xref: /openbmc/linux/net/sunrpc/xprtrdma/verbs.c (revision 82e6fdd6)
1 /*
2  * Copyright (c) 2014-2017 Oracle.  All rights reserved.
3  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the BSD-type
9  * license below:
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  *      Redistributions of source code must retain the above copyright
16  *      notice, this list of conditions and the following disclaimer.
17  *
18  *      Redistributions in binary form must reproduce the above
19  *      copyright notice, this list of conditions and the following
20  *      disclaimer in the documentation and/or other materials provided
21  *      with the distribution.
22  *
23  *      Neither the name of the Network Appliance, Inc. nor the names of
24  *      its contributors may be used to endorse or promote products
25  *      derived from this software without specific prior written
26  *      permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39  */
40 
41 /*
42  * verbs.c
43  *
44  * Encapsulates the major functions managing:
45  *  o adapters
46  *  o endpoints
47  *  o connections
48  *  o buffer memory
49  */
50 
51 #include <linux/interrupt.h>
52 #include <linux/slab.h>
53 #include <linux/sunrpc/addr.h>
54 #include <linux/sunrpc/svc_rdma.h>
55 
56 #include <asm-generic/barrier.h>
57 #include <asm/bitops.h>
58 
59 #include <rdma/ib_cm.h>
60 
61 #include "xprt_rdma.h"
62 
63 /*
64  * Globals/Macros
65  */
66 
67 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
68 # define RPCDBG_FACILITY	RPCDBG_TRANS
69 #endif
70 
71 /*
72  * internal functions
73  */
74 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt);
75 static void rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf);
76 static void rpcrdma_dma_unmap_regbuf(struct rpcrdma_regbuf *rb);
77 
78 struct workqueue_struct *rpcrdma_receive_wq __read_mostly;
79 
80 int
81 rpcrdma_alloc_wq(void)
82 {
83 	struct workqueue_struct *recv_wq;
84 
85 	recv_wq = alloc_workqueue("xprtrdma_receive",
86 				  WQ_MEM_RECLAIM | WQ_HIGHPRI,
87 				  0);
88 	if (!recv_wq)
89 		return -ENOMEM;
90 
91 	rpcrdma_receive_wq = recv_wq;
92 	return 0;
93 }
94 
95 void
96 rpcrdma_destroy_wq(void)
97 {
98 	struct workqueue_struct *wq;
99 
100 	if (rpcrdma_receive_wq) {
101 		wq = rpcrdma_receive_wq;
102 		rpcrdma_receive_wq = NULL;
103 		destroy_workqueue(wq);
104 	}
105 }
106 
107 static void
108 rpcrdma_qp_async_error_upcall(struct ib_event *event, void *context)
109 {
110 	struct rpcrdma_ep *ep = context;
111 	struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt,
112 						   rx_ep);
113 
114 	trace_xprtrdma_qp_error(r_xprt, event);
115 	pr_err("rpcrdma: %s on device %s ep %p\n",
116 	       ib_event_msg(event->event), event->device->name, context);
117 
118 	if (ep->rep_connected == 1) {
119 		ep->rep_connected = -EIO;
120 		rpcrdma_conn_func(ep);
121 		wake_up_all(&ep->rep_connect_wait);
122 	}
123 }
124 
125 /**
126  * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
127  * @cq:	completion queue (ignored)
128  * @wc:	completed WR
129  *
130  */
131 static void
132 rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
133 {
134 	struct ib_cqe *cqe = wc->wr_cqe;
135 	struct rpcrdma_sendctx *sc =
136 		container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
137 
138 	/* WARNING: Only wr_cqe and status are reliable at this point */
139 	trace_xprtrdma_wc_send(sc, wc);
140 	if (wc->status != IB_WC_SUCCESS && wc->status != IB_WC_WR_FLUSH_ERR)
141 		pr_err("rpcrdma: Send: %s (%u/0x%x)\n",
142 		       ib_wc_status_msg(wc->status),
143 		       wc->status, wc->vendor_err);
144 
145 	rpcrdma_sendctx_put_locked(sc);
146 }
147 
148 /**
149  * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
150  * @cq:	completion queue (ignored)
151  * @wc:	completed WR
152  *
153  */
154 static void
155 rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
156 {
157 	struct ib_cqe *cqe = wc->wr_cqe;
158 	struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
159 					       rr_cqe);
160 
161 	/* WARNING: Only wr_id and status are reliable at this point */
162 	trace_xprtrdma_wc_receive(rep, wc);
163 	if (wc->status != IB_WC_SUCCESS)
164 		goto out_fail;
165 
166 	/* status == SUCCESS means all fields in wc are trustworthy */
167 	rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
168 	rep->rr_wc_flags = wc->wc_flags;
169 	rep->rr_inv_rkey = wc->ex.invalidate_rkey;
170 
171 	ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
172 				   rdmab_addr(rep->rr_rdmabuf),
173 				   wc->byte_len, DMA_FROM_DEVICE);
174 
175 out_schedule:
176 	rpcrdma_reply_handler(rep);
177 	return;
178 
179 out_fail:
180 	if (wc->status != IB_WC_WR_FLUSH_ERR)
181 		pr_err("rpcrdma: Recv: %s (%u/0x%x)\n",
182 		       ib_wc_status_msg(wc->status),
183 		       wc->status, wc->vendor_err);
184 	rpcrdma_set_xdrlen(&rep->rr_hdrbuf, 0);
185 	goto out_schedule;
186 }
187 
188 static void
189 rpcrdma_update_connect_private(struct rpcrdma_xprt *r_xprt,
190 			       struct rdma_conn_param *param)
191 {
192 	struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
193 	const struct rpcrdma_connect_private *pmsg = param->private_data;
194 	unsigned int rsize, wsize;
195 
196 	/* Default settings for RPC-over-RDMA Version One */
197 	r_xprt->rx_ia.ri_implicit_roundup = xprt_rdma_pad_optimize;
198 	rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
199 	wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
200 
201 	if (pmsg &&
202 	    pmsg->cp_magic == rpcrdma_cmp_magic &&
203 	    pmsg->cp_version == RPCRDMA_CMP_VERSION) {
204 		r_xprt->rx_ia.ri_implicit_roundup = true;
205 		rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
206 		wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
207 	}
208 
209 	if (rsize < cdata->inline_rsize)
210 		cdata->inline_rsize = rsize;
211 	if (wsize < cdata->inline_wsize)
212 		cdata->inline_wsize = wsize;
213 	dprintk("RPC:       %s: max send %u, max recv %u\n",
214 		__func__, cdata->inline_wsize, cdata->inline_rsize);
215 	rpcrdma_set_max_header_sizes(r_xprt);
216 }
217 
218 static int
219 rpcrdma_conn_upcall(struct rdma_cm_id *id, struct rdma_cm_event *event)
220 {
221 	struct rpcrdma_xprt *xprt = id->context;
222 	struct rpcrdma_ia *ia = &xprt->rx_ia;
223 	struct rpcrdma_ep *ep = &xprt->rx_ep;
224 	int connstate = 0;
225 
226 	trace_xprtrdma_conn_upcall(xprt, event);
227 	switch (event->event) {
228 	case RDMA_CM_EVENT_ADDR_RESOLVED:
229 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
230 		ia->ri_async_rc = 0;
231 		complete(&ia->ri_done);
232 		break;
233 	case RDMA_CM_EVENT_ADDR_ERROR:
234 		ia->ri_async_rc = -EHOSTUNREACH;
235 		complete(&ia->ri_done);
236 		break;
237 	case RDMA_CM_EVENT_ROUTE_ERROR:
238 		ia->ri_async_rc = -ENETUNREACH;
239 		complete(&ia->ri_done);
240 		break;
241 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
242 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
243 		pr_info("rpcrdma: removing device %s for %s:%s\n",
244 			ia->ri_device->name,
245 			rpcrdma_addrstr(xprt), rpcrdma_portstr(xprt));
246 #endif
247 		set_bit(RPCRDMA_IAF_REMOVING, &ia->ri_flags);
248 		ep->rep_connected = -ENODEV;
249 		xprt_force_disconnect(&xprt->rx_xprt);
250 		wait_for_completion(&ia->ri_remove_done);
251 
252 		ia->ri_id = NULL;
253 		ia->ri_pd = NULL;
254 		ia->ri_device = NULL;
255 		/* Return 1 to ensure the core destroys the id. */
256 		return 1;
257 	case RDMA_CM_EVENT_ESTABLISHED:
258 		connstate = 1;
259 		rpcrdma_update_connect_private(xprt, &event->param.conn);
260 		goto connected;
261 	case RDMA_CM_EVENT_CONNECT_ERROR:
262 		connstate = -ENOTCONN;
263 		goto connected;
264 	case RDMA_CM_EVENT_UNREACHABLE:
265 		connstate = -ENETDOWN;
266 		goto connected;
267 	case RDMA_CM_EVENT_REJECTED:
268 		dprintk("rpcrdma: connection to %s:%s rejected: %s\n",
269 			rpcrdma_addrstr(xprt), rpcrdma_portstr(xprt),
270 			rdma_reject_msg(id, event->status));
271 		connstate = -ECONNREFUSED;
272 		if (event->status == IB_CM_REJ_STALE_CONN)
273 			connstate = -EAGAIN;
274 		goto connected;
275 	case RDMA_CM_EVENT_DISCONNECTED:
276 		connstate = -ECONNABORTED;
277 connected:
278 		xprt->rx_buf.rb_credits = 1;
279 		ep->rep_connected = connstate;
280 		rpcrdma_conn_func(ep);
281 		wake_up_all(&ep->rep_connect_wait);
282 		/*FALLTHROUGH*/
283 	default:
284 		dprintk("RPC:       %s: %s:%s on %s/%s (ep 0x%p): %s\n",
285 			__func__,
286 			rpcrdma_addrstr(xprt), rpcrdma_portstr(xprt),
287 			ia->ri_device->name, ia->ri_ops->ro_displayname,
288 			ep, rdma_event_msg(event->event));
289 		break;
290 	}
291 
292 	return 0;
293 }
294 
295 static struct rdma_cm_id *
296 rpcrdma_create_id(struct rpcrdma_xprt *xprt, struct rpcrdma_ia *ia)
297 {
298 	unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
299 	struct rdma_cm_id *id;
300 	int rc;
301 
302 	trace_xprtrdma_conn_start(xprt);
303 
304 	init_completion(&ia->ri_done);
305 	init_completion(&ia->ri_remove_done);
306 
307 	id = rdma_create_id(&init_net, rpcrdma_conn_upcall, xprt, RDMA_PS_TCP,
308 			    IB_QPT_RC);
309 	if (IS_ERR(id)) {
310 		rc = PTR_ERR(id);
311 		dprintk("RPC:       %s: rdma_create_id() failed %i\n",
312 			__func__, rc);
313 		return id;
314 	}
315 
316 	ia->ri_async_rc = -ETIMEDOUT;
317 	rc = rdma_resolve_addr(id, NULL,
318 			       (struct sockaddr *)&xprt->rx_xprt.addr,
319 			       RDMA_RESOLVE_TIMEOUT);
320 	if (rc) {
321 		dprintk("RPC:       %s: rdma_resolve_addr() failed %i\n",
322 			__func__, rc);
323 		goto out;
324 	}
325 	rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout);
326 	if (rc < 0) {
327 		trace_xprtrdma_conn_tout(xprt);
328 		goto out;
329 	}
330 
331 	rc = ia->ri_async_rc;
332 	if (rc)
333 		goto out;
334 
335 	ia->ri_async_rc = -ETIMEDOUT;
336 	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
337 	if (rc) {
338 		dprintk("RPC:       %s: rdma_resolve_route() failed %i\n",
339 			__func__, rc);
340 		goto out;
341 	}
342 	rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout);
343 	if (rc < 0) {
344 		trace_xprtrdma_conn_tout(xprt);
345 		goto out;
346 	}
347 	rc = ia->ri_async_rc;
348 	if (rc)
349 		goto out;
350 
351 	return id;
352 
353 out:
354 	rdma_destroy_id(id);
355 	return ERR_PTR(rc);
356 }
357 
358 /*
359  * Exported functions.
360  */
361 
362 /**
363  * rpcrdma_ia_open - Open and initialize an Interface Adapter.
364  * @xprt: transport with IA to (re)initialize
365  *
366  * Returns 0 on success, negative errno if an appropriate
367  * Interface Adapter could not be found and opened.
368  */
369 int
370 rpcrdma_ia_open(struct rpcrdma_xprt *xprt)
371 {
372 	struct rpcrdma_ia *ia = &xprt->rx_ia;
373 	int rc;
374 
375 	ia->ri_id = rpcrdma_create_id(xprt, ia);
376 	if (IS_ERR(ia->ri_id)) {
377 		rc = PTR_ERR(ia->ri_id);
378 		goto out_err;
379 	}
380 	ia->ri_device = ia->ri_id->device;
381 
382 	ia->ri_pd = ib_alloc_pd(ia->ri_device, 0);
383 	if (IS_ERR(ia->ri_pd)) {
384 		rc = PTR_ERR(ia->ri_pd);
385 		pr_err("rpcrdma: ib_alloc_pd() returned %d\n", rc);
386 		goto out_err;
387 	}
388 
389 	switch (xprt_rdma_memreg_strategy) {
390 	case RPCRDMA_FRWR:
391 		if (frwr_is_supported(ia)) {
392 			ia->ri_ops = &rpcrdma_frwr_memreg_ops;
393 			break;
394 		}
395 		/*FALLTHROUGH*/
396 	case RPCRDMA_MTHCAFMR:
397 		if (fmr_is_supported(ia)) {
398 			ia->ri_ops = &rpcrdma_fmr_memreg_ops;
399 			break;
400 		}
401 		/*FALLTHROUGH*/
402 	default:
403 		pr_err("rpcrdma: Device %s does not support memreg mode %d\n",
404 		       ia->ri_device->name, xprt_rdma_memreg_strategy);
405 		rc = -EINVAL;
406 		goto out_err;
407 	}
408 
409 	return 0;
410 
411 out_err:
412 	rpcrdma_ia_close(ia);
413 	return rc;
414 }
415 
416 /**
417  * rpcrdma_ia_remove - Handle device driver unload
418  * @ia: interface adapter being removed
419  *
420  * Divest transport H/W resources associated with this adapter,
421  * but allow it to be restored later.
422  */
423 void
424 rpcrdma_ia_remove(struct rpcrdma_ia *ia)
425 {
426 	struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt,
427 						   rx_ia);
428 	struct rpcrdma_ep *ep = &r_xprt->rx_ep;
429 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
430 	struct rpcrdma_req *req;
431 	struct rpcrdma_rep *rep;
432 
433 	cancel_delayed_work_sync(&buf->rb_refresh_worker);
434 
435 	/* This is similar to rpcrdma_ep_destroy, but:
436 	 * - Don't cancel the connect worker.
437 	 * - Don't call rpcrdma_ep_disconnect, which waits
438 	 *   for another conn upcall, which will deadlock.
439 	 * - rdma_disconnect is unneeded, the underlying
440 	 *   connection is already gone.
441 	 */
442 	if (ia->ri_id->qp) {
443 		ib_drain_qp(ia->ri_id->qp);
444 		rdma_destroy_qp(ia->ri_id);
445 		ia->ri_id->qp = NULL;
446 	}
447 	ib_free_cq(ep->rep_attr.recv_cq);
448 	ib_free_cq(ep->rep_attr.send_cq);
449 
450 	/* The ULP is responsible for ensuring all DMA
451 	 * mappings and MRs are gone.
452 	 */
453 	list_for_each_entry(rep, &buf->rb_recv_bufs, rr_list)
454 		rpcrdma_dma_unmap_regbuf(rep->rr_rdmabuf);
455 	list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
456 		rpcrdma_dma_unmap_regbuf(req->rl_rdmabuf);
457 		rpcrdma_dma_unmap_regbuf(req->rl_sendbuf);
458 		rpcrdma_dma_unmap_regbuf(req->rl_recvbuf);
459 	}
460 	rpcrdma_mrs_destroy(buf);
461 
462 	/* Allow waiters to continue */
463 	complete(&ia->ri_remove_done);
464 
465 	trace_xprtrdma_remove(r_xprt);
466 }
467 
468 /**
469  * rpcrdma_ia_close - Clean up/close an IA.
470  * @ia: interface adapter to close
471  *
472  */
473 void
474 rpcrdma_ia_close(struct rpcrdma_ia *ia)
475 {
476 	if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) {
477 		if (ia->ri_id->qp)
478 			rdma_destroy_qp(ia->ri_id);
479 		rdma_destroy_id(ia->ri_id);
480 	}
481 	ia->ri_id = NULL;
482 	ia->ri_device = NULL;
483 
484 	/* If the pd is still busy, xprtrdma missed freeing a resource */
485 	if (ia->ri_pd && !IS_ERR(ia->ri_pd))
486 		ib_dealloc_pd(ia->ri_pd);
487 	ia->ri_pd = NULL;
488 }
489 
490 /*
491  * Create unconnected endpoint.
492  */
493 int
494 rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia,
495 		  struct rpcrdma_create_data_internal *cdata)
496 {
497 	struct rpcrdma_connect_private *pmsg = &ep->rep_cm_private;
498 	unsigned int max_qp_wr, max_sge;
499 	struct ib_cq *sendcq, *recvcq;
500 	int rc;
501 
502 	max_sge = min_t(unsigned int, ia->ri_device->attrs.max_sge,
503 			RPCRDMA_MAX_SEND_SGES);
504 	if (max_sge < RPCRDMA_MIN_SEND_SGES) {
505 		pr_warn("rpcrdma: HCA provides only %d send SGEs\n", max_sge);
506 		return -ENOMEM;
507 	}
508 	ia->ri_max_send_sges = max_sge;
509 
510 	if (ia->ri_device->attrs.max_qp_wr <= RPCRDMA_BACKWARD_WRS) {
511 		dprintk("RPC:       %s: insufficient wqe's available\n",
512 			__func__);
513 		return -ENOMEM;
514 	}
515 	max_qp_wr = ia->ri_device->attrs.max_qp_wr - RPCRDMA_BACKWARD_WRS - 1;
516 
517 	/* check provider's send/recv wr limits */
518 	if (cdata->max_requests > max_qp_wr)
519 		cdata->max_requests = max_qp_wr;
520 
521 	ep->rep_attr.event_handler = rpcrdma_qp_async_error_upcall;
522 	ep->rep_attr.qp_context = ep;
523 	ep->rep_attr.srq = NULL;
524 	ep->rep_attr.cap.max_send_wr = cdata->max_requests;
525 	ep->rep_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
526 	ep->rep_attr.cap.max_send_wr += 1;	/* drain cqe */
527 	rc = ia->ri_ops->ro_open(ia, ep, cdata);
528 	if (rc)
529 		return rc;
530 	ep->rep_attr.cap.max_recv_wr = cdata->max_requests;
531 	ep->rep_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
532 	ep->rep_attr.cap.max_recv_wr += 1;	/* drain cqe */
533 	ep->rep_attr.cap.max_send_sge = max_sge;
534 	ep->rep_attr.cap.max_recv_sge = 1;
535 	ep->rep_attr.cap.max_inline_data = 0;
536 	ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
537 	ep->rep_attr.qp_type = IB_QPT_RC;
538 	ep->rep_attr.port_num = ~0;
539 
540 	dprintk("RPC:       %s: requested max: dtos: send %d recv %d; "
541 		"iovs: send %d recv %d\n",
542 		__func__,
543 		ep->rep_attr.cap.max_send_wr,
544 		ep->rep_attr.cap.max_recv_wr,
545 		ep->rep_attr.cap.max_send_sge,
546 		ep->rep_attr.cap.max_recv_sge);
547 
548 	/* set trigger for requesting send completion */
549 	ep->rep_send_batch = min_t(unsigned int, RPCRDMA_MAX_SEND_BATCH,
550 				   cdata->max_requests >> 2);
551 	ep->rep_send_count = ep->rep_send_batch;
552 	init_waitqueue_head(&ep->rep_connect_wait);
553 	INIT_DELAYED_WORK(&ep->rep_connect_worker, rpcrdma_connect_worker);
554 
555 	sendcq = ib_alloc_cq(ia->ri_device, NULL,
556 			     ep->rep_attr.cap.max_send_wr + 1,
557 			     1, IB_POLL_WORKQUEUE);
558 	if (IS_ERR(sendcq)) {
559 		rc = PTR_ERR(sendcq);
560 		dprintk("RPC:       %s: failed to create send CQ: %i\n",
561 			__func__, rc);
562 		goto out1;
563 	}
564 
565 	recvcq = ib_alloc_cq(ia->ri_device, NULL,
566 			     ep->rep_attr.cap.max_recv_wr + 1,
567 			     0, IB_POLL_WORKQUEUE);
568 	if (IS_ERR(recvcq)) {
569 		rc = PTR_ERR(recvcq);
570 		dprintk("RPC:       %s: failed to create recv CQ: %i\n",
571 			__func__, rc);
572 		goto out2;
573 	}
574 
575 	ep->rep_attr.send_cq = sendcq;
576 	ep->rep_attr.recv_cq = recvcq;
577 
578 	/* Initialize cma parameters */
579 	memset(&ep->rep_remote_cma, 0, sizeof(ep->rep_remote_cma));
580 
581 	/* Prepare RDMA-CM private message */
582 	pmsg->cp_magic = rpcrdma_cmp_magic;
583 	pmsg->cp_version = RPCRDMA_CMP_VERSION;
584 	pmsg->cp_flags |= ia->ri_ops->ro_send_w_inv_ok;
585 	pmsg->cp_send_size = rpcrdma_encode_buffer_size(cdata->inline_wsize);
586 	pmsg->cp_recv_size = rpcrdma_encode_buffer_size(cdata->inline_rsize);
587 	ep->rep_remote_cma.private_data = pmsg;
588 	ep->rep_remote_cma.private_data_len = sizeof(*pmsg);
589 
590 	/* Client offers RDMA Read but does not initiate */
591 	ep->rep_remote_cma.initiator_depth = 0;
592 	if (ia->ri_device->attrs.max_qp_rd_atom > 32)	/* arbitrary but <= 255 */
593 		ep->rep_remote_cma.responder_resources = 32;
594 	else
595 		ep->rep_remote_cma.responder_resources =
596 						ia->ri_device->attrs.max_qp_rd_atom;
597 
598 	/* Limit transport retries so client can detect server
599 	 * GID changes quickly. RPC layer handles re-establishing
600 	 * transport connection and retransmission.
601 	 */
602 	ep->rep_remote_cma.retry_count = 6;
603 
604 	/* RPC-over-RDMA handles its own flow control. In addition,
605 	 * make all RNR NAKs visible so we know that RPC-over-RDMA
606 	 * flow control is working correctly (no NAKs should be seen).
607 	 */
608 	ep->rep_remote_cma.flow_control = 0;
609 	ep->rep_remote_cma.rnr_retry_count = 0;
610 
611 	return 0;
612 
613 out2:
614 	ib_free_cq(sendcq);
615 out1:
616 	return rc;
617 }
618 
619 /*
620  * rpcrdma_ep_destroy
621  *
622  * Disconnect and destroy endpoint. After this, the only
623  * valid operations on the ep are to free it (if dynamically
624  * allocated) or re-create it.
625  */
626 void
627 rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
628 {
629 	cancel_delayed_work_sync(&ep->rep_connect_worker);
630 
631 	if (ia->ri_id->qp) {
632 		rpcrdma_ep_disconnect(ep, ia);
633 		rdma_destroy_qp(ia->ri_id);
634 		ia->ri_id->qp = NULL;
635 	}
636 
637 	ib_free_cq(ep->rep_attr.recv_cq);
638 	ib_free_cq(ep->rep_attr.send_cq);
639 }
640 
641 /* Re-establish a connection after a device removal event.
642  * Unlike a normal reconnection, a fresh PD and a new set
643  * of MRs and buffers is needed.
644  */
645 static int
646 rpcrdma_ep_recreate_xprt(struct rpcrdma_xprt *r_xprt,
647 			 struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
648 {
649 	int rc, err;
650 
651 	trace_xprtrdma_reinsert(r_xprt);
652 
653 	rc = -EHOSTUNREACH;
654 	if (rpcrdma_ia_open(r_xprt))
655 		goto out1;
656 
657 	rc = -ENOMEM;
658 	err = rpcrdma_ep_create(ep, ia, &r_xprt->rx_data);
659 	if (err) {
660 		pr_err("rpcrdma: rpcrdma_ep_create returned %d\n", err);
661 		goto out2;
662 	}
663 
664 	rc = -ENETUNREACH;
665 	err = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr);
666 	if (err) {
667 		pr_err("rpcrdma: rdma_create_qp returned %d\n", err);
668 		goto out3;
669 	}
670 
671 	rpcrdma_mrs_create(r_xprt);
672 	return 0;
673 
674 out3:
675 	rpcrdma_ep_destroy(ep, ia);
676 out2:
677 	rpcrdma_ia_close(ia);
678 out1:
679 	return rc;
680 }
681 
682 static int
683 rpcrdma_ep_reconnect(struct rpcrdma_xprt *r_xprt, struct rpcrdma_ep *ep,
684 		     struct rpcrdma_ia *ia)
685 {
686 	struct rdma_cm_id *id, *old;
687 	int err, rc;
688 
689 	trace_xprtrdma_reconnect(r_xprt);
690 
691 	rpcrdma_ep_disconnect(ep, ia);
692 
693 	rc = -EHOSTUNREACH;
694 	id = rpcrdma_create_id(r_xprt, ia);
695 	if (IS_ERR(id))
696 		goto out;
697 
698 	/* As long as the new ID points to the same device as the
699 	 * old ID, we can reuse the transport's existing PD and all
700 	 * previously allocated MRs. Also, the same device means
701 	 * the transport's previous DMA mappings are still valid.
702 	 *
703 	 * This is a sanity check only. There should be no way these
704 	 * point to two different devices here.
705 	 */
706 	old = id;
707 	rc = -ENETUNREACH;
708 	if (ia->ri_device != id->device) {
709 		pr_err("rpcrdma: can't reconnect on different device!\n");
710 		goto out_destroy;
711 	}
712 
713 	err = rdma_create_qp(id, ia->ri_pd, &ep->rep_attr);
714 	if (err) {
715 		dprintk("RPC:       %s: rdma_create_qp returned %d\n",
716 			__func__, err);
717 		goto out_destroy;
718 	}
719 
720 	/* Atomically replace the transport's ID and QP. */
721 	rc = 0;
722 	old = ia->ri_id;
723 	ia->ri_id = id;
724 	rdma_destroy_qp(old);
725 
726 out_destroy:
727 	rdma_destroy_id(old);
728 out:
729 	return rc;
730 }
731 
732 /*
733  * Connect unconnected endpoint.
734  */
735 int
736 rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
737 {
738 	struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt,
739 						   rx_ia);
740 	unsigned int extras;
741 	int rc;
742 
743 retry:
744 	switch (ep->rep_connected) {
745 	case 0:
746 		dprintk("RPC:       %s: connecting...\n", __func__);
747 		rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr);
748 		if (rc) {
749 			dprintk("RPC:       %s: rdma_create_qp failed %i\n",
750 				__func__, rc);
751 			rc = -ENETUNREACH;
752 			goto out_noupdate;
753 		}
754 		break;
755 	case -ENODEV:
756 		rc = rpcrdma_ep_recreate_xprt(r_xprt, ep, ia);
757 		if (rc)
758 			goto out_noupdate;
759 		break;
760 	default:
761 		rc = rpcrdma_ep_reconnect(r_xprt, ep, ia);
762 		if (rc)
763 			goto out;
764 	}
765 
766 	ep->rep_connected = 0;
767 
768 	rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma);
769 	if (rc) {
770 		dprintk("RPC:       %s: rdma_connect() failed with %i\n",
771 				__func__, rc);
772 		goto out;
773 	}
774 
775 	wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0);
776 	if (ep->rep_connected <= 0) {
777 		if (ep->rep_connected == -EAGAIN)
778 			goto retry;
779 		rc = ep->rep_connected;
780 		goto out;
781 	}
782 
783 	dprintk("RPC:       %s: connected\n", __func__);
784 	extras = r_xprt->rx_buf.rb_bc_srv_max_requests;
785 	if (extras)
786 		rpcrdma_ep_post_extra_recv(r_xprt, extras);
787 
788 out:
789 	if (rc)
790 		ep->rep_connected = rc;
791 
792 out_noupdate:
793 	return rc;
794 }
795 
796 /*
797  * rpcrdma_ep_disconnect
798  *
799  * This is separate from destroy to facilitate the ability
800  * to reconnect without recreating the endpoint.
801  *
802  * This call is not reentrant, and must not be made in parallel
803  * on the same endpoint.
804  */
805 void
806 rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
807 {
808 	int rc;
809 
810 	rc = rdma_disconnect(ia->ri_id);
811 	if (!rc)
812 		/* returns without wait if not connected */
813 		wait_event_interruptible(ep->rep_connect_wait,
814 							ep->rep_connected != 1);
815 	else
816 		ep->rep_connected = rc;
817 	trace_xprtrdma_disconnect(container_of(ep, struct rpcrdma_xprt,
818 					       rx_ep), rc);
819 
820 	ib_drain_qp(ia->ri_id->qp);
821 }
822 
823 /* Fixed-size circular FIFO queue. This implementation is wait-free and
824  * lock-free.
825  *
826  * Consumer is the code path that posts Sends. This path dequeues a
827  * sendctx for use by a Send operation. Multiple consumer threads
828  * are serialized by the RPC transport lock, which allows only one
829  * ->send_request call at a time.
830  *
831  * Producer is the code path that handles Send completions. This path
832  * enqueues a sendctx that has been completed. Multiple producer
833  * threads are serialized by the ib_poll_cq() function.
834  */
835 
836 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
837  * queue activity, and ib_drain_qp has flushed all remaining Send
838  * requests.
839  */
840 static void rpcrdma_sendctxs_destroy(struct rpcrdma_buffer *buf)
841 {
842 	unsigned long i;
843 
844 	for (i = 0; i <= buf->rb_sc_last; i++)
845 		kfree(buf->rb_sc_ctxs[i]);
846 	kfree(buf->rb_sc_ctxs);
847 }
848 
849 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ia *ia)
850 {
851 	struct rpcrdma_sendctx *sc;
852 
853 	sc = kzalloc(sizeof(*sc) +
854 		     ia->ri_max_send_sges * sizeof(struct ib_sge),
855 		     GFP_KERNEL);
856 	if (!sc)
857 		return NULL;
858 
859 	sc->sc_wr.wr_cqe = &sc->sc_cqe;
860 	sc->sc_wr.sg_list = sc->sc_sges;
861 	sc->sc_wr.opcode = IB_WR_SEND;
862 	sc->sc_cqe.done = rpcrdma_wc_send;
863 	return sc;
864 }
865 
866 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
867 {
868 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
869 	struct rpcrdma_sendctx *sc;
870 	unsigned long i;
871 
872 	/* Maximum number of concurrent outstanding Send WRs. Capping
873 	 * the circular queue size stops Send Queue overflow by causing
874 	 * the ->send_request call to fail temporarily before too many
875 	 * Sends are posted.
876 	 */
877 	i = buf->rb_max_requests + RPCRDMA_MAX_BC_REQUESTS;
878 	dprintk("RPC:       %s: allocating %lu send_ctxs\n", __func__, i);
879 	buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL);
880 	if (!buf->rb_sc_ctxs)
881 		return -ENOMEM;
882 
883 	buf->rb_sc_last = i - 1;
884 	for (i = 0; i <= buf->rb_sc_last; i++) {
885 		sc = rpcrdma_sendctx_create(&r_xprt->rx_ia);
886 		if (!sc)
887 			goto out_destroy;
888 
889 		sc->sc_xprt = r_xprt;
890 		buf->rb_sc_ctxs[i] = sc;
891 	}
892 
893 	return 0;
894 
895 out_destroy:
896 	rpcrdma_sendctxs_destroy(buf);
897 	return -ENOMEM;
898 }
899 
900 /* The sendctx queue is not guaranteed to have a size that is a
901  * power of two, thus the helpers in circ_buf.h cannot be used.
902  * The other option is to use modulus (%), which can be expensive.
903  */
904 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
905 					  unsigned long item)
906 {
907 	return likely(item < buf->rb_sc_last) ? item + 1 : 0;
908 }
909 
910 /**
911  * rpcrdma_sendctx_get_locked - Acquire a send context
912  * @buf: transport buffers from which to acquire an unused context
913  *
914  * Returns pointer to a free send completion context; or NULL if
915  * the queue is empty.
916  *
917  * Usage: Called to acquire an SGE array before preparing a Send WR.
918  *
919  * The caller serializes calls to this function (per rpcrdma_buffer),
920  * and provides an effective memory barrier that flushes the new value
921  * of rb_sc_head.
922  */
923 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_buffer *buf)
924 {
925 	struct rpcrdma_xprt *r_xprt;
926 	struct rpcrdma_sendctx *sc;
927 	unsigned long next_head;
928 
929 	next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
930 
931 	if (next_head == READ_ONCE(buf->rb_sc_tail))
932 		goto out_emptyq;
933 
934 	/* ORDER: item must be accessed _before_ head is updated */
935 	sc = buf->rb_sc_ctxs[next_head];
936 
937 	/* Releasing the lock in the caller acts as a memory
938 	 * barrier that flushes rb_sc_head.
939 	 */
940 	buf->rb_sc_head = next_head;
941 
942 	return sc;
943 
944 out_emptyq:
945 	/* The queue is "empty" if there have not been enough Send
946 	 * completions recently. This is a sign the Send Queue is
947 	 * backing up. Cause the caller to pause and try again.
948 	 */
949 	dprintk("RPC:       %s: empty sendctx queue\n", __func__);
950 	r_xprt = container_of(buf, struct rpcrdma_xprt, rx_buf);
951 	r_xprt->rx_stats.empty_sendctx_q++;
952 	return NULL;
953 }
954 
955 /**
956  * rpcrdma_sendctx_put_locked - Release a send context
957  * @sc: send context to release
958  *
959  * Usage: Called from Send completion to return a sendctxt
960  * to the queue.
961  *
962  * The caller serializes calls to this function (per rpcrdma_buffer).
963  */
964 void rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc)
965 {
966 	struct rpcrdma_buffer *buf = &sc->sc_xprt->rx_buf;
967 	unsigned long next_tail;
968 
969 	/* Unmap SGEs of previously completed by unsignaled
970 	 * Sends by walking up the queue until @sc is found.
971 	 */
972 	next_tail = buf->rb_sc_tail;
973 	do {
974 		next_tail = rpcrdma_sendctx_next(buf, next_tail);
975 
976 		/* ORDER: item must be accessed _before_ tail is updated */
977 		rpcrdma_unmap_sendctx(buf->rb_sc_ctxs[next_tail]);
978 
979 	} while (buf->rb_sc_ctxs[next_tail] != sc);
980 
981 	/* Paired with READ_ONCE */
982 	smp_store_release(&buf->rb_sc_tail, next_tail);
983 }
984 
985 static void
986 rpcrdma_mr_recovery_worker(struct work_struct *work)
987 {
988 	struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
989 						  rb_recovery_worker.work);
990 	struct rpcrdma_mr *mr;
991 
992 	spin_lock(&buf->rb_recovery_lock);
993 	while (!list_empty(&buf->rb_stale_mrs)) {
994 		mr = rpcrdma_mr_pop(&buf->rb_stale_mrs);
995 		spin_unlock(&buf->rb_recovery_lock);
996 
997 		trace_xprtrdma_recover_mr(mr);
998 		mr->mr_xprt->rx_ia.ri_ops->ro_recover_mr(mr);
999 
1000 		spin_lock(&buf->rb_recovery_lock);
1001 	}
1002 	spin_unlock(&buf->rb_recovery_lock);
1003 }
1004 
1005 void
1006 rpcrdma_mr_defer_recovery(struct rpcrdma_mr *mr)
1007 {
1008 	struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
1009 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1010 
1011 	spin_lock(&buf->rb_recovery_lock);
1012 	rpcrdma_mr_push(mr, &buf->rb_stale_mrs);
1013 	spin_unlock(&buf->rb_recovery_lock);
1014 
1015 	schedule_delayed_work(&buf->rb_recovery_worker, 0);
1016 }
1017 
1018 static void
1019 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt)
1020 {
1021 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1022 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
1023 	unsigned int count;
1024 	LIST_HEAD(free);
1025 	LIST_HEAD(all);
1026 
1027 	for (count = 0; count < 32; count++) {
1028 		struct rpcrdma_mr *mr;
1029 		int rc;
1030 
1031 		mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1032 		if (!mr)
1033 			break;
1034 
1035 		rc = ia->ri_ops->ro_init_mr(ia, mr);
1036 		if (rc) {
1037 			kfree(mr);
1038 			break;
1039 		}
1040 
1041 		mr->mr_xprt = r_xprt;
1042 
1043 		list_add(&mr->mr_list, &free);
1044 		list_add(&mr->mr_all, &all);
1045 	}
1046 
1047 	spin_lock(&buf->rb_mrlock);
1048 	list_splice(&free, &buf->rb_mrs);
1049 	list_splice(&all, &buf->rb_all);
1050 	r_xprt->rx_stats.mrs_allocated += count;
1051 	spin_unlock(&buf->rb_mrlock);
1052 
1053 	trace_xprtrdma_createmrs(r_xprt, count);
1054 }
1055 
1056 static void
1057 rpcrdma_mr_refresh_worker(struct work_struct *work)
1058 {
1059 	struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
1060 						  rb_refresh_worker.work);
1061 	struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
1062 						   rx_buf);
1063 
1064 	rpcrdma_mrs_create(r_xprt);
1065 }
1066 
1067 struct rpcrdma_req *
1068 rpcrdma_create_req(struct rpcrdma_xprt *r_xprt)
1069 {
1070 	struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
1071 	struct rpcrdma_req *req;
1072 
1073 	req = kzalloc(sizeof(*req), GFP_KERNEL);
1074 	if (req == NULL)
1075 		return ERR_PTR(-ENOMEM);
1076 
1077 	spin_lock(&buffer->rb_reqslock);
1078 	list_add(&req->rl_all, &buffer->rb_allreqs);
1079 	spin_unlock(&buffer->rb_reqslock);
1080 	req->rl_buffer = &r_xprt->rx_buf;
1081 	INIT_LIST_HEAD(&req->rl_registered);
1082 	return req;
1083 }
1084 
1085 /**
1086  * rpcrdma_create_rep - Allocate an rpcrdma_rep object
1087  * @r_xprt: controlling transport
1088  *
1089  * Returns 0 on success or a negative errno on failure.
1090  */
1091 int
1092 rpcrdma_create_rep(struct rpcrdma_xprt *r_xprt)
1093 {
1094 	struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
1095 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1096 	struct rpcrdma_rep *rep;
1097 	int rc;
1098 
1099 	rc = -ENOMEM;
1100 	rep = kzalloc(sizeof(*rep), GFP_KERNEL);
1101 	if (rep == NULL)
1102 		goto out;
1103 
1104 	rep->rr_rdmabuf = rpcrdma_alloc_regbuf(cdata->inline_rsize,
1105 					       DMA_FROM_DEVICE, GFP_KERNEL);
1106 	if (IS_ERR(rep->rr_rdmabuf)) {
1107 		rc = PTR_ERR(rep->rr_rdmabuf);
1108 		goto out_free;
1109 	}
1110 	xdr_buf_init(&rep->rr_hdrbuf, rep->rr_rdmabuf->rg_base,
1111 		     rdmab_length(rep->rr_rdmabuf));
1112 
1113 	rep->rr_cqe.done = rpcrdma_wc_receive;
1114 	rep->rr_rxprt = r_xprt;
1115 	INIT_WORK(&rep->rr_work, rpcrdma_deferred_completion);
1116 	rep->rr_recv_wr.next = NULL;
1117 	rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
1118 	rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
1119 	rep->rr_recv_wr.num_sge = 1;
1120 
1121 	spin_lock(&buf->rb_lock);
1122 	list_add(&rep->rr_list, &buf->rb_recv_bufs);
1123 	spin_unlock(&buf->rb_lock);
1124 	return 0;
1125 
1126 out_free:
1127 	kfree(rep);
1128 out:
1129 	dprintk("RPC:       %s: reply buffer %d alloc failed\n",
1130 		__func__, rc);
1131 	return rc;
1132 }
1133 
1134 int
1135 rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1136 {
1137 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1138 	int i, rc;
1139 
1140 	buf->rb_max_requests = r_xprt->rx_data.max_requests;
1141 	buf->rb_bc_srv_max_requests = 0;
1142 	spin_lock_init(&buf->rb_mrlock);
1143 	spin_lock_init(&buf->rb_lock);
1144 	spin_lock_init(&buf->rb_recovery_lock);
1145 	INIT_LIST_HEAD(&buf->rb_mrs);
1146 	INIT_LIST_HEAD(&buf->rb_all);
1147 	INIT_LIST_HEAD(&buf->rb_stale_mrs);
1148 	INIT_DELAYED_WORK(&buf->rb_refresh_worker,
1149 			  rpcrdma_mr_refresh_worker);
1150 	INIT_DELAYED_WORK(&buf->rb_recovery_worker,
1151 			  rpcrdma_mr_recovery_worker);
1152 
1153 	rpcrdma_mrs_create(r_xprt);
1154 
1155 	INIT_LIST_HEAD(&buf->rb_send_bufs);
1156 	INIT_LIST_HEAD(&buf->rb_allreqs);
1157 	spin_lock_init(&buf->rb_reqslock);
1158 	for (i = 0; i < buf->rb_max_requests; i++) {
1159 		struct rpcrdma_req *req;
1160 
1161 		req = rpcrdma_create_req(r_xprt);
1162 		if (IS_ERR(req)) {
1163 			dprintk("RPC:       %s: request buffer %d alloc"
1164 				" failed\n", __func__, i);
1165 			rc = PTR_ERR(req);
1166 			goto out;
1167 		}
1168 		list_add(&req->rl_list, &buf->rb_send_bufs);
1169 	}
1170 
1171 	INIT_LIST_HEAD(&buf->rb_recv_bufs);
1172 	for (i = 0; i <= buf->rb_max_requests; i++) {
1173 		rc = rpcrdma_create_rep(r_xprt);
1174 		if (rc)
1175 			goto out;
1176 	}
1177 
1178 	rc = rpcrdma_sendctxs_create(r_xprt);
1179 	if (rc)
1180 		goto out;
1181 
1182 	return 0;
1183 out:
1184 	rpcrdma_buffer_destroy(buf);
1185 	return rc;
1186 }
1187 
1188 static struct rpcrdma_req *
1189 rpcrdma_buffer_get_req_locked(struct rpcrdma_buffer *buf)
1190 {
1191 	struct rpcrdma_req *req;
1192 
1193 	req = list_first_entry(&buf->rb_send_bufs,
1194 			       struct rpcrdma_req, rl_list);
1195 	list_del_init(&req->rl_list);
1196 	return req;
1197 }
1198 
1199 static struct rpcrdma_rep *
1200 rpcrdma_buffer_get_rep_locked(struct rpcrdma_buffer *buf)
1201 {
1202 	struct rpcrdma_rep *rep;
1203 
1204 	rep = list_first_entry(&buf->rb_recv_bufs,
1205 			       struct rpcrdma_rep, rr_list);
1206 	list_del(&rep->rr_list);
1207 	return rep;
1208 }
1209 
1210 static void
1211 rpcrdma_destroy_rep(struct rpcrdma_rep *rep)
1212 {
1213 	rpcrdma_free_regbuf(rep->rr_rdmabuf);
1214 	kfree(rep);
1215 }
1216 
1217 void
1218 rpcrdma_destroy_req(struct rpcrdma_req *req)
1219 {
1220 	rpcrdma_free_regbuf(req->rl_recvbuf);
1221 	rpcrdma_free_regbuf(req->rl_sendbuf);
1222 	rpcrdma_free_regbuf(req->rl_rdmabuf);
1223 	kfree(req);
1224 }
1225 
1226 static void
1227 rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf)
1228 {
1229 	struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
1230 						   rx_buf);
1231 	struct rpcrdma_ia *ia = rdmab_to_ia(buf);
1232 	struct rpcrdma_mr *mr;
1233 	unsigned int count;
1234 
1235 	count = 0;
1236 	spin_lock(&buf->rb_mrlock);
1237 	while (!list_empty(&buf->rb_all)) {
1238 		mr = list_entry(buf->rb_all.next, struct rpcrdma_mr, mr_all);
1239 		list_del(&mr->mr_all);
1240 
1241 		spin_unlock(&buf->rb_mrlock);
1242 		ia->ri_ops->ro_release_mr(mr);
1243 		count++;
1244 		spin_lock(&buf->rb_mrlock);
1245 	}
1246 	spin_unlock(&buf->rb_mrlock);
1247 	r_xprt->rx_stats.mrs_allocated = 0;
1248 
1249 	dprintk("RPC:       %s: released %u MRs\n", __func__, count);
1250 }
1251 
1252 void
1253 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1254 {
1255 	cancel_delayed_work_sync(&buf->rb_recovery_worker);
1256 	cancel_delayed_work_sync(&buf->rb_refresh_worker);
1257 
1258 	rpcrdma_sendctxs_destroy(buf);
1259 
1260 	while (!list_empty(&buf->rb_recv_bufs)) {
1261 		struct rpcrdma_rep *rep;
1262 
1263 		rep = rpcrdma_buffer_get_rep_locked(buf);
1264 		rpcrdma_destroy_rep(rep);
1265 	}
1266 	buf->rb_send_count = 0;
1267 
1268 	spin_lock(&buf->rb_reqslock);
1269 	while (!list_empty(&buf->rb_allreqs)) {
1270 		struct rpcrdma_req *req;
1271 
1272 		req = list_first_entry(&buf->rb_allreqs,
1273 				       struct rpcrdma_req, rl_all);
1274 		list_del(&req->rl_all);
1275 
1276 		spin_unlock(&buf->rb_reqslock);
1277 		rpcrdma_destroy_req(req);
1278 		spin_lock(&buf->rb_reqslock);
1279 	}
1280 	spin_unlock(&buf->rb_reqslock);
1281 	buf->rb_recv_count = 0;
1282 
1283 	rpcrdma_mrs_destroy(buf);
1284 }
1285 
1286 /**
1287  * rpcrdma_mr_get - Allocate an rpcrdma_mr object
1288  * @r_xprt: controlling transport
1289  *
1290  * Returns an initialized rpcrdma_mr or NULL if no free
1291  * rpcrdma_mr objects are available.
1292  */
1293 struct rpcrdma_mr *
1294 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt)
1295 {
1296 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1297 	struct rpcrdma_mr *mr = NULL;
1298 
1299 	spin_lock(&buf->rb_mrlock);
1300 	if (!list_empty(&buf->rb_mrs))
1301 		mr = rpcrdma_mr_pop(&buf->rb_mrs);
1302 	spin_unlock(&buf->rb_mrlock);
1303 
1304 	if (!mr)
1305 		goto out_nomrs;
1306 	return mr;
1307 
1308 out_nomrs:
1309 	trace_xprtrdma_nomrs(r_xprt);
1310 	if (r_xprt->rx_ep.rep_connected != -ENODEV)
1311 		schedule_delayed_work(&buf->rb_refresh_worker, 0);
1312 
1313 	/* Allow the reply handler and refresh worker to run */
1314 	cond_resched();
1315 
1316 	return NULL;
1317 }
1318 
1319 static void
1320 __rpcrdma_mr_put(struct rpcrdma_buffer *buf, struct rpcrdma_mr *mr)
1321 {
1322 	spin_lock(&buf->rb_mrlock);
1323 	rpcrdma_mr_push(mr, &buf->rb_mrs);
1324 	spin_unlock(&buf->rb_mrlock);
1325 }
1326 
1327 /**
1328  * rpcrdma_mr_put - Release an rpcrdma_mr object
1329  * @mr: object to release
1330  *
1331  */
1332 void
1333 rpcrdma_mr_put(struct rpcrdma_mr *mr)
1334 {
1335 	__rpcrdma_mr_put(&mr->mr_xprt->rx_buf, mr);
1336 }
1337 
1338 /**
1339  * rpcrdma_mr_unmap_and_put - DMA unmap an MR and release it
1340  * @mr: object to release
1341  *
1342  */
1343 void
1344 rpcrdma_mr_unmap_and_put(struct rpcrdma_mr *mr)
1345 {
1346 	struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
1347 
1348 	trace_xprtrdma_dma_unmap(mr);
1349 	ib_dma_unmap_sg(r_xprt->rx_ia.ri_device,
1350 			mr->mr_sg, mr->mr_nents, mr->mr_dir);
1351 	__rpcrdma_mr_put(&r_xprt->rx_buf, mr);
1352 }
1353 
1354 static struct rpcrdma_rep *
1355 rpcrdma_buffer_get_rep(struct rpcrdma_buffer *buffers)
1356 {
1357 	/* If an RPC previously completed without a reply (say, a
1358 	 * credential problem or a soft timeout occurs) then hold off
1359 	 * on supplying more Receive buffers until the number of new
1360 	 * pending RPCs catches up to the number of posted Receives.
1361 	 */
1362 	if (unlikely(buffers->rb_send_count < buffers->rb_recv_count))
1363 		return NULL;
1364 
1365 	if (unlikely(list_empty(&buffers->rb_recv_bufs)))
1366 		return NULL;
1367 	buffers->rb_recv_count++;
1368 	return rpcrdma_buffer_get_rep_locked(buffers);
1369 }
1370 
1371 /*
1372  * Get a set of request/reply buffers.
1373  *
1374  * Reply buffer (if available) is attached to send buffer upon return.
1375  */
1376 struct rpcrdma_req *
1377 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1378 {
1379 	struct rpcrdma_req *req;
1380 
1381 	spin_lock(&buffers->rb_lock);
1382 	if (list_empty(&buffers->rb_send_bufs))
1383 		goto out_reqbuf;
1384 	buffers->rb_send_count++;
1385 	req = rpcrdma_buffer_get_req_locked(buffers);
1386 	req->rl_reply = rpcrdma_buffer_get_rep(buffers);
1387 	spin_unlock(&buffers->rb_lock);
1388 
1389 	return req;
1390 
1391 out_reqbuf:
1392 	spin_unlock(&buffers->rb_lock);
1393 	return NULL;
1394 }
1395 
1396 /*
1397  * Put request/reply buffers back into pool.
1398  * Pre-decrement counter/array index.
1399  */
1400 void
1401 rpcrdma_buffer_put(struct rpcrdma_req *req)
1402 {
1403 	struct rpcrdma_buffer *buffers = req->rl_buffer;
1404 	struct rpcrdma_rep *rep = req->rl_reply;
1405 
1406 	req->rl_reply = NULL;
1407 
1408 	spin_lock(&buffers->rb_lock);
1409 	buffers->rb_send_count--;
1410 	list_add_tail(&req->rl_list, &buffers->rb_send_bufs);
1411 	if (rep) {
1412 		buffers->rb_recv_count--;
1413 		list_add_tail(&rep->rr_list, &buffers->rb_recv_bufs);
1414 	}
1415 	spin_unlock(&buffers->rb_lock);
1416 }
1417 
1418 /*
1419  * Recover reply buffers from pool.
1420  * This happens when recovering from disconnect.
1421  */
1422 void
1423 rpcrdma_recv_buffer_get(struct rpcrdma_req *req)
1424 {
1425 	struct rpcrdma_buffer *buffers = req->rl_buffer;
1426 
1427 	spin_lock(&buffers->rb_lock);
1428 	req->rl_reply = rpcrdma_buffer_get_rep(buffers);
1429 	spin_unlock(&buffers->rb_lock);
1430 }
1431 
1432 /*
1433  * Put reply buffers back into pool when not attached to
1434  * request. This happens in error conditions.
1435  */
1436 void
1437 rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
1438 {
1439 	struct rpcrdma_buffer *buffers = &rep->rr_rxprt->rx_buf;
1440 
1441 	spin_lock(&buffers->rb_lock);
1442 	buffers->rb_recv_count--;
1443 	list_add_tail(&rep->rr_list, &buffers->rb_recv_bufs);
1444 	spin_unlock(&buffers->rb_lock);
1445 }
1446 
1447 /**
1448  * rpcrdma_alloc_regbuf - allocate and DMA-map memory for SEND/RECV buffers
1449  * @size: size of buffer to be allocated, in bytes
1450  * @direction: direction of data movement
1451  * @flags: GFP flags
1452  *
1453  * Returns an ERR_PTR, or a pointer to a regbuf, a buffer that
1454  * can be persistently DMA-mapped for I/O.
1455  *
1456  * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1457  * receiving the payload of RDMA RECV operations. During Long Calls
1458  * or Replies they may be registered externally via ro_map.
1459  */
1460 struct rpcrdma_regbuf *
1461 rpcrdma_alloc_regbuf(size_t size, enum dma_data_direction direction,
1462 		     gfp_t flags)
1463 {
1464 	struct rpcrdma_regbuf *rb;
1465 
1466 	rb = kmalloc(sizeof(*rb) + size, flags);
1467 	if (rb == NULL)
1468 		return ERR_PTR(-ENOMEM);
1469 
1470 	rb->rg_device = NULL;
1471 	rb->rg_direction = direction;
1472 	rb->rg_iov.length = size;
1473 
1474 	return rb;
1475 }
1476 
1477 /**
1478  * __rpcrdma_map_regbuf - DMA-map a regbuf
1479  * @ia: controlling rpcrdma_ia
1480  * @rb: regbuf to be mapped
1481  */
1482 bool
1483 __rpcrdma_dma_map_regbuf(struct rpcrdma_ia *ia, struct rpcrdma_regbuf *rb)
1484 {
1485 	struct ib_device *device = ia->ri_device;
1486 
1487 	if (rb->rg_direction == DMA_NONE)
1488 		return false;
1489 
1490 	rb->rg_iov.addr = ib_dma_map_single(device,
1491 					    (void *)rb->rg_base,
1492 					    rdmab_length(rb),
1493 					    rb->rg_direction);
1494 	if (ib_dma_mapping_error(device, rdmab_addr(rb)))
1495 		return false;
1496 
1497 	rb->rg_device = device;
1498 	rb->rg_iov.lkey = ia->ri_pd->local_dma_lkey;
1499 	return true;
1500 }
1501 
1502 static void
1503 rpcrdma_dma_unmap_regbuf(struct rpcrdma_regbuf *rb)
1504 {
1505 	if (!rb)
1506 		return;
1507 
1508 	if (!rpcrdma_regbuf_is_mapped(rb))
1509 		return;
1510 
1511 	ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb),
1512 			    rdmab_length(rb), rb->rg_direction);
1513 	rb->rg_device = NULL;
1514 }
1515 
1516 /**
1517  * rpcrdma_free_regbuf - deregister and free registered buffer
1518  * @rb: regbuf to be deregistered and freed
1519  */
1520 void
1521 rpcrdma_free_regbuf(struct rpcrdma_regbuf *rb)
1522 {
1523 	rpcrdma_dma_unmap_regbuf(rb);
1524 	kfree(rb);
1525 }
1526 
1527 /*
1528  * Prepost any receive buffer, then post send.
1529  *
1530  * Receive buffer is donated to hardware, reclaimed upon recv completion.
1531  */
1532 int
1533 rpcrdma_ep_post(struct rpcrdma_ia *ia,
1534 		struct rpcrdma_ep *ep,
1535 		struct rpcrdma_req *req)
1536 {
1537 	struct ib_send_wr *send_wr = &req->rl_sendctx->sc_wr;
1538 	struct ib_send_wr *send_wr_fail;
1539 	int rc;
1540 
1541 	if (req->rl_reply) {
1542 		rc = rpcrdma_ep_post_recv(ia, req->rl_reply);
1543 		if (rc)
1544 			return rc;
1545 		req->rl_reply = NULL;
1546 	}
1547 
1548 	if (!ep->rep_send_count ||
1549 	    test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) {
1550 		send_wr->send_flags |= IB_SEND_SIGNALED;
1551 		ep->rep_send_count = ep->rep_send_batch;
1552 	} else {
1553 		send_wr->send_flags &= ~IB_SEND_SIGNALED;
1554 		--ep->rep_send_count;
1555 	}
1556 
1557 	rc = ib_post_send(ia->ri_id->qp, send_wr, &send_wr_fail);
1558 	trace_xprtrdma_post_send(req, rc);
1559 	if (rc)
1560 		return -ENOTCONN;
1561 	return 0;
1562 }
1563 
1564 int
1565 rpcrdma_ep_post_recv(struct rpcrdma_ia *ia,
1566 		     struct rpcrdma_rep *rep)
1567 {
1568 	struct ib_recv_wr *recv_wr_fail;
1569 	int rc;
1570 
1571 	if (!rpcrdma_dma_map_regbuf(ia, rep->rr_rdmabuf))
1572 		goto out_map;
1573 	rc = ib_post_recv(ia->ri_id->qp, &rep->rr_recv_wr, &recv_wr_fail);
1574 	trace_xprtrdma_post_recv(rep, rc);
1575 	if (rc)
1576 		return -ENOTCONN;
1577 	return 0;
1578 
1579 out_map:
1580 	pr_err("rpcrdma: failed to DMA map the Receive buffer\n");
1581 	return -EIO;
1582 }
1583 
1584 /**
1585  * rpcrdma_ep_post_extra_recv - Post buffers for incoming backchannel requests
1586  * @r_xprt: transport associated with these backchannel resources
1587  * @count: minimum number of incoming requests expected
1588  *
1589  * Returns zero if all requested buffers were posted, or a negative errno.
1590  */
1591 int
1592 rpcrdma_ep_post_extra_recv(struct rpcrdma_xprt *r_xprt, unsigned int count)
1593 {
1594 	struct rpcrdma_buffer *buffers = &r_xprt->rx_buf;
1595 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
1596 	struct rpcrdma_rep *rep;
1597 	int rc;
1598 
1599 	while (count--) {
1600 		spin_lock(&buffers->rb_lock);
1601 		if (list_empty(&buffers->rb_recv_bufs))
1602 			goto out_reqbuf;
1603 		rep = rpcrdma_buffer_get_rep_locked(buffers);
1604 		spin_unlock(&buffers->rb_lock);
1605 
1606 		rc = rpcrdma_ep_post_recv(ia, rep);
1607 		if (rc)
1608 			goto out_rc;
1609 	}
1610 
1611 	return 0;
1612 
1613 out_reqbuf:
1614 	spin_unlock(&buffers->rb_lock);
1615 	trace_xprtrdma_noreps(r_xprt);
1616 	return -ENOMEM;
1617 
1618 out_rc:
1619 	rpcrdma_recv_buffer_put(rep);
1620 	return rc;
1621 }
1622