xref: /openbmc/linux/net/sunrpc/xprtrdma/verbs.c (revision 37744fee)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (c) 2014-2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the BSD-type
10  * license below:
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  *
16  *      Redistributions of source code must retain the above copyright
17  *      notice, this list of conditions and the following disclaimer.
18  *
19  *      Redistributions in binary form must reproduce the above
20  *      copyright notice, this list of conditions and the following
21  *      disclaimer in the documentation and/or other materials provided
22  *      with the distribution.
23  *
24  *      Neither the name of the Network Appliance, Inc. nor the names of
25  *      its contributors may be used to endorse or promote products
26  *      derived from this software without specific prior written
27  *      permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41 
42 /*
43  * verbs.c
44  *
45  * Encapsulates the major functions managing:
46  *  o adapters
47  *  o endpoints
48  *  o connections
49  *  o buffer memory
50  */
51 
52 #include <linux/interrupt.h>
53 #include <linux/slab.h>
54 #include <linux/sunrpc/addr.h>
55 #include <linux/sunrpc/svc_rdma.h>
56 #include <linux/log2.h>
57 
58 #include <asm-generic/barrier.h>
59 #include <asm/bitops.h>
60 
61 #include <rdma/ib_cm.h>
62 
63 #include "xprt_rdma.h"
64 #include <trace/events/rpcrdma.h>
65 
66 /*
67  * Globals/Macros
68  */
69 
70 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
71 # define RPCDBG_FACILITY	RPCDBG_TRANS
72 #endif
73 
74 /*
75  * internal functions
76  */
77 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt);
78 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt);
79 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
80 				       struct rpcrdma_sendctx *sc);
81 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt);
82 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt);
83 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep);
84 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt);
85 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt);
86 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt);
87 static int rpcrdma_ep_destroy(struct rpcrdma_ep *ep);
88 static struct rpcrdma_regbuf *
89 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
90 		     gfp_t flags);
91 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb);
92 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb);
93 
94 /* Wait for outstanding transport work to finish. ib_drain_qp
95  * handles the drains in the wrong order for us, so open code
96  * them here.
97  */
98 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt)
99 {
100 	struct rdma_cm_id *id = r_xprt->rx_ep->re_id;
101 
102 	/* Flush Receives, then wait for deferred Reply work
103 	 * to complete.
104 	 */
105 	ib_drain_rq(id->qp);
106 
107 	/* Deferred Reply processing might have scheduled
108 	 * local invalidations.
109 	 */
110 	ib_drain_sq(id->qp);
111 }
112 
113 /**
114  * rpcrdma_qp_event_handler - Handle one QP event (error notification)
115  * @event: details of the event
116  * @context: ep that owns QP where event occurred
117  *
118  * Called from the RDMA provider (device driver) possibly in an interrupt
119  * context. The QP is always destroyed before the ID, so the ID will be
120  * reliably available when this handler is invoked.
121  */
122 static void rpcrdma_qp_event_handler(struct ib_event *event, void *context)
123 {
124 	struct rpcrdma_ep *ep = context;
125 
126 	trace_xprtrdma_qp_event(ep, event);
127 }
128 
129 /**
130  * rpcrdma_flush_disconnect - Disconnect on flushed completion
131  * @cq: completion queue
132  * @wc: work completion entry
133  *
134  * Must be called in process context.
135  */
136 void rpcrdma_flush_disconnect(struct ib_cq *cq, struct ib_wc *wc)
137 {
138 	struct rpcrdma_xprt *r_xprt = cq->cq_context;
139 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
140 
141 	if (wc->status != IB_WC_SUCCESS &&
142 	    r_xprt->rx_ep->re_connect_status == 1) {
143 		r_xprt->rx_ep->re_connect_status = -ECONNABORTED;
144 		trace_xprtrdma_flush_dct(r_xprt, wc->status);
145 		xprt_force_disconnect(xprt);
146 	}
147 }
148 
149 /**
150  * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
151  * @cq:	completion queue
152  * @wc:	WCE for a completed Send WR
153  *
154  */
155 static void rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
156 {
157 	struct ib_cqe *cqe = wc->wr_cqe;
158 	struct rpcrdma_sendctx *sc =
159 		container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
160 
161 	/* WARNING: Only wr_cqe and status are reliable at this point */
162 	trace_xprtrdma_wc_send(sc, wc);
163 	rpcrdma_sendctx_put_locked((struct rpcrdma_xprt *)cq->cq_context, sc);
164 	rpcrdma_flush_disconnect(cq, wc);
165 }
166 
167 /**
168  * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
169  * @cq:	completion queue
170  * @wc:	WCE for a completed Receive WR
171  *
172  */
173 static void rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
174 {
175 	struct ib_cqe *cqe = wc->wr_cqe;
176 	struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
177 					       rr_cqe);
178 	struct rpcrdma_xprt *r_xprt = cq->cq_context;
179 
180 	/* WARNING: Only wr_cqe and status are reliable at this point */
181 	trace_xprtrdma_wc_receive(wc);
182 	--r_xprt->rx_ep->re_receive_count;
183 	if (wc->status != IB_WC_SUCCESS)
184 		goto out_flushed;
185 
186 	/* status == SUCCESS means all fields in wc are trustworthy */
187 	rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
188 	rep->rr_wc_flags = wc->wc_flags;
189 	rep->rr_inv_rkey = wc->ex.invalidate_rkey;
190 
191 	ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
192 				   rdmab_addr(rep->rr_rdmabuf),
193 				   wc->byte_len, DMA_FROM_DEVICE);
194 
195 	rpcrdma_reply_handler(rep);
196 	return;
197 
198 out_flushed:
199 	rpcrdma_flush_disconnect(cq, wc);
200 	rpcrdma_rep_destroy(rep);
201 }
202 
203 static void rpcrdma_update_cm_private(struct rpcrdma_ep *ep,
204 				      struct rdma_conn_param *param)
205 {
206 	const struct rpcrdma_connect_private *pmsg = param->private_data;
207 	unsigned int rsize, wsize;
208 
209 	/* Default settings for RPC-over-RDMA Version One */
210 	ep->re_implicit_roundup = xprt_rdma_pad_optimize;
211 	rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
212 	wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
213 
214 	if (pmsg &&
215 	    pmsg->cp_magic == rpcrdma_cmp_magic &&
216 	    pmsg->cp_version == RPCRDMA_CMP_VERSION) {
217 		ep->re_implicit_roundup = true;
218 		rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
219 		wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
220 	}
221 
222 	if (rsize < ep->re_inline_recv)
223 		ep->re_inline_recv = rsize;
224 	if (wsize < ep->re_inline_send)
225 		ep->re_inline_send = wsize;
226 
227 	rpcrdma_set_max_header_sizes(ep);
228 }
229 
230 /**
231  * rpcrdma_cm_event_handler - Handle RDMA CM events
232  * @id: rdma_cm_id on which an event has occurred
233  * @event: details of the event
234  *
235  * Called with @id's mutex held. Returns 1 if caller should
236  * destroy @id, otherwise 0.
237  */
238 static int
239 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event)
240 {
241 	struct sockaddr *sap = (struct sockaddr *)&id->route.addr.dst_addr;
242 	struct rpcrdma_ep *ep = id->context;
243 	struct rpc_xprt *xprt = ep->re_xprt;
244 
245 	might_sleep();
246 
247 	switch (event->event) {
248 	case RDMA_CM_EVENT_ADDR_RESOLVED:
249 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
250 		ep->re_async_rc = 0;
251 		complete(&ep->re_done);
252 		return 0;
253 	case RDMA_CM_EVENT_ADDR_ERROR:
254 		ep->re_async_rc = -EPROTO;
255 		complete(&ep->re_done);
256 		return 0;
257 	case RDMA_CM_EVENT_ROUTE_ERROR:
258 		ep->re_async_rc = -ENETUNREACH;
259 		complete(&ep->re_done);
260 		return 0;
261 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
262 		pr_info("rpcrdma: removing device %s for %pISpc\n",
263 			ep->re_id->device->name, sap);
264 		/* fall through */
265 	case RDMA_CM_EVENT_ADDR_CHANGE:
266 		ep->re_connect_status = -ENODEV;
267 		xprt_force_disconnect(xprt);
268 		goto disconnected;
269 	case RDMA_CM_EVENT_ESTABLISHED:
270 		kref_get(&ep->re_kref);
271 		ep->re_connect_status = 1;
272 		rpcrdma_update_cm_private(ep, &event->param.conn);
273 		trace_xprtrdma_inline_thresh(ep);
274 		wake_up_all(&ep->re_connect_wait);
275 		break;
276 	case RDMA_CM_EVENT_CONNECT_ERROR:
277 		ep->re_connect_status = -ENOTCONN;
278 		goto disconnected;
279 	case RDMA_CM_EVENT_UNREACHABLE:
280 		ep->re_connect_status = -ENETUNREACH;
281 		goto disconnected;
282 	case RDMA_CM_EVENT_REJECTED:
283 		dprintk("rpcrdma: connection to %pISpc rejected: %s\n",
284 			sap, rdma_reject_msg(id, event->status));
285 		ep->re_connect_status = -ECONNREFUSED;
286 		if (event->status == IB_CM_REJ_STALE_CONN)
287 			ep->re_connect_status = -EAGAIN;
288 		goto disconnected;
289 	case RDMA_CM_EVENT_DISCONNECTED:
290 		ep->re_connect_status = -ECONNABORTED;
291 disconnected:
292 		xprt_force_disconnect(xprt);
293 		return rpcrdma_ep_destroy(ep);
294 	default:
295 		break;
296 	}
297 
298 	dprintk("RPC:       %s: %pISpc on %s/frwr: %s\n", __func__, sap,
299 		ep->re_id->device->name, rdma_event_msg(event->event));
300 	return 0;
301 }
302 
303 static struct rdma_cm_id *rpcrdma_create_id(struct rpcrdma_xprt *r_xprt,
304 					    struct rpcrdma_ep *ep)
305 {
306 	unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
307 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
308 	struct rdma_cm_id *id;
309 	int rc;
310 
311 	init_completion(&ep->re_done);
312 
313 	id = rdma_create_id(xprt->xprt_net, rpcrdma_cm_event_handler, ep,
314 			    RDMA_PS_TCP, IB_QPT_RC);
315 	if (IS_ERR(id))
316 		return id;
317 
318 	ep->re_async_rc = -ETIMEDOUT;
319 	rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)&xprt->addr,
320 			       RDMA_RESOLVE_TIMEOUT);
321 	if (rc)
322 		goto out;
323 	rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
324 	if (rc < 0)
325 		goto out;
326 
327 	rc = ep->re_async_rc;
328 	if (rc)
329 		goto out;
330 
331 	ep->re_async_rc = -ETIMEDOUT;
332 	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
333 	if (rc)
334 		goto out;
335 	rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
336 	if (rc < 0)
337 		goto out;
338 	rc = ep->re_async_rc;
339 	if (rc)
340 		goto out;
341 
342 	return id;
343 
344 out:
345 	rdma_destroy_id(id);
346 	return ERR_PTR(rc);
347 }
348 
349 static void rpcrdma_ep_put(struct kref *kref)
350 {
351 	struct rpcrdma_ep *ep = container_of(kref, struct rpcrdma_ep, re_kref);
352 
353 	if (ep->re_id->qp) {
354 		rdma_destroy_qp(ep->re_id);
355 		ep->re_id->qp = NULL;
356 	}
357 
358 	if (ep->re_attr.recv_cq)
359 		ib_free_cq(ep->re_attr.recv_cq);
360 	ep->re_attr.recv_cq = NULL;
361 	if (ep->re_attr.send_cq)
362 		ib_free_cq(ep->re_attr.send_cq);
363 	ep->re_attr.send_cq = NULL;
364 
365 	if (ep->re_pd)
366 		ib_dealloc_pd(ep->re_pd);
367 	ep->re_pd = NULL;
368 
369 	kfree(ep);
370 	module_put(THIS_MODULE);
371 }
372 
373 /* Returns:
374  *     %0 if @ep still has a positive kref count, or
375  *     %1 if @ep was destroyed successfully.
376  */
377 static int rpcrdma_ep_destroy(struct rpcrdma_ep *ep)
378 {
379 	return kref_put(&ep->re_kref, rpcrdma_ep_put);
380 }
381 
382 static int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt)
383 {
384 	struct rpcrdma_connect_private *pmsg;
385 	struct ib_device *device;
386 	struct rdma_cm_id *id;
387 	struct rpcrdma_ep *ep;
388 	int rc;
389 
390 	ep = kzalloc(sizeof(*ep), GFP_NOFS);
391 	if (!ep)
392 		return -EAGAIN;
393 	ep->re_xprt = &r_xprt->rx_xprt;
394 	kref_init(&ep->re_kref);
395 
396 	id = rpcrdma_create_id(r_xprt, ep);
397 	if (IS_ERR(id)) {
398 		rc = PTR_ERR(id);
399 		goto out_free;
400 	}
401 	__module_get(THIS_MODULE);
402 	device = id->device;
403 	ep->re_id = id;
404 
405 	ep->re_max_requests = r_xprt->rx_xprt.max_reqs;
406 	ep->re_inline_send = xprt_rdma_max_inline_write;
407 	ep->re_inline_recv = xprt_rdma_max_inline_read;
408 	rc = frwr_query_device(ep, device);
409 	if (rc)
410 		goto out_destroy;
411 
412 	r_xprt->rx_buf.rb_max_requests = cpu_to_be32(ep->re_max_requests);
413 
414 	ep->re_attr.event_handler = rpcrdma_qp_event_handler;
415 	ep->re_attr.qp_context = ep;
416 	ep->re_attr.srq = NULL;
417 	ep->re_attr.cap.max_inline_data = 0;
418 	ep->re_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
419 	ep->re_attr.qp_type = IB_QPT_RC;
420 	ep->re_attr.port_num = ~0;
421 
422 	dprintk("RPC:       %s: requested max: dtos: send %d recv %d; "
423 		"iovs: send %d recv %d\n",
424 		__func__,
425 		ep->re_attr.cap.max_send_wr,
426 		ep->re_attr.cap.max_recv_wr,
427 		ep->re_attr.cap.max_send_sge,
428 		ep->re_attr.cap.max_recv_sge);
429 
430 	ep->re_send_batch = ep->re_max_requests >> 3;
431 	ep->re_send_count = ep->re_send_batch;
432 	init_waitqueue_head(&ep->re_connect_wait);
433 
434 	ep->re_attr.send_cq = ib_alloc_cq_any(device, r_xprt,
435 					      ep->re_attr.cap.max_send_wr,
436 					      IB_POLL_WORKQUEUE);
437 	if (IS_ERR(ep->re_attr.send_cq)) {
438 		rc = PTR_ERR(ep->re_attr.send_cq);
439 		goto out_destroy;
440 	}
441 
442 	ep->re_attr.recv_cq = ib_alloc_cq_any(device, r_xprt,
443 					      ep->re_attr.cap.max_recv_wr,
444 					      IB_POLL_WORKQUEUE);
445 	if (IS_ERR(ep->re_attr.recv_cq)) {
446 		rc = PTR_ERR(ep->re_attr.recv_cq);
447 		goto out_destroy;
448 	}
449 	ep->re_receive_count = 0;
450 
451 	/* Initialize cma parameters */
452 	memset(&ep->re_remote_cma, 0, sizeof(ep->re_remote_cma));
453 
454 	/* Prepare RDMA-CM private message */
455 	pmsg = &ep->re_cm_private;
456 	pmsg->cp_magic = rpcrdma_cmp_magic;
457 	pmsg->cp_version = RPCRDMA_CMP_VERSION;
458 	pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK;
459 	pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->re_inline_send);
460 	pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->re_inline_recv);
461 	ep->re_remote_cma.private_data = pmsg;
462 	ep->re_remote_cma.private_data_len = sizeof(*pmsg);
463 
464 	/* Client offers RDMA Read but does not initiate */
465 	ep->re_remote_cma.initiator_depth = 0;
466 	ep->re_remote_cma.responder_resources =
467 		min_t(int, U8_MAX, device->attrs.max_qp_rd_atom);
468 
469 	/* Limit transport retries so client can detect server
470 	 * GID changes quickly. RPC layer handles re-establishing
471 	 * transport connection and retransmission.
472 	 */
473 	ep->re_remote_cma.retry_count = 6;
474 
475 	/* RPC-over-RDMA handles its own flow control. In addition,
476 	 * make all RNR NAKs visible so we know that RPC-over-RDMA
477 	 * flow control is working correctly (no NAKs should be seen).
478 	 */
479 	ep->re_remote_cma.flow_control = 0;
480 	ep->re_remote_cma.rnr_retry_count = 0;
481 
482 	ep->re_pd = ib_alloc_pd(device, 0);
483 	if (IS_ERR(ep->re_pd)) {
484 		rc = PTR_ERR(ep->re_pd);
485 		goto out_destroy;
486 	}
487 
488 	rc = rdma_create_qp(id, ep->re_pd, &ep->re_attr);
489 	if (rc)
490 		goto out_destroy;
491 
492 	r_xprt->rx_ep = ep;
493 	return 0;
494 
495 out_destroy:
496 	rpcrdma_ep_destroy(ep);
497 	rdma_destroy_id(id);
498 out_free:
499 	kfree(ep);
500 	r_xprt->rx_ep = NULL;
501 	return rc;
502 }
503 
504 /**
505  * rpcrdma_xprt_connect - Connect an unconnected transport
506  * @r_xprt: controlling transport instance
507  *
508  * Returns 0 on success or a negative errno.
509  */
510 int rpcrdma_xprt_connect(struct rpcrdma_xprt *r_xprt)
511 {
512 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
513 	struct rpcrdma_ep *ep;
514 	int rc;
515 
516 retry:
517 	rpcrdma_xprt_disconnect(r_xprt);
518 	rc = rpcrdma_ep_create(r_xprt);
519 	if (rc)
520 		return rc;
521 	ep = r_xprt->rx_ep;
522 
523 	ep->re_connect_status = 0;
524 	xprt_clear_connected(xprt);
525 
526 	rpcrdma_reset_cwnd(r_xprt);
527 	rpcrdma_post_recvs(r_xprt, true);
528 
529 	rc = rpcrdma_sendctxs_create(r_xprt);
530 	if (rc)
531 		goto out;
532 
533 	rc = rdma_connect(ep->re_id, &ep->re_remote_cma);
534 	if (rc)
535 		goto out;
536 
537 	if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
538 		xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
539 	wait_event_interruptible(ep->re_connect_wait,
540 				 ep->re_connect_status != 0);
541 	if (ep->re_connect_status <= 0) {
542 		if (ep->re_connect_status == -EAGAIN)
543 			goto retry;
544 		rc = ep->re_connect_status;
545 		goto out;
546 	}
547 
548 	rc = rpcrdma_reqs_setup(r_xprt);
549 	if (rc) {
550 		rpcrdma_xprt_disconnect(r_xprt);
551 		goto out;
552 	}
553 	rpcrdma_mrs_create(r_xprt);
554 
555 out:
556 	if (rc)
557 		ep->re_connect_status = rc;
558 	trace_xprtrdma_connect(r_xprt, rc);
559 	return rc;
560 }
561 
562 /**
563  * rpcrdma_xprt_disconnect - Disconnect underlying transport
564  * @r_xprt: controlling transport instance
565  *
566  * Caller serializes. Either the transport send lock is held,
567  * or we're being called to destroy the transport.
568  *
569  * On return, @r_xprt is completely divested of all hardware
570  * resources and prepared for the next ->connect operation.
571  */
572 void rpcrdma_xprt_disconnect(struct rpcrdma_xprt *r_xprt)
573 {
574 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
575 	struct rdma_cm_id *id;
576 	int rc;
577 
578 	if (!ep)
579 		return;
580 
581 	id = ep->re_id;
582 	rc = rdma_disconnect(id);
583 	trace_xprtrdma_disconnect(r_xprt, rc);
584 
585 	rpcrdma_xprt_drain(r_xprt);
586 	rpcrdma_reps_unmap(r_xprt);
587 	rpcrdma_reqs_reset(r_xprt);
588 	rpcrdma_mrs_destroy(r_xprt);
589 	rpcrdma_sendctxs_destroy(r_xprt);
590 
591 	if (rpcrdma_ep_destroy(ep))
592 		rdma_destroy_id(id);
593 
594 	r_xprt->rx_ep = NULL;
595 }
596 
597 /* Fixed-size circular FIFO queue. This implementation is wait-free and
598  * lock-free.
599  *
600  * Consumer is the code path that posts Sends. This path dequeues a
601  * sendctx for use by a Send operation. Multiple consumer threads
602  * are serialized by the RPC transport lock, which allows only one
603  * ->send_request call at a time.
604  *
605  * Producer is the code path that handles Send completions. This path
606  * enqueues a sendctx that has been completed. Multiple producer
607  * threads are serialized by the ib_poll_cq() function.
608  */
609 
610 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
611  * queue activity, and rpcrdma_xprt_drain has flushed all remaining
612  * Send requests.
613  */
614 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt)
615 {
616 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
617 	unsigned long i;
618 
619 	if (!buf->rb_sc_ctxs)
620 		return;
621 	for (i = 0; i <= buf->rb_sc_last; i++)
622 		kfree(buf->rb_sc_ctxs[i]);
623 	kfree(buf->rb_sc_ctxs);
624 	buf->rb_sc_ctxs = NULL;
625 }
626 
627 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ep *ep)
628 {
629 	struct rpcrdma_sendctx *sc;
630 
631 	sc = kzalloc(struct_size(sc, sc_sges, ep->re_attr.cap.max_send_sge),
632 		     GFP_KERNEL);
633 	if (!sc)
634 		return NULL;
635 
636 	sc->sc_cqe.done = rpcrdma_wc_send;
637 	return sc;
638 }
639 
640 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
641 {
642 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
643 	struct rpcrdma_sendctx *sc;
644 	unsigned long i;
645 
646 	/* Maximum number of concurrent outstanding Send WRs. Capping
647 	 * the circular queue size stops Send Queue overflow by causing
648 	 * the ->send_request call to fail temporarily before too many
649 	 * Sends are posted.
650 	 */
651 	i = r_xprt->rx_ep->re_max_requests + RPCRDMA_MAX_BC_REQUESTS;
652 	buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL);
653 	if (!buf->rb_sc_ctxs)
654 		return -ENOMEM;
655 
656 	buf->rb_sc_last = i - 1;
657 	for (i = 0; i <= buf->rb_sc_last; i++) {
658 		sc = rpcrdma_sendctx_create(r_xprt->rx_ep);
659 		if (!sc)
660 			return -ENOMEM;
661 
662 		buf->rb_sc_ctxs[i] = sc;
663 	}
664 
665 	buf->rb_sc_head = 0;
666 	buf->rb_sc_tail = 0;
667 	return 0;
668 }
669 
670 /* The sendctx queue is not guaranteed to have a size that is a
671  * power of two, thus the helpers in circ_buf.h cannot be used.
672  * The other option is to use modulus (%), which can be expensive.
673  */
674 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
675 					  unsigned long item)
676 {
677 	return likely(item < buf->rb_sc_last) ? item + 1 : 0;
678 }
679 
680 /**
681  * rpcrdma_sendctx_get_locked - Acquire a send context
682  * @r_xprt: controlling transport instance
683  *
684  * Returns pointer to a free send completion context; or NULL if
685  * the queue is empty.
686  *
687  * Usage: Called to acquire an SGE array before preparing a Send WR.
688  *
689  * The caller serializes calls to this function (per transport), and
690  * provides an effective memory barrier that flushes the new value
691  * of rb_sc_head.
692  */
693 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt)
694 {
695 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
696 	struct rpcrdma_sendctx *sc;
697 	unsigned long next_head;
698 
699 	next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
700 
701 	if (next_head == READ_ONCE(buf->rb_sc_tail))
702 		goto out_emptyq;
703 
704 	/* ORDER: item must be accessed _before_ head is updated */
705 	sc = buf->rb_sc_ctxs[next_head];
706 
707 	/* Releasing the lock in the caller acts as a memory
708 	 * barrier that flushes rb_sc_head.
709 	 */
710 	buf->rb_sc_head = next_head;
711 
712 	return sc;
713 
714 out_emptyq:
715 	/* The queue is "empty" if there have not been enough Send
716 	 * completions recently. This is a sign the Send Queue is
717 	 * backing up. Cause the caller to pause and try again.
718 	 */
719 	xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
720 	r_xprt->rx_stats.empty_sendctx_q++;
721 	return NULL;
722 }
723 
724 /**
725  * rpcrdma_sendctx_put_locked - Release a send context
726  * @r_xprt: controlling transport instance
727  * @sc: send context to release
728  *
729  * Usage: Called from Send completion to return a sendctxt
730  * to the queue.
731  *
732  * The caller serializes calls to this function (per transport).
733  */
734 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
735 				       struct rpcrdma_sendctx *sc)
736 {
737 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
738 	unsigned long next_tail;
739 
740 	/* Unmap SGEs of previously completed but unsignaled
741 	 * Sends by walking up the queue until @sc is found.
742 	 */
743 	next_tail = buf->rb_sc_tail;
744 	do {
745 		next_tail = rpcrdma_sendctx_next(buf, next_tail);
746 
747 		/* ORDER: item must be accessed _before_ tail is updated */
748 		rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]);
749 
750 	} while (buf->rb_sc_ctxs[next_tail] != sc);
751 
752 	/* Paired with READ_ONCE */
753 	smp_store_release(&buf->rb_sc_tail, next_tail);
754 
755 	xprt_write_space(&r_xprt->rx_xprt);
756 }
757 
758 static void
759 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt)
760 {
761 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
762 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
763 	unsigned int count;
764 
765 	for (count = 0; count < ep->re_max_rdma_segs; count++) {
766 		struct rpcrdma_mr *mr;
767 		int rc;
768 
769 		mr = kzalloc(sizeof(*mr), GFP_NOFS);
770 		if (!mr)
771 			break;
772 
773 		rc = frwr_mr_init(r_xprt, mr);
774 		if (rc) {
775 			kfree(mr);
776 			break;
777 		}
778 
779 		spin_lock(&buf->rb_lock);
780 		rpcrdma_mr_push(mr, &buf->rb_mrs);
781 		list_add(&mr->mr_all, &buf->rb_all_mrs);
782 		spin_unlock(&buf->rb_lock);
783 	}
784 
785 	r_xprt->rx_stats.mrs_allocated += count;
786 	trace_xprtrdma_createmrs(r_xprt, count);
787 }
788 
789 static void
790 rpcrdma_mr_refresh_worker(struct work_struct *work)
791 {
792 	struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
793 						  rb_refresh_worker);
794 	struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
795 						   rx_buf);
796 
797 	rpcrdma_mrs_create(r_xprt);
798 	xprt_write_space(&r_xprt->rx_xprt);
799 }
800 
801 /**
802  * rpcrdma_mrs_refresh - Wake the MR refresh worker
803  * @r_xprt: controlling transport instance
804  *
805  */
806 void rpcrdma_mrs_refresh(struct rpcrdma_xprt *r_xprt)
807 {
808 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
809 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
810 
811 	/* If there is no underlying connection, it's no use
812 	 * to wake the refresh worker.
813 	 */
814 	if (ep->re_connect_status == 1) {
815 		/* The work is scheduled on a WQ_MEM_RECLAIM
816 		 * workqueue in order to prevent MR allocation
817 		 * from recursing into NFS during direct reclaim.
818 		 */
819 		queue_work(xprtiod_workqueue, &buf->rb_refresh_worker);
820 	}
821 }
822 
823 /**
824  * rpcrdma_req_create - Allocate an rpcrdma_req object
825  * @r_xprt: controlling r_xprt
826  * @size: initial size, in bytes, of send and receive buffers
827  * @flags: GFP flags passed to memory allocators
828  *
829  * Returns an allocated and fully initialized rpcrdma_req or NULL.
830  */
831 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size,
832 				       gfp_t flags)
833 {
834 	struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
835 	struct rpcrdma_req *req;
836 
837 	req = kzalloc(sizeof(*req), flags);
838 	if (req == NULL)
839 		goto out1;
840 
841 	req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags);
842 	if (!req->rl_sendbuf)
843 		goto out2;
844 
845 	req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags);
846 	if (!req->rl_recvbuf)
847 		goto out3;
848 
849 	INIT_LIST_HEAD(&req->rl_free_mrs);
850 	INIT_LIST_HEAD(&req->rl_registered);
851 	spin_lock(&buffer->rb_lock);
852 	list_add(&req->rl_all, &buffer->rb_allreqs);
853 	spin_unlock(&buffer->rb_lock);
854 	return req;
855 
856 out3:
857 	kfree(req->rl_sendbuf);
858 out2:
859 	kfree(req);
860 out1:
861 	return NULL;
862 }
863 
864 /**
865  * rpcrdma_req_setup - Per-connection instance setup of an rpcrdma_req object
866  * @r_xprt: controlling transport instance
867  * @req: rpcrdma_req object to set up
868  *
869  * Returns zero on success, and a negative errno on failure.
870  */
871 int rpcrdma_req_setup(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
872 {
873 	struct rpcrdma_regbuf *rb;
874 	size_t maxhdrsize;
875 
876 	/* Compute maximum header buffer size in bytes */
877 	maxhdrsize = rpcrdma_fixed_maxsz + 3 +
878 		     r_xprt->rx_ep->re_max_rdma_segs * rpcrdma_readchunk_maxsz;
879 	maxhdrsize *= sizeof(__be32);
880 	rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize),
881 				  DMA_TO_DEVICE, GFP_KERNEL);
882 	if (!rb)
883 		goto out;
884 
885 	if (!__rpcrdma_regbuf_dma_map(r_xprt, rb))
886 		goto out_free;
887 
888 	req->rl_rdmabuf = rb;
889 	xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb));
890 	return 0;
891 
892 out_free:
893 	rpcrdma_regbuf_free(rb);
894 out:
895 	return -ENOMEM;
896 }
897 
898 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
899  * and thus can be walked without holding rb_lock. Eg. the
900  * caller is holding the transport send lock to exclude
901  * device removal or disconnection.
902  */
903 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt)
904 {
905 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
906 	struct rpcrdma_req *req;
907 	int rc;
908 
909 	list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
910 		rc = rpcrdma_req_setup(r_xprt, req);
911 		if (rc)
912 			return rc;
913 	}
914 	return 0;
915 }
916 
917 static void rpcrdma_req_reset(struct rpcrdma_req *req)
918 {
919 	/* Credits are valid for only one connection */
920 	req->rl_slot.rq_cong = 0;
921 
922 	rpcrdma_regbuf_free(req->rl_rdmabuf);
923 	req->rl_rdmabuf = NULL;
924 
925 	rpcrdma_regbuf_dma_unmap(req->rl_sendbuf);
926 	rpcrdma_regbuf_dma_unmap(req->rl_recvbuf);
927 }
928 
929 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
930  * and thus can be walked without holding rb_lock. Eg. the
931  * caller is holding the transport send lock to exclude
932  * device removal or disconnection.
933  */
934 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt)
935 {
936 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
937 	struct rpcrdma_req *req;
938 
939 	list_for_each_entry(req, &buf->rb_allreqs, rl_all)
940 		rpcrdma_req_reset(req);
941 }
942 
943 /* No locking needed here. This function is called only by the
944  * Receive completion handler.
945  */
946 static noinline
947 struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt,
948 				       bool temp)
949 {
950 	struct rpcrdma_rep *rep;
951 
952 	rep = kzalloc(sizeof(*rep), GFP_KERNEL);
953 	if (rep == NULL)
954 		goto out;
955 
956 	rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep->re_inline_recv,
957 					       DMA_FROM_DEVICE, GFP_KERNEL);
958 	if (!rep->rr_rdmabuf)
959 		goto out_free;
960 
961 	if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf))
962 		goto out_free_regbuf;
963 
964 	xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf),
965 		     rdmab_length(rep->rr_rdmabuf));
966 	rep->rr_cqe.done = rpcrdma_wc_receive;
967 	rep->rr_rxprt = r_xprt;
968 	rep->rr_recv_wr.next = NULL;
969 	rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
970 	rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
971 	rep->rr_recv_wr.num_sge = 1;
972 	rep->rr_temp = temp;
973 	list_add(&rep->rr_all, &r_xprt->rx_buf.rb_all_reps);
974 	return rep;
975 
976 out_free_regbuf:
977 	rpcrdma_regbuf_free(rep->rr_rdmabuf);
978 out_free:
979 	kfree(rep);
980 out:
981 	return NULL;
982 }
983 
984 /* No locking needed here. This function is invoked only by the
985  * Receive completion handler, or during transport shutdown.
986  */
987 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep)
988 {
989 	list_del(&rep->rr_all);
990 	rpcrdma_regbuf_free(rep->rr_rdmabuf);
991 	kfree(rep);
992 }
993 
994 static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf)
995 {
996 	struct llist_node *node;
997 
998 	/* Calls to llist_del_first are required to be serialized */
999 	node = llist_del_first(&buf->rb_free_reps);
1000 	if (!node)
1001 		return NULL;
1002 	return llist_entry(node, struct rpcrdma_rep, rr_node);
1003 }
1004 
1005 static void rpcrdma_rep_put(struct rpcrdma_buffer *buf,
1006 			    struct rpcrdma_rep *rep)
1007 {
1008 	llist_add(&rep->rr_node, &buf->rb_free_reps);
1009 }
1010 
1011 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt)
1012 {
1013 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1014 	struct rpcrdma_rep *rep;
1015 
1016 	list_for_each_entry(rep, &buf->rb_all_reps, rr_all) {
1017 		rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf);
1018 		rep->rr_temp = true;
1019 	}
1020 }
1021 
1022 static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf)
1023 {
1024 	struct rpcrdma_rep *rep;
1025 
1026 	while ((rep = rpcrdma_rep_get_locked(buf)) != NULL)
1027 		rpcrdma_rep_destroy(rep);
1028 }
1029 
1030 /**
1031  * rpcrdma_buffer_create - Create initial set of req/rep objects
1032  * @r_xprt: transport instance to (re)initialize
1033  *
1034  * Returns zero on success, otherwise a negative errno.
1035  */
1036 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1037 {
1038 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1039 	int i, rc;
1040 
1041 	buf->rb_bc_srv_max_requests = 0;
1042 	spin_lock_init(&buf->rb_lock);
1043 	INIT_LIST_HEAD(&buf->rb_mrs);
1044 	INIT_LIST_HEAD(&buf->rb_all_mrs);
1045 	INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker);
1046 
1047 	INIT_LIST_HEAD(&buf->rb_send_bufs);
1048 	INIT_LIST_HEAD(&buf->rb_allreqs);
1049 	INIT_LIST_HEAD(&buf->rb_all_reps);
1050 
1051 	rc = -ENOMEM;
1052 	for (i = 0; i < r_xprt->rx_xprt.max_reqs; i++) {
1053 		struct rpcrdma_req *req;
1054 
1055 		req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE * 2,
1056 					 GFP_KERNEL);
1057 		if (!req)
1058 			goto out;
1059 		list_add(&req->rl_list, &buf->rb_send_bufs);
1060 	}
1061 
1062 	init_llist_head(&buf->rb_free_reps);
1063 
1064 	return 0;
1065 out:
1066 	rpcrdma_buffer_destroy(buf);
1067 	return rc;
1068 }
1069 
1070 /**
1071  * rpcrdma_req_destroy - Destroy an rpcrdma_req object
1072  * @req: unused object to be destroyed
1073  *
1074  * Relies on caller holding the transport send lock to protect
1075  * removing req->rl_all from buf->rb_all_reqs safely.
1076  */
1077 void rpcrdma_req_destroy(struct rpcrdma_req *req)
1078 {
1079 	struct rpcrdma_mr *mr;
1080 
1081 	list_del(&req->rl_all);
1082 
1083 	while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) {
1084 		struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf;
1085 
1086 		spin_lock(&buf->rb_lock);
1087 		list_del(&mr->mr_all);
1088 		spin_unlock(&buf->rb_lock);
1089 
1090 		frwr_release_mr(mr);
1091 	}
1092 
1093 	rpcrdma_regbuf_free(req->rl_recvbuf);
1094 	rpcrdma_regbuf_free(req->rl_sendbuf);
1095 	rpcrdma_regbuf_free(req->rl_rdmabuf);
1096 	kfree(req);
1097 }
1098 
1099 /**
1100  * rpcrdma_mrs_destroy - Release all of a transport's MRs
1101  * @r_xprt: controlling transport instance
1102  *
1103  * Relies on caller holding the transport send lock to protect
1104  * removing mr->mr_list from req->rl_free_mrs safely.
1105  */
1106 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt)
1107 {
1108 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1109 	struct rpcrdma_mr *mr;
1110 
1111 	cancel_work_sync(&buf->rb_refresh_worker);
1112 
1113 	spin_lock(&buf->rb_lock);
1114 	while ((mr = list_first_entry_or_null(&buf->rb_all_mrs,
1115 					      struct rpcrdma_mr,
1116 					      mr_all)) != NULL) {
1117 		list_del(&mr->mr_list);
1118 		list_del(&mr->mr_all);
1119 		spin_unlock(&buf->rb_lock);
1120 
1121 		frwr_release_mr(mr);
1122 
1123 		spin_lock(&buf->rb_lock);
1124 	}
1125 	spin_unlock(&buf->rb_lock);
1126 }
1127 
1128 /**
1129  * rpcrdma_buffer_destroy - Release all hw resources
1130  * @buf: root control block for resources
1131  *
1132  * ORDERING: relies on a prior rpcrdma_xprt_drain :
1133  * - No more Send or Receive completions can occur
1134  * - All MRs, reps, and reqs are returned to their free lists
1135  */
1136 void
1137 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1138 {
1139 	rpcrdma_reps_destroy(buf);
1140 
1141 	while (!list_empty(&buf->rb_send_bufs)) {
1142 		struct rpcrdma_req *req;
1143 
1144 		req = list_first_entry(&buf->rb_send_bufs,
1145 				       struct rpcrdma_req, rl_list);
1146 		list_del(&req->rl_list);
1147 		rpcrdma_req_destroy(req);
1148 	}
1149 }
1150 
1151 /**
1152  * rpcrdma_mr_get - Allocate an rpcrdma_mr object
1153  * @r_xprt: controlling transport
1154  *
1155  * Returns an initialized rpcrdma_mr or NULL if no free
1156  * rpcrdma_mr objects are available.
1157  */
1158 struct rpcrdma_mr *
1159 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt)
1160 {
1161 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1162 	struct rpcrdma_mr *mr;
1163 
1164 	spin_lock(&buf->rb_lock);
1165 	mr = rpcrdma_mr_pop(&buf->rb_mrs);
1166 	spin_unlock(&buf->rb_lock);
1167 	return mr;
1168 }
1169 
1170 /**
1171  * rpcrdma_mr_put - DMA unmap an MR and release it
1172  * @mr: MR to release
1173  *
1174  */
1175 void rpcrdma_mr_put(struct rpcrdma_mr *mr)
1176 {
1177 	struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
1178 
1179 	if (mr->mr_dir != DMA_NONE) {
1180 		trace_xprtrdma_mr_unmap(mr);
1181 		ib_dma_unmap_sg(r_xprt->rx_ep->re_id->device,
1182 				mr->mr_sg, mr->mr_nents, mr->mr_dir);
1183 		mr->mr_dir = DMA_NONE;
1184 	}
1185 
1186 	rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs);
1187 }
1188 
1189 /**
1190  * rpcrdma_buffer_get - Get a request buffer
1191  * @buffers: Buffer pool from which to obtain a buffer
1192  *
1193  * Returns a fresh rpcrdma_req, or NULL if none are available.
1194  */
1195 struct rpcrdma_req *
1196 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1197 {
1198 	struct rpcrdma_req *req;
1199 
1200 	spin_lock(&buffers->rb_lock);
1201 	req = list_first_entry_or_null(&buffers->rb_send_bufs,
1202 				       struct rpcrdma_req, rl_list);
1203 	if (req)
1204 		list_del_init(&req->rl_list);
1205 	spin_unlock(&buffers->rb_lock);
1206 	return req;
1207 }
1208 
1209 /**
1210  * rpcrdma_buffer_put - Put request/reply buffers back into pool
1211  * @buffers: buffer pool
1212  * @req: object to return
1213  *
1214  */
1215 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1216 {
1217 	if (req->rl_reply)
1218 		rpcrdma_rep_put(buffers, req->rl_reply);
1219 	req->rl_reply = NULL;
1220 
1221 	spin_lock(&buffers->rb_lock);
1222 	list_add(&req->rl_list, &buffers->rb_send_bufs);
1223 	spin_unlock(&buffers->rb_lock);
1224 }
1225 
1226 /**
1227  * rpcrdma_recv_buffer_put - Release rpcrdma_rep back to free list
1228  * @rep: rep to release
1229  *
1230  * Used after error conditions.
1231  */
1232 void rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
1233 {
1234 	rpcrdma_rep_put(&rep->rr_rxprt->rx_buf, rep);
1235 }
1236 
1237 /* Returns a pointer to a rpcrdma_regbuf object, or NULL.
1238  *
1239  * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1240  * receiving the payload of RDMA RECV operations. During Long Calls
1241  * or Replies they may be registered externally via frwr_map.
1242  */
1243 static struct rpcrdma_regbuf *
1244 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
1245 		     gfp_t flags)
1246 {
1247 	struct rpcrdma_regbuf *rb;
1248 
1249 	rb = kmalloc(sizeof(*rb), flags);
1250 	if (!rb)
1251 		return NULL;
1252 	rb->rg_data = kmalloc(size, flags);
1253 	if (!rb->rg_data) {
1254 		kfree(rb);
1255 		return NULL;
1256 	}
1257 
1258 	rb->rg_device = NULL;
1259 	rb->rg_direction = direction;
1260 	rb->rg_iov.length = size;
1261 	return rb;
1262 }
1263 
1264 /**
1265  * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer
1266  * @rb: regbuf to reallocate
1267  * @size: size of buffer to be allocated, in bytes
1268  * @flags: GFP flags
1269  *
1270  * Returns true if reallocation was successful. If false is
1271  * returned, @rb is left untouched.
1272  */
1273 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags)
1274 {
1275 	void *buf;
1276 
1277 	buf = kmalloc(size, flags);
1278 	if (!buf)
1279 		return false;
1280 
1281 	rpcrdma_regbuf_dma_unmap(rb);
1282 	kfree(rb->rg_data);
1283 
1284 	rb->rg_data = buf;
1285 	rb->rg_iov.length = size;
1286 	return true;
1287 }
1288 
1289 /**
1290  * __rpcrdma_regbuf_dma_map - DMA-map a regbuf
1291  * @r_xprt: controlling transport instance
1292  * @rb: regbuf to be mapped
1293  *
1294  * Returns true if the buffer is now DMA mapped to @r_xprt's device
1295  */
1296 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt,
1297 			      struct rpcrdma_regbuf *rb)
1298 {
1299 	struct ib_device *device = r_xprt->rx_ep->re_id->device;
1300 
1301 	if (rb->rg_direction == DMA_NONE)
1302 		return false;
1303 
1304 	rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb),
1305 					    rdmab_length(rb), rb->rg_direction);
1306 	if (ib_dma_mapping_error(device, rdmab_addr(rb))) {
1307 		trace_xprtrdma_dma_maperr(rdmab_addr(rb));
1308 		return false;
1309 	}
1310 
1311 	rb->rg_device = device;
1312 	rb->rg_iov.lkey = r_xprt->rx_ep->re_pd->local_dma_lkey;
1313 	return true;
1314 }
1315 
1316 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb)
1317 {
1318 	if (!rb)
1319 		return;
1320 
1321 	if (!rpcrdma_regbuf_is_mapped(rb))
1322 		return;
1323 
1324 	ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb),
1325 			    rb->rg_direction);
1326 	rb->rg_device = NULL;
1327 }
1328 
1329 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb)
1330 {
1331 	rpcrdma_regbuf_dma_unmap(rb);
1332 	if (rb)
1333 		kfree(rb->rg_data);
1334 	kfree(rb);
1335 }
1336 
1337 /**
1338  * rpcrdma_post_sends - Post WRs to a transport's Send Queue
1339  * @r_xprt: controlling transport instance
1340  * @req: rpcrdma_req containing the Send WR to post
1341  *
1342  * Returns 0 if the post was successful, otherwise -ENOTCONN
1343  * is returned.
1344  */
1345 int rpcrdma_post_sends(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
1346 {
1347 	struct ib_send_wr *send_wr = &req->rl_wr;
1348 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
1349 	int rc;
1350 
1351 	if (!ep->re_send_count || kref_read(&req->rl_kref) > 1) {
1352 		send_wr->send_flags |= IB_SEND_SIGNALED;
1353 		ep->re_send_count = ep->re_send_batch;
1354 	} else {
1355 		send_wr->send_flags &= ~IB_SEND_SIGNALED;
1356 		--ep->re_send_count;
1357 	}
1358 
1359 	trace_xprtrdma_post_send(req);
1360 	rc = frwr_send(r_xprt, req);
1361 	if (rc)
1362 		return -ENOTCONN;
1363 	return 0;
1364 }
1365 
1366 /**
1367  * rpcrdma_post_recvs - Refill the Receive Queue
1368  * @r_xprt: controlling transport instance
1369  * @temp: mark Receive buffers to be deleted after use
1370  *
1371  */
1372 void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp)
1373 {
1374 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1375 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
1376 	struct ib_recv_wr *wr, *bad_wr;
1377 	struct rpcrdma_rep *rep;
1378 	int needed, count, rc;
1379 
1380 	rc = 0;
1381 	count = 0;
1382 
1383 	needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1);
1384 	if (likely(ep->re_receive_count > needed))
1385 		goto out;
1386 	needed -= ep->re_receive_count;
1387 	if (!temp)
1388 		needed += RPCRDMA_MAX_RECV_BATCH;
1389 
1390 	/* fast path: all needed reps can be found on the free list */
1391 	wr = NULL;
1392 	while (needed) {
1393 		rep = rpcrdma_rep_get_locked(buf);
1394 		if (rep && rep->rr_temp) {
1395 			rpcrdma_rep_destroy(rep);
1396 			continue;
1397 		}
1398 		if (!rep)
1399 			rep = rpcrdma_rep_create(r_xprt, temp);
1400 		if (!rep)
1401 			break;
1402 
1403 		trace_xprtrdma_post_recv(rep);
1404 		rep->rr_recv_wr.next = wr;
1405 		wr = &rep->rr_recv_wr;
1406 		--needed;
1407 		++count;
1408 	}
1409 	if (!wr)
1410 		goto out;
1411 
1412 	rc = ib_post_recv(ep->re_id->qp, wr,
1413 			  (const struct ib_recv_wr **)&bad_wr);
1414 out:
1415 	trace_xprtrdma_post_recvs(r_xprt, count, rc);
1416 	if (rc) {
1417 		for (wr = bad_wr; wr;) {
1418 			struct rpcrdma_rep *rep;
1419 
1420 			rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr);
1421 			wr = wr->next;
1422 			rpcrdma_recv_buffer_put(rep);
1423 			--count;
1424 		}
1425 	}
1426 	ep->re_receive_count += count;
1427 	return;
1428 }
1429