1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (c) 2014-2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the BSD-type 10 * license below: 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 19 * Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials provided 22 * with the distribution. 23 * 24 * Neither the name of the Network Appliance, Inc. nor the names of 25 * its contributors may be used to endorse or promote products 26 * derived from this software without specific prior written 27 * permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42 /* 43 * verbs.c 44 * 45 * Encapsulates the major functions managing: 46 * o adapters 47 * o endpoints 48 * o connections 49 * o buffer memory 50 */ 51 52 #include <linux/interrupt.h> 53 #include <linux/slab.h> 54 #include <linux/sunrpc/addr.h> 55 #include <linux/sunrpc/svc_rdma.h> 56 57 #include <asm-generic/barrier.h> 58 #include <asm/bitops.h> 59 60 #include <rdma/ib_cm.h> 61 62 #include "xprt_rdma.h" 63 #include <trace/events/rpcrdma.h> 64 65 /* 66 * Globals/Macros 67 */ 68 69 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 70 # define RPCDBG_FACILITY RPCDBG_TRANS 71 #endif 72 73 /* 74 * internal functions 75 */ 76 static void rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc); 77 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt); 78 static void rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf); 79 static int rpcrdma_create_rep(struct rpcrdma_xprt *r_xprt, bool temp); 80 static void rpcrdma_dma_unmap_regbuf(struct rpcrdma_regbuf *rb); 81 static void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp); 82 83 /* Wait for outstanding transport work to finish. 84 */ 85 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt) 86 { 87 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 88 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 89 90 /* Flush Receives, then wait for deferred Reply work 91 * to complete. 92 */ 93 ib_drain_qp(ia->ri_id->qp); 94 drain_workqueue(buf->rb_completion_wq); 95 96 /* Deferred Reply processing might have scheduled 97 * local invalidations. 98 */ 99 ib_drain_sq(ia->ri_id->qp); 100 } 101 102 /** 103 * rpcrdma_qp_event_handler - Handle one QP event (error notification) 104 * @event: details of the event 105 * @context: ep that owns QP where event occurred 106 * 107 * Called from the RDMA provider (device driver) possibly in an interrupt 108 * context. 109 */ 110 static void 111 rpcrdma_qp_event_handler(struct ib_event *event, void *context) 112 { 113 struct rpcrdma_ep *ep = context; 114 struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt, 115 rx_ep); 116 117 trace_xprtrdma_qp_event(r_xprt, event); 118 } 119 120 /** 121 * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC 122 * @cq: completion queue (ignored) 123 * @wc: completed WR 124 * 125 */ 126 static void 127 rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc) 128 { 129 struct ib_cqe *cqe = wc->wr_cqe; 130 struct rpcrdma_sendctx *sc = 131 container_of(cqe, struct rpcrdma_sendctx, sc_cqe); 132 133 /* WARNING: Only wr_cqe and status are reliable at this point */ 134 trace_xprtrdma_wc_send(sc, wc); 135 if (wc->status != IB_WC_SUCCESS && wc->status != IB_WC_WR_FLUSH_ERR) 136 pr_err("rpcrdma: Send: %s (%u/0x%x)\n", 137 ib_wc_status_msg(wc->status), 138 wc->status, wc->vendor_err); 139 140 rpcrdma_sendctx_put_locked(sc); 141 } 142 143 /** 144 * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC 145 * @cq: completion queue (ignored) 146 * @wc: completed WR 147 * 148 */ 149 static void 150 rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc) 151 { 152 struct ib_cqe *cqe = wc->wr_cqe; 153 struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep, 154 rr_cqe); 155 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; 156 157 /* WARNING: Only wr_cqe and status are reliable at this point */ 158 trace_xprtrdma_wc_receive(wc); 159 --r_xprt->rx_ep.rep_receive_count; 160 if (wc->status != IB_WC_SUCCESS) 161 goto out_flushed; 162 163 /* status == SUCCESS means all fields in wc are trustworthy */ 164 rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len); 165 rep->rr_wc_flags = wc->wc_flags; 166 rep->rr_inv_rkey = wc->ex.invalidate_rkey; 167 168 ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf), 169 rdmab_addr(rep->rr_rdmabuf), 170 wc->byte_len, DMA_FROM_DEVICE); 171 172 rpcrdma_post_recvs(r_xprt, false); 173 rpcrdma_reply_handler(rep); 174 return; 175 176 out_flushed: 177 if (wc->status != IB_WC_WR_FLUSH_ERR) 178 pr_err("rpcrdma: Recv: %s (%u/0x%x)\n", 179 ib_wc_status_msg(wc->status), 180 wc->status, wc->vendor_err); 181 rpcrdma_recv_buffer_put(rep); 182 } 183 184 static void 185 rpcrdma_update_connect_private(struct rpcrdma_xprt *r_xprt, 186 struct rdma_conn_param *param) 187 { 188 struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; 189 const struct rpcrdma_connect_private *pmsg = param->private_data; 190 unsigned int rsize, wsize; 191 192 /* Default settings for RPC-over-RDMA Version One */ 193 r_xprt->rx_ia.ri_implicit_roundup = xprt_rdma_pad_optimize; 194 rsize = RPCRDMA_V1_DEF_INLINE_SIZE; 195 wsize = RPCRDMA_V1_DEF_INLINE_SIZE; 196 197 if (pmsg && 198 pmsg->cp_magic == rpcrdma_cmp_magic && 199 pmsg->cp_version == RPCRDMA_CMP_VERSION) { 200 r_xprt->rx_ia.ri_implicit_roundup = true; 201 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size); 202 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size); 203 } 204 205 if (rsize < cdata->inline_rsize) 206 cdata->inline_rsize = rsize; 207 if (wsize < cdata->inline_wsize) 208 cdata->inline_wsize = wsize; 209 dprintk("RPC: %s: max send %u, max recv %u\n", 210 __func__, cdata->inline_wsize, cdata->inline_rsize); 211 rpcrdma_set_max_header_sizes(r_xprt); 212 } 213 214 /** 215 * rpcrdma_cm_event_handler - Handle RDMA CM events 216 * @id: rdma_cm_id on which an event has occurred 217 * @event: details of the event 218 * 219 * Called with @id's mutex held. Returns 1 if caller should 220 * destroy @id, otherwise 0. 221 */ 222 static int 223 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event) 224 { 225 struct rpcrdma_xprt *r_xprt = id->context; 226 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 227 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 228 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 229 230 might_sleep(); 231 232 trace_xprtrdma_cm_event(r_xprt, event); 233 switch (event->event) { 234 case RDMA_CM_EVENT_ADDR_RESOLVED: 235 case RDMA_CM_EVENT_ROUTE_RESOLVED: 236 ia->ri_async_rc = 0; 237 complete(&ia->ri_done); 238 return 0; 239 case RDMA_CM_EVENT_ADDR_ERROR: 240 ia->ri_async_rc = -EPROTO; 241 complete(&ia->ri_done); 242 return 0; 243 case RDMA_CM_EVENT_ROUTE_ERROR: 244 ia->ri_async_rc = -ENETUNREACH; 245 complete(&ia->ri_done); 246 return 0; 247 case RDMA_CM_EVENT_DEVICE_REMOVAL: 248 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 249 pr_info("rpcrdma: removing device %s for %s:%s\n", 250 ia->ri_device->name, 251 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt)); 252 #endif 253 set_bit(RPCRDMA_IAF_REMOVING, &ia->ri_flags); 254 ep->rep_connected = -ENODEV; 255 xprt_force_disconnect(xprt); 256 wait_for_completion(&ia->ri_remove_done); 257 258 ia->ri_id = NULL; 259 ia->ri_device = NULL; 260 /* Return 1 to ensure the core destroys the id. */ 261 return 1; 262 case RDMA_CM_EVENT_ESTABLISHED: 263 ++xprt->connect_cookie; 264 ep->rep_connected = 1; 265 rpcrdma_update_connect_private(r_xprt, &event->param.conn); 266 wake_up_all(&ep->rep_connect_wait); 267 break; 268 case RDMA_CM_EVENT_CONNECT_ERROR: 269 ep->rep_connected = -ENOTCONN; 270 goto disconnected; 271 case RDMA_CM_EVENT_UNREACHABLE: 272 ep->rep_connected = -ENETUNREACH; 273 goto disconnected; 274 case RDMA_CM_EVENT_REJECTED: 275 dprintk("rpcrdma: connection to %s:%s rejected: %s\n", 276 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt), 277 rdma_reject_msg(id, event->status)); 278 ep->rep_connected = -ECONNREFUSED; 279 if (event->status == IB_CM_REJ_STALE_CONN) 280 ep->rep_connected = -EAGAIN; 281 goto disconnected; 282 case RDMA_CM_EVENT_DISCONNECTED: 283 ep->rep_connected = -ECONNABORTED; 284 disconnected: 285 xprt_force_disconnect(xprt); 286 wake_up_all(&ep->rep_connect_wait); 287 break; 288 default: 289 break; 290 } 291 292 dprintk("RPC: %s: %s:%s on %s/frwr: %s\n", __func__, 293 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt), 294 ia->ri_device->name, rdma_event_msg(event->event)); 295 return 0; 296 } 297 298 static struct rdma_cm_id * 299 rpcrdma_create_id(struct rpcrdma_xprt *xprt, struct rpcrdma_ia *ia) 300 { 301 unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1; 302 struct rdma_cm_id *id; 303 int rc; 304 305 trace_xprtrdma_conn_start(xprt); 306 307 init_completion(&ia->ri_done); 308 init_completion(&ia->ri_remove_done); 309 310 id = rdma_create_id(xprt->rx_xprt.xprt_net, rpcrdma_cm_event_handler, 311 xprt, RDMA_PS_TCP, IB_QPT_RC); 312 if (IS_ERR(id)) 313 return id; 314 315 ia->ri_async_rc = -ETIMEDOUT; 316 rc = rdma_resolve_addr(id, NULL, 317 (struct sockaddr *)&xprt->rx_xprt.addr, 318 RDMA_RESOLVE_TIMEOUT); 319 if (rc) 320 goto out; 321 rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout); 322 if (rc < 0) { 323 trace_xprtrdma_conn_tout(xprt); 324 goto out; 325 } 326 327 rc = ia->ri_async_rc; 328 if (rc) 329 goto out; 330 331 ia->ri_async_rc = -ETIMEDOUT; 332 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); 333 if (rc) 334 goto out; 335 rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout); 336 if (rc < 0) { 337 trace_xprtrdma_conn_tout(xprt); 338 goto out; 339 } 340 rc = ia->ri_async_rc; 341 if (rc) 342 goto out; 343 344 return id; 345 346 out: 347 rdma_destroy_id(id); 348 return ERR_PTR(rc); 349 } 350 351 /* 352 * Exported functions. 353 */ 354 355 /** 356 * rpcrdma_ia_open - Open and initialize an Interface Adapter. 357 * @xprt: transport with IA to (re)initialize 358 * 359 * Returns 0 on success, negative errno if an appropriate 360 * Interface Adapter could not be found and opened. 361 */ 362 int 363 rpcrdma_ia_open(struct rpcrdma_xprt *xprt) 364 { 365 struct rpcrdma_ia *ia = &xprt->rx_ia; 366 int rc; 367 368 ia->ri_id = rpcrdma_create_id(xprt, ia); 369 if (IS_ERR(ia->ri_id)) { 370 rc = PTR_ERR(ia->ri_id); 371 goto out_err; 372 } 373 ia->ri_device = ia->ri_id->device; 374 375 ia->ri_pd = ib_alloc_pd(ia->ri_device, 0); 376 if (IS_ERR(ia->ri_pd)) { 377 rc = PTR_ERR(ia->ri_pd); 378 pr_err("rpcrdma: ib_alloc_pd() returned %d\n", rc); 379 goto out_err; 380 } 381 382 switch (xprt_rdma_memreg_strategy) { 383 case RPCRDMA_FRWR: 384 if (frwr_is_supported(ia)) 385 break; 386 /*FALLTHROUGH*/ 387 default: 388 pr_err("rpcrdma: Device %s does not support memreg mode %d\n", 389 ia->ri_device->name, xprt_rdma_memreg_strategy); 390 rc = -EINVAL; 391 goto out_err; 392 } 393 394 return 0; 395 396 out_err: 397 rpcrdma_ia_close(ia); 398 return rc; 399 } 400 401 /** 402 * rpcrdma_ia_remove - Handle device driver unload 403 * @ia: interface adapter being removed 404 * 405 * Divest transport H/W resources associated with this adapter, 406 * but allow it to be restored later. 407 */ 408 void 409 rpcrdma_ia_remove(struct rpcrdma_ia *ia) 410 { 411 struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt, 412 rx_ia); 413 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 414 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 415 struct rpcrdma_req *req; 416 struct rpcrdma_rep *rep; 417 418 cancel_delayed_work_sync(&buf->rb_refresh_worker); 419 420 /* This is similar to rpcrdma_ep_destroy, but: 421 * - Don't cancel the connect worker. 422 * - Don't call rpcrdma_ep_disconnect, which waits 423 * for another conn upcall, which will deadlock. 424 * - rdma_disconnect is unneeded, the underlying 425 * connection is already gone. 426 */ 427 if (ia->ri_id->qp) { 428 rpcrdma_xprt_drain(r_xprt); 429 rdma_destroy_qp(ia->ri_id); 430 ia->ri_id->qp = NULL; 431 } 432 ib_free_cq(ep->rep_attr.recv_cq); 433 ep->rep_attr.recv_cq = NULL; 434 ib_free_cq(ep->rep_attr.send_cq); 435 ep->rep_attr.send_cq = NULL; 436 437 /* The ULP is responsible for ensuring all DMA 438 * mappings and MRs are gone. 439 */ 440 list_for_each_entry(rep, &buf->rb_recv_bufs, rr_list) 441 rpcrdma_dma_unmap_regbuf(rep->rr_rdmabuf); 442 list_for_each_entry(req, &buf->rb_allreqs, rl_all) { 443 rpcrdma_dma_unmap_regbuf(req->rl_rdmabuf); 444 rpcrdma_dma_unmap_regbuf(req->rl_sendbuf); 445 rpcrdma_dma_unmap_regbuf(req->rl_recvbuf); 446 } 447 rpcrdma_mrs_destroy(buf); 448 ib_dealloc_pd(ia->ri_pd); 449 ia->ri_pd = NULL; 450 451 /* Allow waiters to continue */ 452 complete(&ia->ri_remove_done); 453 454 trace_xprtrdma_remove(r_xprt); 455 } 456 457 /** 458 * rpcrdma_ia_close - Clean up/close an IA. 459 * @ia: interface adapter to close 460 * 461 */ 462 void 463 rpcrdma_ia_close(struct rpcrdma_ia *ia) 464 { 465 if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) { 466 if (ia->ri_id->qp) 467 rdma_destroy_qp(ia->ri_id); 468 rdma_destroy_id(ia->ri_id); 469 } 470 ia->ri_id = NULL; 471 ia->ri_device = NULL; 472 473 /* If the pd is still busy, xprtrdma missed freeing a resource */ 474 if (ia->ri_pd && !IS_ERR(ia->ri_pd)) 475 ib_dealloc_pd(ia->ri_pd); 476 ia->ri_pd = NULL; 477 } 478 479 /* 480 * Create unconnected endpoint. 481 */ 482 int 483 rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia, 484 struct rpcrdma_create_data_internal *cdata) 485 { 486 struct rpcrdma_connect_private *pmsg = &ep->rep_cm_private; 487 struct ib_cq *sendcq, *recvcq; 488 unsigned int max_sge; 489 int rc; 490 491 max_sge = min_t(unsigned int, ia->ri_device->attrs.max_send_sge, 492 RPCRDMA_MAX_SEND_SGES); 493 if (max_sge < RPCRDMA_MIN_SEND_SGES) { 494 pr_warn("rpcrdma: HCA provides only %d send SGEs\n", max_sge); 495 return -ENOMEM; 496 } 497 ia->ri_max_send_sges = max_sge; 498 499 rc = frwr_open(ia, ep, cdata); 500 if (rc) 501 return rc; 502 503 ep->rep_attr.event_handler = rpcrdma_qp_event_handler; 504 ep->rep_attr.qp_context = ep; 505 ep->rep_attr.srq = NULL; 506 ep->rep_attr.cap.max_send_sge = max_sge; 507 ep->rep_attr.cap.max_recv_sge = 1; 508 ep->rep_attr.cap.max_inline_data = 0; 509 ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 510 ep->rep_attr.qp_type = IB_QPT_RC; 511 ep->rep_attr.port_num = ~0; 512 513 dprintk("RPC: %s: requested max: dtos: send %d recv %d; " 514 "iovs: send %d recv %d\n", 515 __func__, 516 ep->rep_attr.cap.max_send_wr, 517 ep->rep_attr.cap.max_recv_wr, 518 ep->rep_attr.cap.max_send_sge, 519 ep->rep_attr.cap.max_recv_sge); 520 521 /* set trigger for requesting send completion */ 522 ep->rep_send_batch = min_t(unsigned int, RPCRDMA_MAX_SEND_BATCH, 523 cdata->max_requests >> 2); 524 ep->rep_send_count = ep->rep_send_batch; 525 init_waitqueue_head(&ep->rep_connect_wait); 526 ep->rep_receive_count = 0; 527 528 sendcq = ib_alloc_cq(ia->ri_device, NULL, 529 ep->rep_attr.cap.max_send_wr + 1, 530 1, IB_POLL_WORKQUEUE); 531 if (IS_ERR(sendcq)) { 532 rc = PTR_ERR(sendcq); 533 goto out1; 534 } 535 536 recvcq = ib_alloc_cq(ia->ri_device, NULL, 537 ep->rep_attr.cap.max_recv_wr + 1, 538 0, IB_POLL_WORKQUEUE); 539 if (IS_ERR(recvcq)) { 540 rc = PTR_ERR(recvcq); 541 goto out2; 542 } 543 544 ep->rep_attr.send_cq = sendcq; 545 ep->rep_attr.recv_cq = recvcq; 546 547 /* Initialize cma parameters */ 548 memset(&ep->rep_remote_cma, 0, sizeof(ep->rep_remote_cma)); 549 550 /* Prepare RDMA-CM private message */ 551 pmsg->cp_magic = rpcrdma_cmp_magic; 552 pmsg->cp_version = RPCRDMA_CMP_VERSION; 553 pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK; 554 pmsg->cp_send_size = rpcrdma_encode_buffer_size(cdata->inline_wsize); 555 pmsg->cp_recv_size = rpcrdma_encode_buffer_size(cdata->inline_rsize); 556 ep->rep_remote_cma.private_data = pmsg; 557 ep->rep_remote_cma.private_data_len = sizeof(*pmsg); 558 559 /* Client offers RDMA Read but does not initiate */ 560 ep->rep_remote_cma.initiator_depth = 0; 561 ep->rep_remote_cma.responder_resources = 562 min_t(int, U8_MAX, ia->ri_device->attrs.max_qp_rd_atom); 563 564 /* Limit transport retries so client can detect server 565 * GID changes quickly. RPC layer handles re-establishing 566 * transport connection and retransmission. 567 */ 568 ep->rep_remote_cma.retry_count = 6; 569 570 /* RPC-over-RDMA handles its own flow control. In addition, 571 * make all RNR NAKs visible so we know that RPC-over-RDMA 572 * flow control is working correctly (no NAKs should be seen). 573 */ 574 ep->rep_remote_cma.flow_control = 0; 575 ep->rep_remote_cma.rnr_retry_count = 0; 576 577 return 0; 578 579 out2: 580 ib_free_cq(sendcq); 581 out1: 582 return rc; 583 } 584 585 /* 586 * rpcrdma_ep_destroy 587 * 588 * Disconnect and destroy endpoint. After this, the only 589 * valid operations on the ep are to free it (if dynamically 590 * allocated) or re-create it. 591 */ 592 void 593 rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 594 { 595 if (ia->ri_id && ia->ri_id->qp) { 596 rpcrdma_ep_disconnect(ep, ia); 597 rdma_destroy_qp(ia->ri_id); 598 ia->ri_id->qp = NULL; 599 } 600 601 if (ep->rep_attr.recv_cq) 602 ib_free_cq(ep->rep_attr.recv_cq); 603 if (ep->rep_attr.send_cq) 604 ib_free_cq(ep->rep_attr.send_cq); 605 } 606 607 /* Re-establish a connection after a device removal event. 608 * Unlike a normal reconnection, a fresh PD and a new set 609 * of MRs and buffers is needed. 610 */ 611 static int 612 rpcrdma_ep_recreate_xprt(struct rpcrdma_xprt *r_xprt, 613 struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 614 { 615 int rc, err; 616 617 trace_xprtrdma_reinsert(r_xprt); 618 619 rc = -EHOSTUNREACH; 620 if (rpcrdma_ia_open(r_xprt)) 621 goto out1; 622 623 rc = -ENOMEM; 624 err = rpcrdma_ep_create(ep, ia, &r_xprt->rx_data); 625 if (err) { 626 pr_err("rpcrdma: rpcrdma_ep_create returned %d\n", err); 627 goto out2; 628 } 629 630 rc = -ENETUNREACH; 631 err = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr); 632 if (err) { 633 pr_err("rpcrdma: rdma_create_qp returned %d\n", err); 634 goto out3; 635 } 636 637 rpcrdma_mrs_create(r_xprt); 638 return 0; 639 640 out3: 641 rpcrdma_ep_destroy(ep, ia); 642 out2: 643 rpcrdma_ia_close(ia); 644 out1: 645 return rc; 646 } 647 648 static int 649 rpcrdma_ep_reconnect(struct rpcrdma_xprt *r_xprt, struct rpcrdma_ep *ep, 650 struct rpcrdma_ia *ia) 651 { 652 struct rdma_cm_id *id, *old; 653 int err, rc; 654 655 trace_xprtrdma_reconnect(r_xprt); 656 657 rpcrdma_ep_disconnect(ep, ia); 658 659 rc = -EHOSTUNREACH; 660 id = rpcrdma_create_id(r_xprt, ia); 661 if (IS_ERR(id)) 662 goto out; 663 664 /* As long as the new ID points to the same device as the 665 * old ID, we can reuse the transport's existing PD and all 666 * previously allocated MRs. Also, the same device means 667 * the transport's previous DMA mappings are still valid. 668 * 669 * This is a sanity check only. There should be no way these 670 * point to two different devices here. 671 */ 672 old = id; 673 rc = -ENETUNREACH; 674 if (ia->ri_device != id->device) { 675 pr_err("rpcrdma: can't reconnect on different device!\n"); 676 goto out_destroy; 677 } 678 679 err = rdma_create_qp(id, ia->ri_pd, &ep->rep_attr); 680 if (err) 681 goto out_destroy; 682 683 /* Atomically replace the transport's ID and QP. */ 684 rc = 0; 685 old = ia->ri_id; 686 ia->ri_id = id; 687 rdma_destroy_qp(old); 688 689 out_destroy: 690 rdma_destroy_id(old); 691 out: 692 return rc; 693 } 694 695 /* 696 * Connect unconnected endpoint. 697 */ 698 int 699 rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 700 { 701 struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt, 702 rx_ia); 703 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 704 int rc; 705 706 retry: 707 switch (ep->rep_connected) { 708 case 0: 709 dprintk("RPC: %s: connecting...\n", __func__); 710 rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr); 711 if (rc) { 712 rc = -ENETUNREACH; 713 goto out_noupdate; 714 } 715 break; 716 case -ENODEV: 717 rc = rpcrdma_ep_recreate_xprt(r_xprt, ep, ia); 718 if (rc) 719 goto out_noupdate; 720 break; 721 default: 722 rc = rpcrdma_ep_reconnect(r_xprt, ep, ia); 723 if (rc) 724 goto out; 725 } 726 727 ep->rep_connected = 0; 728 xprt_clear_connected(xprt); 729 730 rpcrdma_post_recvs(r_xprt, true); 731 732 rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma); 733 if (rc) 734 goto out; 735 736 wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0); 737 if (ep->rep_connected <= 0) { 738 if (ep->rep_connected == -EAGAIN) 739 goto retry; 740 rc = ep->rep_connected; 741 goto out; 742 } 743 744 dprintk("RPC: %s: connected\n", __func__); 745 746 out: 747 if (rc) 748 ep->rep_connected = rc; 749 750 out_noupdate: 751 return rc; 752 } 753 754 /** 755 * rpcrdma_ep_disconnect - Disconnect underlying transport 756 * @ep: endpoint to disconnect 757 * @ia: associated interface adapter 758 * 759 * This is separate from destroy to facilitate the ability 760 * to reconnect without recreating the endpoint. 761 * 762 * This call is not reentrant, and must not be made in parallel 763 * on the same endpoint. 764 */ 765 void 766 rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 767 { 768 struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt, 769 rx_ep); 770 int rc; 771 772 /* returns without wait if ID is not connected */ 773 rc = rdma_disconnect(ia->ri_id); 774 if (!rc) 775 wait_event_interruptible(ep->rep_connect_wait, 776 ep->rep_connected != 1); 777 else 778 ep->rep_connected = rc; 779 trace_xprtrdma_disconnect(r_xprt, rc); 780 781 rpcrdma_xprt_drain(r_xprt); 782 } 783 784 /* Fixed-size circular FIFO queue. This implementation is wait-free and 785 * lock-free. 786 * 787 * Consumer is the code path that posts Sends. This path dequeues a 788 * sendctx for use by a Send operation. Multiple consumer threads 789 * are serialized by the RPC transport lock, which allows only one 790 * ->send_request call at a time. 791 * 792 * Producer is the code path that handles Send completions. This path 793 * enqueues a sendctx that has been completed. Multiple producer 794 * threads are serialized by the ib_poll_cq() function. 795 */ 796 797 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced 798 * queue activity, and ib_drain_qp has flushed all remaining Send 799 * requests. 800 */ 801 static void rpcrdma_sendctxs_destroy(struct rpcrdma_buffer *buf) 802 { 803 unsigned long i; 804 805 for (i = 0; i <= buf->rb_sc_last; i++) 806 kfree(buf->rb_sc_ctxs[i]); 807 kfree(buf->rb_sc_ctxs); 808 } 809 810 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ia *ia) 811 { 812 struct rpcrdma_sendctx *sc; 813 814 sc = kzalloc(sizeof(*sc) + 815 ia->ri_max_send_sges * sizeof(struct ib_sge), 816 GFP_KERNEL); 817 if (!sc) 818 return NULL; 819 820 sc->sc_wr.wr_cqe = &sc->sc_cqe; 821 sc->sc_wr.sg_list = sc->sc_sges; 822 sc->sc_wr.opcode = IB_WR_SEND; 823 sc->sc_cqe.done = rpcrdma_wc_send; 824 return sc; 825 } 826 827 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt) 828 { 829 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 830 struct rpcrdma_sendctx *sc; 831 unsigned long i; 832 833 /* Maximum number of concurrent outstanding Send WRs. Capping 834 * the circular queue size stops Send Queue overflow by causing 835 * the ->send_request call to fail temporarily before too many 836 * Sends are posted. 837 */ 838 i = buf->rb_max_requests + RPCRDMA_MAX_BC_REQUESTS; 839 dprintk("RPC: %s: allocating %lu send_ctxs\n", __func__, i); 840 buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL); 841 if (!buf->rb_sc_ctxs) 842 return -ENOMEM; 843 844 buf->rb_sc_last = i - 1; 845 for (i = 0; i <= buf->rb_sc_last; i++) { 846 sc = rpcrdma_sendctx_create(&r_xprt->rx_ia); 847 if (!sc) 848 return -ENOMEM; 849 850 sc->sc_xprt = r_xprt; 851 buf->rb_sc_ctxs[i] = sc; 852 } 853 854 return 0; 855 } 856 857 /* The sendctx queue is not guaranteed to have a size that is a 858 * power of two, thus the helpers in circ_buf.h cannot be used. 859 * The other option is to use modulus (%), which can be expensive. 860 */ 861 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf, 862 unsigned long item) 863 { 864 return likely(item < buf->rb_sc_last) ? item + 1 : 0; 865 } 866 867 /** 868 * rpcrdma_sendctx_get_locked - Acquire a send context 869 * @buf: transport buffers from which to acquire an unused context 870 * 871 * Returns pointer to a free send completion context; or NULL if 872 * the queue is empty. 873 * 874 * Usage: Called to acquire an SGE array before preparing a Send WR. 875 * 876 * The caller serializes calls to this function (per rpcrdma_buffer), 877 * and provides an effective memory barrier that flushes the new value 878 * of rb_sc_head. 879 */ 880 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_buffer *buf) 881 { 882 struct rpcrdma_xprt *r_xprt; 883 struct rpcrdma_sendctx *sc; 884 unsigned long next_head; 885 886 next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head); 887 888 if (next_head == READ_ONCE(buf->rb_sc_tail)) 889 goto out_emptyq; 890 891 /* ORDER: item must be accessed _before_ head is updated */ 892 sc = buf->rb_sc_ctxs[next_head]; 893 894 /* Releasing the lock in the caller acts as a memory 895 * barrier that flushes rb_sc_head. 896 */ 897 buf->rb_sc_head = next_head; 898 899 return sc; 900 901 out_emptyq: 902 /* The queue is "empty" if there have not been enough Send 903 * completions recently. This is a sign the Send Queue is 904 * backing up. Cause the caller to pause and try again. 905 */ 906 set_bit(RPCRDMA_BUF_F_EMPTY_SCQ, &buf->rb_flags); 907 r_xprt = container_of(buf, struct rpcrdma_xprt, rx_buf); 908 r_xprt->rx_stats.empty_sendctx_q++; 909 return NULL; 910 } 911 912 /** 913 * rpcrdma_sendctx_put_locked - Release a send context 914 * @sc: send context to release 915 * 916 * Usage: Called from Send completion to return a sendctxt 917 * to the queue. 918 * 919 * The caller serializes calls to this function (per rpcrdma_buffer). 920 */ 921 static void 922 rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc) 923 { 924 struct rpcrdma_buffer *buf = &sc->sc_xprt->rx_buf; 925 unsigned long next_tail; 926 927 /* Unmap SGEs of previously completed by unsignaled 928 * Sends by walking up the queue until @sc is found. 929 */ 930 next_tail = buf->rb_sc_tail; 931 do { 932 next_tail = rpcrdma_sendctx_next(buf, next_tail); 933 934 /* ORDER: item must be accessed _before_ tail is updated */ 935 rpcrdma_unmap_sendctx(buf->rb_sc_ctxs[next_tail]); 936 937 } while (buf->rb_sc_ctxs[next_tail] != sc); 938 939 /* Paired with READ_ONCE */ 940 smp_store_release(&buf->rb_sc_tail, next_tail); 941 942 if (test_and_clear_bit(RPCRDMA_BUF_F_EMPTY_SCQ, &buf->rb_flags)) { 943 smp_mb__after_atomic(); 944 xprt_write_space(&sc->sc_xprt->rx_xprt); 945 } 946 } 947 948 static void 949 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt) 950 { 951 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 952 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 953 unsigned int count; 954 LIST_HEAD(free); 955 LIST_HEAD(all); 956 957 for (count = 0; count < ia->ri_max_segs; count++) { 958 struct rpcrdma_mr *mr; 959 int rc; 960 961 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 962 if (!mr) 963 break; 964 965 rc = frwr_init_mr(ia, mr); 966 if (rc) { 967 kfree(mr); 968 break; 969 } 970 971 mr->mr_xprt = r_xprt; 972 973 list_add(&mr->mr_list, &free); 974 list_add(&mr->mr_all, &all); 975 } 976 977 spin_lock(&buf->rb_mrlock); 978 list_splice(&free, &buf->rb_mrs); 979 list_splice(&all, &buf->rb_all); 980 r_xprt->rx_stats.mrs_allocated += count; 981 spin_unlock(&buf->rb_mrlock); 982 trace_xprtrdma_createmrs(r_xprt, count); 983 984 xprt_write_space(&r_xprt->rx_xprt); 985 } 986 987 static void 988 rpcrdma_mr_refresh_worker(struct work_struct *work) 989 { 990 struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer, 991 rb_refresh_worker.work); 992 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, 993 rx_buf); 994 995 rpcrdma_mrs_create(r_xprt); 996 } 997 998 struct rpcrdma_req * 999 rpcrdma_create_req(struct rpcrdma_xprt *r_xprt) 1000 { 1001 struct rpcrdma_buffer *buffer = &r_xprt->rx_buf; 1002 struct rpcrdma_regbuf *rb; 1003 struct rpcrdma_req *req; 1004 1005 req = kzalloc(sizeof(*req), GFP_KERNEL); 1006 if (req == NULL) 1007 return ERR_PTR(-ENOMEM); 1008 1009 rb = rpcrdma_alloc_regbuf(RPCRDMA_HDRBUF_SIZE, 1010 DMA_TO_DEVICE, GFP_KERNEL); 1011 if (IS_ERR(rb)) { 1012 kfree(req); 1013 return ERR_PTR(-ENOMEM); 1014 } 1015 req->rl_rdmabuf = rb; 1016 xdr_buf_init(&req->rl_hdrbuf, rb->rg_base, rdmab_length(rb)); 1017 req->rl_buffer = buffer; 1018 INIT_LIST_HEAD(&req->rl_registered); 1019 1020 spin_lock(&buffer->rb_lock); 1021 list_add(&req->rl_all, &buffer->rb_allreqs); 1022 spin_unlock(&buffer->rb_lock); 1023 return req; 1024 } 1025 1026 static int 1027 rpcrdma_create_rep(struct rpcrdma_xprt *r_xprt, bool temp) 1028 { 1029 struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; 1030 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1031 struct rpcrdma_rep *rep; 1032 int rc; 1033 1034 rc = -ENOMEM; 1035 rep = kzalloc(sizeof(*rep), GFP_KERNEL); 1036 if (rep == NULL) 1037 goto out; 1038 1039 rep->rr_rdmabuf = rpcrdma_alloc_regbuf(cdata->inline_rsize, 1040 DMA_FROM_DEVICE, GFP_KERNEL); 1041 if (IS_ERR(rep->rr_rdmabuf)) { 1042 rc = PTR_ERR(rep->rr_rdmabuf); 1043 goto out_free; 1044 } 1045 xdr_buf_init(&rep->rr_hdrbuf, rep->rr_rdmabuf->rg_base, 1046 rdmab_length(rep->rr_rdmabuf)); 1047 1048 rep->rr_cqe.done = rpcrdma_wc_receive; 1049 rep->rr_rxprt = r_xprt; 1050 INIT_WORK(&rep->rr_work, rpcrdma_deferred_completion); 1051 rep->rr_recv_wr.next = NULL; 1052 rep->rr_recv_wr.wr_cqe = &rep->rr_cqe; 1053 rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov; 1054 rep->rr_recv_wr.num_sge = 1; 1055 rep->rr_temp = temp; 1056 1057 spin_lock(&buf->rb_lock); 1058 list_add(&rep->rr_list, &buf->rb_recv_bufs); 1059 spin_unlock(&buf->rb_lock); 1060 return 0; 1061 1062 out_free: 1063 kfree(rep); 1064 out: 1065 return rc; 1066 } 1067 1068 int 1069 rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt) 1070 { 1071 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1072 int i, rc; 1073 1074 buf->rb_flags = 0; 1075 buf->rb_max_requests = r_xprt->rx_data.max_requests; 1076 buf->rb_bc_srv_max_requests = 0; 1077 spin_lock_init(&buf->rb_mrlock); 1078 spin_lock_init(&buf->rb_lock); 1079 INIT_LIST_HEAD(&buf->rb_mrs); 1080 INIT_LIST_HEAD(&buf->rb_all); 1081 INIT_DELAYED_WORK(&buf->rb_refresh_worker, 1082 rpcrdma_mr_refresh_worker); 1083 1084 rpcrdma_mrs_create(r_xprt); 1085 1086 INIT_LIST_HEAD(&buf->rb_send_bufs); 1087 INIT_LIST_HEAD(&buf->rb_allreqs); 1088 for (i = 0; i < buf->rb_max_requests; i++) { 1089 struct rpcrdma_req *req; 1090 1091 req = rpcrdma_create_req(r_xprt); 1092 if (IS_ERR(req)) { 1093 dprintk("RPC: %s: request buffer %d alloc" 1094 " failed\n", __func__, i); 1095 rc = PTR_ERR(req); 1096 goto out; 1097 } 1098 list_add(&req->rl_list, &buf->rb_send_bufs); 1099 } 1100 1101 buf->rb_credits = 1; 1102 INIT_LIST_HEAD(&buf->rb_recv_bufs); 1103 1104 rc = rpcrdma_sendctxs_create(r_xprt); 1105 if (rc) 1106 goto out; 1107 1108 buf->rb_completion_wq = alloc_workqueue("rpcrdma-%s", 1109 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1110 0, 1111 r_xprt->rx_xprt.address_strings[RPC_DISPLAY_ADDR]); 1112 if (!buf->rb_completion_wq) { 1113 rc = -ENOMEM; 1114 goto out; 1115 } 1116 1117 return 0; 1118 out: 1119 rpcrdma_buffer_destroy(buf); 1120 return rc; 1121 } 1122 1123 static void 1124 rpcrdma_destroy_rep(struct rpcrdma_rep *rep) 1125 { 1126 rpcrdma_free_regbuf(rep->rr_rdmabuf); 1127 kfree(rep); 1128 } 1129 1130 /** 1131 * rpcrdma_req_destroy - Destroy an rpcrdma_req object 1132 * @req: unused object to be destroyed 1133 * 1134 * This function assumes that the caller prevents concurrent device 1135 * unload and transport tear-down. 1136 */ 1137 void 1138 rpcrdma_req_destroy(struct rpcrdma_req *req) 1139 { 1140 list_del(&req->rl_all); 1141 1142 rpcrdma_free_regbuf(req->rl_recvbuf); 1143 rpcrdma_free_regbuf(req->rl_sendbuf); 1144 rpcrdma_free_regbuf(req->rl_rdmabuf); 1145 kfree(req); 1146 } 1147 1148 static void 1149 rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf) 1150 { 1151 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, 1152 rx_buf); 1153 struct rpcrdma_mr *mr; 1154 unsigned int count; 1155 1156 count = 0; 1157 spin_lock(&buf->rb_mrlock); 1158 while (!list_empty(&buf->rb_all)) { 1159 mr = list_entry(buf->rb_all.next, struct rpcrdma_mr, mr_all); 1160 list_del(&mr->mr_all); 1161 1162 spin_unlock(&buf->rb_mrlock); 1163 1164 /* Ensure MW is not on any rl_registered list */ 1165 if (!list_empty(&mr->mr_list)) 1166 list_del(&mr->mr_list); 1167 1168 frwr_release_mr(mr); 1169 count++; 1170 spin_lock(&buf->rb_mrlock); 1171 } 1172 spin_unlock(&buf->rb_mrlock); 1173 r_xprt->rx_stats.mrs_allocated = 0; 1174 1175 dprintk("RPC: %s: released %u MRs\n", __func__, count); 1176 } 1177 1178 /** 1179 * rpcrdma_buffer_destroy - Release all hw resources 1180 * @buf: root control block for resources 1181 * 1182 * ORDERING: relies on a prior ib_drain_qp : 1183 * - No more Send or Receive completions can occur 1184 * - All MRs, reps, and reqs are returned to their free lists 1185 */ 1186 void 1187 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf) 1188 { 1189 cancel_delayed_work_sync(&buf->rb_refresh_worker); 1190 1191 if (buf->rb_completion_wq) { 1192 destroy_workqueue(buf->rb_completion_wq); 1193 buf->rb_completion_wq = NULL; 1194 } 1195 1196 rpcrdma_sendctxs_destroy(buf); 1197 1198 while (!list_empty(&buf->rb_recv_bufs)) { 1199 struct rpcrdma_rep *rep; 1200 1201 rep = list_first_entry(&buf->rb_recv_bufs, 1202 struct rpcrdma_rep, rr_list); 1203 list_del(&rep->rr_list); 1204 rpcrdma_destroy_rep(rep); 1205 } 1206 1207 while (!list_empty(&buf->rb_send_bufs)) { 1208 struct rpcrdma_req *req; 1209 1210 req = list_first_entry(&buf->rb_send_bufs, 1211 struct rpcrdma_req, rl_list); 1212 list_del(&req->rl_list); 1213 rpcrdma_req_destroy(req); 1214 } 1215 1216 rpcrdma_mrs_destroy(buf); 1217 } 1218 1219 /** 1220 * rpcrdma_mr_get - Allocate an rpcrdma_mr object 1221 * @r_xprt: controlling transport 1222 * 1223 * Returns an initialized rpcrdma_mr or NULL if no free 1224 * rpcrdma_mr objects are available. 1225 */ 1226 struct rpcrdma_mr * 1227 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt) 1228 { 1229 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1230 struct rpcrdma_mr *mr = NULL; 1231 1232 spin_lock(&buf->rb_mrlock); 1233 if (!list_empty(&buf->rb_mrs)) 1234 mr = rpcrdma_mr_pop(&buf->rb_mrs); 1235 spin_unlock(&buf->rb_mrlock); 1236 1237 if (!mr) 1238 goto out_nomrs; 1239 return mr; 1240 1241 out_nomrs: 1242 trace_xprtrdma_nomrs(r_xprt); 1243 if (r_xprt->rx_ep.rep_connected != -ENODEV) 1244 schedule_delayed_work(&buf->rb_refresh_worker, 0); 1245 1246 /* Allow the reply handler and refresh worker to run */ 1247 cond_resched(); 1248 1249 return NULL; 1250 } 1251 1252 static void 1253 __rpcrdma_mr_put(struct rpcrdma_buffer *buf, struct rpcrdma_mr *mr) 1254 { 1255 spin_lock(&buf->rb_mrlock); 1256 rpcrdma_mr_push(mr, &buf->rb_mrs); 1257 spin_unlock(&buf->rb_mrlock); 1258 } 1259 1260 /** 1261 * rpcrdma_mr_put - Release an rpcrdma_mr object 1262 * @mr: object to release 1263 * 1264 */ 1265 void 1266 rpcrdma_mr_put(struct rpcrdma_mr *mr) 1267 { 1268 __rpcrdma_mr_put(&mr->mr_xprt->rx_buf, mr); 1269 } 1270 1271 /** 1272 * rpcrdma_mr_unmap_and_put - DMA unmap an MR and release it 1273 * @mr: object to release 1274 * 1275 */ 1276 void 1277 rpcrdma_mr_unmap_and_put(struct rpcrdma_mr *mr) 1278 { 1279 struct rpcrdma_xprt *r_xprt = mr->mr_xprt; 1280 1281 if (mr->mr_dir != DMA_NONE) { 1282 trace_xprtrdma_mr_unmap(mr); 1283 ib_dma_unmap_sg(r_xprt->rx_ia.ri_device, 1284 mr->mr_sg, mr->mr_nents, mr->mr_dir); 1285 mr->mr_dir = DMA_NONE; 1286 } 1287 __rpcrdma_mr_put(&r_xprt->rx_buf, mr); 1288 } 1289 1290 /** 1291 * rpcrdma_buffer_get - Get a request buffer 1292 * @buffers: Buffer pool from which to obtain a buffer 1293 * 1294 * Returns a fresh rpcrdma_req, or NULL if none are available. 1295 */ 1296 struct rpcrdma_req * 1297 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers) 1298 { 1299 struct rpcrdma_req *req; 1300 1301 spin_lock(&buffers->rb_lock); 1302 req = list_first_entry_or_null(&buffers->rb_send_bufs, 1303 struct rpcrdma_req, rl_list); 1304 if (req) 1305 list_del_init(&req->rl_list); 1306 spin_unlock(&buffers->rb_lock); 1307 return req; 1308 } 1309 1310 /** 1311 * rpcrdma_buffer_put - Put request/reply buffers back into pool 1312 * @req: object to return 1313 * 1314 */ 1315 void 1316 rpcrdma_buffer_put(struct rpcrdma_req *req) 1317 { 1318 struct rpcrdma_buffer *buffers = req->rl_buffer; 1319 struct rpcrdma_rep *rep = req->rl_reply; 1320 1321 req->rl_reply = NULL; 1322 1323 spin_lock(&buffers->rb_lock); 1324 list_add(&req->rl_list, &buffers->rb_send_bufs); 1325 if (rep) { 1326 if (!rep->rr_temp) { 1327 list_add(&rep->rr_list, &buffers->rb_recv_bufs); 1328 rep = NULL; 1329 } 1330 } 1331 spin_unlock(&buffers->rb_lock); 1332 if (rep) 1333 rpcrdma_destroy_rep(rep); 1334 } 1335 1336 /* 1337 * Put reply buffers back into pool when not attached to 1338 * request. This happens in error conditions. 1339 */ 1340 void 1341 rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep) 1342 { 1343 struct rpcrdma_buffer *buffers = &rep->rr_rxprt->rx_buf; 1344 1345 if (!rep->rr_temp) { 1346 spin_lock(&buffers->rb_lock); 1347 list_add(&rep->rr_list, &buffers->rb_recv_bufs); 1348 spin_unlock(&buffers->rb_lock); 1349 } else { 1350 rpcrdma_destroy_rep(rep); 1351 } 1352 } 1353 1354 /** 1355 * rpcrdma_alloc_regbuf - allocate and DMA-map memory for SEND/RECV buffers 1356 * @size: size of buffer to be allocated, in bytes 1357 * @direction: direction of data movement 1358 * @flags: GFP flags 1359 * 1360 * Returns an ERR_PTR, or a pointer to a regbuf, a buffer that 1361 * can be persistently DMA-mapped for I/O. 1362 * 1363 * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for 1364 * receiving the payload of RDMA RECV operations. During Long Calls 1365 * or Replies they may be registered externally via frwr_map. 1366 */ 1367 struct rpcrdma_regbuf * 1368 rpcrdma_alloc_regbuf(size_t size, enum dma_data_direction direction, 1369 gfp_t flags) 1370 { 1371 struct rpcrdma_regbuf *rb; 1372 1373 rb = kmalloc(sizeof(*rb) + size, flags); 1374 if (rb == NULL) 1375 return ERR_PTR(-ENOMEM); 1376 1377 rb->rg_device = NULL; 1378 rb->rg_direction = direction; 1379 rb->rg_iov.length = size; 1380 1381 return rb; 1382 } 1383 1384 /** 1385 * __rpcrdma_map_regbuf - DMA-map a regbuf 1386 * @ia: controlling rpcrdma_ia 1387 * @rb: regbuf to be mapped 1388 */ 1389 bool 1390 __rpcrdma_dma_map_regbuf(struct rpcrdma_ia *ia, struct rpcrdma_regbuf *rb) 1391 { 1392 struct ib_device *device = ia->ri_device; 1393 1394 if (rb->rg_direction == DMA_NONE) 1395 return false; 1396 1397 rb->rg_iov.addr = ib_dma_map_single(device, 1398 (void *)rb->rg_base, 1399 rdmab_length(rb), 1400 rb->rg_direction); 1401 if (ib_dma_mapping_error(device, rdmab_addr(rb))) { 1402 trace_xprtrdma_dma_maperr(rdmab_addr(rb)); 1403 return false; 1404 } 1405 1406 rb->rg_device = device; 1407 rb->rg_iov.lkey = ia->ri_pd->local_dma_lkey; 1408 return true; 1409 } 1410 1411 static void 1412 rpcrdma_dma_unmap_regbuf(struct rpcrdma_regbuf *rb) 1413 { 1414 if (!rb) 1415 return; 1416 1417 if (!rpcrdma_regbuf_is_mapped(rb)) 1418 return; 1419 1420 ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), 1421 rdmab_length(rb), rb->rg_direction); 1422 rb->rg_device = NULL; 1423 } 1424 1425 /** 1426 * rpcrdma_free_regbuf - deregister and free registered buffer 1427 * @rb: regbuf to be deregistered and freed 1428 */ 1429 void 1430 rpcrdma_free_regbuf(struct rpcrdma_regbuf *rb) 1431 { 1432 rpcrdma_dma_unmap_regbuf(rb); 1433 kfree(rb); 1434 } 1435 1436 /** 1437 * rpcrdma_ep_post - Post WRs to a transport's Send Queue 1438 * @ia: transport's device information 1439 * @ep: transport's RDMA endpoint information 1440 * @req: rpcrdma_req containing the Send WR to post 1441 * 1442 * Returns 0 if the post was successful, otherwise -ENOTCONN 1443 * is returned. 1444 */ 1445 int 1446 rpcrdma_ep_post(struct rpcrdma_ia *ia, 1447 struct rpcrdma_ep *ep, 1448 struct rpcrdma_req *req) 1449 { 1450 struct ib_send_wr *send_wr = &req->rl_sendctx->sc_wr; 1451 int rc; 1452 1453 if (!ep->rep_send_count || 1454 test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) { 1455 send_wr->send_flags |= IB_SEND_SIGNALED; 1456 ep->rep_send_count = ep->rep_send_batch; 1457 } else { 1458 send_wr->send_flags &= ~IB_SEND_SIGNALED; 1459 --ep->rep_send_count; 1460 } 1461 1462 rc = frwr_send(ia, req); 1463 trace_xprtrdma_post_send(req, rc); 1464 if (rc) 1465 return -ENOTCONN; 1466 return 0; 1467 } 1468 1469 static void 1470 rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp) 1471 { 1472 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1473 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 1474 struct ib_recv_wr *wr, *bad_wr; 1475 int needed, count, rc; 1476 1477 rc = 0; 1478 count = 0; 1479 needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1); 1480 if (ep->rep_receive_count > needed) 1481 goto out; 1482 needed -= ep->rep_receive_count; 1483 1484 count = 0; 1485 wr = NULL; 1486 while (needed) { 1487 struct rpcrdma_regbuf *rb; 1488 struct rpcrdma_rep *rep; 1489 1490 spin_lock(&buf->rb_lock); 1491 rep = list_first_entry_or_null(&buf->rb_recv_bufs, 1492 struct rpcrdma_rep, rr_list); 1493 if (likely(rep)) 1494 list_del(&rep->rr_list); 1495 spin_unlock(&buf->rb_lock); 1496 if (!rep) { 1497 if (rpcrdma_create_rep(r_xprt, temp)) 1498 break; 1499 continue; 1500 } 1501 1502 rb = rep->rr_rdmabuf; 1503 if (!rpcrdma_regbuf_is_mapped(rb)) { 1504 if (!__rpcrdma_dma_map_regbuf(&r_xprt->rx_ia, rb)) { 1505 rpcrdma_recv_buffer_put(rep); 1506 break; 1507 } 1508 } 1509 1510 trace_xprtrdma_post_recv(rep->rr_recv_wr.wr_cqe); 1511 rep->rr_recv_wr.next = wr; 1512 wr = &rep->rr_recv_wr; 1513 ++count; 1514 --needed; 1515 } 1516 if (!count) 1517 goto out; 1518 1519 rc = ib_post_recv(r_xprt->rx_ia.ri_id->qp, wr, 1520 (const struct ib_recv_wr **)&bad_wr); 1521 if (rc) { 1522 for (wr = bad_wr; wr; wr = wr->next) { 1523 struct rpcrdma_rep *rep; 1524 1525 rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr); 1526 rpcrdma_recv_buffer_put(rep); 1527 --count; 1528 } 1529 } 1530 ep->rep_receive_count += count; 1531 out: 1532 trace_xprtrdma_post_recvs(r_xprt, count, rc); 1533 } 1534