xref: /openbmc/linux/net/sunrpc/xprtrdma/verbs.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (c) 2014-2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the BSD-type
10  * license below:
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  *
16  *      Redistributions of source code must retain the above copyright
17  *      notice, this list of conditions and the following disclaimer.
18  *
19  *      Redistributions in binary form must reproduce the above
20  *      copyright notice, this list of conditions and the following
21  *      disclaimer in the documentation and/or other materials provided
22  *      with the distribution.
23  *
24  *      Neither the name of the Network Appliance, Inc. nor the names of
25  *      its contributors may be used to endorse or promote products
26  *      derived from this software without specific prior written
27  *      permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41 
42 /*
43  * verbs.c
44  *
45  * Encapsulates the major functions managing:
46  *  o adapters
47  *  o endpoints
48  *  o connections
49  *  o buffer memory
50  */
51 
52 #include <linux/interrupt.h>
53 #include <linux/slab.h>
54 #include <linux/sunrpc/addr.h>
55 #include <linux/sunrpc/svc_rdma.h>
56 #include <linux/log2.h>
57 
58 #include <asm-generic/barrier.h>
59 #include <asm/bitops.h>
60 
61 #include <rdma/ib_cm.h>
62 
63 #include "xprt_rdma.h"
64 #include <trace/events/rpcrdma.h>
65 
66 /*
67  * Globals/Macros
68  */
69 
70 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
71 # define RPCDBG_FACILITY	RPCDBG_TRANS
72 #endif
73 
74 /*
75  * internal functions
76  */
77 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt);
78 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt);
79 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
80 				       struct rpcrdma_sendctx *sc);
81 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt);
82 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt);
83 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep);
84 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt);
85 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt);
86 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt);
87 static void rpcrdma_ep_get(struct rpcrdma_ep *ep);
88 static int rpcrdma_ep_put(struct rpcrdma_ep *ep);
89 static struct rpcrdma_regbuf *
90 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
91 		     gfp_t flags);
92 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb);
93 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb);
94 
95 /* Wait for outstanding transport work to finish. ib_drain_qp
96  * handles the drains in the wrong order for us, so open code
97  * them here.
98  */
99 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt)
100 {
101 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
102 	struct rdma_cm_id *id = ep->re_id;
103 
104 	/* Flush Receives, then wait for deferred Reply work
105 	 * to complete.
106 	 */
107 	ib_drain_rq(id->qp);
108 
109 	/* Deferred Reply processing might have scheduled
110 	 * local invalidations.
111 	 */
112 	ib_drain_sq(id->qp);
113 
114 	rpcrdma_ep_put(ep);
115 }
116 
117 /**
118  * rpcrdma_qp_event_handler - Handle one QP event (error notification)
119  * @event: details of the event
120  * @context: ep that owns QP where event occurred
121  *
122  * Called from the RDMA provider (device driver) possibly in an interrupt
123  * context. The QP is always destroyed before the ID, so the ID will be
124  * reliably available when this handler is invoked.
125  */
126 static void rpcrdma_qp_event_handler(struct ib_event *event, void *context)
127 {
128 	struct rpcrdma_ep *ep = context;
129 
130 	trace_xprtrdma_qp_event(ep, event);
131 }
132 
133 /* Ensure xprt_force_disconnect() is invoked exactly once when a
134  * connection is closed or lost. (The important thing is it needs
135  * to be invoked "at least" once).
136  */
137 static void rpcrdma_force_disconnect(struct rpcrdma_ep *ep)
138 {
139 	if (atomic_add_unless(&ep->re_force_disconnect, 1, 1))
140 		xprt_force_disconnect(ep->re_xprt);
141 }
142 
143 /**
144  * rpcrdma_flush_disconnect - Disconnect on flushed completion
145  * @r_xprt: transport to disconnect
146  * @wc: work completion entry
147  *
148  * Must be called in process context.
149  */
150 void rpcrdma_flush_disconnect(struct rpcrdma_xprt *r_xprt, struct ib_wc *wc)
151 {
152 	if (wc->status != IB_WC_SUCCESS)
153 		rpcrdma_force_disconnect(r_xprt->rx_ep);
154 }
155 
156 /**
157  * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
158  * @cq:	completion queue
159  * @wc:	WCE for a completed Send WR
160  *
161  */
162 static void rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
163 {
164 	struct ib_cqe *cqe = wc->wr_cqe;
165 	struct rpcrdma_sendctx *sc =
166 		container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
167 	struct rpcrdma_xprt *r_xprt = cq->cq_context;
168 
169 	/* WARNING: Only wr_cqe and status are reliable at this point */
170 	trace_xprtrdma_wc_send(sc, wc);
171 	rpcrdma_sendctx_put_locked(r_xprt, sc);
172 	rpcrdma_flush_disconnect(r_xprt, wc);
173 }
174 
175 /**
176  * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
177  * @cq:	completion queue
178  * @wc:	WCE for a completed Receive WR
179  *
180  */
181 static void rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
182 {
183 	struct ib_cqe *cqe = wc->wr_cqe;
184 	struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
185 					       rr_cqe);
186 	struct rpcrdma_xprt *r_xprt = cq->cq_context;
187 
188 	/* WARNING: Only wr_cqe and status are reliable at this point */
189 	trace_xprtrdma_wc_receive(wc);
190 	--r_xprt->rx_ep->re_receive_count;
191 	if (wc->status != IB_WC_SUCCESS)
192 		goto out_flushed;
193 
194 	/* status == SUCCESS means all fields in wc are trustworthy */
195 	rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
196 	rep->rr_wc_flags = wc->wc_flags;
197 	rep->rr_inv_rkey = wc->ex.invalidate_rkey;
198 
199 	ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
200 				   rdmab_addr(rep->rr_rdmabuf),
201 				   wc->byte_len, DMA_FROM_DEVICE);
202 
203 	rpcrdma_reply_handler(rep);
204 	return;
205 
206 out_flushed:
207 	rpcrdma_flush_disconnect(r_xprt, wc);
208 	rpcrdma_rep_destroy(rep);
209 }
210 
211 static void rpcrdma_update_cm_private(struct rpcrdma_ep *ep,
212 				      struct rdma_conn_param *param)
213 {
214 	const struct rpcrdma_connect_private *pmsg = param->private_data;
215 	unsigned int rsize, wsize;
216 
217 	/* Default settings for RPC-over-RDMA Version One */
218 	ep->re_implicit_roundup = xprt_rdma_pad_optimize;
219 	rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
220 	wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
221 
222 	if (pmsg &&
223 	    pmsg->cp_magic == rpcrdma_cmp_magic &&
224 	    pmsg->cp_version == RPCRDMA_CMP_VERSION) {
225 		ep->re_implicit_roundup = true;
226 		rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
227 		wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
228 	}
229 
230 	if (rsize < ep->re_inline_recv)
231 		ep->re_inline_recv = rsize;
232 	if (wsize < ep->re_inline_send)
233 		ep->re_inline_send = wsize;
234 
235 	rpcrdma_set_max_header_sizes(ep);
236 }
237 
238 /**
239  * rpcrdma_cm_event_handler - Handle RDMA CM events
240  * @id: rdma_cm_id on which an event has occurred
241  * @event: details of the event
242  *
243  * Called with @id's mutex held. Returns 1 if caller should
244  * destroy @id, otherwise 0.
245  */
246 static int
247 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event)
248 {
249 	struct sockaddr *sap = (struct sockaddr *)&id->route.addr.dst_addr;
250 	struct rpcrdma_ep *ep = id->context;
251 
252 	might_sleep();
253 
254 	switch (event->event) {
255 	case RDMA_CM_EVENT_ADDR_RESOLVED:
256 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
257 		ep->re_async_rc = 0;
258 		complete(&ep->re_done);
259 		return 0;
260 	case RDMA_CM_EVENT_ADDR_ERROR:
261 		ep->re_async_rc = -EPROTO;
262 		complete(&ep->re_done);
263 		return 0;
264 	case RDMA_CM_EVENT_ROUTE_ERROR:
265 		ep->re_async_rc = -ENETUNREACH;
266 		complete(&ep->re_done);
267 		return 0;
268 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
269 		pr_info("rpcrdma: removing device %s for %pISpc\n",
270 			ep->re_id->device->name, sap);
271 		/* fall through */
272 	case RDMA_CM_EVENT_ADDR_CHANGE:
273 		ep->re_connect_status = -ENODEV;
274 		goto disconnected;
275 	case RDMA_CM_EVENT_ESTABLISHED:
276 		rpcrdma_ep_get(ep);
277 		ep->re_connect_status = 1;
278 		rpcrdma_update_cm_private(ep, &event->param.conn);
279 		trace_xprtrdma_inline_thresh(ep);
280 		wake_up_all(&ep->re_connect_wait);
281 		break;
282 	case RDMA_CM_EVENT_CONNECT_ERROR:
283 		ep->re_connect_status = -ENOTCONN;
284 		goto disconnected;
285 	case RDMA_CM_EVENT_UNREACHABLE:
286 		ep->re_connect_status = -ENETUNREACH;
287 		goto disconnected;
288 	case RDMA_CM_EVENT_REJECTED:
289 		dprintk("rpcrdma: connection to %pISpc rejected: %s\n",
290 			sap, rdma_reject_msg(id, event->status));
291 		ep->re_connect_status = -ECONNREFUSED;
292 		if (event->status == IB_CM_REJ_STALE_CONN)
293 			ep->re_connect_status = -EAGAIN;
294 		goto disconnected;
295 	case RDMA_CM_EVENT_DISCONNECTED:
296 		ep->re_connect_status = -ECONNABORTED;
297 disconnected:
298 		rpcrdma_force_disconnect(ep);
299 		return rpcrdma_ep_put(ep);
300 	default:
301 		break;
302 	}
303 
304 	dprintk("RPC:       %s: %pISpc on %s/frwr: %s\n", __func__, sap,
305 		ep->re_id->device->name, rdma_event_msg(event->event));
306 	return 0;
307 }
308 
309 static struct rdma_cm_id *rpcrdma_create_id(struct rpcrdma_xprt *r_xprt,
310 					    struct rpcrdma_ep *ep)
311 {
312 	unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
313 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
314 	struct rdma_cm_id *id;
315 	int rc;
316 
317 	init_completion(&ep->re_done);
318 
319 	id = rdma_create_id(xprt->xprt_net, rpcrdma_cm_event_handler, ep,
320 			    RDMA_PS_TCP, IB_QPT_RC);
321 	if (IS_ERR(id))
322 		return id;
323 
324 	ep->re_async_rc = -ETIMEDOUT;
325 	rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)&xprt->addr,
326 			       RDMA_RESOLVE_TIMEOUT);
327 	if (rc)
328 		goto out;
329 	rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
330 	if (rc < 0)
331 		goto out;
332 
333 	rc = ep->re_async_rc;
334 	if (rc)
335 		goto out;
336 
337 	ep->re_async_rc = -ETIMEDOUT;
338 	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
339 	if (rc)
340 		goto out;
341 	rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
342 	if (rc < 0)
343 		goto out;
344 	rc = ep->re_async_rc;
345 	if (rc)
346 		goto out;
347 
348 	return id;
349 
350 out:
351 	rdma_destroy_id(id);
352 	return ERR_PTR(rc);
353 }
354 
355 static void rpcrdma_ep_destroy(struct kref *kref)
356 {
357 	struct rpcrdma_ep *ep = container_of(kref, struct rpcrdma_ep, re_kref);
358 
359 	if (ep->re_id->qp) {
360 		rdma_destroy_qp(ep->re_id);
361 		ep->re_id->qp = NULL;
362 	}
363 
364 	if (ep->re_attr.recv_cq)
365 		ib_free_cq(ep->re_attr.recv_cq);
366 	ep->re_attr.recv_cq = NULL;
367 	if (ep->re_attr.send_cq)
368 		ib_free_cq(ep->re_attr.send_cq);
369 	ep->re_attr.send_cq = NULL;
370 
371 	if (ep->re_pd)
372 		ib_dealloc_pd(ep->re_pd);
373 	ep->re_pd = NULL;
374 
375 	kfree(ep);
376 	module_put(THIS_MODULE);
377 }
378 
379 static noinline void rpcrdma_ep_get(struct rpcrdma_ep *ep)
380 {
381 	kref_get(&ep->re_kref);
382 }
383 
384 /* Returns:
385  *     %0 if @ep still has a positive kref count, or
386  *     %1 if @ep was destroyed successfully.
387  */
388 static noinline int rpcrdma_ep_put(struct rpcrdma_ep *ep)
389 {
390 	return kref_put(&ep->re_kref, rpcrdma_ep_destroy);
391 }
392 
393 static int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt)
394 {
395 	struct rpcrdma_connect_private *pmsg;
396 	struct ib_device *device;
397 	struct rdma_cm_id *id;
398 	struct rpcrdma_ep *ep;
399 	int rc;
400 
401 	ep = kzalloc(sizeof(*ep), GFP_NOFS);
402 	if (!ep)
403 		return -EAGAIN;
404 	ep->re_xprt = &r_xprt->rx_xprt;
405 	kref_init(&ep->re_kref);
406 
407 	id = rpcrdma_create_id(r_xprt, ep);
408 	if (IS_ERR(id)) {
409 		rc = PTR_ERR(id);
410 		goto out_free;
411 	}
412 	__module_get(THIS_MODULE);
413 	device = id->device;
414 	ep->re_id = id;
415 
416 	ep->re_max_requests = r_xprt->rx_xprt.max_reqs;
417 	ep->re_inline_send = xprt_rdma_max_inline_write;
418 	ep->re_inline_recv = xprt_rdma_max_inline_read;
419 	rc = frwr_query_device(ep, device);
420 	if (rc)
421 		goto out_destroy;
422 
423 	r_xprt->rx_buf.rb_max_requests = cpu_to_be32(ep->re_max_requests);
424 
425 	ep->re_attr.event_handler = rpcrdma_qp_event_handler;
426 	ep->re_attr.qp_context = ep;
427 	ep->re_attr.srq = NULL;
428 	ep->re_attr.cap.max_inline_data = 0;
429 	ep->re_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
430 	ep->re_attr.qp_type = IB_QPT_RC;
431 	ep->re_attr.port_num = ~0;
432 
433 	dprintk("RPC:       %s: requested max: dtos: send %d recv %d; "
434 		"iovs: send %d recv %d\n",
435 		__func__,
436 		ep->re_attr.cap.max_send_wr,
437 		ep->re_attr.cap.max_recv_wr,
438 		ep->re_attr.cap.max_send_sge,
439 		ep->re_attr.cap.max_recv_sge);
440 
441 	ep->re_send_batch = ep->re_max_requests >> 3;
442 	ep->re_send_count = ep->re_send_batch;
443 	init_waitqueue_head(&ep->re_connect_wait);
444 
445 	ep->re_attr.send_cq = ib_alloc_cq_any(device, r_xprt,
446 					      ep->re_attr.cap.max_send_wr,
447 					      IB_POLL_WORKQUEUE);
448 	if (IS_ERR(ep->re_attr.send_cq)) {
449 		rc = PTR_ERR(ep->re_attr.send_cq);
450 		goto out_destroy;
451 	}
452 
453 	ep->re_attr.recv_cq = ib_alloc_cq_any(device, r_xprt,
454 					      ep->re_attr.cap.max_recv_wr,
455 					      IB_POLL_WORKQUEUE);
456 	if (IS_ERR(ep->re_attr.recv_cq)) {
457 		rc = PTR_ERR(ep->re_attr.recv_cq);
458 		goto out_destroy;
459 	}
460 	ep->re_receive_count = 0;
461 
462 	/* Initialize cma parameters */
463 	memset(&ep->re_remote_cma, 0, sizeof(ep->re_remote_cma));
464 
465 	/* Prepare RDMA-CM private message */
466 	pmsg = &ep->re_cm_private;
467 	pmsg->cp_magic = rpcrdma_cmp_magic;
468 	pmsg->cp_version = RPCRDMA_CMP_VERSION;
469 	pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK;
470 	pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->re_inline_send);
471 	pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->re_inline_recv);
472 	ep->re_remote_cma.private_data = pmsg;
473 	ep->re_remote_cma.private_data_len = sizeof(*pmsg);
474 
475 	/* Client offers RDMA Read but does not initiate */
476 	ep->re_remote_cma.initiator_depth = 0;
477 	ep->re_remote_cma.responder_resources =
478 		min_t(int, U8_MAX, device->attrs.max_qp_rd_atom);
479 
480 	/* Limit transport retries so client can detect server
481 	 * GID changes quickly. RPC layer handles re-establishing
482 	 * transport connection and retransmission.
483 	 */
484 	ep->re_remote_cma.retry_count = 6;
485 
486 	/* RPC-over-RDMA handles its own flow control. In addition,
487 	 * make all RNR NAKs visible so we know that RPC-over-RDMA
488 	 * flow control is working correctly (no NAKs should be seen).
489 	 */
490 	ep->re_remote_cma.flow_control = 0;
491 	ep->re_remote_cma.rnr_retry_count = 0;
492 
493 	ep->re_pd = ib_alloc_pd(device, 0);
494 	if (IS_ERR(ep->re_pd)) {
495 		rc = PTR_ERR(ep->re_pd);
496 		goto out_destroy;
497 	}
498 
499 	rc = rdma_create_qp(id, ep->re_pd, &ep->re_attr);
500 	if (rc)
501 		goto out_destroy;
502 
503 	r_xprt->rx_ep = ep;
504 	return 0;
505 
506 out_destroy:
507 	rpcrdma_ep_put(ep);
508 	rdma_destroy_id(id);
509 out_free:
510 	kfree(ep);
511 	r_xprt->rx_ep = NULL;
512 	return rc;
513 }
514 
515 /**
516  * rpcrdma_xprt_connect - Connect an unconnected transport
517  * @r_xprt: controlling transport instance
518  *
519  * Returns 0 on success or a negative errno.
520  */
521 int rpcrdma_xprt_connect(struct rpcrdma_xprt *r_xprt)
522 {
523 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
524 	struct rpcrdma_ep *ep;
525 	int rc;
526 
527 retry:
528 	rpcrdma_xprt_disconnect(r_xprt);
529 	rc = rpcrdma_ep_create(r_xprt);
530 	if (rc)
531 		return rc;
532 	ep = r_xprt->rx_ep;
533 
534 	xprt_clear_connected(xprt);
535 	rpcrdma_reset_cwnd(r_xprt);
536 
537 	/* Bump the ep's reference count while there are
538 	 * outstanding Receives.
539 	 */
540 	rpcrdma_ep_get(ep);
541 	rpcrdma_post_recvs(r_xprt, true);
542 
543 	rc = rpcrdma_sendctxs_create(r_xprt);
544 	if (rc)
545 		goto out;
546 
547 	rc = rdma_connect(ep->re_id, &ep->re_remote_cma);
548 	if (rc)
549 		goto out;
550 
551 	if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
552 		xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
553 	wait_event_interruptible(ep->re_connect_wait,
554 				 ep->re_connect_status != 0);
555 	if (ep->re_connect_status <= 0) {
556 		if (ep->re_connect_status == -EAGAIN)
557 			goto retry;
558 		rc = ep->re_connect_status;
559 		goto out;
560 	}
561 
562 	rc = rpcrdma_reqs_setup(r_xprt);
563 	if (rc) {
564 		rpcrdma_xprt_disconnect(r_xprt);
565 		goto out;
566 	}
567 	rpcrdma_mrs_create(r_xprt);
568 
569 out:
570 	trace_xprtrdma_connect(r_xprt, rc);
571 	return rc;
572 }
573 
574 /**
575  * rpcrdma_xprt_disconnect - Disconnect underlying transport
576  * @r_xprt: controlling transport instance
577  *
578  * Caller serializes. Either the transport send lock is held,
579  * or we're being called to destroy the transport.
580  *
581  * On return, @r_xprt is completely divested of all hardware
582  * resources and prepared for the next ->connect operation.
583  */
584 void rpcrdma_xprt_disconnect(struct rpcrdma_xprt *r_xprt)
585 {
586 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
587 	struct rdma_cm_id *id;
588 	int rc;
589 
590 	if (!ep)
591 		return;
592 
593 	id = ep->re_id;
594 	rc = rdma_disconnect(id);
595 	trace_xprtrdma_disconnect(r_xprt, rc);
596 
597 	rpcrdma_xprt_drain(r_xprt);
598 	rpcrdma_reps_unmap(r_xprt);
599 	rpcrdma_reqs_reset(r_xprt);
600 	rpcrdma_mrs_destroy(r_xprt);
601 	rpcrdma_sendctxs_destroy(r_xprt);
602 
603 	if (rpcrdma_ep_put(ep))
604 		rdma_destroy_id(id);
605 
606 	r_xprt->rx_ep = NULL;
607 }
608 
609 /* Fixed-size circular FIFO queue. This implementation is wait-free and
610  * lock-free.
611  *
612  * Consumer is the code path that posts Sends. This path dequeues a
613  * sendctx for use by a Send operation. Multiple consumer threads
614  * are serialized by the RPC transport lock, which allows only one
615  * ->send_request call at a time.
616  *
617  * Producer is the code path that handles Send completions. This path
618  * enqueues a sendctx that has been completed. Multiple producer
619  * threads are serialized by the ib_poll_cq() function.
620  */
621 
622 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
623  * queue activity, and rpcrdma_xprt_drain has flushed all remaining
624  * Send requests.
625  */
626 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt)
627 {
628 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
629 	unsigned long i;
630 
631 	if (!buf->rb_sc_ctxs)
632 		return;
633 	for (i = 0; i <= buf->rb_sc_last; i++)
634 		kfree(buf->rb_sc_ctxs[i]);
635 	kfree(buf->rb_sc_ctxs);
636 	buf->rb_sc_ctxs = NULL;
637 }
638 
639 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ep *ep)
640 {
641 	struct rpcrdma_sendctx *sc;
642 
643 	sc = kzalloc(struct_size(sc, sc_sges, ep->re_attr.cap.max_send_sge),
644 		     GFP_KERNEL);
645 	if (!sc)
646 		return NULL;
647 
648 	sc->sc_cqe.done = rpcrdma_wc_send;
649 	return sc;
650 }
651 
652 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
653 {
654 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
655 	struct rpcrdma_sendctx *sc;
656 	unsigned long i;
657 
658 	/* Maximum number of concurrent outstanding Send WRs. Capping
659 	 * the circular queue size stops Send Queue overflow by causing
660 	 * the ->send_request call to fail temporarily before too many
661 	 * Sends are posted.
662 	 */
663 	i = r_xprt->rx_ep->re_max_requests + RPCRDMA_MAX_BC_REQUESTS;
664 	buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL);
665 	if (!buf->rb_sc_ctxs)
666 		return -ENOMEM;
667 
668 	buf->rb_sc_last = i - 1;
669 	for (i = 0; i <= buf->rb_sc_last; i++) {
670 		sc = rpcrdma_sendctx_create(r_xprt->rx_ep);
671 		if (!sc)
672 			return -ENOMEM;
673 
674 		buf->rb_sc_ctxs[i] = sc;
675 	}
676 
677 	buf->rb_sc_head = 0;
678 	buf->rb_sc_tail = 0;
679 	return 0;
680 }
681 
682 /* The sendctx queue is not guaranteed to have a size that is a
683  * power of two, thus the helpers in circ_buf.h cannot be used.
684  * The other option is to use modulus (%), which can be expensive.
685  */
686 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
687 					  unsigned long item)
688 {
689 	return likely(item < buf->rb_sc_last) ? item + 1 : 0;
690 }
691 
692 /**
693  * rpcrdma_sendctx_get_locked - Acquire a send context
694  * @r_xprt: controlling transport instance
695  *
696  * Returns pointer to a free send completion context; or NULL if
697  * the queue is empty.
698  *
699  * Usage: Called to acquire an SGE array before preparing a Send WR.
700  *
701  * The caller serializes calls to this function (per transport), and
702  * provides an effective memory barrier that flushes the new value
703  * of rb_sc_head.
704  */
705 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt)
706 {
707 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
708 	struct rpcrdma_sendctx *sc;
709 	unsigned long next_head;
710 
711 	next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
712 
713 	if (next_head == READ_ONCE(buf->rb_sc_tail))
714 		goto out_emptyq;
715 
716 	/* ORDER: item must be accessed _before_ head is updated */
717 	sc = buf->rb_sc_ctxs[next_head];
718 
719 	/* Releasing the lock in the caller acts as a memory
720 	 * barrier that flushes rb_sc_head.
721 	 */
722 	buf->rb_sc_head = next_head;
723 
724 	return sc;
725 
726 out_emptyq:
727 	/* The queue is "empty" if there have not been enough Send
728 	 * completions recently. This is a sign the Send Queue is
729 	 * backing up. Cause the caller to pause and try again.
730 	 */
731 	xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
732 	r_xprt->rx_stats.empty_sendctx_q++;
733 	return NULL;
734 }
735 
736 /**
737  * rpcrdma_sendctx_put_locked - Release a send context
738  * @r_xprt: controlling transport instance
739  * @sc: send context to release
740  *
741  * Usage: Called from Send completion to return a sendctxt
742  * to the queue.
743  *
744  * The caller serializes calls to this function (per transport).
745  */
746 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
747 				       struct rpcrdma_sendctx *sc)
748 {
749 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
750 	unsigned long next_tail;
751 
752 	/* Unmap SGEs of previously completed but unsignaled
753 	 * Sends by walking up the queue until @sc is found.
754 	 */
755 	next_tail = buf->rb_sc_tail;
756 	do {
757 		next_tail = rpcrdma_sendctx_next(buf, next_tail);
758 
759 		/* ORDER: item must be accessed _before_ tail is updated */
760 		rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]);
761 
762 	} while (buf->rb_sc_ctxs[next_tail] != sc);
763 
764 	/* Paired with READ_ONCE */
765 	smp_store_release(&buf->rb_sc_tail, next_tail);
766 
767 	xprt_write_space(&r_xprt->rx_xprt);
768 }
769 
770 static void
771 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt)
772 {
773 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
774 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
775 	unsigned int count;
776 
777 	for (count = 0; count < ep->re_max_rdma_segs; count++) {
778 		struct rpcrdma_mr *mr;
779 		int rc;
780 
781 		mr = kzalloc(sizeof(*mr), GFP_NOFS);
782 		if (!mr)
783 			break;
784 
785 		rc = frwr_mr_init(r_xprt, mr);
786 		if (rc) {
787 			kfree(mr);
788 			break;
789 		}
790 
791 		spin_lock(&buf->rb_lock);
792 		rpcrdma_mr_push(mr, &buf->rb_mrs);
793 		list_add(&mr->mr_all, &buf->rb_all_mrs);
794 		spin_unlock(&buf->rb_lock);
795 	}
796 
797 	r_xprt->rx_stats.mrs_allocated += count;
798 	trace_xprtrdma_createmrs(r_xprt, count);
799 }
800 
801 static void
802 rpcrdma_mr_refresh_worker(struct work_struct *work)
803 {
804 	struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
805 						  rb_refresh_worker);
806 	struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
807 						   rx_buf);
808 
809 	rpcrdma_mrs_create(r_xprt);
810 	xprt_write_space(&r_xprt->rx_xprt);
811 }
812 
813 /**
814  * rpcrdma_mrs_refresh - Wake the MR refresh worker
815  * @r_xprt: controlling transport instance
816  *
817  */
818 void rpcrdma_mrs_refresh(struct rpcrdma_xprt *r_xprt)
819 {
820 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
821 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
822 
823 	/* If there is no underlying connection, it's no use
824 	 * to wake the refresh worker.
825 	 */
826 	if (ep->re_connect_status == 1) {
827 		/* The work is scheduled on a WQ_MEM_RECLAIM
828 		 * workqueue in order to prevent MR allocation
829 		 * from recursing into NFS during direct reclaim.
830 		 */
831 		queue_work(xprtiod_workqueue, &buf->rb_refresh_worker);
832 	}
833 }
834 
835 /**
836  * rpcrdma_req_create - Allocate an rpcrdma_req object
837  * @r_xprt: controlling r_xprt
838  * @size: initial size, in bytes, of send and receive buffers
839  * @flags: GFP flags passed to memory allocators
840  *
841  * Returns an allocated and fully initialized rpcrdma_req or NULL.
842  */
843 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size,
844 				       gfp_t flags)
845 {
846 	struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
847 	struct rpcrdma_req *req;
848 
849 	req = kzalloc(sizeof(*req), flags);
850 	if (req == NULL)
851 		goto out1;
852 
853 	req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags);
854 	if (!req->rl_sendbuf)
855 		goto out2;
856 
857 	req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags);
858 	if (!req->rl_recvbuf)
859 		goto out3;
860 
861 	INIT_LIST_HEAD(&req->rl_free_mrs);
862 	INIT_LIST_HEAD(&req->rl_registered);
863 	spin_lock(&buffer->rb_lock);
864 	list_add(&req->rl_all, &buffer->rb_allreqs);
865 	spin_unlock(&buffer->rb_lock);
866 	return req;
867 
868 out3:
869 	kfree(req->rl_sendbuf);
870 out2:
871 	kfree(req);
872 out1:
873 	return NULL;
874 }
875 
876 /**
877  * rpcrdma_req_setup - Per-connection instance setup of an rpcrdma_req object
878  * @r_xprt: controlling transport instance
879  * @req: rpcrdma_req object to set up
880  *
881  * Returns zero on success, and a negative errno on failure.
882  */
883 int rpcrdma_req_setup(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
884 {
885 	struct rpcrdma_regbuf *rb;
886 	size_t maxhdrsize;
887 
888 	/* Compute maximum header buffer size in bytes */
889 	maxhdrsize = rpcrdma_fixed_maxsz + 3 +
890 		     r_xprt->rx_ep->re_max_rdma_segs * rpcrdma_readchunk_maxsz;
891 	maxhdrsize *= sizeof(__be32);
892 	rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize),
893 				  DMA_TO_DEVICE, GFP_KERNEL);
894 	if (!rb)
895 		goto out;
896 
897 	if (!__rpcrdma_regbuf_dma_map(r_xprt, rb))
898 		goto out_free;
899 
900 	req->rl_rdmabuf = rb;
901 	xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb));
902 	return 0;
903 
904 out_free:
905 	rpcrdma_regbuf_free(rb);
906 out:
907 	return -ENOMEM;
908 }
909 
910 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
911  * and thus can be walked without holding rb_lock. Eg. the
912  * caller is holding the transport send lock to exclude
913  * device removal or disconnection.
914  */
915 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt)
916 {
917 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
918 	struct rpcrdma_req *req;
919 	int rc;
920 
921 	list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
922 		rc = rpcrdma_req_setup(r_xprt, req);
923 		if (rc)
924 			return rc;
925 	}
926 	return 0;
927 }
928 
929 static void rpcrdma_req_reset(struct rpcrdma_req *req)
930 {
931 	/* Credits are valid for only one connection */
932 	req->rl_slot.rq_cong = 0;
933 
934 	rpcrdma_regbuf_free(req->rl_rdmabuf);
935 	req->rl_rdmabuf = NULL;
936 
937 	rpcrdma_regbuf_dma_unmap(req->rl_sendbuf);
938 	rpcrdma_regbuf_dma_unmap(req->rl_recvbuf);
939 }
940 
941 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
942  * and thus can be walked without holding rb_lock. Eg. the
943  * caller is holding the transport send lock to exclude
944  * device removal or disconnection.
945  */
946 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt)
947 {
948 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
949 	struct rpcrdma_req *req;
950 
951 	list_for_each_entry(req, &buf->rb_allreqs, rl_all)
952 		rpcrdma_req_reset(req);
953 }
954 
955 /* No locking needed here. This function is called only by the
956  * Receive completion handler.
957  */
958 static noinline
959 struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt,
960 				       bool temp)
961 {
962 	struct rpcrdma_rep *rep;
963 
964 	rep = kzalloc(sizeof(*rep), GFP_KERNEL);
965 	if (rep == NULL)
966 		goto out;
967 
968 	rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep->re_inline_recv,
969 					       DMA_FROM_DEVICE, GFP_KERNEL);
970 	if (!rep->rr_rdmabuf)
971 		goto out_free;
972 
973 	if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf))
974 		goto out_free_regbuf;
975 
976 	xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf),
977 		     rdmab_length(rep->rr_rdmabuf));
978 	rep->rr_cqe.done = rpcrdma_wc_receive;
979 	rep->rr_rxprt = r_xprt;
980 	rep->rr_recv_wr.next = NULL;
981 	rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
982 	rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
983 	rep->rr_recv_wr.num_sge = 1;
984 	rep->rr_temp = temp;
985 	list_add(&rep->rr_all, &r_xprt->rx_buf.rb_all_reps);
986 	return rep;
987 
988 out_free_regbuf:
989 	rpcrdma_regbuf_free(rep->rr_rdmabuf);
990 out_free:
991 	kfree(rep);
992 out:
993 	return NULL;
994 }
995 
996 /* No locking needed here. This function is invoked only by the
997  * Receive completion handler, or during transport shutdown.
998  */
999 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep)
1000 {
1001 	list_del(&rep->rr_all);
1002 	rpcrdma_regbuf_free(rep->rr_rdmabuf);
1003 	kfree(rep);
1004 }
1005 
1006 static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf)
1007 {
1008 	struct llist_node *node;
1009 
1010 	/* Calls to llist_del_first are required to be serialized */
1011 	node = llist_del_first(&buf->rb_free_reps);
1012 	if (!node)
1013 		return NULL;
1014 	return llist_entry(node, struct rpcrdma_rep, rr_node);
1015 }
1016 
1017 static void rpcrdma_rep_put(struct rpcrdma_buffer *buf,
1018 			    struct rpcrdma_rep *rep)
1019 {
1020 	llist_add(&rep->rr_node, &buf->rb_free_reps);
1021 }
1022 
1023 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt)
1024 {
1025 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1026 	struct rpcrdma_rep *rep;
1027 
1028 	list_for_each_entry(rep, &buf->rb_all_reps, rr_all) {
1029 		rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf);
1030 		rep->rr_temp = true;
1031 	}
1032 }
1033 
1034 static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf)
1035 {
1036 	struct rpcrdma_rep *rep;
1037 
1038 	while ((rep = rpcrdma_rep_get_locked(buf)) != NULL)
1039 		rpcrdma_rep_destroy(rep);
1040 }
1041 
1042 /**
1043  * rpcrdma_buffer_create - Create initial set of req/rep objects
1044  * @r_xprt: transport instance to (re)initialize
1045  *
1046  * Returns zero on success, otherwise a negative errno.
1047  */
1048 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1049 {
1050 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1051 	int i, rc;
1052 
1053 	buf->rb_bc_srv_max_requests = 0;
1054 	spin_lock_init(&buf->rb_lock);
1055 	INIT_LIST_HEAD(&buf->rb_mrs);
1056 	INIT_LIST_HEAD(&buf->rb_all_mrs);
1057 	INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker);
1058 
1059 	INIT_LIST_HEAD(&buf->rb_send_bufs);
1060 	INIT_LIST_HEAD(&buf->rb_allreqs);
1061 	INIT_LIST_HEAD(&buf->rb_all_reps);
1062 
1063 	rc = -ENOMEM;
1064 	for (i = 0; i < r_xprt->rx_xprt.max_reqs; i++) {
1065 		struct rpcrdma_req *req;
1066 
1067 		req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE * 2,
1068 					 GFP_KERNEL);
1069 		if (!req)
1070 			goto out;
1071 		list_add(&req->rl_list, &buf->rb_send_bufs);
1072 	}
1073 
1074 	init_llist_head(&buf->rb_free_reps);
1075 
1076 	return 0;
1077 out:
1078 	rpcrdma_buffer_destroy(buf);
1079 	return rc;
1080 }
1081 
1082 /**
1083  * rpcrdma_req_destroy - Destroy an rpcrdma_req object
1084  * @req: unused object to be destroyed
1085  *
1086  * Relies on caller holding the transport send lock to protect
1087  * removing req->rl_all from buf->rb_all_reqs safely.
1088  */
1089 void rpcrdma_req_destroy(struct rpcrdma_req *req)
1090 {
1091 	struct rpcrdma_mr *mr;
1092 
1093 	list_del(&req->rl_all);
1094 
1095 	while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) {
1096 		struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf;
1097 
1098 		spin_lock(&buf->rb_lock);
1099 		list_del(&mr->mr_all);
1100 		spin_unlock(&buf->rb_lock);
1101 
1102 		frwr_release_mr(mr);
1103 	}
1104 
1105 	rpcrdma_regbuf_free(req->rl_recvbuf);
1106 	rpcrdma_regbuf_free(req->rl_sendbuf);
1107 	rpcrdma_regbuf_free(req->rl_rdmabuf);
1108 	kfree(req);
1109 }
1110 
1111 /**
1112  * rpcrdma_mrs_destroy - Release all of a transport's MRs
1113  * @r_xprt: controlling transport instance
1114  *
1115  * Relies on caller holding the transport send lock to protect
1116  * removing mr->mr_list from req->rl_free_mrs safely.
1117  */
1118 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt)
1119 {
1120 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1121 	struct rpcrdma_mr *mr;
1122 
1123 	cancel_work_sync(&buf->rb_refresh_worker);
1124 
1125 	spin_lock(&buf->rb_lock);
1126 	while ((mr = list_first_entry_or_null(&buf->rb_all_mrs,
1127 					      struct rpcrdma_mr,
1128 					      mr_all)) != NULL) {
1129 		list_del(&mr->mr_list);
1130 		list_del(&mr->mr_all);
1131 		spin_unlock(&buf->rb_lock);
1132 
1133 		frwr_release_mr(mr);
1134 
1135 		spin_lock(&buf->rb_lock);
1136 	}
1137 	spin_unlock(&buf->rb_lock);
1138 }
1139 
1140 /**
1141  * rpcrdma_buffer_destroy - Release all hw resources
1142  * @buf: root control block for resources
1143  *
1144  * ORDERING: relies on a prior rpcrdma_xprt_drain :
1145  * - No more Send or Receive completions can occur
1146  * - All MRs, reps, and reqs are returned to their free lists
1147  */
1148 void
1149 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1150 {
1151 	rpcrdma_reps_destroy(buf);
1152 
1153 	while (!list_empty(&buf->rb_send_bufs)) {
1154 		struct rpcrdma_req *req;
1155 
1156 		req = list_first_entry(&buf->rb_send_bufs,
1157 				       struct rpcrdma_req, rl_list);
1158 		list_del(&req->rl_list);
1159 		rpcrdma_req_destroy(req);
1160 	}
1161 }
1162 
1163 /**
1164  * rpcrdma_mr_get - Allocate an rpcrdma_mr object
1165  * @r_xprt: controlling transport
1166  *
1167  * Returns an initialized rpcrdma_mr or NULL if no free
1168  * rpcrdma_mr objects are available.
1169  */
1170 struct rpcrdma_mr *
1171 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt)
1172 {
1173 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1174 	struct rpcrdma_mr *mr;
1175 
1176 	spin_lock(&buf->rb_lock);
1177 	mr = rpcrdma_mr_pop(&buf->rb_mrs);
1178 	spin_unlock(&buf->rb_lock);
1179 	return mr;
1180 }
1181 
1182 /**
1183  * rpcrdma_mr_put - DMA unmap an MR and release it
1184  * @mr: MR to release
1185  *
1186  */
1187 void rpcrdma_mr_put(struct rpcrdma_mr *mr)
1188 {
1189 	struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
1190 
1191 	if (mr->mr_dir != DMA_NONE) {
1192 		trace_xprtrdma_mr_unmap(mr);
1193 		ib_dma_unmap_sg(r_xprt->rx_ep->re_id->device,
1194 				mr->mr_sg, mr->mr_nents, mr->mr_dir);
1195 		mr->mr_dir = DMA_NONE;
1196 	}
1197 
1198 	rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs);
1199 }
1200 
1201 /**
1202  * rpcrdma_buffer_get - Get a request buffer
1203  * @buffers: Buffer pool from which to obtain a buffer
1204  *
1205  * Returns a fresh rpcrdma_req, or NULL if none are available.
1206  */
1207 struct rpcrdma_req *
1208 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1209 {
1210 	struct rpcrdma_req *req;
1211 
1212 	spin_lock(&buffers->rb_lock);
1213 	req = list_first_entry_or_null(&buffers->rb_send_bufs,
1214 				       struct rpcrdma_req, rl_list);
1215 	if (req)
1216 		list_del_init(&req->rl_list);
1217 	spin_unlock(&buffers->rb_lock);
1218 	return req;
1219 }
1220 
1221 /**
1222  * rpcrdma_buffer_put - Put request/reply buffers back into pool
1223  * @buffers: buffer pool
1224  * @req: object to return
1225  *
1226  */
1227 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1228 {
1229 	if (req->rl_reply)
1230 		rpcrdma_rep_put(buffers, req->rl_reply);
1231 	req->rl_reply = NULL;
1232 
1233 	spin_lock(&buffers->rb_lock);
1234 	list_add(&req->rl_list, &buffers->rb_send_bufs);
1235 	spin_unlock(&buffers->rb_lock);
1236 }
1237 
1238 /**
1239  * rpcrdma_recv_buffer_put - Release rpcrdma_rep back to free list
1240  * @rep: rep to release
1241  *
1242  * Used after error conditions.
1243  */
1244 void rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
1245 {
1246 	rpcrdma_rep_put(&rep->rr_rxprt->rx_buf, rep);
1247 }
1248 
1249 /* Returns a pointer to a rpcrdma_regbuf object, or NULL.
1250  *
1251  * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1252  * receiving the payload of RDMA RECV operations. During Long Calls
1253  * or Replies they may be registered externally via frwr_map.
1254  */
1255 static struct rpcrdma_regbuf *
1256 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
1257 		     gfp_t flags)
1258 {
1259 	struct rpcrdma_regbuf *rb;
1260 
1261 	rb = kmalloc(sizeof(*rb), flags);
1262 	if (!rb)
1263 		return NULL;
1264 	rb->rg_data = kmalloc(size, flags);
1265 	if (!rb->rg_data) {
1266 		kfree(rb);
1267 		return NULL;
1268 	}
1269 
1270 	rb->rg_device = NULL;
1271 	rb->rg_direction = direction;
1272 	rb->rg_iov.length = size;
1273 	return rb;
1274 }
1275 
1276 /**
1277  * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer
1278  * @rb: regbuf to reallocate
1279  * @size: size of buffer to be allocated, in bytes
1280  * @flags: GFP flags
1281  *
1282  * Returns true if reallocation was successful. If false is
1283  * returned, @rb is left untouched.
1284  */
1285 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags)
1286 {
1287 	void *buf;
1288 
1289 	buf = kmalloc(size, flags);
1290 	if (!buf)
1291 		return false;
1292 
1293 	rpcrdma_regbuf_dma_unmap(rb);
1294 	kfree(rb->rg_data);
1295 
1296 	rb->rg_data = buf;
1297 	rb->rg_iov.length = size;
1298 	return true;
1299 }
1300 
1301 /**
1302  * __rpcrdma_regbuf_dma_map - DMA-map a regbuf
1303  * @r_xprt: controlling transport instance
1304  * @rb: regbuf to be mapped
1305  *
1306  * Returns true if the buffer is now DMA mapped to @r_xprt's device
1307  */
1308 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt,
1309 			      struct rpcrdma_regbuf *rb)
1310 {
1311 	struct ib_device *device = r_xprt->rx_ep->re_id->device;
1312 
1313 	if (rb->rg_direction == DMA_NONE)
1314 		return false;
1315 
1316 	rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb),
1317 					    rdmab_length(rb), rb->rg_direction);
1318 	if (ib_dma_mapping_error(device, rdmab_addr(rb))) {
1319 		trace_xprtrdma_dma_maperr(rdmab_addr(rb));
1320 		return false;
1321 	}
1322 
1323 	rb->rg_device = device;
1324 	rb->rg_iov.lkey = r_xprt->rx_ep->re_pd->local_dma_lkey;
1325 	return true;
1326 }
1327 
1328 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb)
1329 {
1330 	if (!rb)
1331 		return;
1332 
1333 	if (!rpcrdma_regbuf_is_mapped(rb))
1334 		return;
1335 
1336 	ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb),
1337 			    rb->rg_direction);
1338 	rb->rg_device = NULL;
1339 }
1340 
1341 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb)
1342 {
1343 	rpcrdma_regbuf_dma_unmap(rb);
1344 	if (rb)
1345 		kfree(rb->rg_data);
1346 	kfree(rb);
1347 }
1348 
1349 /**
1350  * rpcrdma_post_sends - Post WRs to a transport's Send Queue
1351  * @r_xprt: controlling transport instance
1352  * @req: rpcrdma_req containing the Send WR to post
1353  *
1354  * Returns 0 if the post was successful, otherwise -ENOTCONN
1355  * is returned.
1356  */
1357 int rpcrdma_post_sends(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
1358 {
1359 	struct ib_send_wr *send_wr = &req->rl_wr;
1360 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
1361 	int rc;
1362 
1363 	if (!ep->re_send_count || kref_read(&req->rl_kref) > 1) {
1364 		send_wr->send_flags |= IB_SEND_SIGNALED;
1365 		ep->re_send_count = ep->re_send_batch;
1366 	} else {
1367 		send_wr->send_flags &= ~IB_SEND_SIGNALED;
1368 		--ep->re_send_count;
1369 	}
1370 
1371 	trace_xprtrdma_post_send(req);
1372 	rc = frwr_send(r_xprt, req);
1373 	if (rc)
1374 		return -ENOTCONN;
1375 	return 0;
1376 }
1377 
1378 /**
1379  * rpcrdma_post_recvs - Refill the Receive Queue
1380  * @r_xprt: controlling transport instance
1381  * @temp: mark Receive buffers to be deleted after use
1382  *
1383  */
1384 void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp)
1385 {
1386 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1387 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
1388 	struct ib_recv_wr *wr, *bad_wr;
1389 	struct rpcrdma_rep *rep;
1390 	int needed, count, rc;
1391 
1392 	rc = 0;
1393 	count = 0;
1394 
1395 	needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1);
1396 	if (likely(ep->re_receive_count > needed))
1397 		goto out;
1398 	needed -= ep->re_receive_count;
1399 	if (!temp)
1400 		needed += RPCRDMA_MAX_RECV_BATCH;
1401 
1402 	/* fast path: all needed reps can be found on the free list */
1403 	wr = NULL;
1404 	while (needed) {
1405 		rep = rpcrdma_rep_get_locked(buf);
1406 		if (rep && rep->rr_temp) {
1407 			rpcrdma_rep_destroy(rep);
1408 			continue;
1409 		}
1410 		if (!rep)
1411 			rep = rpcrdma_rep_create(r_xprt, temp);
1412 		if (!rep)
1413 			break;
1414 
1415 		trace_xprtrdma_post_recv(rep);
1416 		rep->rr_recv_wr.next = wr;
1417 		wr = &rep->rr_recv_wr;
1418 		--needed;
1419 		++count;
1420 	}
1421 	if (!wr)
1422 		goto out;
1423 
1424 	rc = ib_post_recv(ep->re_id->qp, wr,
1425 			  (const struct ib_recv_wr **)&bad_wr);
1426 out:
1427 	trace_xprtrdma_post_recvs(r_xprt, count, rc);
1428 	if (rc) {
1429 		for (wr = bad_wr; wr;) {
1430 			struct rpcrdma_rep *rep;
1431 
1432 			rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr);
1433 			wr = wr->next;
1434 			rpcrdma_recv_buffer_put(rep);
1435 			--count;
1436 		}
1437 	}
1438 	ep->re_receive_count += count;
1439 	return;
1440 }
1441