662 	if (rpcrdma_ia_open(r_xprt, sap))
663 		goto out1;
664 
665 	rc = -ENOMEM;
666 	err = rpcrdma_ep_create(ep, ia, &r_xprt->rx_data);
667 	if (err) {
668 		pr_err("rpcrdma: rpcrdma_ep_create returned %d\n", err);
669 		goto out2;
670 	}
671 
672 	rc = -ENETUNREACH;
673 	err = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr);
674 	if (err) {
675 		pr_err("rpcrdma: rdma_create_qp returned %d\n", err);
676 		goto out3;
677 	}
678 
679 	rpcrdma_create_mrs(r_xprt);
680 	return 0;
681 
682 out3:
683 	rpcrdma_ep_destroy(ep, ia);
684 out2:
685 	rpcrdma_ia_close(ia);
686 out1:
687 	return rc;
688 }
689 
690 static int
691 rpcrdma_ep_reconnect(struct rpcrdma_xprt *r_xprt, struct rpcrdma_ep *ep,
692 		     struct rpcrdma_ia *ia)
693 {
694 	struct sockaddr *sap = (struct sockaddr *)&r_xprt->rx_data.addr;
695 	struct rdma_cm_id *id, *old;
696 	int err, rc;
697 
698 	dprintk("RPC:       %s: reconnecting...\n", __func__);
699 
700 	rpcrdma_ep_disconnect(ep, ia);
701 
702 	rc = -EHOSTUNREACH;
703 	id = rpcrdma_create_id(r_xprt, ia, sap);
704 	if (IS_ERR(id))
705 		goto out;
706 
707 	/* As long as the new ID points to the same device as the
708 	 * old ID, we can reuse the transport's existing PD and all
709 	 * previously allocated MRs. Also, the same device means
710 	 * the transport's previous DMA mappings are still valid.
711 	 *
712 	 * This is a sanity check only. There should be no way these
713 	 * point to two different devices here.
714 	 */
715 	old = id;
716 	rc = -ENETUNREACH;
717 	if (ia->ri_device != id->device) {
718 		pr_err("rpcrdma: can't reconnect on different device!\n");
719 		goto out_destroy;
720 	}
721 
722 	err = rdma_create_qp(id, ia->ri_pd, &ep->rep_attr);
723 	if (err) {
724 		dprintk("RPC:       %s: rdma_create_qp returned %d\n",
725 			__func__, err);
726 		goto out_destroy;
727 	}
728 
729 	/* Atomically replace the transport's ID and QP. */
730 	rc = 0;
731 	old = ia->ri_id;
732 	ia->ri_id = id;
733 	rdma_destroy_qp(old);
734 
735 out_destroy:
736 	rdma_destroy_id(old);
737 out:
738 	return rc;
739 }
740 
741 /*
742  * Connect unconnected endpoint.
743  */
744 int
745 rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
746 {
747 	struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt,
748 						   rx_ia);
749 	unsigned int extras;
750 	int rc;
751 
752 retry:
753 	switch (ep->rep_connected) {
754 	case 0:
755 		dprintk("RPC:       %s: connecting...\n", __func__);
756 		rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr);
757 		if (rc) {
758 			dprintk("RPC:       %s: rdma_create_qp failed %i\n",
759 				__func__, rc);
760 			rc = -ENETUNREACH;
761 			goto out_noupdate;
762 		}
763 		break;
764 	case -ENODEV:
765 		rc = rpcrdma_ep_recreate_xprt(r_xprt, ep, ia);
766 		if (rc)
767 			goto out_noupdate;
768 		break;
769 	default:
770 		rc = rpcrdma_ep_reconnect(r_xprt, ep, ia);
771 		if (rc)
772 			goto out;
773 	}
774 
775 	ep->rep_connected = 0;
776 
777 	rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma);
778 	if (rc) {
779 		dprintk("RPC:       %s: rdma_connect() failed with %i\n",
780 				__func__, rc);
781 		goto out;
782 	}
783 
784 	wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0);
785 	if (ep->rep_connected <= 0) {
786 		if (ep->rep_connected == -EAGAIN)
787 			goto retry;
788 		rc = ep->rep_connected;
789 		goto out;
790 	}
791 
792 	dprintk("RPC:       %s: connected\n", __func__);
793 	extras = r_xprt->rx_buf.rb_bc_srv_max_requests;
794 	if (extras)
795 		rpcrdma_ep_post_extra_recv(r_xprt, extras);
796 
797 out:
798 	if (rc)
799 		ep->rep_connected = rc;
800 
801 out_noupdate:
802 	return rc;
803 }
804 
805 /*
806  * rpcrdma_ep_disconnect
807  *
808  * This is separate from destroy to facilitate the ability
809  * to reconnect without recreating the endpoint.
810  *
811  * This call is not reentrant, and must not be made in parallel
812  * on the same endpoint.
813  */
814 void
815 rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
816 {
817 	int rc;
818 
819 	rc = rdma_disconnect(ia->ri_id);
820 	if (!rc) {
821 		/* returns without wait if not connected */
822 		wait_event_interruptible(ep->rep_connect_wait,
823 							ep->rep_connected != 1);
824 		dprintk("RPC:       %s: after wait, %sconnected\n", __func__,
825 			(ep->rep_connected == 1) ? "still " : "dis");
826 	} else {
827 		dprintk("RPC:       %s: rdma_disconnect %i\n", __func__, rc);
828 		ep->rep_connected = rc;
829 	}
830 
831 	ib_drain_qp(ia->ri_id->qp);
832 }
833 
834 /* Fixed-size circular FIFO queue. This implementation is wait-free and
835  * lock-free.
836  *
837  * Consumer is the code path that posts Sends. This path dequeues a
838  * sendctx for use by a Send operation. Multiple consumer threads
839  * are serialized by the RPC transport lock, which allows only one
840  * ->send_request call at a time.
841  *
842  * Producer is the code path that handles Send completions. This path
843  * enqueues a sendctx that has been completed. Multiple producer
844  * threads are serialized by the ib_poll_cq() function.
845  */
846 
847 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
848  * queue activity, and ib_drain_qp has flushed all remaining Send
849  * requests.
850  */
851 static void rpcrdma_sendctxs_destroy(struct rpcrdma_buffer *buf)
852 {
853 	unsigned long i;
854 
855 	for (i = 0; i <= buf->rb_sc_last; i++)
856 		kfree(buf->rb_sc_ctxs[i]);
857 	kfree(buf->rb_sc_ctxs);
858 }
859 
860 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ia *ia)
861 {
862 	struct rpcrdma_sendctx *sc;
863 
864 	sc = kzalloc(sizeof(*sc) +
865 		     ia->ri_max_send_sges * sizeof(struct ib_sge),
866 		     GFP_KERNEL);
867 	if (!sc)
868 		return NULL;
869 
870 	sc->sc_wr.wr_cqe = &sc->sc_cqe;
871 	sc->sc_wr.sg_list = sc->sc_sges;
872 	sc->sc_wr.opcode = IB_WR_SEND;
873 	sc->sc_cqe.done = rpcrdma_wc_send;
874 	return sc;
875 }
876 
877 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
878 {
879 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
880 	struct rpcrdma_sendctx *sc;
881 	unsigned long i;
882 
883 	/* Maximum number of concurrent outstanding Send WRs. Capping
884 	 * the circular queue size stops Send Queue overflow by causing
885 	 * the ->send_request call to fail temporarily before too many
886 	 * Sends are posted.
887 	 */
888 	i = buf->rb_max_requests + RPCRDMA_MAX_BC_REQUESTS;
889 	dprintk("RPC:       %s: allocating %lu send_ctxs\n", __func__, i);
890 	buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL);
891 	if (!buf->rb_sc_ctxs)
892 		return -ENOMEM;
893 
894 	buf->rb_sc_last = i - 1;
895 	for (i = 0; i <= buf->rb_sc_last; i++) {
896 		sc = rpcrdma_sendctx_create(&r_xprt->rx_ia);
897 		if (!sc)
898 			goto out_destroy;
899 
900 		sc->sc_xprt = r_xprt;
901 		buf->rb_sc_ctxs[i] = sc;
902 	}
903 
904 	return 0;
905 
906 out_destroy:
907 	rpcrdma_sendctxs_destroy(buf);
908 	return -ENOMEM;
909 }
910 
911 /* The sendctx queue is not guaranteed to have a size that is a
912  * power of two, thus the helpers in circ_buf.h cannot be used.
913  * The other option is to use modulus (%), which can be expensive.
914  */
915 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
916 					  unsigned long item)
917 {
918 	return likely(item < buf->rb_sc_last) ? item + 1 : 0;
919 }
920 
921 /**
922  * rpcrdma_sendctx_get_locked - Acquire a send context
923  * @buf: transport buffers from which to acquire an unused context
924  *
925  * Returns pointer to a free send completion context; or NULL if
926  * the queue is empty.
927  *
928  * Usage: Called to acquire an SGE array before preparing a Send WR.
929  *
930  * The caller serializes calls to this function (per rpcrdma_buffer),
931  * and provides an effective memory barrier that flushes the new value
932  * of rb_sc_head.
933  */
934 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_buffer *buf)
935 {
936 	struct rpcrdma_xprt *r_xprt;
937 	struct rpcrdma_sendctx *sc;
938 	unsigned long next_head;
939 
940 	next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
941 
942 	if (next_head == READ_ONCE(buf->rb_sc_tail))
943 		goto out_emptyq;
944 
945 	/* ORDER: item must be accessed _before_ head is updated */
946 	sc = buf->rb_sc_ctxs[next_head];
947 
948 	/* Releasing the lock in the caller acts as a memory
949 	 * barrier that flushes rb_sc_head.
950 	 */
951 	buf->rb_sc_head = next_head;
952 
953 	return sc;
954 
955 out_emptyq:
956 	/* The queue is "empty" if there have not been enough Send
957 	 * completions recently. This is a sign the Send Queue is
958 	 * backing up. Cause the caller to pause and try again.
959 	 */
960 	dprintk("RPC:       %s: empty sendctx queue\n", __func__);
961 	r_xprt = container_of(buf, struct rpcrdma_xprt, rx_buf);
962 	r_xprt->rx_stats.empty_sendctx_q++;
963 	return NULL;
964 }
965 
966 /**
967  * rpcrdma_sendctx_put_locked - Release a send context
968  * @sc: send context to release
969  *
970  * Usage: Called from Send completion to return a sendctxt
971  * to the queue.
972  *
973  * The caller serializes calls to this function (per rpcrdma_buffer).
974  */
975 void rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc)
976 {
977 	struct rpcrdma_buffer *buf = &sc->sc_xprt->rx_buf;
978 	unsigned long next_tail;
979 
980 	/* Unmap SGEs of previously completed by unsignaled
981 	 * Sends by walking up the queue until @sc is found.
982 	 */
983 	next_tail = buf->rb_sc_tail;
984 	do {
985 		next_tail = rpcrdma_sendctx_next(buf, next_tail);
986 
987 		/* ORDER: item must be accessed _before_ tail is updated */
988 		rpcrdma_unmap_sendctx(buf->rb_sc_ctxs[next_tail]);
989 
990 	} while (buf->rb_sc_ctxs[next_tail] != sc);
991 
992 	/* Paired with READ_ONCE */
993 	smp_store_release(&buf->rb_sc_tail, next_tail);
994 }
995 
996 static void
997 rpcrdma_mr_recovery_worker(struct work_struct *work)
998 {
999 	struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
1000 						  rb_recovery_worker.work);
1001 	struct rpcrdma_mw *mw;
1002 
1003 	spin_lock(&buf->rb_recovery_lock);
1004 	while (!list_empty(&buf->rb_stale_mrs)) {
1005 		mw = rpcrdma_pop_mw(&buf->rb_stale_mrs);
1006 		spin_unlock(&buf->rb_recovery_lock);
1007 
1008 		dprintk("RPC:       %s: recovering MR %p\n", __func__, mw);
1009 		mw->mw_xprt->rx_ia.ri_ops->ro_recover_mr(mw);
1010 
1011 		spin_lock(&buf->rb_recovery_lock);
1012 	}
1013 	spin_unlock(&buf->rb_recovery_lock);
1014 }
1015 
1016 void
1017 rpcrdma_defer_mr_recovery(struct rpcrdma_mw *mw)
1018 {
1019 	struct rpcrdma_xprt *r_xprt = mw->mw_xprt;
1020 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1021 
1022 	spin_lock(&buf->rb_recovery_lock);
1023 	rpcrdma_push_mw(mw, &buf->rb_stale_mrs);
1024 	spin_unlock(&buf->rb_recovery_lock);
1025 
1026 	schedule_delayed_work(&buf->rb_recovery_worker, 0);
1027 }
1028 
1029 static void
1030 rpcrdma_create_mrs(struct rpcrdma_xprt *r_xprt)
1031 {
1032 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1033 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
1034 	unsigned int count;
1035 	LIST_HEAD(free);
1036 	LIST_HEAD(all);
1037 
1038 	for (count = 0; count < 32; count++) {
1039 		struct rpcrdma_mw *mw;
1040 		int rc;
1041 
1042 		mw = kzalloc(sizeof(*mw), GFP_KERNEL);
1043 		if (!mw)
1044 			break;
1045 
1046 		rc = ia->ri_ops->ro_init_mr(ia, mw);
1047 		if (rc) {
1048 			kfree(mw);
1049 			break;
1050 		}
1051 
1052 		mw->mw_xprt = r_xprt;
1053 
1054 		list_add(&mw->mw_list, &free);
1055 		list_add(&mw->mw_all, &all);
1056 	}
1057 
1058 	spin_lock(&buf->rb_mwlock);
1059 	list_splice(&free, &buf->rb_mws);
1060 	list_splice(&all, &buf->rb_all);
1061 	r_xprt->rx_stats.mrs_allocated += count;
1062 	spin_unlock(&buf->rb_mwlock);
1063 
1064 	dprintk("RPC:       %s: created %u MRs\n", __func__, count);
1065 }
1066 
1067 static void
1068 rpcrdma_mr_refresh_worker(struct work_struct *work)
1069 {
1070 	struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
1071 						  rb_refresh_worker.work);
1072 	struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
1073 						   rx_buf);
1074 
1075 	rpcrdma_create_mrs(r_xprt);
1076 }
1077 
1078 struct rpcrdma_req *
1079 rpcrdma_create_req(struct rpcrdma_xprt *r_xprt)
1080 {
1081 	struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
1082 	struct rpcrdma_req *req;
1083 
1084 	req = kzalloc(sizeof(*req), GFP_KERNEL);
1085 	if (req == NULL)
1086 		return ERR_PTR(-ENOMEM);
1087 
1088 	spin_lock(&buffer->rb_reqslock);
1089 	list_add(&req->rl_all, &buffer->rb_allreqs);
1090 	spin_unlock(&buffer->rb_reqslock);
1091 	req->rl_buffer = &r_xprt->rx_buf;
1092 	INIT_LIST_HEAD(&req->rl_registered);
1093 	return req;
1094 }
1095 
1096 struct rpcrdma_rep *
1097 rpcrdma_create_rep(struct rpcrdma_xprt *r_xprt)
1098 {
1099 	struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
1100 	struct rpcrdma_rep *rep;
1101 	int rc;
1102 
1103 	rc = -ENOMEM;
1104 	rep = kzalloc(sizeof(*rep), GFP_KERNEL);
1105 	if (rep == NULL)
1106 		goto out;
1107 
1108 	rep->rr_rdmabuf = rpcrdma_alloc_regbuf(cdata->inline_rsize,
1109 					       DMA_FROM_DEVICE, GFP_KERNEL);
1110 	if (IS_ERR(rep->rr_rdmabuf)) {
1111 		rc = PTR_ERR(rep->rr_rdmabuf);
1112 		goto out_free;
1113 	}
1114 	xdr_buf_init(&rep->rr_hdrbuf, rep->rr_rdmabuf->rg_base,
1115 		     rdmab_length(rep->rr_rdmabuf));
1116 
1117 	rep->rr_cqe.done = rpcrdma_wc_receive;
1118 	rep->rr_rxprt = r_xprt;
1119 	INIT_WORK(&rep->rr_work, rpcrdma_deferred_completion);
1120 	rep->rr_recv_wr.next = NULL;
1121 	rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
1122 	rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
1123 	rep->rr_recv_wr.num_sge = 1;
1124 	return rep;
1125 
1126 out_free:
1127 	kfree(rep);
1128 out:
1129 	return ERR_PTR(rc);
1130 }
1131 
1132 int
1133 rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1134 {
1135 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1136 	int i, rc;
1137 
1138 	buf->rb_max_requests = r_xprt->rx_data.max_requests;
1139 	buf->rb_bc_srv_max_requests = 0;
1140 	spin_lock_init(&buf->rb_mwlock);
1141 	spin_lock_init(&buf->rb_lock);
1142 	spin_lock_init(&buf->rb_recovery_lock);
1143 	INIT_LIST_HEAD(&buf->rb_mws);
1144 	INIT_LIST_HEAD(&buf->rb_all);
1145 	INIT_LIST_HEAD(&buf->rb_stale_mrs);
1146 	INIT_DELAYED_WORK(&buf->rb_refresh_worker,
1147 			  rpcrdma_mr_refresh_worker);
1148 	INIT_DELAYED_WORK(&buf->rb_recovery_worker,
1149 			  rpcrdma_mr_recovery_worker);
1150 
1151 	rpcrdma_create_mrs(r_xprt);
1152 
1153 	INIT_LIST_HEAD(&buf->rb_send_bufs);
1154 	INIT_LIST_HEAD(&buf->rb_allreqs);
1155 	spin_lock_init(&buf->rb_reqslock);
1156 	for (i = 0; i < buf->rb_max_requests; i++) {
1157 		struct rpcrdma_req *req;
1158 
1159 		req = rpcrdma_create_req(r_xprt);
1160 		if (IS_ERR(req)) {
1161 			dprintk("RPC:       %s: request buffer %d alloc"
1162 				" failed\n", __func__, i);
1163 			rc = PTR_ERR(req);
1164 			goto out;
1165 		}
1166 		list_add(&req->rl_list, &buf->rb_send_bufs);
1167 	}
1168 
1169 	INIT_LIST_HEAD(&buf->rb_recv_bufs);
1170 	for (i = 0; i < buf->rb_max_requests + RPCRDMA_MAX_BC_REQUESTS; i++) {
1171 		struct rpcrdma_rep *rep;
1172 
1173 		rep = rpcrdma_create_rep(r_xprt);
1174 		if (IS_ERR(rep)) {
1175 			dprintk("RPC:       %s: reply buffer %d alloc failed\n",
1176 				__func__, i);
1177 			rc = PTR_ERR(rep);
1178 			goto out;
1179 		}
1180 		list_add(&rep->rr_list, &buf->rb_recv_bufs);
1181 	}
1182 
1183 	rc = rpcrdma_sendctxs_create(r_xprt);
1184 	if (rc)
1185 		goto out;
1186 
1187 	return 0;
1188 out:
1189 	rpcrdma_buffer_destroy(buf);
1190 	return rc;
1191 }
1192 
1193 static struct rpcrdma_req *
1194 rpcrdma_buffer_get_req_locked(struct rpcrdma_buffer *buf)
1195 {
1196 	struct rpcrdma_req *req;
1197 
1198 	req = list_first_entry(&buf->rb_send_bufs,
1199 			       struct rpcrdma_req, rl_list);
1200 	list_del_init(&req->rl_list);
1201 	return req;
1202 }
1203 
1204 static struct rpcrdma_rep *
1205 rpcrdma_buffer_get_rep_locked(struct rpcrdma_buffer *buf)
1206 {
1207 	struct rpcrdma_rep *rep;
1208 
1209 	rep = list_first_entry(&buf->rb_recv_bufs,
1210 			       struct rpcrdma_rep, rr_list);
1211 	list_del(&rep->rr_list);
1212 	return rep;
1213 }
1214 
1215 static void
1216 rpcrdma_destroy_rep(struct rpcrdma_rep *rep)
1217 {
1218 	rpcrdma_free_regbuf(rep->rr_rdmabuf);
1219 	kfree(rep);
1220 }
1221 
1222 void
1223 rpcrdma_destroy_req(struct rpcrdma_req *req)
1224 {
1225 	rpcrdma_free_regbuf(req->rl_recvbuf);
1226 	rpcrdma_free_regbuf(req->rl_sendbuf);
1227 	rpcrdma_free_regbuf(req->rl_rdmabuf);
1228 	kfree(req);
1229 }
1230 
1231 static void
1232 rpcrdma_destroy_mrs(struct rpcrdma_buffer *buf)
1233 {
1234 	struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
1235 						   rx_buf);
1236 	struct rpcrdma_ia *ia = rdmab_to_ia(buf);
1237 	struct rpcrdma_mw *mw;
1238 	unsigned int count;
1239 
1240 	count = 0;
1241 	spin_lock(&buf->rb_mwlock);
1242 	while (!list_empty(&buf->rb_all)) {
1243 		mw = list_entry(buf->rb_all.next, struct rpcrdma_mw, mw_all);
1244 		list_del(&mw->mw_all);
1245 
1246 		spin_unlock(&buf->rb_mwlock);
1247 		ia->ri_ops->ro_release_mr(mw);
1248 		count++;
1249 		spin_lock(&buf->rb_mwlock);
1250 	}
1251 	spin_unlock(&buf->rb_mwlock);
1252 	r_xprt->rx_stats.mrs_allocated = 0;
1253 
1254 	dprintk("RPC:       %s: released %u MRs\n", __func__, count);
1255 }
1256 
1257 void
1258 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1259 {
1260 	cancel_delayed_work_sync(&buf->rb_recovery_worker);
1261 	cancel_delayed_work_sync(&buf->rb_refresh_worker);
1262 
1263 	rpcrdma_sendctxs_destroy(buf);
1264 
1265 	while (!list_empty(&buf->rb_recv_bufs)) {
1266 		struct rpcrdma_rep *rep;
1267 
1268 		rep = rpcrdma_buffer_get_rep_locked(buf);
1269 		rpcrdma_destroy_rep(rep);
1270 	}
1271 	buf->rb_send_count = 0;
1272 
1273 	spin_lock(&buf->rb_reqslock);
1274 	while (!list_empty(&buf->rb_allreqs)) {
1275 		struct rpcrdma_req *req;
1276 
1277 		req = list_first_entry(&buf->rb_allreqs,
1278 				       struct rpcrdma_req, rl_all);
1279 		list_del(&req->rl_all);
1280 
1281 		spin_unlock(&buf->rb_reqslock);
1282 		rpcrdma_destroy_req(req);
1283 		spin_lock(&buf->rb_reqslock);
1284 	}
1285 	spin_unlock(&buf->rb_reqslock);
1286 	buf->rb_recv_count = 0;
1287 
1288 	rpcrdma_destroy_mrs(buf);
1289 }
1290 
1291 struct rpcrdma_mw *
1292 rpcrdma_get_mw(struct rpcrdma_xprt *r_xprt)
1293 {
1294 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1295 	struct rpcrdma_mw *mw = NULL;
1296 
1297 	spin_lock(&buf->rb_mwlock);
1298 	if (!list_empty(&buf->rb_mws))
1299 		mw = rpcrdma_pop_mw(&buf->rb_mws);
1300 	spin_unlock(&buf->rb_mwlock);
1301 
1302 	if (!mw)
1303 		goto out_nomws;
1304 	mw->mw_flags = 0;
1305 	return mw;
1306 
1307 out_nomws:
1308 	dprintk("RPC:       %s: no MWs available\n", __func__);
1309 	if (r_xprt->rx_ep.rep_connected != -ENODEV)
1310 		schedule_delayed_work(&buf->rb_refresh_worker, 0);
1311 
1312 	/* Allow the reply handler and refresh worker to run */
1313 	cond_resched();
1314 
1315 	return NULL;
1316 }
1317 
1318 void
1319 rpcrdma_put_mw(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mw *mw)
1320 {
1321 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1322 
1323 	spin_lock(&buf->rb_mwlock);
1324 	rpcrdma_push_mw(mw, &buf->rb_mws);
1325 	spin_unlock(&buf->rb_mwlock);
1326 }
1327 
1328 static struct rpcrdma_rep *
1329 rpcrdma_buffer_get_rep(struct rpcrdma_buffer *buffers)
1330 {
1331 	/* If an RPC previously completed without a reply (say, a
1332 	 * credential problem or a soft timeout occurs) then hold off
1333 	 * on supplying more Receive buffers until the number of new
1334 	 * pending RPCs catches up to the number of posted Receives.
1335 	 */
1336 	if (unlikely(buffers->rb_send_count < buffers->rb_recv_count))
1337 		return NULL;
1338 
1339 	if (unlikely(list_empty(&buffers->rb_recv_bufs)))
1340 		return NULL;
1341 	buffers->rb_recv_count++;
1342 	return rpcrdma_buffer_get_rep_locked(buffers);
1343 }
1344 
1345 /*
1346  * Get a set of request/reply buffers.
1347  *
1348  * Reply buffer (if available) is attached to send buffer upon return.
1349  */
1350 struct rpcrdma_req *
1351 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1352 {
1353 	struct rpcrdma_req *req;
1354 
1355 	spin_lock(&buffers->rb_lock);
1356 	if (list_empty(&buffers->rb_send_bufs))
1357 		goto out_reqbuf;
1358 	buffers->rb_send_count++;
1359 	req = rpcrdma_buffer_get_req_locked(buffers);
1360 	req->rl_reply = rpcrdma_buffer_get_rep(buffers);
1361 	spin_unlock(&buffers->rb_lock);
1362 	return req;
1363 
1364 out_reqbuf:
1365 	spin_unlock(&buffers->rb_lock);
1366 	pr_warn("RPC:       %s: out of request buffers\n", __func__);
1367 	return NULL;
1368 }
1369 
1370 /*
1371  * Put request/reply buffers back into pool.
1372  * Pre-decrement counter/array index.
1373  */
1374 void
1375 rpcrdma_buffer_put(struct rpcrdma_req *req)
1376 {
1377 	struct rpcrdma_buffer *buffers = req->rl_buffer;
1378 	struct rpcrdma_rep *rep = req->rl_reply;
1379 
1380 	req->rl_reply = NULL;
1381 
1382 	spin_lock(&buffers->rb_lock);
1383 	buffers->rb_send_count--;
1384 	list_add_tail(&req->rl_list, &buffers->rb_send_bufs);
1385 	if (rep) {
1386 		buffers->rb_recv_count--;
1387 		list_add_tail(&rep->rr_list, &buffers->rb_recv_bufs);
1388 	}
1389 	spin_unlock(&buffers->rb_lock);
1390 }
1391 
1392 /*
1393  * Recover reply buffers from pool.
1394  * This happens when recovering from disconnect.
1395  */
1396 void
1397 rpcrdma_recv_buffer_get(struct rpcrdma_req *req)
1398 {
1399 	struct rpcrdma_buffer *buffers = req->rl_buffer;
1400 
1401 	spin_lock(&buffers->rb_lock);
1402 	req->rl_reply = rpcrdma_buffer_get_rep(buffers);
1403 	spin_unlock(&buffers->rb_lock);
1404 }
1405 
1406 /*
1407  * Put reply buffers back into pool when not attached to
1408  * request. This happens in error conditions.
1409  */
1410 void
1411 rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
1412 {
1413 	struct rpcrdma_buffer *buffers = &rep->rr_rxprt->rx_buf;
1414 
1415 	spin_lock(&buffers->rb_lock);
1416 	buffers->rb_recv_count--;
1417 	list_add_tail(&rep->rr_list, &buffers->rb_recv_bufs);
1418 	spin_unlock(&buffers->rb_lock);
1419 }
1420 
1421 /**
1422  * rpcrdma_alloc_regbuf - allocate and DMA-map memory for SEND/RECV buffers
1423  * @size: size of buffer to be allocated, in bytes
1424  * @direction: direction of data movement
1425  * @flags: GFP flags
1426  *
1427  * Returns an ERR_PTR, or a pointer to a regbuf, a buffer that
1428  * can be persistently DMA-mapped for I/O.
1429  *
1430  * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1431  * receiving the payload of RDMA RECV operations. During Long Calls
1432  * or Replies they may be registered externally via ro_map.
1433  */
1434 struct rpcrdma_regbuf *
1435 rpcrdma_alloc_regbuf(size_t size, enum dma_data_direction direction,
1436 		     gfp_t flags)
1437 {
1438 	struct rpcrdma_regbuf *rb;
1439 
1440 	rb = kmalloc(sizeof(*rb) + size, flags);
1441 	if (rb == NULL)
1442 		return ERR_PTR(-ENOMEM);
1443 
1444 	rb->rg_device = NULL;
1445 	rb->rg_direction = direction;
1446 	rb->rg_iov.length = size;
1447 
1448 	return rb;
1449 }
1450 
1451 /**
1452  * __rpcrdma_map_regbuf - DMA-map a regbuf
1453  * @ia: controlling rpcrdma_ia
1454  * @rb: regbuf to be mapped
1455  */
1456 bool
1457 __rpcrdma_dma_map_regbuf(struct rpcrdma_ia *ia, struct rpcrdma_regbuf *rb)
1458 {
1459 	struct ib_device *device = ia->ri_device;
1460 
1461 	if (rb->rg_direction == DMA_NONE)
1462 		return false;
1463 
1464 	rb->rg_iov.addr = ib_dma_map_single(device,
1465 					    (void *)rb->rg_base,
1466 					    rdmab_length(rb),
1467 					    rb->rg_direction);
1468 	if (ib_dma_mapping_error(device, rdmab_addr(rb)))
1469 		return false;
1470 
1471 	rb->rg_device = device;
1472 	rb->rg_iov.lkey = ia->ri_pd->local_dma_lkey;
1473 	return true;
1474 }
1475 
1476 static void
1477 rpcrdma_dma_unmap_regbuf(struct rpcrdma_regbuf *rb)
1478 {
1479 	if (!rpcrdma_regbuf_is_mapped(rb))
1480 		return;
1481 
1482 	ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb),
1483 			    rdmab_length(rb), rb->rg_direction);
1484 	rb->rg_device = NULL;
1485 }
1486 
1487 /**
1488  * rpcrdma_free_regbuf - deregister and free registered buffer
1489  * @rb: regbuf to be deregistered and freed
1490  */
1491 void
1492 rpcrdma_free_regbuf(struct rpcrdma_regbuf *rb)
1493 {
1494 	if (!rb)
1495 		return;
1496 
1497 	rpcrdma_dma_unmap_regbuf(rb);
1498 	kfree(rb);
1499 }
1500 
1501 /*
1502  * Prepost any receive buffer, then post send.
1503  *
1504  * Receive buffer is donated to hardware, reclaimed upon recv completion.
1505  */
1506 int
1507 rpcrdma_ep_post(struct rpcrdma_ia *ia,
1508 		struct rpcrdma_ep *ep,
1509 		struct rpcrdma_req *req)
1510 {
1511 	struct ib_send_wr *send_wr = &req->rl_sendctx->sc_wr;
1512 	struct ib_send_wr *send_wr_fail;
1513 	int rc;
1514 
1515 	if (req->rl_reply) {
1516 		rc = rpcrdma_ep_post_recv(ia, req->rl_reply);
1517 		if (rc)
1518 			return rc;
1519 		req->rl_reply = NULL;
1520 	}
1521 
1522 	dprintk("RPC:       %s: posting %d s/g entries\n",
1523 		__func__, send_wr->num_sge);
1524 
1525 	if (!ep->rep_send_count ||
1526 	    test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) {
1527 		send_wr->send_flags |= IB_SEND_SIGNALED;
1528 		ep->rep_send_count = ep->rep_send_batch;
1529 	} else {
1530 		send_wr->send_flags &= ~IB_SEND_SIGNALED;
1531 		--ep->rep_send_count;
1532 	}
1533 	rc = ib_post_send(ia->ri_id->qp, send_wr, &send_wr_fail);
1534 	if (rc)
1535 		goto out_postsend_err;
1536 	return 0;
1537 
1538 out_postsend_err:
1539 	pr_err("rpcrdma: RDMA Send ib_post_send returned %i\n", rc);
1540 	return -ENOTCONN;
1541 }
1542 
1543 int
1544 rpcrdma_ep_post_recv(struct rpcrdma_ia *ia,
1545 		     struct rpcrdma_rep *rep)
1546 {
1547 	struct ib_recv_wr *recv_wr_fail;
1548 	int rc;
1549 
1550 	if (!rpcrdma_dma_map_regbuf(ia, rep->rr_rdmabuf))
1551 		goto out_map;
1552 	rc = ib_post_recv(ia->ri_id->qp, &rep->rr_recv_wr, &recv_wr_fail);
1553 	if (rc)
1554 		goto out_postrecv;
1555 	return 0;
1556 
1557 out_map:
1558 	pr_err("rpcrdma: failed to DMA map the Receive buffer\n");
1559 	return -EIO;
1560 
1561 out_postrecv:
1562 	pr_err("rpcrdma: ib_post_recv returned %i\n", rc);
1563 	return -ENOTCONN;
1564 }
1565 
1566 /**
1567  * rpcrdma_ep_post_extra_recv - Post buffers for incoming backchannel requests
1568  * @r_xprt: transport associated with these backchannel resources
1569  * @min_reqs: minimum number of incoming requests expected
1570  *
1571  * Returns zero if all requested buffers were posted, or a negative errno.
1572  */
1573 int
1574 rpcrdma_ep_post_extra_recv(struct rpcrdma_xprt *r_xprt, unsigned int count)
1575 {
1576 	struct rpcrdma_buffer *buffers = &r_xprt->rx_buf;
1577 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
1578 	struct rpcrdma_rep *rep;
1579 	int rc;
1580 
1581 	while (count--) {
1582 		spin_lock(&buffers->rb_lock);
1583 		if (list_empty(&buffers->rb_recv_bufs))
1584 			goto out_reqbuf;
1585 		rep = rpcrdma_buffer_get_rep_locked(buffers);
1586 		spin_unlock(&buffers->rb_lock);
1587 
1588 		rc = rpcrdma_ep_post_recv(ia, rep);
1589 		if (rc)
1590 			goto out_rc;
1591 	}
1592 
1593 	return 0;
1594 
1595 out_reqbuf:
1596 	spin_unlock(&buffers->rb_lock);
1597 	pr_warn("%s: no extra receive buffers\n", __func__);
1598 	return -ENOMEM;
1599 
1600 out_rc:
1601 	rpcrdma_recv_buffer_put(rep);
1602 	return rc;
1603 }
1604