1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (c) 2014-2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the BSD-type 10 * license below: 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 19 * Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials provided 22 * with the distribution. 23 * 24 * Neither the name of the Network Appliance, Inc. nor the names of 25 * its contributors may be used to endorse or promote products 26 * derived from this software without specific prior written 27 * permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42 /* 43 * verbs.c 44 * 45 * Encapsulates the major functions managing: 46 * o adapters 47 * o endpoints 48 * o connections 49 * o buffer memory 50 */ 51 52 #include <linux/interrupt.h> 53 #include <linux/slab.h> 54 #include <linux/sunrpc/addr.h> 55 #include <linux/sunrpc/svc_rdma.h> 56 #include <linux/log2.h> 57 58 #include <asm-generic/barrier.h> 59 #include <asm/bitops.h> 60 61 #include <rdma/ib_cm.h> 62 63 #include "xprt_rdma.h" 64 #include <trace/events/rpcrdma.h> 65 66 /* 67 * Globals/Macros 68 */ 69 70 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 71 # define RPCDBG_FACILITY RPCDBG_TRANS 72 #endif 73 74 /* 75 * internal functions 76 */ 77 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt); 78 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt); 79 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt, 80 struct rpcrdma_sendctx *sc); 81 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt); 82 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt); 83 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep); 84 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt); 85 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt); 86 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt); 87 static void rpcrdma_ep_get(struct rpcrdma_ep *ep); 88 static int rpcrdma_ep_put(struct rpcrdma_ep *ep); 89 static struct rpcrdma_regbuf * 90 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction, 91 gfp_t flags); 92 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb); 93 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb); 94 95 /* Wait for outstanding transport work to finish. ib_drain_qp 96 * handles the drains in the wrong order for us, so open code 97 * them here. 98 */ 99 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt) 100 { 101 struct rpcrdma_ep *ep = r_xprt->rx_ep; 102 struct rdma_cm_id *id = ep->re_id; 103 104 /* Wait for rpcrdma_post_recvs() to leave its critical 105 * section. 106 */ 107 if (atomic_inc_return(&ep->re_receiving) > 1) 108 wait_for_completion(&ep->re_done); 109 110 /* Flush Receives, then wait for deferred Reply work 111 * to complete. 112 */ 113 ib_drain_rq(id->qp); 114 115 /* Deferred Reply processing might have scheduled 116 * local invalidations. 117 */ 118 ib_drain_sq(id->qp); 119 120 rpcrdma_ep_put(ep); 121 } 122 123 /* Ensure xprt_force_disconnect() is invoked exactly once when a 124 * connection is closed or lost. (The important thing is it needs 125 * to be invoked "at least" once). 126 */ 127 void rpcrdma_force_disconnect(struct rpcrdma_ep *ep) 128 { 129 if (atomic_add_unless(&ep->re_force_disconnect, 1, 1)) 130 xprt_force_disconnect(ep->re_xprt); 131 } 132 133 /** 134 * rpcrdma_flush_disconnect - Disconnect on flushed completion 135 * @r_xprt: transport to disconnect 136 * @wc: work completion entry 137 * 138 * Must be called in process context. 139 */ 140 void rpcrdma_flush_disconnect(struct rpcrdma_xprt *r_xprt, struct ib_wc *wc) 141 { 142 if (wc->status != IB_WC_SUCCESS) 143 rpcrdma_force_disconnect(r_xprt->rx_ep); 144 } 145 146 /** 147 * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC 148 * @cq: completion queue 149 * @wc: WCE for a completed Send WR 150 * 151 */ 152 static void rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc) 153 { 154 struct ib_cqe *cqe = wc->wr_cqe; 155 struct rpcrdma_sendctx *sc = 156 container_of(cqe, struct rpcrdma_sendctx, sc_cqe); 157 struct rpcrdma_xprt *r_xprt = cq->cq_context; 158 159 /* WARNING: Only wr_cqe and status are reliable at this point */ 160 trace_xprtrdma_wc_send(wc, &sc->sc_cid); 161 rpcrdma_sendctx_put_locked(r_xprt, sc); 162 rpcrdma_flush_disconnect(r_xprt, wc); 163 } 164 165 /** 166 * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC 167 * @cq: completion queue 168 * @wc: WCE for a completed Receive WR 169 * 170 */ 171 static void rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc) 172 { 173 struct ib_cqe *cqe = wc->wr_cqe; 174 struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep, 175 rr_cqe); 176 struct rpcrdma_xprt *r_xprt = cq->cq_context; 177 178 /* WARNING: Only wr_cqe and status are reliable at this point */ 179 trace_xprtrdma_wc_receive(wc, &rep->rr_cid); 180 --r_xprt->rx_ep->re_receive_count; 181 if (wc->status != IB_WC_SUCCESS) 182 goto out_flushed; 183 184 /* status == SUCCESS means all fields in wc are trustworthy */ 185 rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len); 186 rep->rr_wc_flags = wc->wc_flags; 187 rep->rr_inv_rkey = wc->ex.invalidate_rkey; 188 189 ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf), 190 rdmab_addr(rep->rr_rdmabuf), 191 wc->byte_len, DMA_FROM_DEVICE); 192 193 rpcrdma_reply_handler(rep); 194 return; 195 196 out_flushed: 197 rpcrdma_flush_disconnect(r_xprt, wc); 198 rpcrdma_rep_put(&r_xprt->rx_buf, rep); 199 } 200 201 static void rpcrdma_update_cm_private(struct rpcrdma_ep *ep, 202 struct rdma_conn_param *param) 203 { 204 const struct rpcrdma_connect_private *pmsg = param->private_data; 205 unsigned int rsize, wsize; 206 207 /* Default settings for RPC-over-RDMA Version One */ 208 rsize = RPCRDMA_V1_DEF_INLINE_SIZE; 209 wsize = RPCRDMA_V1_DEF_INLINE_SIZE; 210 211 if (pmsg && 212 pmsg->cp_magic == rpcrdma_cmp_magic && 213 pmsg->cp_version == RPCRDMA_CMP_VERSION) { 214 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size); 215 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size); 216 } 217 218 if (rsize < ep->re_inline_recv) 219 ep->re_inline_recv = rsize; 220 if (wsize < ep->re_inline_send) 221 ep->re_inline_send = wsize; 222 223 rpcrdma_set_max_header_sizes(ep); 224 } 225 226 /** 227 * rpcrdma_cm_event_handler - Handle RDMA CM events 228 * @id: rdma_cm_id on which an event has occurred 229 * @event: details of the event 230 * 231 * Called with @id's mutex held. Returns 1 if caller should 232 * destroy @id, otherwise 0. 233 */ 234 static int 235 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event) 236 { 237 struct sockaddr *sap = (struct sockaddr *)&id->route.addr.dst_addr; 238 struct rpcrdma_ep *ep = id->context; 239 240 might_sleep(); 241 242 switch (event->event) { 243 case RDMA_CM_EVENT_ADDR_RESOLVED: 244 case RDMA_CM_EVENT_ROUTE_RESOLVED: 245 ep->re_async_rc = 0; 246 complete(&ep->re_done); 247 return 0; 248 case RDMA_CM_EVENT_ADDR_ERROR: 249 ep->re_async_rc = -EPROTO; 250 complete(&ep->re_done); 251 return 0; 252 case RDMA_CM_EVENT_ROUTE_ERROR: 253 ep->re_async_rc = -ENETUNREACH; 254 complete(&ep->re_done); 255 return 0; 256 case RDMA_CM_EVENT_DEVICE_REMOVAL: 257 pr_info("rpcrdma: removing device %s for %pISpc\n", 258 ep->re_id->device->name, sap); 259 fallthrough; 260 case RDMA_CM_EVENT_ADDR_CHANGE: 261 ep->re_connect_status = -ENODEV; 262 goto disconnected; 263 case RDMA_CM_EVENT_ESTABLISHED: 264 rpcrdma_ep_get(ep); 265 ep->re_connect_status = 1; 266 rpcrdma_update_cm_private(ep, &event->param.conn); 267 trace_xprtrdma_inline_thresh(ep); 268 wake_up_all(&ep->re_connect_wait); 269 break; 270 case RDMA_CM_EVENT_CONNECT_ERROR: 271 ep->re_connect_status = -ENOTCONN; 272 goto wake_connect_worker; 273 case RDMA_CM_EVENT_UNREACHABLE: 274 ep->re_connect_status = -ENETUNREACH; 275 goto wake_connect_worker; 276 case RDMA_CM_EVENT_REJECTED: 277 dprintk("rpcrdma: connection to %pISpc rejected: %s\n", 278 sap, rdma_reject_msg(id, event->status)); 279 ep->re_connect_status = -ECONNREFUSED; 280 if (event->status == IB_CM_REJ_STALE_CONN) 281 ep->re_connect_status = -ENOTCONN; 282 wake_connect_worker: 283 wake_up_all(&ep->re_connect_wait); 284 return 0; 285 case RDMA_CM_EVENT_DISCONNECTED: 286 ep->re_connect_status = -ECONNABORTED; 287 disconnected: 288 rpcrdma_force_disconnect(ep); 289 return rpcrdma_ep_put(ep); 290 default: 291 break; 292 } 293 294 dprintk("RPC: %s: %pISpc on %s/frwr: %s\n", __func__, sap, 295 ep->re_id->device->name, rdma_event_msg(event->event)); 296 return 0; 297 } 298 299 static struct rdma_cm_id *rpcrdma_create_id(struct rpcrdma_xprt *r_xprt, 300 struct rpcrdma_ep *ep) 301 { 302 unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1; 303 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 304 struct rdma_cm_id *id; 305 int rc; 306 307 init_completion(&ep->re_done); 308 309 id = rdma_create_id(xprt->xprt_net, rpcrdma_cm_event_handler, ep, 310 RDMA_PS_TCP, IB_QPT_RC); 311 if (IS_ERR(id)) 312 return id; 313 314 ep->re_async_rc = -ETIMEDOUT; 315 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)&xprt->addr, 316 RDMA_RESOLVE_TIMEOUT); 317 if (rc) 318 goto out; 319 rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout); 320 if (rc < 0) 321 goto out; 322 323 rc = ep->re_async_rc; 324 if (rc) 325 goto out; 326 327 ep->re_async_rc = -ETIMEDOUT; 328 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); 329 if (rc) 330 goto out; 331 rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout); 332 if (rc < 0) 333 goto out; 334 rc = ep->re_async_rc; 335 if (rc) 336 goto out; 337 338 return id; 339 340 out: 341 rdma_destroy_id(id); 342 return ERR_PTR(rc); 343 } 344 345 static void rpcrdma_ep_destroy(struct kref *kref) 346 { 347 struct rpcrdma_ep *ep = container_of(kref, struct rpcrdma_ep, re_kref); 348 349 if (ep->re_id->qp) { 350 rdma_destroy_qp(ep->re_id); 351 ep->re_id->qp = NULL; 352 } 353 354 if (ep->re_attr.recv_cq) 355 ib_free_cq(ep->re_attr.recv_cq); 356 ep->re_attr.recv_cq = NULL; 357 if (ep->re_attr.send_cq) 358 ib_free_cq(ep->re_attr.send_cq); 359 ep->re_attr.send_cq = NULL; 360 361 if (ep->re_pd) 362 ib_dealloc_pd(ep->re_pd); 363 ep->re_pd = NULL; 364 365 kfree(ep); 366 module_put(THIS_MODULE); 367 } 368 369 static noinline void rpcrdma_ep_get(struct rpcrdma_ep *ep) 370 { 371 kref_get(&ep->re_kref); 372 } 373 374 /* Returns: 375 * %0 if @ep still has a positive kref count, or 376 * %1 if @ep was destroyed successfully. 377 */ 378 static noinline int rpcrdma_ep_put(struct rpcrdma_ep *ep) 379 { 380 return kref_put(&ep->re_kref, rpcrdma_ep_destroy); 381 } 382 383 static int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt) 384 { 385 struct rpcrdma_connect_private *pmsg; 386 struct ib_device *device; 387 struct rdma_cm_id *id; 388 struct rpcrdma_ep *ep; 389 int rc; 390 391 ep = kzalloc(sizeof(*ep), GFP_NOFS); 392 if (!ep) 393 return -ENOTCONN; 394 ep->re_xprt = &r_xprt->rx_xprt; 395 kref_init(&ep->re_kref); 396 397 id = rpcrdma_create_id(r_xprt, ep); 398 if (IS_ERR(id)) { 399 kfree(ep); 400 return PTR_ERR(id); 401 } 402 __module_get(THIS_MODULE); 403 device = id->device; 404 ep->re_id = id; 405 reinit_completion(&ep->re_done); 406 407 ep->re_max_requests = r_xprt->rx_xprt.max_reqs; 408 ep->re_inline_send = xprt_rdma_max_inline_write; 409 ep->re_inline_recv = xprt_rdma_max_inline_read; 410 rc = frwr_query_device(ep, device); 411 if (rc) 412 goto out_destroy; 413 414 r_xprt->rx_buf.rb_max_requests = cpu_to_be32(ep->re_max_requests); 415 416 ep->re_attr.srq = NULL; 417 ep->re_attr.cap.max_inline_data = 0; 418 ep->re_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 419 ep->re_attr.qp_type = IB_QPT_RC; 420 ep->re_attr.port_num = ~0; 421 422 dprintk("RPC: %s: requested max: dtos: send %d recv %d; " 423 "iovs: send %d recv %d\n", 424 __func__, 425 ep->re_attr.cap.max_send_wr, 426 ep->re_attr.cap.max_recv_wr, 427 ep->re_attr.cap.max_send_sge, 428 ep->re_attr.cap.max_recv_sge); 429 430 ep->re_send_batch = ep->re_max_requests >> 3; 431 ep->re_send_count = ep->re_send_batch; 432 init_waitqueue_head(&ep->re_connect_wait); 433 434 ep->re_attr.send_cq = ib_alloc_cq_any(device, r_xprt, 435 ep->re_attr.cap.max_send_wr, 436 IB_POLL_WORKQUEUE); 437 if (IS_ERR(ep->re_attr.send_cq)) { 438 rc = PTR_ERR(ep->re_attr.send_cq); 439 goto out_destroy; 440 } 441 442 ep->re_attr.recv_cq = ib_alloc_cq_any(device, r_xprt, 443 ep->re_attr.cap.max_recv_wr, 444 IB_POLL_WORKQUEUE); 445 if (IS_ERR(ep->re_attr.recv_cq)) { 446 rc = PTR_ERR(ep->re_attr.recv_cq); 447 goto out_destroy; 448 } 449 ep->re_receive_count = 0; 450 451 /* Initialize cma parameters */ 452 memset(&ep->re_remote_cma, 0, sizeof(ep->re_remote_cma)); 453 454 /* Prepare RDMA-CM private message */ 455 pmsg = &ep->re_cm_private; 456 pmsg->cp_magic = rpcrdma_cmp_magic; 457 pmsg->cp_version = RPCRDMA_CMP_VERSION; 458 pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK; 459 pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->re_inline_send); 460 pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->re_inline_recv); 461 ep->re_remote_cma.private_data = pmsg; 462 ep->re_remote_cma.private_data_len = sizeof(*pmsg); 463 464 /* Client offers RDMA Read but does not initiate */ 465 ep->re_remote_cma.initiator_depth = 0; 466 ep->re_remote_cma.responder_resources = 467 min_t(int, U8_MAX, device->attrs.max_qp_rd_atom); 468 469 /* Limit transport retries so client can detect server 470 * GID changes quickly. RPC layer handles re-establishing 471 * transport connection and retransmission. 472 */ 473 ep->re_remote_cma.retry_count = 6; 474 475 /* RPC-over-RDMA handles its own flow control. In addition, 476 * make all RNR NAKs visible so we know that RPC-over-RDMA 477 * flow control is working correctly (no NAKs should be seen). 478 */ 479 ep->re_remote_cma.flow_control = 0; 480 ep->re_remote_cma.rnr_retry_count = 0; 481 482 ep->re_pd = ib_alloc_pd(device, 0); 483 if (IS_ERR(ep->re_pd)) { 484 rc = PTR_ERR(ep->re_pd); 485 goto out_destroy; 486 } 487 488 rc = rdma_create_qp(id, ep->re_pd, &ep->re_attr); 489 if (rc) 490 goto out_destroy; 491 492 r_xprt->rx_ep = ep; 493 return 0; 494 495 out_destroy: 496 rpcrdma_ep_put(ep); 497 rdma_destroy_id(id); 498 return rc; 499 } 500 501 /** 502 * rpcrdma_xprt_connect - Connect an unconnected transport 503 * @r_xprt: controlling transport instance 504 * 505 * Returns 0 on success or a negative errno. 506 */ 507 int rpcrdma_xprt_connect(struct rpcrdma_xprt *r_xprt) 508 { 509 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 510 struct rpcrdma_ep *ep; 511 int rc; 512 513 rc = rpcrdma_ep_create(r_xprt); 514 if (rc) 515 return rc; 516 ep = r_xprt->rx_ep; 517 518 xprt_clear_connected(xprt); 519 rpcrdma_reset_cwnd(r_xprt); 520 521 /* Bump the ep's reference count while there are 522 * outstanding Receives. 523 */ 524 rpcrdma_ep_get(ep); 525 rpcrdma_post_recvs(r_xprt, 1, true); 526 527 rc = rdma_connect(ep->re_id, &ep->re_remote_cma); 528 if (rc) 529 goto out; 530 531 if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO) 532 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO; 533 wait_event_interruptible(ep->re_connect_wait, 534 ep->re_connect_status != 0); 535 if (ep->re_connect_status <= 0) { 536 rc = ep->re_connect_status; 537 goto out; 538 } 539 540 rc = rpcrdma_sendctxs_create(r_xprt); 541 if (rc) { 542 rc = -ENOTCONN; 543 goto out; 544 } 545 546 rc = rpcrdma_reqs_setup(r_xprt); 547 if (rc) { 548 rc = -ENOTCONN; 549 goto out; 550 } 551 rpcrdma_mrs_create(r_xprt); 552 frwr_wp_create(r_xprt); 553 554 out: 555 trace_xprtrdma_connect(r_xprt, rc); 556 return rc; 557 } 558 559 /** 560 * rpcrdma_xprt_disconnect - Disconnect underlying transport 561 * @r_xprt: controlling transport instance 562 * 563 * Caller serializes. Either the transport send lock is held, 564 * or we're being called to destroy the transport. 565 * 566 * On return, @r_xprt is completely divested of all hardware 567 * resources and prepared for the next ->connect operation. 568 */ 569 void rpcrdma_xprt_disconnect(struct rpcrdma_xprt *r_xprt) 570 { 571 struct rpcrdma_ep *ep = r_xprt->rx_ep; 572 struct rdma_cm_id *id; 573 int rc; 574 575 if (!ep) 576 return; 577 578 id = ep->re_id; 579 rc = rdma_disconnect(id); 580 trace_xprtrdma_disconnect(r_xprt, rc); 581 582 rpcrdma_xprt_drain(r_xprt); 583 rpcrdma_reps_unmap(r_xprt); 584 rpcrdma_reqs_reset(r_xprt); 585 rpcrdma_mrs_destroy(r_xprt); 586 rpcrdma_sendctxs_destroy(r_xprt); 587 588 if (rpcrdma_ep_put(ep)) 589 rdma_destroy_id(id); 590 591 r_xprt->rx_ep = NULL; 592 } 593 594 /* Fixed-size circular FIFO queue. This implementation is wait-free and 595 * lock-free. 596 * 597 * Consumer is the code path that posts Sends. This path dequeues a 598 * sendctx for use by a Send operation. Multiple consumer threads 599 * are serialized by the RPC transport lock, which allows only one 600 * ->send_request call at a time. 601 * 602 * Producer is the code path that handles Send completions. This path 603 * enqueues a sendctx that has been completed. Multiple producer 604 * threads are serialized by the ib_poll_cq() function. 605 */ 606 607 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced 608 * queue activity, and rpcrdma_xprt_drain has flushed all remaining 609 * Send requests. 610 */ 611 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt) 612 { 613 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 614 unsigned long i; 615 616 if (!buf->rb_sc_ctxs) 617 return; 618 for (i = 0; i <= buf->rb_sc_last; i++) 619 kfree(buf->rb_sc_ctxs[i]); 620 kfree(buf->rb_sc_ctxs); 621 buf->rb_sc_ctxs = NULL; 622 } 623 624 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ep *ep) 625 { 626 struct rpcrdma_sendctx *sc; 627 628 sc = kzalloc(struct_size(sc, sc_sges, ep->re_attr.cap.max_send_sge), 629 GFP_KERNEL); 630 if (!sc) 631 return NULL; 632 633 sc->sc_cqe.done = rpcrdma_wc_send; 634 sc->sc_cid.ci_queue_id = ep->re_attr.send_cq->res.id; 635 sc->sc_cid.ci_completion_id = 636 atomic_inc_return(&ep->re_completion_ids); 637 return sc; 638 } 639 640 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt) 641 { 642 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 643 struct rpcrdma_sendctx *sc; 644 unsigned long i; 645 646 /* Maximum number of concurrent outstanding Send WRs. Capping 647 * the circular queue size stops Send Queue overflow by causing 648 * the ->send_request call to fail temporarily before too many 649 * Sends are posted. 650 */ 651 i = r_xprt->rx_ep->re_max_requests + RPCRDMA_MAX_BC_REQUESTS; 652 buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL); 653 if (!buf->rb_sc_ctxs) 654 return -ENOMEM; 655 656 buf->rb_sc_last = i - 1; 657 for (i = 0; i <= buf->rb_sc_last; i++) { 658 sc = rpcrdma_sendctx_create(r_xprt->rx_ep); 659 if (!sc) 660 return -ENOMEM; 661 662 buf->rb_sc_ctxs[i] = sc; 663 } 664 665 buf->rb_sc_head = 0; 666 buf->rb_sc_tail = 0; 667 return 0; 668 } 669 670 /* The sendctx queue is not guaranteed to have a size that is a 671 * power of two, thus the helpers in circ_buf.h cannot be used. 672 * The other option is to use modulus (%), which can be expensive. 673 */ 674 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf, 675 unsigned long item) 676 { 677 return likely(item < buf->rb_sc_last) ? item + 1 : 0; 678 } 679 680 /** 681 * rpcrdma_sendctx_get_locked - Acquire a send context 682 * @r_xprt: controlling transport instance 683 * 684 * Returns pointer to a free send completion context; or NULL if 685 * the queue is empty. 686 * 687 * Usage: Called to acquire an SGE array before preparing a Send WR. 688 * 689 * The caller serializes calls to this function (per transport), and 690 * provides an effective memory barrier that flushes the new value 691 * of rb_sc_head. 692 */ 693 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt) 694 { 695 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 696 struct rpcrdma_sendctx *sc; 697 unsigned long next_head; 698 699 next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head); 700 701 if (next_head == READ_ONCE(buf->rb_sc_tail)) 702 goto out_emptyq; 703 704 /* ORDER: item must be accessed _before_ head is updated */ 705 sc = buf->rb_sc_ctxs[next_head]; 706 707 /* Releasing the lock in the caller acts as a memory 708 * barrier that flushes rb_sc_head. 709 */ 710 buf->rb_sc_head = next_head; 711 712 return sc; 713 714 out_emptyq: 715 /* The queue is "empty" if there have not been enough Send 716 * completions recently. This is a sign the Send Queue is 717 * backing up. Cause the caller to pause and try again. 718 */ 719 xprt_wait_for_buffer_space(&r_xprt->rx_xprt); 720 r_xprt->rx_stats.empty_sendctx_q++; 721 return NULL; 722 } 723 724 /** 725 * rpcrdma_sendctx_put_locked - Release a send context 726 * @r_xprt: controlling transport instance 727 * @sc: send context to release 728 * 729 * Usage: Called from Send completion to return a sendctxt 730 * to the queue. 731 * 732 * The caller serializes calls to this function (per transport). 733 */ 734 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt, 735 struct rpcrdma_sendctx *sc) 736 { 737 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 738 unsigned long next_tail; 739 740 /* Unmap SGEs of previously completed but unsignaled 741 * Sends by walking up the queue until @sc is found. 742 */ 743 next_tail = buf->rb_sc_tail; 744 do { 745 next_tail = rpcrdma_sendctx_next(buf, next_tail); 746 747 /* ORDER: item must be accessed _before_ tail is updated */ 748 rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]); 749 750 } while (buf->rb_sc_ctxs[next_tail] != sc); 751 752 /* Paired with READ_ONCE */ 753 smp_store_release(&buf->rb_sc_tail, next_tail); 754 755 xprt_write_space(&r_xprt->rx_xprt); 756 } 757 758 static void 759 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt) 760 { 761 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 762 struct rpcrdma_ep *ep = r_xprt->rx_ep; 763 unsigned int count; 764 765 for (count = 0; count < ep->re_max_rdma_segs; count++) { 766 struct rpcrdma_mr *mr; 767 int rc; 768 769 mr = kzalloc(sizeof(*mr), GFP_NOFS); 770 if (!mr) 771 break; 772 773 rc = frwr_mr_init(r_xprt, mr); 774 if (rc) { 775 kfree(mr); 776 break; 777 } 778 779 spin_lock(&buf->rb_lock); 780 rpcrdma_mr_push(mr, &buf->rb_mrs); 781 list_add(&mr->mr_all, &buf->rb_all_mrs); 782 spin_unlock(&buf->rb_lock); 783 } 784 785 r_xprt->rx_stats.mrs_allocated += count; 786 trace_xprtrdma_createmrs(r_xprt, count); 787 } 788 789 static void 790 rpcrdma_mr_refresh_worker(struct work_struct *work) 791 { 792 struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer, 793 rb_refresh_worker); 794 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, 795 rx_buf); 796 797 rpcrdma_mrs_create(r_xprt); 798 xprt_write_space(&r_xprt->rx_xprt); 799 } 800 801 /** 802 * rpcrdma_mrs_refresh - Wake the MR refresh worker 803 * @r_xprt: controlling transport instance 804 * 805 */ 806 void rpcrdma_mrs_refresh(struct rpcrdma_xprt *r_xprt) 807 { 808 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 809 struct rpcrdma_ep *ep = r_xprt->rx_ep; 810 811 /* If there is no underlying connection, it's no use 812 * to wake the refresh worker. 813 */ 814 if (ep->re_connect_status == 1) { 815 /* The work is scheduled on a WQ_MEM_RECLAIM 816 * workqueue in order to prevent MR allocation 817 * from recursing into NFS during direct reclaim. 818 */ 819 queue_work(xprtiod_workqueue, &buf->rb_refresh_worker); 820 } 821 } 822 823 /** 824 * rpcrdma_req_create - Allocate an rpcrdma_req object 825 * @r_xprt: controlling r_xprt 826 * @size: initial size, in bytes, of send and receive buffers 827 * @flags: GFP flags passed to memory allocators 828 * 829 * Returns an allocated and fully initialized rpcrdma_req or NULL. 830 */ 831 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size, 832 gfp_t flags) 833 { 834 struct rpcrdma_buffer *buffer = &r_xprt->rx_buf; 835 struct rpcrdma_req *req; 836 837 req = kzalloc(sizeof(*req), flags); 838 if (req == NULL) 839 goto out1; 840 841 req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags); 842 if (!req->rl_sendbuf) 843 goto out2; 844 845 req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags); 846 if (!req->rl_recvbuf) 847 goto out3; 848 849 INIT_LIST_HEAD(&req->rl_free_mrs); 850 INIT_LIST_HEAD(&req->rl_registered); 851 spin_lock(&buffer->rb_lock); 852 list_add(&req->rl_all, &buffer->rb_allreqs); 853 spin_unlock(&buffer->rb_lock); 854 return req; 855 856 out3: 857 kfree(req->rl_sendbuf); 858 out2: 859 kfree(req); 860 out1: 861 return NULL; 862 } 863 864 /** 865 * rpcrdma_req_setup - Per-connection instance setup of an rpcrdma_req object 866 * @r_xprt: controlling transport instance 867 * @req: rpcrdma_req object to set up 868 * 869 * Returns zero on success, and a negative errno on failure. 870 */ 871 int rpcrdma_req_setup(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 872 { 873 struct rpcrdma_regbuf *rb; 874 size_t maxhdrsize; 875 876 /* Compute maximum header buffer size in bytes */ 877 maxhdrsize = rpcrdma_fixed_maxsz + 3 + 878 r_xprt->rx_ep->re_max_rdma_segs * rpcrdma_readchunk_maxsz; 879 maxhdrsize *= sizeof(__be32); 880 rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize), 881 DMA_TO_DEVICE, GFP_KERNEL); 882 if (!rb) 883 goto out; 884 885 if (!__rpcrdma_regbuf_dma_map(r_xprt, rb)) 886 goto out_free; 887 888 req->rl_rdmabuf = rb; 889 xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb)); 890 return 0; 891 892 out_free: 893 rpcrdma_regbuf_free(rb); 894 out: 895 return -ENOMEM; 896 } 897 898 /* ASSUMPTION: the rb_allreqs list is stable for the duration, 899 * and thus can be walked without holding rb_lock. Eg. the 900 * caller is holding the transport send lock to exclude 901 * device removal or disconnection. 902 */ 903 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt) 904 { 905 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 906 struct rpcrdma_req *req; 907 int rc; 908 909 list_for_each_entry(req, &buf->rb_allreqs, rl_all) { 910 rc = rpcrdma_req_setup(r_xprt, req); 911 if (rc) 912 return rc; 913 } 914 return 0; 915 } 916 917 static void rpcrdma_req_reset(struct rpcrdma_req *req) 918 { 919 /* Credits are valid for only one connection */ 920 req->rl_slot.rq_cong = 0; 921 922 rpcrdma_regbuf_free(req->rl_rdmabuf); 923 req->rl_rdmabuf = NULL; 924 925 rpcrdma_regbuf_dma_unmap(req->rl_sendbuf); 926 rpcrdma_regbuf_dma_unmap(req->rl_recvbuf); 927 928 frwr_reset(req); 929 } 930 931 /* ASSUMPTION: the rb_allreqs list is stable for the duration, 932 * and thus can be walked without holding rb_lock. Eg. the 933 * caller is holding the transport send lock to exclude 934 * device removal or disconnection. 935 */ 936 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt) 937 { 938 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 939 struct rpcrdma_req *req; 940 941 list_for_each_entry(req, &buf->rb_allreqs, rl_all) 942 rpcrdma_req_reset(req); 943 } 944 945 static noinline 946 struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt, 947 bool temp) 948 { 949 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 950 struct rpcrdma_rep *rep; 951 952 rep = kzalloc(sizeof(*rep), GFP_KERNEL); 953 if (rep == NULL) 954 goto out; 955 956 rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep->re_inline_recv, 957 DMA_FROM_DEVICE, GFP_KERNEL); 958 if (!rep->rr_rdmabuf) 959 goto out_free; 960 961 if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf)) 962 goto out_free_regbuf; 963 964 rep->rr_cid.ci_completion_id = 965 atomic_inc_return(&r_xprt->rx_ep->re_completion_ids); 966 967 xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf), 968 rdmab_length(rep->rr_rdmabuf)); 969 rep->rr_cqe.done = rpcrdma_wc_receive; 970 rep->rr_rxprt = r_xprt; 971 rep->rr_recv_wr.next = NULL; 972 rep->rr_recv_wr.wr_cqe = &rep->rr_cqe; 973 rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov; 974 rep->rr_recv_wr.num_sge = 1; 975 rep->rr_temp = temp; 976 977 spin_lock(&buf->rb_lock); 978 list_add(&rep->rr_all, &buf->rb_all_reps); 979 spin_unlock(&buf->rb_lock); 980 return rep; 981 982 out_free_regbuf: 983 rpcrdma_regbuf_free(rep->rr_rdmabuf); 984 out_free: 985 kfree(rep); 986 out: 987 return NULL; 988 } 989 990 static void rpcrdma_rep_free(struct rpcrdma_rep *rep) 991 { 992 rpcrdma_regbuf_free(rep->rr_rdmabuf); 993 kfree(rep); 994 } 995 996 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep) 997 { 998 struct rpcrdma_buffer *buf = &rep->rr_rxprt->rx_buf; 999 1000 spin_lock(&buf->rb_lock); 1001 list_del(&rep->rr_all); 1002 spin_unlock(&buf->rb_lock); 1003 1004 rpcrdma_rep_free(rep); 1005 } 1006 1007 static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf) 1008 { 1009 struct llist_node *node; 1010 1011 /* Calls to llist_del_first are required to be serialized */ 1012 node = llist_del_first(&buf->rb_free_reps); 1013 if (!node) 1014 return NULL; 1015 return llist_entry(node, struct rpcrdma_rep, rr_node); 1016 } 1017 1018 /** 1019 * rpcrdma_rep_put - Release rpcrdma_rep back to free list 1020 * @buf: buffer pool 1021 * @rep: rep to release 1022 * 1023 */ 1024 void rpcrdma_rep_put(struct rpcrdma_buffer *buf, struct rpcrdma_rep *rep) 1025 { 1026 llist_add(&rep->rr_node, &buf->rb_free_reps); 1027 } 1028 1029 /* Caller must ensure the QP is quiescent (RQ is drained) before 1030 * invoking this function, to guarantee rb_all_reps is not 1031 * changing. 1032 */ 1033 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt) 1034 { 1035 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1036 struct rpcrdma_rep *rep; 1037 1038 list_for_each_entry(rep, &buf->rb_all_reps, rr_all) { 1039 rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf); 1040 rep->rr_temp = true; /* Mark this rep for destruction */ 1041 } 1042 } 1043 1044 static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf) 1045 { 1046 struct rpcrdma_rep *rep; 1047 1048 spin_lock(&buf->rb_lock); 1049 while ((rep = list_first_entry_or_null(&buf->rb_all_reps, 1050 struct rpcrdma_rep, 1051 rr_all)) != NULL) { 1052 list_del(&rep->rr_all); 1053 spin_unlock(&buf->rb_lock); 1054 1055 rpcrdma_rep_free(rep); 1056 1057 spin_lock(&buf->rb_lock); 1058 } 1059 spin_unlock(&buf->rb_lock); 1060 } 1061 1062 /** 1063 * rpcrdma_buffer_create - Create initial set of req/rep objects 1064 * @r_xprt: transport instance to (re)initialize 1065 * 1066 * Returns zero on success, otherwise a negative errno. 1067 */ 1068 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt) 1069 { 1070 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1071 int i, rc; 1072 1073 buf->rb_bc_srv_max_requests = 0; 1074 spin_lock_init(&buf->rb_lock); 1075 INIT_LIST_HEAD(&buf->rb_mrs); 1076 INIT_LIST_HEAD(&buf->rb_all_mrs); 1077 INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker); 1078 1079 INIT_LIST_HEAD(&buf->rb_send_bufs); 1080 INIT_LIST_HEAD(&buf->rb_allreqs); 1081 INIT_LIST_HEAD(&buf->rb_all_reps); 1082 1083 rc = -ENOMEM; 1084 for (i = 0; i < r_xprt->rx_xprt.max_reqs; i++) { 1085 struct rpcrdma_req *req; 1086 1087 req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE * 2, 1088 GFP_KERNEL); 1089 if (!req) 1090 goto out; 1091 list_add(&req->rl_list, &buf->rb_send_bufs); 1092 } 1093 1094 init_llist_head(&buf->rb_free_reps); 1095 1096 return 0; 1097 out: 1098 rpcrdma_buffer_destroy(buf); 1099 return rc; 1100 } 1101 1102 /** 1103 * rpcrdma_req_destroy - Destroy an rpcrdma_req object 1104 * @req: unused object to be destroyed 1105 * 1106 * Relies on caller holding the transport send lock to protect 1107 * removing req->rl_all from buf->rb_all_reqs safely. 1108 */ 1109 void rpcrdma_req_destroy(struct rpcrdma_req *req) 1110 { 1111 struct rpcrdma_mr *mr; 1112 1113 list_del(&req->rl_all); 1114 1115 while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) { 1116 struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf; 1117 1118 spin_lock(&buf->rb_lock); 1119 list_del(&mr->mr_all); 1120 spin_unlock(&buf->rb_lock); 1121 1122 frwr_mr_release(mr); 1123 } 1124 1125 rpcrdma_regbuf_free(req->rl_recvbuf); 1126 rpcrdma_regbuf_free(req->rl_sendbuf); 1127 rpcrdma_regbuf_free(req->rl_rdmabuf); 1128 kfree(req); 1129 } 1130 1131 /** 1132 * rpcrdma_mrs_destroy - Release all of a transport's MRs 1133 * @r_xprt: controlling transport instance 1134 * 1135 * Relies on caller holding the transport send lock to protect 1136 * removing mr->mr_list from req->rl_free_mrs safely. 1137 */ 1138 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt) 1139 { 1140 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1141 struct rpcrdma_mr *mr; 1142 1143 cancel_work_sync(&buf->rb_refresh_worker); 1144 1145 spin_lock(&buf->rb_lock); 1146 while ((mr = list_first_entry_or_null(&buf->rb_all_mrs, 1147 struct rpcrdma_mr, 1148 mr_all)) != NULL) { 1149 list_del(&mr->mr_list); 1150 list_del(&mr->mr_all); 1151 spin_unlock(&buf->rb_lock); 1152 1153 frwr_mr_release(mr); 1154 1155 spin_lock(&buf->rb_lock); 1156 } 1157 spin_unlock(&buf->rb_lock); 1158 } 1159 1160 /** 1161 * rpcrdma_buffer_destroy - Release all hw resources 1162 * @buf: root control block for resources 1163 * 1164 * ORDERING: relies on a prior rpcrdma_xprt_drain : 1165 * - No more Send or Receive completions can occur 1166 * - All MRs, reps, and reqs are returned to their free lists 1167 */ 1168 void 1169 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf) 1170 { 1171 rpcrdma_reps_destroy(buf); 1172 1173 while (!list_empty(&buf->rb_send_bufs)) { 1174 struct rpcrdma_req *req; 1175 1176 req = list_first_entry(&buf->rb_send_bufs, 1177 struct rpcrdma_req, rl_list); 1178 list_del(&req->rl_list); 1179 rpcrdma_req_destroy(req); 1180 } 1181 } 1182 1183 /** 1184 * rpcrdma_mr_get - Allocate an rpcrdma_mr object 1185 * @r_xprt: controlling transport 1186 * 1187 * Returns an initialized rpcrdma_mr or NULL if no free 1188 * rpcrdma_mr objects are available. 1189 */ 1190 struct rpcrdma_mr * 1191 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt) 1192 { 1193 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1194 struct rpcrdma_mr *mr; 1195 1196 spin_lock(&buf->rb_lock); 1197 mr = rpcrdma_mr_pop(&buf->rb_mrs); 1198 spin_unlock(&buf->rb_lock); 1199 return mr; 1200 } 1201 1202 /** 1203 * rpcrdma_reply_put - Put reply buffers back into pool 1204 * @buffers: buffer pool 1205 * @req: object to return 1206 * 1207 */ 1208 void rpcrdma_reply_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req) 1209 { 1210 if (req->rl_reply) { 1211 rpcrdma_rep_put(buffers, req->rl_reply); 1212 req->rl_reply = NULL; 1213 } 1214 } 1215 1216 /** 1217 * rpcrdma_buffer_get - Get a request buffer 1218 * @buffers: Buffer pool from which to obtain a buffer 1219 * 1220 * Returns a fresh rpcrdma_req, or NULL if none are available. 1221 */ 1222 struct rpcrdma_req * 1223 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers) 1224 { 1225 struct rpcrdma_req *req; 1226 1227 spin_lock(&buffers->rb_lock); 1228 req = list_first_entry_or_null(&buffers->rb_send_bufs, 1229 struct rpcrdma_req, rl_list); 1230 if (req) 1231 list_del_init(&req->rl_list); 1232 spin_unlock(&buffers->rb_lock); 1233 return req; 1234 } 1235 1236 /** 1237 * rpcrdma_buffer_put - Put request/reply buffers back into pool 1238 * @buffers: buffer pool 1239 * @req: object to return 1240 * 1241 */ 1242 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req) 1243 { 1244 rpcrdma_reply_put(buffers, req); 1245 1246 spin_lock(&buffers->rb_lock); 1247 list_add(&req->rl_list, &buffers->rb_send_bufs); 1248 spin_unlock(&buffers->rb_lock); 1249 } 1250 1251 /* Returns a pointer to a rpcrdma_regbuf object, or NULL. 1252 * 1253 * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for 1254 * receiving the payload of RDMA RECV operations. During Long Calls 1255 * or Replies they may be registered externally via frwr_map. 1256 */ 1257 static struct rpcrdma_regbuf * 1258 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction, 1259 gfp_t flags) 1260 { 1261 struct rpcrdma_regbuf *rb; 1262 1263 rb = kmalloc(sizeof(*rb), flags); 1264 if (!rb) 1265 return NULL; 1266 rb->rg_data = kmalloc(size, flags); 1267 if (!rb->rg_data) { 1268 kfree(rb); 1269 return NULL; 1270 } 1271 1272 rb->rg_device = NULL; 1273 rb->rg_direction = direction; 1274 rb->rg_iov.length = size; 1275 return rb; 1276 } 1277 1278 /** 1279 * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer 1280 * @rb: regbuf to reallocate 1281 * @size: size of buffer to be allocated, in bytes 1282 * @flags: GFP flags 1283 * 1284 * Returns true if reallocation was successful. If false is 1285 * returned, @rb is left untouched. 1286 */ 1287 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags) 1288 { 1289 void *buf; 1290 1291 buf = kmalloc(size, flags); 1292 if (!buf) 1293 return false; 1294 1295 rpcrdma_regbuf_dma_unmap(rb); 1296 kfree(rb->rg_data); 1297 1298 rb->rg_data = buf; 1299 rb->rg_iov.length = size; 1300 return true; 1301 } 1302 1303 /** 1304 * __rpcrdma_regbuf_dma_map - DMA-map a regbuf 1305 * @r_xprt: controlling transport instance 1306 * @rb: regbuf to be mapped 1307 * 1308 * Returns true if the buffer is now DMA mapped to @r_xprt's device 1309 */ 1310 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt, 1311 struct rpcrdma_regbuf *rb) 1312 { 1313 struct ib_device *device = r_xprt->rx_ep->re_id->device; 1314 1315 if (rb->rg_direction == DMA_NONE) 1316 return false; 1317 1318 rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb), 1319 rdmab_length(rb), rb->rg_direction); 1320 if (ib_dma_mapping_error(device, rdmab_addr(rb))) { 1321 trace_xprtrdma_dma_maperr(rdmab_addr(rb)); 1322 return false; 1323 } 1324 1325 rb->rg_device = device; 1326 rb->rg_iov.lkey = r_xprt->rx_ep->re_pd->local_dma_lkey; 1327 return true; 1328 } 1329 1330 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb) 1331 { 1332 if (!rb) 1333 return; 1334 1335 if (!rpcrdma_regbuf_is_mapped(rb)) 1336 return; 1337 1338 ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb), 1339 rb->rg_direction); 1340 rb->rg_device = NULL; 1341 } 1342 1343 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb) 1344 { 1345 rpcrdma_regbuf_dma_unmap(rb); 1346 if (rb) 1347 kfree(rb->rg_data); 1348 kfree(rb); 1349 } 1350 1351 /** 1352 * rpcrdma_post_recvs - Refill the Receive Queue 1353 * @r_xprt: controlling transport instance 1354 * @needed: current credit grant 1355 * @temp: mark Receive buffers to be deleted after one use 1356 * 1357 */ 1358 void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, int needed, bool temp) 1359 { 1360 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1361 struct rpcrdma_ep *ep = r_xprt->rx_ep; 1362 struct ib_recv_wr *wr, *bad_wr; 1363 struct rpcrdma_rep *rep; 1364 int count, rc; 1365 1366 rc = 0; 1367 count = 0; 1368 1369 if (likely(ep->re_receive_count > needed)) 1370 goto out; 1371 needed -= ep->re_receive_count; 1372 if (!temp) 1373 needed += RPCRDMA_MAX_RECV_BATCH; 1374 1375 if (atomic_inc_return(&ep->re_receiving) > 1) 1376 goto out; 1377 1378 /* fast path: all needed reps can be found on the free list */ 1379 wr = NULL; 1380 while (needed) { 1381 rep = rpcrdma_rep_get_locked(buf); 1382 if (rep && rep->rr_temp) { 1383 rpcrdma_rep_destroy(rep); 1384 continue; 1385 } 1386 if (!rep) 1387 rep = rpcrdma_rep_create(r_xprt, temp); 1388 if (!rep) 1389 break; 1390 1391 rep->rr_cid.ci_queue_id = ep->re_attr.recv_cq->res.id; 1392 trace_xprtrdma_post_recv(rep); 1393 rep->rr_recv_wr.next = wr; 1394 wr = &rep->rr_recv_wr; 1395 --needed; 1396 ++count; 1397 } 1398 if (!wr) 1399 goto out; 1400 1401 rc = ib_post_recv(ep->re_id->qp, wr, 1402 (const struct ib_recv_wr **)&bad_wr); 1403 if (rc) { 1404 trace_xprtrdma_post_recvs_err(r_xprt, rc); 1405 for (wr = bad_wr; wr;) { 1406 struct rpcrdma_rep *rep; 1407 1408 rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr); 1409 wr = wr->next; 1410 rpcrdma_rep_put(buf, rep); 1411 --count; 1412 } 1413 } 1414 if (atomic_dec_return(&ep->re_receiving) > 0) 1415 complete(&ep->re_done); 1416 1417 out: 1418 trace_xprtrdma_post_recvs(r_xprt, count); 1419 ep->re_receive_count += count; 1420 return; 1421 } 1422