xref: /openbmc/linux/net/sunrpc/xprtrdma/verbs.c (revision 63705da3)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (c) 2014-2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the BSD-type
10  * license below:
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  *
16  *      Redistributions of source code must retain the above copyright
17  *      notice, this list of conditions and the following disclaimer.
18  *
19  *      Redistributions in binary form must reproduce the above
20  *      copyright notice, this list of conditions and the following
21  *      disclaimer in the documentation and/or other materials provided
22  *      with the distribution.
23  *
24  *      Neither the name of the Network Appliance, Inc. nor the names of
25  *      its contributors may be used to endorse or promote products
26  *      derived from this software without specific prior written
27  *      permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41 
42 /*
43  * verbs.c
44  *
45  * Encapsulates the major functions managing:
46  *  o adapters
47  *  o endpoints
48  *  o connections
49  *  o buffer memory
50  */
51 
52 #include <linux/interrupt.h>
53 #include <linux/slab.h>
54 #include <linux/sunrpc/addr.h>
55 #include <linux/sunrpc/svc_rdma.h>
56 #include <linux/log2.h>
57 
58 #include <asm-generic/barrier.h>
59 #include <asm/bitops.h>
60 
61 #include <rdma/ib_cm.h>
62 
63 #include "xprt_rdma.h"
64 #include <trace/events/rpcrdma.h>
65 
66 /*
67  * Globals/Macros
68  */
69 
70 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
71 # define RPCDBG_FACILITY	RPCDBG_TRANS
72 #endif
73 
74 /*
75  * internal functions
76  */
77 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt);
78 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt);
79 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
80 				       struct rpcrdma_sendctx *sc);
81 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt);
82 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt);
83 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep);
84 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt);
85 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt);
86 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt);
87 static void rpcrdma_ep_get(struct rpcrdma_ep *ep);
88 static int rpcrdma_ep_put(struct rpcrdma_ep *ep);
89 static struct rpcrdma_regbuf *
90 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
91 		     gfp_t flags);
92 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb);
93 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb);
94 
95 /* Wait for outstanding transport work to finish. ib_drain_qp
96  * handles the drains in the wrong order for us, so open code
97  * them here.
98  */
99 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt)
100 {
101 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
102 	struct rdma_cm_id *id = ep->re_id;
103 
104 	/* Wait for rpcrdma_post_recvs() to leave its critical
105 	 * section.
106 	 */
107 	if (atomic_inc_return(&ep->re_receiving) > 1)
108 		wait_for_completion(&ep->re_done);
109 
110 	/* Flush Receives, then wait for deferred Reply work
111 	 * to complete.
112 	 */
113 	ib_drain_rq(id->qp);
114 
115 	/* Deferred Reply processing might have scheduled
116 	 * local invalidations.
117 	 */
118 	ib_drain_sq(id->qp);
119 
120 	rpcrdma_ep_put(ep);
121 }
122 
123 /* Ensure xprt_force_disconnect() is invoked exactly once when a
124  * connection is closed or lost. (The important thing is it needs
125  * to be invoked "at least" once).
126  */
127 void rpcrdma_force_disconnect(struct rpcrdma_ep *ep)
128 {
129 	if (atomic_add_unless(&ep->re_force_disconnect, 1, 1))
130 		xprt_force_disconnect(ep->re_xprt);
131 }
132 
133 /**
134  * rpcrdma_flush_disconnect - Disconnect on flushed completion
135  * @r_xprt: transport to disconnect
136  * @wc: work completion entry
137  *
138  * Must be called in process context.
139  */
140 void rpcrdma_flush_disconnect(struct rpcrdma_xprt *r_xprt, struct ib_wc *wc)
141 {
142 	if (wc->status != IB_WC_SUCCESS)
143 		rpcrdma_force_disconnect(r_xprt->rx_ep);
144 }
145 
146 /**
147  * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
148  * @cq:	completion queue
149  * @wc:	WCE for a completed Send WR
150  *
151  */
152 static void rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
153 {
154 	struct ib_cqe *cqe = wc->wr_cqe;
155 	struct rpcrdma_sendctx *sc =
156 		container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
157 	struct rpcrdma_xprt *r_xprt = cq->cq_context;
158 
159 	/* WARNING: Only wr_cqe and status are reliable at this point */
160 	trace_xprtrdma_wc_send(wc, &sc->sc_cid);
161 	rpcrdma_sendctx_put_locked(r_xprt, sc);
162 	rpcrdma_flush_disconnect(r_xprt, wc);
163 }
164 
165 /**
166  * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
167  * @cq:	completion queue
168  * @wc:	WCE for a completed Receive WR
169  *
170  */
171 static void rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
172 {
173 	struct ib_cqe *cqe = wc->wr_cqe;
174 	struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
175 					       rr_cqe);
176 	struct rpcrdma_xprt *r_xprt = cq->cq_context;
177 
178 	/* WARNING: Only wr_cqe and status are reliable at this point */
179 	trace_xprtrdma_wc_receive(wc, &rep->rr_cid);
180 	--r_xprt->rx_ep->re_receive_count;
181 	if (wc->status != IB_WC_SUCCESS)
182 		goto out_flushed;
183 
184 	/* status == SUCCESS means all fields in wc are trustworthy */
185 	rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
186 	rep->rr_wc_flags = wc->wc_flags;
187 	rep->rr_inv_rkey = wc->ex.invalidate_rkey;
188 
189 	ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
190 				   rdmab_addr(rep->rr_rdmabuf),
191 				   wc->byte_len, DMA_FROM_DEVICE);
192 
193 	rpcrdma_reply_handler(rep);
194 	return;
195 
196 out_flushed:
197 	rpcrdma_flush_disconnect(r_xprt, wc);
198 	rpcrdma_rep_put(&r_xprt->rx_buf, rep);
199 }
200 
201 static void rpcrdma_update_cm_private(struct rpcrdma_ep *ep,
202 				      struct rdma_conn_param *param)
203 {
204 	const struct rpcrdma_connect_private *pmsg = param->private_data;
205 	unsigned int rsize, wsize;
206 
207 	/* Default settings for RPC-over-RDMA Version One */
208 	rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
209 	wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
210 
211 	if (pmsg &&
212 	    pmsg->cp_magic == rpcrdma_cmp_magic &&
213 	    pmsg->cp_version == RPCRDMA_CMP_VERSION) {
214 		rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
215 		wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
216 	}
217 
218 	if (rsize < ep->re_inline_recv)
219 		ep->re_inline_recv = rsize;
220 	if (wsize < ep->re_inline_send)
221 		ep->re_inline_send = wsize;
222 
223 	rpcrdma_set_max_header_sizes(ep);
224 }
225 
226 /**
227  * rpcrdma_cm_event_handler - Handle RDMA CM events
228  * @id: rdma_cm_id on which an event has occurred
229  * @event: details of the event
230  *
231  * Called with @id's mutex held. Returns 1 if caller should
232  * destroy @id, otherwise 0.
233  */
234 static int
235 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event)
236 {
237 	struct sockaddr *sap = (struct sockaddr *)&id->route.addr.dst_addr;
238 	struct rpcrdma_ep *ep = id->context;
239 
240 	might_sleep();
241 
242 	switch (event->event) {
243 	case RDMA_CM_EVENT_ADDR_RESOLVED:
244 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
245 		ep->re_async_rc = 0;
246 		complete(&ep->re_done);
247 		return 0;
248 	case RDMA_CM_EVENT_ADDR_ERROR:
249 		ep->re_async_rc = -EPROTO;
250 		complete(&ep->re_done);
251 		return 0;
252 	case RDMA_CM_EVENT_ROUTE_ERROR:
253 		ep->re_async_rc = -ENETUNREACH;
254 		complete(&ep->re_done);
255 		return 0;
256 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
257 		pr_info("rpcrdma: removing device %s for %pISpc\n",
258 			ep->re_id->device->name, sap);
259 		fallthrough;
260 	case RDMA_CM_EVENT_ADDR_CHANGE:
261 		ep->re_connect_status = -ENODEV;
262 		goto disconnected;
263 	case RDMA_CM_EVENT_ESTABLISHED:
264 		rpcrdma_ep_get(ep);
265 		ep->re_connect_status = 1;
266 		rpcrdma_update_cm_private(ep, &event->param.conn);
267 		trace_xprtrdma_inline_thresh(ep);
268 		wake_up_all(&ep->re_connect_wait);
269 		break;
270 	case RDMA_CM_EVENT_CONNECT_ERROR:
271 		ep->re_connect_status = -ENOTCONN;
272 		goto wake_connect_worker;
273 	case RDMA_CM_EVENT_UNREACHABLE:
274 		ep->re_connect_status = -ENETUNREACH;
275 		goto wake_connect_worker;
276 	case RDMA_CM_EVENT_REJECTED:
277 		dprintk("rpcrdma: connection to %pISpc rejected: %s\n",
278 			sap, rdma_reject_msg(id, event->status));
279 		ep->re_connect_status = -ECONNREFUSED;
280 		if (event->status == IB_CM_REJ_STALE_CONN)
281 			ep->re_connect_status = -ENOTCONN;
282 wake_connect_worker:
283 		wake_up_all(&ep->re_connect_wait);
284 		return 0;
285 	case RDMA_CM_EVENT_DISCONNECTED:
286 		ep->re_connect_status = -ECONNABORTED;
287 disconnected:
288 		rpcrdma_force_disconnect(ep);
289 		return rpcrdma_ep_put(ep);
290 	default:
291 		break;
292 	}
293 
294 	dprintk("RPC:       %s: %pISpc on %s/frwr: %s\n", __func__, sap,
295 		ep->re_id->device->name, rdma_event_msg(event->event));
296 	return 0;
297 }
298 
299 static struct rdma_cm_id *rpcrdma_create_id(struct rpcrdma_xprt *r_xprt,
300 					    struct rpcrdma_ep *ep)
301 {
302 	unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
303 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
304 	struct rdma_cm_id *id;
305 	int rc;
306 
307 	init_completion(&ep->re_done);
308 
309 	id = rdma_create_id(xprt->xprt_net, rpcrdma_cm_event_handler, ep,
310 			    RDMA_PS_TCP, IB_QPT_RC);
311 	if (IS_ERR(id))
312 		return id;
313 
314 	ep->re_async_rc = -ETIMEDOUT;
315 	rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)&xprt->addr,
316 			       RDMA_RESOLVE_TIMEOUT);
317 	if (rc)
318 		goto out;
319 	rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
320 	if (rc < 0)
321 		goto out;
322 
323 	rc = ep->re_async_rc;
324 	if (rc)
325 		goto out;
326 
327 	ep->re_async_rc = -ETIMEDOUT;
328 	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
329 	if (rc)
330 		goto out;
331 	rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
332 	if (rc < 0)
333 		goto out;
334 	rc = ep->re_async_rc;
335 	if (rc)
336 		goto out;
337 
338 	return id;
339 
340 out:
341 	rdma_destroy_id(id);
342 	return ERR_PTR(rc);
343 }
344 
345 static void rpcrdma_ep_destroy(struct kref *kref)
346 {
347 	struct rpcrdma_ep *ep = container_of(kref, struct rpcrdma_ep, re_kref);
348 
349 	if (ep->re_id->qp) {
350 		rdma_destroy_qp(ep->re_id);
351 		ep->re_id->qp = NULL;
352 	}
353 
354 	if (ep->re_attr.recv_cq)
355 		ib_free_cq(ep->re_attr.recv_cq);
356 	ep->re_attr.recv_cq = NULL;
357 	if (ep->re_attr.send_cq)
358 		ib_free_cq(ep->re_attr.send_cq);
359 	ep->re_attr.send_cq = NULL;
360 
361 	if (ep->re_pd)
362 		ib_dealloc_pd(ep->re_pd);
363 	ep->re_pd = NULL;
364 
365 	kfree(ep);
366 	module_put(THIS_MODULE);
367 }
368 
369 static noinline void rpcrdma_ep_get(struct rpcrdma_ep *ep)
370 {
371 	kref_get(&ep->re_kref);
372 }
373 
374 /* Returns:
375  *     %0 if @ep still has a positive kref count, or
376  *     %1 if @ep was destroyed successfully.
377  */
378 static noinline int rpcrdma_ep_put(struct rpcrdma_ep *ep)
379 {
380 	return kref_put(&ep->re_kref, rpcrdma_ep_destroy);
381 }
382 
383 static int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt)
384 {
385 	struct rpcrdma_connect_private *pmsg;
386 	struct ib_device *device;
387 	struct rdma_cm_id *id;
388 	struct rpcrdma_ep *ep;
389 	int rc;
390 
391 	ep = kzalloc(sizeof(*ep), GFP_NOFS);
392 	if (!ep)
393 		return -ENOTCONN;
394 	ep->re_xprt = &r_xprt->rx_xprt;
395 	kref_init(&ep->re_kref);
396 
397 	id = rpcrdma_create_id(r_xprt, ep);
398 	if (IS_ERR(id)) {
399 		kfree(ep);
400 		return PTR_ERR(id);
401 	}
402 	__module_get(THIS_MODULE);
403 	device = id->device;
404 	ep->re_id = id;
405 	reinit_completion(&ep->re_done);
406 
407 	ep->re_max_requests = r_xprt->rx_xprt.max_reqs;
408 	ep->re_inline_send = xprt_rdma_max_inline_write;
409 	ep->re_inline_recv = xprt_rdma_max_inline_read;
410 	rc = frwr_query_device(ep, device);
411 	if (rc)
412 		goto out_destroy;
413 
414 	r_xprt->rx_buf.rb_max_requests = cpu_to_be32(ep->re_max_requests);
415 
416 	ep->re_attr.srq = NULL;
417 	ep->re_attr.cap.max_inline_data = 0;
418 	ep->re_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
419 	ep->re_attr.qp_type = IB_QPT_RC;
420 	ep->re_attr.port_num = ~0;
421 
422 	dprintk("RPC:       %s: requested max: dtos: send %d recv %d; "
423 		"iovs: send %d recv %d\n",
424 		__func__,
425 		ep->re_attr.cap.max_send_wr,
426 		ep->re_attr.cap.max_recv_wr,
427 		ep->re_attr.cap.max_send_sge,
428 		ep->re_attr.cap.max_recv_sge);
429 
430 	ep->re_send_batch = ep->re_max_requests >> 3;
431 	ep->re_send_count = ep->re_send_batch;
432 	init_waitqueue_head(&ep->re_connect_wait);
433 
434 	ep->re_attr.send_cq = ib_alloc_cq_any(device, r_xprt,
435 					      ep->re_attr.cap.max_send_wr,
436 					      IB_POLL_WORKQUEUE);
437 	if (IS_ERR(ep->re_attr.send_cq)) {
438 		rc = PTR_ERR(ep->re_attr.send_cq);
439 		goto out_destroy;
440 	}
441 
442 	ep->re_attr.recv_cq = ib_alloc_cq_any(device, r_xprt,
443 					      ep->re_attr.cap.max_recv_wr,
444 					      IB_POLL_WORKQUEUE);
445 	if (IS_ERR(ep->re_attr.recv_cq)) {
446 		rc = PTR_ERR(ep->re_attr.recv_cq);
447 		goto out_destroy;
448 	}
449 	ep->re_receive_count = 0;
450 
451 	/* Initialize cma parameters */
452 	memset(&ep->re_remote_cma, 0, sizeof(ep->re_remote_cma));
453 
454 	/* Prepare RDMA-CM private message */
455 	pmsg = &ep->re_cm_private;
456 	pmsg->cp_magic = rpcrdma_cmp_magic;
457 	pmsg->cp_version = RPCRDMA_CMP_VERSION;
458 	pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK;
459 	pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->re_inline_send);
460 	pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->re_inline_recv);
461 	ep->re_remote_cma.private_data = pmsg;
462 	ep->re_remote_cma.private_data_len = sizeof(*pmsg);
463 
464 	/* Client offers RDMA Read but does not initiate */
465 	ep->re_remote_cma.initiator_depth = 0;
466 	ep->re_remote_cma.responder_resources =
467 		min_t(int, U8_MAX, device->attrs.max_qp_rd_atom);
468 
469 	/* Limit transport retries so client can detect server
470 	 * GID changes quickly. RPC layer handles re-establishing
471 	 * transport connection and retransmission.
472 	 */
473 	ep->re_remote_cma.retry_count = 6;
474 
475 	/* RPC-over-RDMA handles its own flow control. In addition,
476 	 * make all RNR NAKs visible so we know that RPC-over-RDMA
477 	 * flow control is working correctly (no NAKs should be seen).
478 	 */
479 	ep->re_remote_cma.flow_control = 0;
480 	ep->re_remote_cma.rnr_retry_count = 0;
481 
482 	ep->re_pd = ib_alloc_pd(device, 0);
483 	if (IS_ERR(ep->re_pd)) {
484 		rc = PTR_ERR(ep->re_pd);
485 		goto out_destroy;
486 	}
487 
488 	rc = rdma_create_qp(id, ep->re_pd, &ep->re_attr);
489 	if (rc)
490 		goto out_destroy;
491 
492 	r_xprt->rx_ep = ep;
493 	return 0;
494 
495 out_destroy:
496 	rpcrdma_ep_put(ep);
497 	rdma_destroy_id(id);
498 	return rc;
499 }
500 
501 /**
502  * rpcrdma_xprt_connect - Connect an unconnected transport
503  * @r_xprt: controlling transport instance
504  *
505  * Returns 0 on success or a negative errno.
506  */
507 int rpcrdma_xprt_connect(struct rpcrdma_xprt *r_xprt)
508 {
509 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
510 	struct rpcrdma_ep *ep;
511 	int rc;
512 
513 	rc = rpcrdma_ep_create(r_xprt);
514 	if (rc)
515 		return rc;
516 	ep = r_xprt->rx_ep;
517 
518 	xprt_clear_connected(xprt);
519 	rpcrdma_reset_cwnd(r_xprt);
520 
521 	/* Bump the ep's reference count while there are
522 	 * outstanding Receives.
523 	 */
524 	rpcrdma_ep_get(ep);
525 	rpcrdma_post_recvs(r_xprt, 1, true);
526 
527 	rc = rdma_connect(ep->re_id, &ep->re_remote_cma);
528 	if (rc)
529 		goto out;
530 
531 	if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
532 		xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
533 	wait_event_interruptible(ep->re_connect_wait,
534 				 ep->re_connect_status != 0);
535 	if (ep->re_connect_status <= 0) {
536 		rc = ep->re_connect_status;
537 		goto out;
538 	}
539 
540 	rc = rpcrdma_sendctxs_create(r_xprt);
541 	if (rc) {
542 		rc = -ENOTCONN;
543 		goto out;
544 	}
545 
546 	rc = rpcrdma_reqs_setup(r_xprt);
547 	if (rc) {
548 		rc = -ENOTCONN;
549 		goto out;
550 	}
551 	rpcrdma_mrs_create(r_xprt);
552 	frwr_wp_create(r_xprt);
553 
554 out:
555 	trace_xprtrdma_connect(r_xprt, rc);
556 	return rc;
557 }
558 
559 /**
560  * rpcrdma_xprt_disconnect - Disconnect underlying transport
561  * @r_xprt: controlling transport instance
562  *
563  * Caller serializes. Either the transport send lock is held,
564  * or we're being called to destroy the transport.
565  *
566  * On return, @r_xprt is completely divested of all hardware
567  * resources and prepared for the next ->connect operation.
568  */
569 void rpcrdma_xprt_disconnect(struct rpcrdma_xprt *r_xprt)
570 {
571 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
572 	struct rdma_cm_id *id;
573 	int rc;
574 
575 	if (!ep)
576 		return;
577 
578 	id = ep->re_id;
579 	rc = rdma_disconnect(id);
580 	trace_xprtrdma_disconnect(r_xprt, rc);
581 
582 	rpcrdma_xprt_drain(r_xprt);
583 	rpcrdma_reps_unmap(r_xprt);
584 	rpcrdma_reqs_reset(r_xprt);
585 	rpcrdma_mrs_destroy(r_xprt);
586 	rpcrdma_sendctxs_destroy(r_xprt);
587 
588 	if (rpcrdma_ep_put(ep))
589 		rdma_destroy_id(id);
590 
591 	r_xprt->rx_ep = NULL;
592 }
593 
594 /* Fixed-size circular FIFO queue. This implementation is wait-free and
595  * lock-free.
596  *
597  * Consumer is the code path that posts Sends. This path dequeues a
598  * sendctx for use by a Send operation. Multiple consumer threads
599  * are serialized by the RPC transport lock, which allows only one
600  * ->send_request call at a time.
601  *
602  * Producer is the code path that handles Send completions. This path
603  * enqueues a sendctx that has been completed. Multiple producer
604  * threads are serialized by the ib_poll_cq() function.
605  */
606 
607 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
608  * queue activity, and rpcrdma_xprt_drain has flushed all remaining
609  * Send requests.
610  */
611 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt)
612 {
613 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
614 	unsigned long i;
615 
616 	if (!buf->rb_sc_ctxs)
617 		return;
618 	for (i = 0; i <= buf->rb_sc_last; i++)
619 		kfree(buf->rb_sc_ctxs[i]);
620 	kfree(buf->rb_sc_ctxs);
621 	buf->rb_sc_ctxs = NULL;
622 }
623 
624 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ep *ep)
625 {
626 	struct rpcrdma_sendctx *sc;
627 
628 	sc = kzalloc(struct_size(sc, sc_sges, ep->re_attr.cap.max_send_sge),
629 		     GFP_KERNEL);
630 	if (!sc)
631 		return NULL;
632 
633 	sc->sc_cqe.done = rpcrdma_wc_send;
634 	sc->sc_cid.ci_queue_id = ep->re_attr.send_cq->res.id;
635 	sc->sc_cid.ci_completion_id =
636 		atomic_inc_return(&ep->re_completion_ids);
637 	return sc;
638 }
639 
640 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
641 {
642 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
643 	struct rpcrdma_sendctx *sc;
644 	unsigned long i;
645 
646 	/* Maximum number of concurrent outstanding Send WRs. Capping
647 	 * the circular queue size stops Send Queue overflow by causing
648 	 * the ->send_request call to fail temporarily before too many
649 	 * Sends are posted.
650 	 */
651 	i = r_xprt->rx_ep->re_max_requests + RPCRDMA_MAX_BC_REQUESTS;
652 	buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL);
653 	if (!buf->rb_sc_ctxs)
654 		return -ENOMEM;
655 
656 	buf->rb_sc_last = i - 1;
657 	for (i = 0; i <= buf->rb_sc_last; i++) {
658 		sc = rpcrdma_sendctx_create(r_xprt->rx_ep);
659 		if (!sc)
660 			return -ENOMEM;
661 
662 		buf->rb_sc_ctxs[i] = sc;
663 	}
664 
665 	buf->rb_sc_head = 0;
666 	buf->rb_sc_tail = 0;
667 	return 0;
668 }
669 
670 /* The sendctx queue is not guaranteed to have a size that is a
671  * power of two, thus the helpers in circ_buf.h cannot be used.
672  * The other option is to use modulus (%), which can be expensive.
673  */
674 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
675 					  unsigned long item)
676 {
677 	return likely(item < buf->rb_sc_last) ? item + 1 : 0;
678 }
679 
680 /**
681  * rpcrdma_sendctx_get_locked - Acquire a send context
682  * @r_xprt: controlling transport instance
683  *
684  * Returns pointer to a free send completion context; or NULL if
685  * the queue is empty.
686  *
687  * Usage: Called to acquire an SGE array before preparing a Send WR.
688  *
689  * The caller serializes calls to this function (per transport), and
690  * provides an effective memory barrier that flushes the new value
691  * of rb_sc_head.
692  */
693 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt)
694 {
695 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
696 	struct rpcrdma_sendctx *sc;
697 	unsigned long next_head;
698 
699 	next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
700 
701 	if (next_head == READ_ONCE(buf->rb_sc_tail))
702 		goto out_emptyq;
703 
704 	/* ORDER: item must be accessed _before_ head is updated */
705 	sc = buf->rb_sc_ctxs[next_head];
706 
707 	/* Releasing the lock in the caller acts as a memory
708 	 * barrier that flushes rb_sc_head.
709 	 */
710 	buf->rb_sc_head = next_head;
711 
712 	return sc;
713 
714 out_emptyq:
715 	/* The queue is "empty" if there have not been enough Send
716 	 * completions recently. This is a sign the Send Queue is
717 	 * backing up. Cause the caller to pause and try again.
718 	 */
719 	xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
720 	r_xprt->rx_stats.empty_sendctx_q++;
721 	return NULL;
722 }
723 
724 /**
725  * rpcrdma_sendctx_put_locked - Release a send context
726  * @r_xprt: controlling transport instance
727  * @sc: send context to release
728  *
729  * Usage: Called from Send completion to return a sendctxt
730  * to the queue.
731  *
732  * The caller serializes calls to this function (per transport).
733  */
734 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
735 				       struct rpcrdma_sendctx *sc)
736 {
737 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
738 	unsigned long next_tail;
739 
740 	/* Unmap SGEs of previously completed but unsignaled
741 	 * Sends by walking up the queue until @sc is found.
742 	 */
743 	next_tail = buf->rb_sc_tail;
744 	do {
745 		next_tail = rpcrdma_sendctx_next(buf, next_tail);
746 
747 		/* ORDER: item must be accessed _before_ tail is updated */
748 		rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]);
749 
750 	} while (buf->rb_sc_ctxs[next_tail] != sc);
751 
752 	/* Paired with READ_ONCE */
753 	smp_store_release(&buf->rb_sc_tail, next_tail);
754 
755 	xprt_write_space(&r_xprt->rx_xprt);
756 }
757 
758 static void
759 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt)
760 {
761 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
762 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
763 	unsigned int count;
764 
765 	for (count = 0; count < ep->re_max_rdma_segs; count++) {
766 		struct rpcrdma_mr *mr;
767 		int rc;
768 
769 		mr = kzalloc(sizeof(*mr), GFP_NOFS);
770 		if (!mr)
771 			break;
772 
773 		rc = frwr_mr_init(r_xprt, mr);
774 		if (rc) {
775 			kfree(mr);
776 			break;
777 		}
778 
779 		spin_lock(&buf->rb_lock);
780 		rpcrdma_mr_push(mr, &buf->rb_mrs);
781 		list_add(&mr->mr_all, &buf->rb_all_mrs);
782 		spin_unlock(&buf->rb_lock);
783 	}
784 
785 	r_xprt->rx_stats.mrs_allocated += count;
786 	trace_xprtrdma_createmrs(r_xprt, count);
787 }
788 
789 static void
790 rpcrdma_mr_refresh_worker(struct work_struct *work)
791 {
792 	struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
793 						  rb_refresh_worker);
794 	struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
795 						   rx_buf);
796 
797 	rpcrdma_mrs_create(r_xprt);
798 	xprt_write_space(&r_xprt->rx_xprt);
799 }
800 
801 /**
802  * rpcrdma_mrs_refresh - Wake the MR refresh worker
803  * @r_xprt: controlling transport instance
804  *
805  */
806 void rpcrdma_mrs_refresh(struct rpcrdma_xprt *r_xprt)
807 {
808 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
809 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
810 
811 	/* If there is no underlying connection, it's no use
812 	 * to wake the refresh worker.
813 	 */
814 	if (ep->re_connect_status == 1) {
815 		/* The work is scheduled on a WQ_MEM_RECLAIM
816 		 * workqueue in order to prevent MR allocation
817 		 * from recursing into NFS during direct reclaim.
818 		 */
819 		queue_work(xprtiod_workqueue, &buf->rb_refresh_worker);
820 	}
821 }
822 
823 /**
824  * rpcrdma_req_create - Allocate an rpcrdma_req object
825  * @r_xprt: controlling r_xprt
826  * @size: initial size, in bytes, of send and receive buffers
827  * @flags: GFP flags passed to memory allocators
828  *
829  * Returns an allocated and fully initialized rpcrdma_req or NULL.
830  */
831 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size,
832 				       gfp_t flags)
833 {
834 	struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
835 	struct rpcrdma_req *req;
836 
837 	req = kzalloc(sizeof(*req), flags);
838 	if (req == NULL)
839 		goto out1;
840 
841 	req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags);
842 	if (!req->rl_sendbuf)
843 		goto out2;
844 
845 	req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags);
846 	if (!req->rl_recvbuf)
847 		goto out3;
848 
849 	INIT_LIST_HEAD(&req->rl_free_mrs);
850 	INIT_LIST_HEAD(&req->rl_registered);
851 	spin_lock(&buffer->rb_lock);
852 	list_add(&req->rl_all, &buffer->rb_allreqs);
853 	spin_unlock(&buffer->rb_lock);
854 	return req;
855 
856 out3:
857 	kfree(req->rl_sendbuf);
858 out2:
859 	kfree(req);
860 out1:
861 	return NULL;
862 }
863 
864 /**
865  * rpcrdma_req_setup - Per-connection instance setup of an rpcrdma_req object
866  * @r_xprt: controlling transport instance
867  * @req: rpcrdma_req object to set up
868  *
869  * Returns zero on success, and a negative errno on failure.
870  */
871 int rpcrdma_req_setup(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
872 {
873 	struct rpcrdma_regbuf *rb;
874 	size_t maxhdrsize;
875 
876 	/* Compute maximum header buffer size in bytes */
877 	maxhdrsize = rpcrdma_fixed_maxsz + 3 +
878 		     r_xprt->rx_ep->re_max_rdma_segs * rpcrdma_readchunk_maxsz;
879 	maxhdrsize *= sizeof(__be32);
880 	rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize),
881 				  DMA_TO_DEVICE, GFP_KERNEL);
882 	if (!rb)
883 		goto out;
884 
885 	if (!__rpcrdma_regbuf_dma_map(r_xprt, rb))
886 		goto out_free;
887 
888 	req->rl_rdmabuf = rb;
889 	xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb));
890 	return 0;
891 
892 out_free:
893 	rpcrdma_regbuf_free(rb);
894 out:
895 	return -ENOMEM;
896 }
897 
898 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
899  * and thus can be walked without holding rb_lock. Eg. the
900  * caller is holding the transport send lock to exclude
901  * device removal or disconnection.
902  */
903 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt)
904 {
905 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
906 	struct rpcrdma_req *req;
907 	int rc;
908 
909 	list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
910 		rc = rpcrdma_req_setup(r_xprt, req);
911 		if (rc)
912 			return rc;
913 	}
914 	return 0;
915 }
916 
917 static void rpcrdma_req_reset(struct rpcrdma_req *req)
918 {
919 	/* Credits are valid for only one connection */
920 	req->rl_slot.rq_cong = 0;
921 
922 	rpcrdma_regbuf_free(req->rl_rdmabuf);
923 	req->rl_rdmabuf = NULL;
924 
925 	rpcrdma_regbuf_dma_unmap(req->rl_sendbuf);
926 	rpcrdma_regbuf_dma_unmap(req->rl_recvbuf);
927 
928 	frwr_reset(req);
929 }
930 
931 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
932  * and thus can be walked without holding rb_lock. Eg. the
933  * caller is holding the transport send lock to exclude
934  * device removal or disconnection.
935  */
936 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt)
937 {
938 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
939 	struct rpcrdma_req *req;
940 
941 	list_for_each_entry(req, &buf->rb_allreqs, rl_all)
942 		rpcrdma_req_reset(req);
943 }
944 
945 static noinline
946 struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt,
947 				       bool temp)
948 {
949 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
950 	struct rpcrdma_rep *rep;
951 
952 	rep = kzalloc(sizeof(*rep), GFP_KERNEL);
953 	if (rep == NULL)
954 		goto out;
955 
956 	rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep->re_inline_recv,
957 					       DMA_FROM_DEVICE, GFP_KERNEL);
958 	if (!rep->rr_rdmabuf)
959 		goto out_free;
960 
961 	if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf))
962 		goto out_free_regbuf;
963 
964 	rep->rr_cid.ci_completion_id =
965 		atomic_inc_return(&r_xprt->rx_ep->re_completion_ids);
966 
967 	xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf),
968 		     rdmab_length(rep->rr_rdmabuf));
969 	rep->rr_cqe.done = rpcrdma_wc_receive;
970 	rep->rr_rxprt = r_xprt;
971 	rep->rr_recv_wr.next = NULL;
972 	rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
973 	rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
974 	rep->rr_recv_wr.num_sge = 1;
975 	rep->rr_temp = temp;
976 
977 	spin_lock(&buf->rb_lock);
978 	list_add(&rep->rr_all, &buf->rb_all_reps);
979 	spin_unlock(&buf->rb_lock);
980 	return rep;
981 
982 out_free_regbuf:
983 	rpcrdma_regbuf_free(rep->rr_rdmabuf);
984 out_free:
985 	kfree(rep);
986 out:
987 	return NULL;
988 }
989 
990 static void rpcrdma_rep_free(struct rpcrdma_rep *rep)
991 {
992 	rpcrdma_regbuf_free(rep->rr_rdmabuf);
993 	kfree(rep);
994 }
995 
996 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep)
997 {
998 	struct rpcrdma_buffer *buf = &rep->rr_rxprt->rx_buf;
999 
1000 	spin_lock(&buf->rb_lock);
1001 	list_del(&rep->rr_all);
1002 	spin_unlock(&buf->rb_lock);
1003 
1004 	rpcrdma_rep_free(rep);
1005 }
1006 
1007 static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf)
1008 {
1009 	struct llist_node *node;
1010 
1011 	/* Calls to llist_del_first are required to be serialized */
1012 	node = llist_del_first(&buf->rb_free_reps);
1013 	if (!node)
1014 		return NULL;
1015 	return llist_entry(node, struct rpcrdma_rep, rr_node);
1016 }
1017 
1018 /**
1019  * rpcrdma_rep_put - Release rpcrdma_rep back to free list
1020  * @buf: buffer pool
1021  * @rep: rep to release
1022  *
1023  */
1024 void rpcrdma_rep_put(struct rpcrdma_buffer *buf, struct rpcrdma_rep *rep)
1025 {
1026 	llist_add(&rep->rr_node, &buf->rb_free_reps);
1027 }
1028 
1029 /* Caller must ensure the QP is quiescent (RQ is drained) before
1030  * invoking this function, to guarantee rb_all_reps is not
1031  * changing.
1032  */
1033 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt)
1034 {
1035 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1036 	struct rpcrdma_rep *rep;
1037 
1038 	list_for_each_entry(rep, &buf->rb_all_reps, rr_all) {
1039 		rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf);
1040 		rep->rr_temp = true;	/* Mark this rep for destruction */
1041 	}
1042 }
1043 
1044 static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf)
1045 {
1046 	struct rpcrdma_rep *rep;
1047 
1048 	spin_lock(&buf->rb_lock);
1049 	while ((rep = list_first_entry_or_null(&buf->rb_all_reps,
1050 					       struct rpcrdma_rep,
1051 					       rr_all)) != NULL) {
1052 		list_del(&rep->rr_all);
1053 		spin_unlock(&buf->rb_lock);
1054 
1055 		rpcrdma_rep_free(rep);
1056 
1057 		spin_lock(&buf->rb_lock);
1058 	}
1059 	spin_unlock(&buf->rb_lock);
1060 }
1061 
1062 /**
1063  * rpcrdma_buffer_create - Create initial set of req/rep objects
1064  * @r_xprt: transport instance to (re)initialize
1065  *
1066  * Returns zero on success, otherwise a negative errno.
1067  */
1068 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1069 {
1070 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1071 	int i, rc;
1072 
1073 	buf->rb_bc_srv_max_requests = 0;
1074 	spin_lock_init(&buf->rb_lock);
1075 	INIT_LIST_HEAD(&buf->rb_mrs);
1076 	INIT_LIST_HEAD(&buf->rb_all_mrs);
1077 	INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker);
1078 
1079 	INIT_LIST_HEAD(&buf->rb_send_bufs);
1080 	INIT_LIST_HEAD(&buf->rb_allreqs);
1081 	INIT_LIST_HEAD(&buf->rb_all_reps);
1082 
1083 	rc = -ENOMEM;
1084 	for (i = 0; i < r_xprt->rx_xprt.max_reqs; i++) {
1085 		struct rpcrdma_req *req;
1086 
1087 		req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE * 2,
1088 					 GFP_KERNEL);
1089 		if (!req)
1090 			goto out;
1091 		list_add(&req->rl_list, &buf->rb_send_bufs);
1092 	}
1093 
1094 	init_llist_head(&buf->rb_free_reps);
1095 
1096 	return 0;
1097 out:
1098 	rpcrdma_buffer_destroy(buf);
1099 	return rc;
1100 }
1101 
1102 /**
1103  * rpcrdma_req_destroy - Destroy an rpcrdma_req object
1104  * @req: unused object to be destroyed
1105  *
1106  * Relies on caller holding the transport send lock to protect
1107  * removing req->rl_all from buf->rb_all_reqs safely.
1108  */
1109 void rpcrdma_req_destroy(struct rpcrdma_req *req)
1110 {
1111 	struct rpcrdma_mr *mr;
1112 
1113 	list_del(&req->rl_all);
1114 
1115 	while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) {
1116 		struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf;
1117 
1118 		spin_lock(&buf->rb_lock);
1119 		list_del(&mr->mr_all);
1120 		spin_unlock(&buf->rb_lock);
1121 
1122 		frwr_mr_release(mr);
1123 	}
1124 
1125 	rpcrdma_regbuf_free(req->rl_recvbuf);
1126 	rpcrdma_regbuf_free(req->rl_sendbuf);
1127 	rpcrdma_regbuf_free(req->rl_rdmabuf);
1128 	kfree(req);
1129 }
1130 
1131 /**
1132  * rpcrdma_mrs_destroy - Release all of a transport's MRs
1133  * @r_xprt: controlling transport instance
1134  *
1135  * Relies on caller holding the transport send lock to protect
1136  * removing mr->mr_list from req->rl_free_mrs safely.
1137  */
1138 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt)
1139 {
1140 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1141 	struct rpcrdma_mr *mr;
1142 
1143 	cancel_work_sync(&buf->rb_refresh_worker);
1144 
1145 	spin_lock(&buf->rb_lock);
1146 	while ((mr = list_first_entry_or_null(&buf->rb_all_mrs,
1147 					      struct rpcrdma_mr,
1148 					      mr_all)) != NULL) {
1149 		list_del(&mr->mr_list);
1150 		list_del(&mr->mr_all);
1151 		spin_unlock(&buf->rb_lock);
1152 
1153 		frwr_mr_release(mr);
1154 
1155 		spin_lock(&buf->rb_lock);
1156 	}
1157 	spin_unlock(&buf->rb_lock);
1158 }
1159 
1160 /**
1161  * rpcrdma_buffer_destroy - Release all hw resources
1162  * @buf: root control block for resources
1163  *
1164  * ORDERING: relies on a prior rpcrdma_xprt_drain :
1165  * - No more Send or Receive completions can occur
1166  * - All MRs, reps, and reqs are returned to their free lists
1167  */
1168 void
1169 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1170 {
1171 	rpcrdma_reps_destroy(buf);
1172 
1173 	while (!list_empty(&buf->rb_send_bufs)) {
1174 		struct rpcrdma_req *req;
1175 
1176 		req = list_first_entry(&buf->rb_send_bufs,
1177 				       struct rpcrdma_req, rl_list);
1178 		list_del(&req->rl_list);
1179 		rpcrdma_req_destroy(req);
1180 	}
1181 }
1182 
1183 /**
1184  * rpcrdma_mr_get - Allocate an rpcrdma_mr object
1185  * @r_xprt: controlling transport
1186  *
1187  * Returns an initialized rpcrdma_mr or NULL if no free
1188  * rpcrdma_mr objects are available.
1189  */
1190 struct rpcrdma_mr *
1191 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt)
1192 {
1193 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1194 	struct rpcrdma_mr *mr;
1195 
1196 	spin_lock(&buf->rb_lock);
1197 	mr = rpcrdma_mr_pop(&buf->rb_mrs);
1198 	spin_unlock(&buf->rb_lock);
1199 	return mr;
1200 }
1201 
1202 /**
1203  * rpcrdma_reply_put - Put reply buffers back into pool
1204  * @buffers: buffer pool
1205  * @req: object to return
1206  *
1207  */
1208 void rpcrdma_reply_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1209 {
1210 	if (req->rl_reply) {
1211 		rpcrdma_rep_put(buffers, req->rl_reply);
1212 		req->rl_reply = NULL;
1213 	}
1214 }
1215 
1216 /**
1217  * rpcrdma_buffer_get - Get a request buffer
1218  * @buffers: Buffer pool from which to obtain a buffer
1219  *
1220  * Returns a fresh rpcrdma_req, or NULL if none are available.
1221  */
1222 struct rpcrdma_req *
1223 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1224 {
1225 	struct rpcrdma_req *req;
1226 
1227 	spin_lock(&buffers->rb_lock);
1228 	req = list_first_entry_or_null(&buffers->rb_send_bufs,
1229 				       struct rpcrdma_req, rl_list);
1230 	if (req)
1231 		list_del_init(&req->rl_list);
1232 	spin_unlock(&buffers->rb_lock);
1233 	return req;
1234 }
1235 
1236 /**
1237  * rpcrdma_buffer_put - Put request/reply buffers back into pool
1238  * @buffers: buffer pool
1239  * @req: object to return
1240  *
1241  */
1242 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1243 {
1244 	rpcrdma_reply_put(buffers, req);
1245 
1246 	spin_lock(&buffers->rb_lock);
1247 	list_add(&req->rl_list, &buffers->rb_send_bufs);
1248 	spin_unlock(&buffers->rb_lock);
1249 }
1250 
1251 /* Returns a pointer to a rpcrdma_regbuf object, or NULL.
1252  *
1253  * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1254  * receiving the payload of RDMA RECV operations. During Long Calls
1255  * or Replies they may be registered externally via frwr_map.
1256  */
1257 static struct rpcrdma_regbuf *
1258 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
1259 		     gfp_t flags)
1260 {
1261 	struct rpcrdma_regbuf *rb;
1262 
1263 	rb = kmalloc(sizeof(*rb), flags);
1264 	if (!rb)
1265 		return NULL;
1266 	rb->rg_data = kmalloc(size, flags);
1267 	if (!rb->rg_data) {
1268 		kfree(rb);
1269 		return NULL;
1270 	}
1271 
1272 	rb->rg_device = NULL;
1273 	rb->rg_direction = direction;
1274 	rb->rg_iov.length = size;
1275 	return rb;
1276 }
1277 
1278 /**
1279  * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer
1280  * @rb: regbuf to reallocate
1281  * @size: size of buffer to be allocated, in bytes
1282  * @flags: GFP flags
1283  *
1284  * Returns true if reallocation was successful. If false is
1285  * returned, @rb is left untouched.
1286  */
1287 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags)
1288 {
1289 	void *buf;
1290 
1291 	buf = kmalloc(size, flags);
1292 	if (!buf)
1293 		return false;
1294 
1295 	rpcrdma_regbuf_dma_unmap(rb);
1296 	kfree(rb->rg_data);
1297 
1298 	rb->rg_data = buf;
1299 	rb->rg_iov.length = size;
1300 	return true;
1301 }
1302 
1303 /**
1304  * __rpcrdma_regbuf_dma_map - DMA-map a regbuf
1305  * @r_xprt: controlling transport instance
1306  * @rb: regbuf to be mapped
1307  *
1308  * Returns true if the buffer is now DMA mapped to @r_xprt's device
1309  */
1310 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt,
1311 			      struct rpcrdma_regbuf *rb)
1312 {
1313 	struct ib_device *device = r_xprt->rx_ep->re_id->device;
1314 
1315 	if (rb->rg_direction == DMA_NONE)
1316 		return false;
1317 
1318 	rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb),
1319 					    rdmab_length(rb), rb->rg_direction);
1320 	if (ib_dma_mapping_error(device, rdmab_addr(rb))) {
1321 		trace_xprtrdma_dma_maperr(rdmab_addr(rb));
1322 		return false;
1323 	}
1324 
1325 	rb->rg_device = device;
1326 	rb->rg_iov.lkey = r_xprt->rx_ep->re_pd->local_dma_lkey;
1327 	return true;
1328 }
1329 
1330 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb)
1331 {
1332 	if (!rb)
1333 		return;
1334 
1335 	if (!rpcrdma_regbuf_is_mapped(rb))
1336 		return;
1337 
1338 	ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb),
1339 			    rb->rg_direction);
1340 	rb->rg_device = NULL;
1341 }
1342 
1343 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb)
1344 {
1345 	rpcrdma_regbuf_dma_unmap(rb);
1346 	if (rb)
1347 		kfree(rb->rg_data);
1348 	kfree(rb);
1349 }
1350 
1351 /**
1352  * rpcrdma_post_recvs - Refill the Receive Queue
1353  * @r_xprt: controlling transport instance
1354  * @needed: current credit grant
1355  * @temp: mark Receive buffers to be deleted after one use
1356  *
1357  */
1358 void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, int needed, bool temp)
1359 {
1360 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1361 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
1362 	struct ib_recv_wr *wr, *bad_wr;
1363 	struct rpcrdma_rep *rep;
1364 	int count, rc;
1365 
1366 	rc = 0;
1367 	count = 0;
1368 
1369 	if (likely(ep->re_receive_count > needed))
1370 		goto out;
1371 	needed -= ep->re_receive_count;
1372 	if (!temp)
1373 		needed += RPCRDMA_MAX_RECV_BATCH;
1374 
1375 	if (atomic_inc_return(&ep->re_receiving) > 1)
1376 		goto out;
1377 
1378 	/* fast path: all needed reps can be found on the free list */
1379 	wr = NULL;
1380 	while (needed) {
1381 		rep = rpcrdma_rep_get_locked(buf);
1382 		if (rep && rep->rr_temp) {
1383 			rpcrdma_rep_destroy(rep);
1384 			continue;
1385 		}
1386 		if (!rep)
1387 			rep = rpcrdma_rep_create(r_xprt, temp);
1388 		if (!rep)
1389 			break;
1390 
1391 		rep->rr_cid.ci_queue_id = ep->re_attr.recv_cq->res.id;
1392 		trace_xprtrdma_post_recv(rep);
1393 		rep->rr_recv_wr.next = wr;
1394 		wr = &rep->rr_recv_wr;
1395 		--needed;
1396 		++count;
1397 	}
1398 	if (!wr)
1399 		goto out;
1400 
1401 	rc = ib_post_recv(ep->re_id->qp, wr,
1402 			  (const struct ib_recv_wr **)&bad_wr);
1403 	if (rc) {
1404 		trace_xprtrdma_post_recvs_err(r_xprt, rc);
1405 		for (wr = bad_wr; wr;) {
1406 			struct rpcrdma_rep *rep;
1407 
1408 			rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr);
1409 			wr = wr->next;
1410 			rpcrdma_rep_put(buf, rep);
1411 			--count;
1412 		}
1413 	}
1414 	if (atomic_dec_return(&ep->re_receiving) > 0)
1415 		complete(&ep->re_done);
1416 
1417 out:
1418 	trace_xprtrdma_post_recvs(r_xprt, count);
1419 	ep->re_receive_count += count;
1420 	return;
1421 }
1422