1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (c) 2014-2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the BSD-type 10 * license below: 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 19 * Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials provided 22 * with the distribution. 23 * 24 * Neither the name of the Network Appliance, Inc. nor the names of 25 * its contributors may be used to endorse or promote products 26 * derived from this software without specific prior written 27 * permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42 /* 43 * verbs.c 44 * 45 * Encapsulates the major functions managing: 46 * o adapters 47 * o endpoints 48 * o connections 49 * o buffer memory 50 */ 51 52 #include <linux/interrupt.h> 53 #include <linux/slab.h> 54 #include <linux/sunrpc/addr.h> 55 #include <linux/sunrpc/svc_rdma.h> 56 #include <linux/log2.h> 57 58 #include <asm-generic/barrier.h> 59 #include <asm/bitops.h> 60 61 #include <rdma/ib_cm.h> 62 63 #include "xprt_rdma.h" 64 #include <trace/events/rpcrdma.h> 65 66 /* 67 * Globals/Macros 68 */ 69 70 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 71 # define RPCDBG_FACILITY RPCDBG_TRANS 72 #endif 73 74 /* 75 * internal functions 76 */ 77 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt); 78 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt); 79 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt, 80 struct rpcrdma_sendctx *sc); 81 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt); 82 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt); 83 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep); 84 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt); 85 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt); 86 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt); 87 static void rpcrdma_ep_get(struct rpcrdma_ep *ep); 88 static int rpcrdma_ep_put(struct rpcrdma_ep *ep); 89 static struct rpcrdma_regbuf * 90 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction, 91 gfp_t flags); 92 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb); 93 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb); 94 95 /* Wait for outstanding transport work to finish. ib_drain_qp 96 * handles the drains in the wrong order for us, so open code 97 * them here. 98 */ 99 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt) 100 { 101 struct rpcrdma_ep *ep = r_xprt->rx_ep; 102 struct rdma_cm_id *id = ep->re_id; 103 104 /* Flush Receives, then wait for deferred Reply work 105 * to complete. 106 */ 107 ib_drain_rq(id->qp); 108 109 /* Deferred Reply processing might have scheduled 110 * local invalidations. 111 */ 112 ib_drain_sq(id->qp); 113 114 rpcrdma_ep_put(ep); 115 } 116 117 /** 118 * rpcrdma_qp_event_handler - Handle one QP event (error notification) 119 * @event: details of the event 120 * @context: ep that owns QP where event occurred 121 * 122 * Called from the RDMA provider (device driver) possibly in an interrupt 123 * context. The QP is always destroyed before the ID, so the ID will be 124 * reliably available when this handler is invoked. 125 */ 126 static void rpcrdma_qp_event_handler(struct ib_event *event, void *context) 127 { 128 struct rpcrdma_ep *ep = context; 129 130 trace_xprtrdma_qp_event(ep, event); 131 } 132 133 /* Ensure xprt_force_disconnect() is invoked exactly once when a 134 * connection is closed or lost. (The important thing is it needs 135 * to be invoked "at least" once). 136 */ 137 static void rpcrdma_force_disconnect(struct rpcrdma_ep *ep) 138 { 139 if (atomic_add_unless(&ep->re_force_disconnect, 1, 1)) 140 xprt_force_disconnect(ep->re_xprt); 141 } 142 143 /** 144 * rpcrdma_flush_disconnect - Disconnect on flushed completion 145 * @r_xprt: transport to disconnect 146 * @wc: work completion entry 147 * 148 * Must be called in process context. 149 */ 150 void rpcrdma_flush_disconnect(struct rpcrdma_xprt *r_xprt, struct ib_wc *wc) 151 { 152 if (wc->status != IB_WC_SUCCESS) 153 rpcrdma_force_disconnect(r_xprt->rx_ep); 154 } 155 156 /** 157 * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC 158 * @cq: completion queue 159 * @wc: WCE for a completed Send WR 160 * 161 */ 162 static void rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc) 163 { 164 struct ib_cqe *cqe = wc->wr_cqe; 165 struct rpcrdma_sendctx *sc = 166 container_of(cqe, struct rpcrdma_sendctx, sc_cqe); 167 struct rpcrdma_xprt *r_xprt = cq->cq_context; 168 169 /* WARNING: Only wr_cqe and status are reliable at this point */ 170 trace_xprtrdma_wc_send(sc, wc); 171 rpcrdma_sendctx_put_locked(r_xprt, sc); 172 rpcrdma_flush_disconnect(r_xprt, wc); 173 } 174 175 /** 176 * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC 177 * @cq: completion queue 178 * @wc: WCE for a completed Receive WR 179 * 180 */ 181 static void rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc) 182 { 183 struct ib_cqe *cqe = wc->wr_cqe; 184 struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep, 185 rr_cqe); 186 struct rpcrdma_xprt *r_xprt = cq->cq_context; 187 188 /* WARNING: Only wr_cqe and status are reliable at this point */ 189 trace_xprtrdma_wc_receive(wc); 190 --r_xprt->rx_ep->re_receive_count; 191 if (wc->status != IB_WC_SUCCESS) 192 goto out_flushed; 193 194 /* status == SUCCESS means all fields in wc are trustworthy */ 195 rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len); 196 rep->rr_wc_flags = wc->wc_flags; 197 rep->rr_inv_rkey = wc->ex.invalidate_rkey; 198 199 ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf), 200 rdmab_addr(rep->rr_rdmabuf), 201 wc->byte_len, DMA_FROM_DEVICE); 202 203 rpcrdma_reply_handler(rep); 204 return; 205 206 out_flushed: 207 rpcrdma_flush_disconnect(r_xprt, wc); 208 rpcrdma_rep_destroy(rep); 209 } 210 211 static void rpcrdma_update_cm_private(struct rpcrdma_ep *ep, 212 struct rdma_conn_param *param) 213 { 214 const struct rpcrdma_connect_private *pmsg = param->private_data; 215 unsigned int rsize, wsize; 216 217 /* Default settings for RPC-over-RDMA Version One */ 218 ep->re_implicit_roundup = xprt_rdma_pad_optimize; 219 rsize = RPCRDMA_V1_DEF_INLINE_SIZE; 220 wsize = RPCRDMA_V1_DEF_INLINE_SIZE; 221 222 if (pmsg && 223 pmsg->cp_magic == rpcrdma_cmp_magic && 224 pmsg->cp_version == RPCRDMA_CMP_VERSION) { 225 ep->re_implicit_roundup = true; 226 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size); 227 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size); 228 } 229 230 if (rsize < ep->re_inline_recv) 231 ep->re_inline_recv = rsize; 232 if (wsize < ep->re_inline_send) 233 ep->re_inline_send = wsize; 234 235 rpcrdma_set_max_header_sizes(ep); 236 } 237 238 /** 239 * rpcrdma_cm_event_handler - Handle RDMA CM events 240 * @id: rdma_cm_id on which an event has occurred 241 * @event: details of the event 242 * 243 * Called with @id's mutex held. Returns 1 if caller should 244 * destroy @id, otherwise 0. 245 */ 246 static int 247 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event) 248 { 249 struct sockaddr *sap = (struct sockaddr *)&id->route.addr.dst_addr; 250 struct rpcrdma_ep *ep = id->context; 251 252 might_sleep(); 253 254 switch (event->event) { 255 case RDMA_CM_EVENT_ADDR_RESOLVED: 256 case RDMA_CM_EVENT_ROUTE_RESOLVED: 257 ep->re_async_rc = 0; 258 complete(&ep->re_done); 259 return 0; 260 case RDMA_CM_EVENT_ADDR_ERROR: 261 ep->re_async_rc = -EPROTO; 262 complete(&ep->re_done); 263 return 0; 264 case RDMA_CM_EVENT_ROUTE_ERROR: 265 ep->re_async_rc = -ENETUNREACH; 266 complete(&ep->re_done); 267 return 0; 268 case RDMA_CM_EVENT_DEVICE_REMOVAL: 269 pr_info("rpcrdma: removing device %s for %pISpc\n", 270 ep->re_id->device->name, sap); 271 /* fall through */ 272 case RDMA_CM_EVENT_ADDR_CHANGE: 273 ep->re_connect_status = -ENODEV; 274 goto disconnected; 275 case RDMA_CM_EVENT_ESTABLISHED: 276 rpcrdma_ep_get(ep); 277 ep->re_connect_status = 1; 278 rpcrdma_update_cm_private(ep, &event->param.conn); 279 trace_xprtrdma_inline_thresh(ep); 280 wake_up_all(&ep->re_connect_wait); 281 break; 282 case RDMA_CM_EVENT_CONNECT_ERROR: 283 ep->re_connect_status = -ENOTCONN; 284 goto wake_connect_worker; 285 case RDMA_CM_EVENT_UNREACHABLE: 286 ep->re_connect_status = -ENETUNREACH; 287 goto wake_connect_worker; 288 case RDMA_CM_EVENT_REJECTED: 289 dprintk("rpcrdma: connection to %pISpc rejected: %s\n", 290 sap, rdma_reject_msg(id, event->status)); 291 ep->re_connect_status = -ECONNREFUSED; 292 if (event->status == IB_CM_REJ_STALE_CONN) 293 ep->re_connect_status = -ENOTCONN; 294 wake_connect_worker: 295 wake_up_all(&ep->re_connect_wait); 296 return 0; 297 case RDMA_CM_EVENT_DISCONNECTED: 298 ep->re_connect_status = -ECONNABORTED; 299 disconnected: 300 rpcrdma_force_disconnect(ep); 301 return rpcrdma_ep_put(ep); 302 default: 303 break; 304 } 305 306 dprintk("RPC: %s: %pISpc on %s/frwr: %s\n", __func__, sap, 307 ep->re_id->device->name, rdma_event_msg(event->event)); 308 return 0; 309 } 310 311 static struct rdma_cm_id *rpcrdma_create_id(struct rpcrdma_xprt *r_xprt, 312 struct rpcrdma_ep *ep) 313 { 314 unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1; 315 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 316 struct rdma_cm_id *id; 317 int rc; 318 319 init_completion(&ep->re_done); 320 321 id = rdma_create_id(xprt->xprt_net, rpcrdma_cm_event_handler, ep, 322 RDMA_PS_TCP, IB_QPT_RC); 323 if (IS_ERR(id)) 324 return id; 325 326 ep->re_async_rc = -ETIMEDOUT; 327 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)&xprt->addr, 328 RDMA_RESOLVE_TIMEOUT); 329 if (rc) 330 goto out; 331 rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout); 332 if (rc < 0) 333 goto out; 334 335 rc = ep->re_async_rc; 336 if (rc) 337 goto out; 338 339 ep->re_async_rc = -ETIMEDOUT; 340 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); 341 if (rc) 342 goto out; 343 rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout); 344 if (rc < 0) 345 goto out; 346 rc = ep->re_async_rc; 347 if (rc) 348 goto out; 349 350 return id; 351 352 out: 353 rdma_destroy_id(id); 354 return ERR_PTR(rc); 355 } 356 357 static void rpcrdma_ep_destroy(struct kref *kref) 358 { 359 struct rpcrdma_ep *ep = container_of(kref, struct rpcrdma_ep, re_kref); 360 361 if (ep->re_id->qp) { 362 rdma_destroy_qp(ep->re_id); 363 ep->re_id->qp = NULL; 364 } 365 366 if (ep->re_attr.recv_cq) 367 ib_free_cq(ep->re_attr.recv_cq); 368 ep->re_attr.recv_cq = NULL; 369 if (ep->re_attr.send_cq) 370 ib_free_cq(ep->re_attr.send_cq); 371 ep->re_attr.send_cq = NULL; 372 373 if (ep->re_pd) 374 ib_dealloc_pd(ep->re_pd); 375 ep->re_pd = NULL; 376 377 kfree(ep); 378 module_put(THIS_MODULE); 379 } 380 381 static noinline void rpcrdma_ep_get(struct rpcrdma_ep *ep) 382 { 383 kref_get(&ep->re_kref); 384 } 385 386 /* Returns: 387 * %0 if @ep still has a positive kref count, or 388 * %1 if @ep was destroyed successfully. 389 */ 390 static noinline int rpcrdma_ep_put(struct rpcrdma_ep *ep) 391 { 392 return kref_put(&ep->re_kref, rpcrdma_ep_destroy); 393 } 394 395 static int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt) 396 { 397 struct rpcrdma_connect_private *pmsg; 398 struct ib_device *device; 399 struct rdma_cm_id *id; 400 struct rpcrdma_ep *ep; 401 int rc; 402 403 ep = kzalloc(sizeof(*ep), GFP_NOFS); 404 if (!ep) 405 return -ENOTCONN; 406 ep->re_xprt = &r_xprt->rx_xprt; 407 kref_init(&ep->re_kref); 408 409 id = rpcrdma_create_id(r_xprt, ep); 410 if (IS_ERR(id)) { 411 kfree(ep); 412 return PTR_ERR(id); 413 } 414 __module_get(THIS_MODULE); 415 device = id->device; 416 ep->re_id = id; 417 418 ep->re_max_requests = r_xprt->rx_xprt.max_reqs; 419 ep->re_inline_send = xprt_rdma_max_inline_write; 420 ep->re_inline_recv = xprt_rdma_max_inline_read; 421 rc = frwr_query_device(ep, device); 422 if (rc) 423 goto out_destroy; 424 425 r_xprt->rx_buf.rb_max_requests = cpu_to_be32(ep->re_max_requests); 426 427 ep->re_attr.event_handler = rpcrdma_qp_event_handler; 428 ep->re_attr.qp_context = ep; 429 ep->re_attr.srq = NULL; 430 ep->re_attr.cap.max_inline_data = 0; 431 ep->re_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 432 ep->re_attr.qp_type = IB_QPT_RC; 433 ep->re_attr.port_num = ~0; 434 435 dprintk("RPC: %s: requested max: dtos: send %d recv %d; " 436 "iovs: send %d recv %d\n", 437 __func__, 438 ep->re_attr.cap.max_send_wr, 439 ep->re_attr.cap.max_recv_wr, 440 ep->re_attr.cap.max_send_sge, 441 ep->re_attr.cap.max_recv_sge); 442 443 ep->re_send_batch = ep->re_max_requests >> 3; 444 ep->re_send_count = ep->re_send_batch; 445 init_waitqueue_head(&ep->re_connect_wait); 446 447 ep->re_attr.send_cq = ib_alloc_cq_any(device, r_xprt, 448 ep->re_attr.cap.max_send_wr, 449 IB_POLL_WORKQUEUE); 450 if (IS_ERR(ep->re_attr.send_cq)) { 451 rc = PTR_ERR(ep->re_attr.send_cq); 452 goto out_destroy; 453 } 454 455 ep->re_attr.recv_cq = ib_alloc_cq_any(device, r_xprt, 456 ep->re_attr.cap.max_recv_wr, 457 IB_POLL_WORKQUEUE); 458 if (IS_ERR(ep->re_attr.recv_cq)) { 459 rc = PTR_ERR(ep->re_attr.recv_cq); 460 goto out_destroy; 461 } 462 ep->re_receive_count = 0; 463 464 /* Initialize cma parameters */ 465 memset(&ep->re_remote_cma, 0, sizeof(ep->re_remote_cma)); 466 467 /* Prepare RDMA-CM private message */ 468 pmsg = &ep->re_cm_private; 469 pmsg->cp_magic = rpcrdma_cmp_magic; 470 pmsg->cp_version = RPCRDMA_CMP_VERSION; 471 pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK; 472 pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->re_inline_send); 473 pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->re_inline_recv); 474 ep->re_remote_cma.private_data = pmsg; 475 ep->re_remote_cma.private_data_len = sizeof(*pmsg); 476 477 /* Client offers RDMA Read but does not initiate */ 478 ep->re_remote_cma.initiator_depth = 0; 479 ep->re_remote_cma.responder_resources = 480 min_t(int, U8_MAX, device->attrs.max_qp_rd_atom); 481 482 /* Limit transport retries so client can detect server 483 * GID changes quickly. RPC layer handles re-establishing 484 * transport connection and retransmission. 485 */ 486 ep->re_remote_cma.retry_count = 6; 487 488 /* RPC-over-RDMA handles its own flow control. In addition, 489 * make all RNR NAKs visible so we know that RPC-over-RDMA 490 * flow control is working correctly (no NAKs should be seen). 491 */ 492 ep->re_remote_cma.flow_control = 0; 493 ep->re_remote_cma.rnr_retry_count = 0; 494 495 ep->re_pd = ib_alloc_pd(device, 0); 496 if (IS_ERR(ep->re_pd)) { 497 rc = PTR_ERR(ep->re_pd); 498 goto out_destroy; 499 } 500 501 rc = rdma_create_qp(id, ep->re_pd, &ep->re_attr); 502 if (rc) 503 goto out_destroy; 504 505 r_xprt->rx_ep = ep; 506 return 0; 507 508 out_destroy: 509 rpcrdma_ep_put(ep); 510 rdma_destroy_id(id); 511 return rc; 512 } 513 514 /** 515 * rpcrdma_xprt_connect - Connect an unconnected transport 516 * @r_xprt: controlling transport instance 517 * 518 * Returns 0 on success or a negative errno. 519 */ 520 int rpcrdma_xprt_connect(struct rpcrdma_xprt *r_xprt) 521 { 522 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 523 struct rpcrdma_ep *ep; 524 int rc; 525 526 rc = rpcrdma_ep_create(r_xprt); 527 if (rc) 528 return rc; 529 ep = r_xprt->rx_ep; 530 531 xprt_clear_connected(xprt); 532 rpcrdma_reset_cwnd(r_xprt); 533 534 /* Bump the ep's reference count while there are 535 * outstanding Receives. 536 */ 537 rpcrdma_ep_get(ep); 538 rpcrdma_post_recvs(r_xprt, true); 539 540 rc = rdma_connect(ep->re_id, &ep->re_remote_cma); 541 if (rc) 542 goto out; 543 544 if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO) 545 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO; 546 wait_event_interruptible(ep->re_connect_wait, 547 ep->re_connect_status != 0); 548 if (ep->re_connect_status <= 0) { 549 rc = ep->re_connect_status; 550 goto out; 551 } 552 553 rc = rpcrdma_sendctxs_create(r_xprt); 554 if (rc) { 555 rc = -ENOTCONN; 556 goto out; 557 } 558 559 rc = rpcrdma_reqs_setup(r_xprt); 560 if (rc) { 561 rc = -ENOTCONN; 562 goto out; 563 } 564 rpcrdma_mrs_create(r_xprt); 565 566 out: 567 trace_xprtrdma_connect(r_xprt, rc); 568 return rc; 569 } 570 571 /** 572 * rpcrdma_xprt_disconnect - Disconnect underlying transport 573 * @r_xprt: controlling transport instance 574 * 575 * Caller serializes. Either the transport send lock is held, 576 * or we're being called to destroy the transport. 577 * 578 * On return, @r_xprt is completely divested of all hardware 579 * resources and prepared for the next ->connect operation. 580 */ 581 void rpcrdma_xprt_disconnect(struct rpcrdma_xprt *r_xprt) 582 { 583 struct rpcrdma_ep *ep = r_xprt->rx_ep; 584 struct rdma_cm_id *id; 585 int rc; 586 587 if (!ep) 588 return; 589 590 id = ep->re_id; 591 rc = rdma_disconnect(id); 592 trace_xprtrdma_disconnect(r_xprt, rc); 593 594 rpcrdma_xprt_drain(r_xprt); 595 rpcrdma_reps_unmap(r_xprt); 596 rpcrdma_reqs_reset(r_xprt); 597 rpcrdma_mrs_destroy(r_xprt); 598 rpcrdma_sendctxs_destroy(r_xprt); 599 600 if (rpcrdma_ep_put(ep)) 601 rdma_destroy_id(id); 602 603 r_xprt->rx_ep = NULL; 604 } 605 606 /* Fixed-size circular FIFO queue. This implementation is wait-free and 607 * lock-free. 608 * 609 * Consumer is the code path that posts Sends. This path dequeues a 610 * sendctx for use by a Send operation. Multiple consumer threads 611 * are serialized by the RPC transport lock, which allows only one 612 * ->send_request call at a time. 613 * 614 * Producer is the code path that handles Send completions. This path 615 * enqueues a sendctx that has been completed. Multiple producer 616 * threads are serialized by the ib_poll_cq() function. 617 */ 618 619 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced 620 * queue activity, and rpcrdma_xprt_drain has flushed all remaining 621 * Send requests. 622 */ 623 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt) 624 { 625 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 626 unsigned long i; 627 628 if (!buf->rb_sc_ctxs) 629 return; 630 for (i = 0; i <= buf->rb_sc_last; i++) 631 kfree(buf->rb_sc_ctxs[i]); 632 kfree(buf->rb_sc_ctxs); 633 buf->rb_sc_ctxs = NULL; 634 } 635 636 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ep *ep) 637 { 638 struct rpcrdma_sendctx *sc; 639 640 sc = kzalloc(struct_size(sc, sc_sges, ep->re_attr.cap.max_send_sge), 641 GFP_KERNEL); 642 if (!sc) 643 return NULL; 644 645 sc->sc_cqe.done = rpcrdma_wc_send; 646 return sc; 647 } 648 649 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt) 650 { 651 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 652 struct rpcrdma_sendctx *sc; 653 unsigned long i; 654 655 /* Maximum number of concurrent outstanding Send WRs. Capping 656 * the circular queue size stops Send Queue overflow by causing 657 * the ->send_request call to fail temporarily before too many 658 * Sends are posted. 659 */ 660 i = r_xprt->rx_ep->re_max_requests + RPCRDMA_MAX_BC_REQUESTS; 661 buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL); 662 if (!buf->rb_sc_ctxs) 663 return -ENOMEM; 664 665 buf->rb_sc_last = i - 1; 666 for (i = 0; i <= buf->rb_sc_last; i++) { 667 sc = rpcrdma_sendctx_create(r_xprt->rx_ep); 668 if (!sc) 669 return -ENOMEM; 670 671 buf->rb_sc_ctxs[i] = sc; 672 } 673 674 buf->rb_sc_head = 0; 675 buf->rb_sc_tail = 0; 676 return 0; 677 } 678 679 /* The sendctx queue is not guaranteed to have a size that is a 680 * power of two, thus the helpers in circ_buf.h cannot be used. 681 * The other option is to use modulus (%), which can be expensive. 682 */ 683 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf, 684 unsigned long item) 685 { 686 return likely(item < buf->rb_sc_last) ? item + 1 : 0; 687 } 688 689 /** 690 * rpcrdma_sendctx_get_locked - Acquire a send context 691 * @r_xprt: controlling transport instance 692 * 693 * Returns pointer to a free send completion context; or NULL if 694 * the queue is empty. 695 * 696 * Usage: Called to acquire an SGE array before preparing a Send WR. 697 * 698 * The caller serializes calls to this function (per transport), and 699 * provides an effective memory barrier that flushes the new value 700 * of rb_sc_head. 701 */ 702 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt) 703 { 704 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 705 struct rpcrdma_sendctx *sc; 706 unsigned long next_head; 707 708 next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head); 709 710 if (next_head == READ_ONCE(buf->rb_sc_tail)) 711 goto out_emptyq; 712 713 /* ORDER: item must be accessed _before_ head is updated */ 714 sc = buf->rb_sc_ctxs[next_head]; 715 716 /* Releasing the lock in the caller acts as a memory 717 * barrier that flushes rb_sc_head. 718 */ 719 buf->rb_sc_head = next_head; 720 721 return sc; 722 723 out_emptyq: 724 /* The queue is "empty" if there have not been enough Send 725 * completions recently. This is a sign the Send Queue is 726 * backing up. Cause the caller to pause and try again. 727 */ 728 xprt_wait_for_buffer_space(&r_xprt->rx_xprt); 729 r_xprt->rx_stats.empty_sendctx_q++; 730 return NULL; 731 } 732 733 /** 734 * rpcrdma_sendctx_put_locked - Release a send context 735 * @r_xprt: controlling transport instance 736 * @sc: send context to release 737 * 738 * Usage: Called from Send completion to return a sendctxt 739 * to the queue. 740 * 741 * The caller serializes calls to this function (per transport). 742 */ 743 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt, 744 struct rpcrdma_sendctx *sc) 745 { 746 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 747 unsigned long next_tail; 748 749 /* Unmap SGEs of previously completed but unsignaled 750 * Sends by walking up the queue until @sc is found. 751 */ 752 next_tail = buf->rb_sc_tail; 753 do { 754 next_tail = rpcrdma_sendctx_next(buf, next_tail); 755 756 /* ORDER: item must be accessed _before_ tail is updated */ 757 rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]); 758 759 } while (buf->rb_sc_ctxs[next_tail] != sc); 760 761 /* Paired with READ_ONCE */ 762 smp_store_release(&buf->rb_sc_tail, next_tail); 763 764 xprt_write_space(&r_xprt->rx_xprt); 765 } 766 767 static void 768 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt) 769 { 770 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 771 struct rpcrdma_ep *ep = r_xprt->rx_ep; 772 unsigned int count; 773 774 for (count = 0; count < ep->re_max_rdma_segs; count++) { 775 struct rpcrdma_mr *mr; 776 int rc; 777 778 mr = kzalloc(sizeof(*mr), GFP_NOFS); 779 if (!mr) 780 break; 781 782 rc = frwr_mr_init(r_xprt, mr); 783 if (rc) { 784 kfree(mr); 785 break; 786 } 787 788 spin_lock(&buf->rb_lock); 789 rpcrdma_mr_push(mr, &buf->rb_mrs); 790 list_add(&mr->mr_all, &buf->rb_all_mrs); 791 spin_unlock(&buf->rb_lock); 792 } 793 794 r_xprt->rx_stats.mrs_allocated += count; 795 trace_xprtrdma_createmrs(r_xprt, count); 796 } 797 798 static void 799 rpcrdma_mr_refresh_worker(struct work_struct *work) 800 { 801 struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer, 802 rb_refresh_worker); 803 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, 804 rx_buf); 805 806 rpcrdma_mrs_create(r_xprt); 807 xprt_write_space(&r_xprt->rx_xprt); 808 } 809 810 /** 811 * rpcrdma_mrs_refresh - Wake the MR refresh worker 812 * @r_xprt: controlling transport instance 813 * 814 */ 815 void rpcrdma_mrs_refresh(struct rpcrdma_xprt *r_xprt) 816 { 817 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 818 struct rpcrdma_ep *ep = r_xprt->rx_ep; 819 820 /* If there is no underlying connection, it's no use 821 * to wake the refresh worker. 822 */ 823 if (ep->re_connect_status == 1) { 824 /* The work is scheduled on a WQ_MEM_RECLAIM 825 * workqueue in order to prevent MR allocation 826 * from recursing into NFS during direct reclaim. 827 */ 828 queue_work(xprtiod_workqueue, &buf->rb_refresh_worker); 829 } 830 } 831 832 /** 833 * rpcrdma_req_create - Allocate an rpcrdma_req object 834 * @r_xprt: controlling r_xprt 835 * @size: initial size, in bytes, of send and receive buffers 836 * @flags: GFP flags passed to memory allocators 837 * 838 * Returns an allocated and fully initialized rpcrdma_req or NULL. 839 */ 840 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size, 841 gfp_t flags) 842 { 843 struct rpcrdma_buffer *buffer = &r_xprt->rx_buf; 844 struct rpcrdma_req *req; 845 846 req = kzalloc(sizeof(*req), flags); 847 if (req == NULL) 848 goto out1; 849 850 req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags); 851 if (!req->rl_sendbuf) 852 goto out2; 853 854 req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags); 855 if (!req->rl_recvbuf) 856 goto out3; 857 858 INIT_LIST_HEAD(&req->rl_free_mrs); 859 INIT_LIST_HEAD(&req->rl_registered); 860 spin_lock(&buffer->rb_lock); 861 list_add(&req->rl_all, &buffer->rb_allreqs); 862 spin_unlock(&buffer->rb_lock); 863 return req; 864 865 out3: 866 kfree(req->rl_sendbuf); 867 out2: 868 kfree(req); 869 out1: 870 return NULL; 871 } 872 873 /** 874 * rpcrdma_req_setup - Per-connection instance setup of an rpcrdma_req object 875 * @r_xprt: controlling transport instance 876 * @req: rpcrdma_req object to set up 877 * 878 * Returns zero on success, and a negative errno on failure. 879 */ 880 int rpcrdma_req_setup(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 881 { 882 struct rpcrdma_regbuf *rb; 883 size_t maxhdrsize; 884 885 /* Compute maximum header buffer size in bytes */ 886 maxhdrsize = rpcrdma_fixed_maxsz + 3 + 887 r_xprt->rx_ep->re_max_rdma_segs * rpcrdma_readchunk_maxsz; 888 maxhdrsize *= sizeof(__be32); 889 rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize), 890 DMA_TO_DEVICE, GFP_KERNEL); 891 if (!rb) 892 goto out; 893 894 if (!__rpcrdma_regbuf_dma_map(r_xprt, rb)) 895 goto out_free; 896 897 req->rl_rdmabuf = rb; 898 xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb)); 899 return 0; 900 901 out_free: 902 rpcrdma_regbuf_free(rb); 903 out: 904 return -ENOMEM; 905 } 906 907 /* ASSUMPTION: the rb_allreqs list is stable for the duration, 908 * and thus can be walked without holding rb_lock. Eg. the 909 * caller is holding the transport send lock to exclude 910 * device removal or disconnection. 911 */ 912 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt) 913 { 914 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 915 struct rpcrdma_req *req; 916 int rc; 917 918 list_for_each_entry(req, &buf->rb_allreqs, rl_all) { 919 rc = rpcrdma_req_setup(r_xprt, req); 920 if (rc) 921 return rc; 922 } 923 return 0; 924 } 925 926 static void rpcrdma_req_reset(struct rpcrdma_req *req) 927 { 928 /* Credits are valid for only one connection */ 929 req->rl_slot.rq_cong = 0; 930 931 rpcrdma_regbuf_free(req->rl_rdmabuf); 932 req->rl_rdmabuf = NULL; 933 934 rpcrdma_regbuf_dma_unmap(req->rl_sendbuf); 935 rpcrdma_regbuf_dma_unmap(req->rl_recvbuf); 936 } 937 938 /* ASSUMPTION: the rb_allreqs list is stable for the duration, 939 * and thus can be walked without holding rb_lock. Eg. the 940 * caller is holding the transport send lock to exclude 941 * device removal or disconnection. 942 */ 943 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt) 944 { 945 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 946 struct rpcrdma_req *req; 947 948 list_for_each_entry(req, &buf->rb_allreqs, rl_all) 949 rpcrdma_req_reset(req); 950 } 951 952 /* No locking needed here. This function is called only by the 953 * Receive completion handler. 954 */ 955 static noinline 956 struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt, 957 bool temp) 958 { 959 struct rpcrdma_rep *rep; 960 961 rep = kzalloc(sizeof(*rep), GFP_KERNEL); 962 if (rep == NULL) 963 goto out; 964 965 rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep->re_inline_recv, 966 DMA_FROM_DEVICE, GFP_KERNEL); 967 if (!rep->rr_rdmabuf) 968 goto out_free; 969 970 if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf)) 971 goto out_free_regbuf; 972 973 xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf), 974 rdmab_length(rep->rr_rdmabuf)); 975 rep->rr_cqe.done = rpcrdma_wc_receive; 976 rep->rr_rxprt = r_xprt; 977 rep->rr_recv_wr.next = NULL; 978 rep->rr_recv_wr.wr_cqe = &rep->rr_cqe; 979 rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov; 980 rep->rr_recv_wr.num_sge = 1; 981 rep->rr_temp = temp; 982 list_add(&rep->rr_all, &r_xprt->rx_buf.rb_all_reps); 983 return rep; 984 985 out_free_regbuf: 986 rpcrdma_regbuf_free(rep->rr_rdmabuf); 987 out_free: 988 kfree(rep); 989 out: 990 return NULL; 991 } 992 993 /* No locking needed here. This function is invoked only by the 994 * Receive completion handler, or during transport shutdown. 995 */ 996 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep) 997 { 998 list_del(&rep->rr_all); 999 rpcrdma_regbuf_free(rep->rr_rdmabuf); 1000 kfree(rep); 1001 } 1002 1003 static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf) 1004 { 1005 struct llist_node *node; 1006 1007 /* Calls to llist_del_first are required to be serialized */ 1008 node = llist_del_first(&buf->rb_free_reps); 1009 if (!node) 1010 return NULL; 1011 return llist_entry(node, struct rpcrdma_rep, rr_node); 1012 } 1013 1014 static void rpcrdma_rep_put(struct rpcrdma_buffer *buf, 1015 struct rpcrdma_rep *rep) 1016 { 1017 llist_add(&rep->rr_node, &buf->rb_free_reps); 1018 } 1019 1020 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt) 1021 { 1022 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1023 struct rpcrdma_rep *rep; 1024 1025 list_for_each_entry(rep, &buf->rb_all_reps, rr_all) { 1026 rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf); 1027 rep->rr_temp = true; 1028 } 1029 } 1030 1031 static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf) 1032 { 1033 struct rpcrdma_rep *rep; 1034 1035 while ((rep = rpcrdma_rep_get_locked(buf)) != NULL) 1036 rpcrdma_rep_destroy(rep); 1037 } 1038 1039 /** 1040 * rpcrdma_buffer_create - Create initial set of req/rep objects 1041 * @r_xprt: transport instance to (re)initialize 1042 * 1043 * Returns zero on success, otherwise a negative errno. 1044 */ 1045 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt) 1046 { 1047 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1048 int i, rc; 1049 1050 buf->rb_bc_srv_max_requests = 0; 1051 spin_lock_init(&buf->rb_lock); 1052 INIT_LIST_HEAD(&buf->rb_mrs); 1053 INIT_LIST_HEAD(&buf->rb_all_mrs); 1054 INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker); 1055 1056 INIT_LIST_HEAD(&buf->rb_send_bufs); 1057 INIT_LIST_HEAD(&buf->rb_allreqs); 1058 INIT_LIST_HEAD(&buf->rb_all_reps); 1059 1060 rc = -ENOMEM; 1061 for (i = 0; i < r_xprt->rx_xprt.max_reqs; i++) { 1062 struct rpcrdma_req *req; 1063 1064 req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE * 2, 1065 GFP_KERNEL); 1066 if (!req) 1067 goto out; 1068 list_add(&req->rl_list, &buf->rb_send_bufs); 1069 } 1070 1071 init_llist_head(&buf->rb_free_reps); 1072 1073 return 0; 1074 out: 1075 rpcrdma_buffer_destroy(buf); 1076 return rc; 1077 } 1078 1079 /** 1080 * rpcrdma_req_destroy - Destroy an rpcrdma_req object 1081 * @req: unused object to be destroyed 1082 * 1083 * Relies on caller holding the transport send lock to protect 1084 * removing req->rl_all from buf->rb_all_reqs safely. 1085 */ 1086 void rpcrdma_req_destroy(struct rpcrdma_req *req) 1087 { 1088 struct rpcrdma_mr *mr; 1089 1090 list_del(&req->rl_all); 1091 1092 while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) { 1093 struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf; 1094 1095 spin_lock(&buf->rb_lock); 1096 list_del(&mr->mr_all); 1097 spin_unlock(&buf->rb_lock); 1098 1099 frwr_release_mr(mr); 1100 } 1101 1102 rpcrdma_regbuf_free(req->rl_recvbuf); 1103 rpcrdma_regbuf_free(req->rl_sendbuf); 1104 rpcrdma_regbuf_free(req->rl_rdmabuf); 1105 kfree(req); 1106 } 1107 1108 /** 1109 * rpcrdma_mrs_destroy - Release all of a transport's MRs 1110 * @r_xprt: controlling transport instance 1111 * 1112 * Relies on caller holding the transport send lock to protect 1113 * removing mr->mr_list from req->rl_free_mrs safely. 1114 */ 1115 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt) 1116 { 1117 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1118 struct rpcrdma_mr *mr; 1119 1120 cancel_work_sync(&buf->rb_refresh_worker); 1121 1122 spin_lock(&buf->rb_lock); 1123 while ((mr = list_first_entry_or_null(&buf->rb_all_mrs, 1124 struct rpcrdma_mr, 1125 mr_all)) != NULL) { 1126 list_del(&mr->mr_list); 1127 list_del(&mr->mr_all); 1128 spin_unlock(&buf->rb_lock); 1129 1130 frwr_release_mr(mr); 1131 1132 spin_lock(&buf->rb_lock); 1133 } 1134 spin_unlock(&buf->rb_lock); 1135 } 1136 1137 /** 1138 * rpcrdma_buffer_destroy - Release all hw resources 1139 * @buf: root control block for resources 1140 * 1141 * ORDERING: relies on a prior rpcrdma_xprt_drain : 1142 * - No more Send or Receive completions can occur 1143 * - All MRs, reps, and reqs are returned to their free lists 1144 */ 1145 void 1146 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf) 1147 { 1148 rpcrdma_reps_destroy(buf); 1149 1150 while (!list_empty(&buf->rb_send_bufs)) { 1151 struct rpcrdma_req *req; 1152 1153 req = list_first_entry(&buf->rb_send_bufs, 1154 struct rpcrdma_req, rl_list); 1155 list_del(&req->rl_list); 1156 rpcrdma_req_destroy(req); 1157 } 1158 } 1159 1160 /** 1161 * rpcrdma_mr_get - Allocate an rpcrdma_mr object 1162 * @r_xprt: controlling transport 1163 * 1164 * Returns an initialized rpcrdma_mr or NULL if no free 1165 * rpcrdma_mr objects are available. 1166 */ 1167 struct rpcrdma_mr * 1168 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt) 1169 { 1170 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1171 struct rpcrdma_mr *mr; 1172 1173 spin_lock(&buf->rb_lock); 1174 mr = rpcrdma_mr_pop(&buf->rb_mrs); 1175 spin_unlock(&buf->rb_lock); 1176 return mr; 1177 } 1178 1179 /** 1180 * rpcrdma_mr_put - DMA unmap an MR and release it 1181 * @mr: MR to release 1182 * 1183 */ 1184 void rpcrdma_mr_put(struct rpcrdma_mr *mr) 1185 { 1186 struct rpcrdma_xprt *r_xprt = mr->mr_xprt; 1187 1188 if (mr->mr_dir != DMA_NONE) { 1189 trace_xprtrdma_mr_unmap(mr); 1190 ib_dma_unmap_sg(r_xprt->rx_ep->re_id->device, 1191 mr->mr_sg, mr->mr_nents, mr->mr_dir); 1192 mr->mr_dir = DMA_NONE; 1193 } 1194 1195 rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs); 1196 } 1197 1198 /** 1199 * rpcrdma_buffer_get - Get a request buffer 1200 * @buffers: Buffer pool from which to obtain a buffer 1201 * 1202 * Returns a fresh rpcrdma_req, or NULL if none are available. 1203 */ 1204 struct rpcrdma_req * 1205 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers) 1206 { 1207 struct rpcrdma_req *req; 1208 1209 spin_lock(&buffers->rb_lock); 1210 req = list_first_entry_or_null(&buffers->rb_send_bufs, 1211 struct rpcrdma_req, rl_list); 1212 if (req) 1213 list_del_init(&req->rl_list); 1214 spin_unlock(&buffers->rb_lock); 1215 return req; 1216 } 1217 1218 /** 1219 * rpcrdma_buffer_put - Put request/reply buffers back into pool 1220 * @buffers: buffer pool 1221 * @req: object to return 1222 * 1223 */ 1224 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req) 1225 { 1226 if (req->rl_reply) 1227 rpcrdma_rep_put(buffers, req->rl_reply); 1228 req->rl_reply = NULL; 1229 1230 spin_lock(&buffers->rb_lock); 1231 list_add(&req->rl_list, &buffers->rb_send_bufs); 1232 spin_unlock(&buffers->rb_lock); 1233 } 1234 1235 /** 1236 * rpcrdma_recv_buffer_put - Release rpcrdma_rep back to free list 1237 * @rep: rep to release 1238 * 1239 * Used after error conditions. 1240 */ 1241 void rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep) 1242 { 1243 rpcrdma_rep_put(&rep->rr_rxprt->rx_buf, rep); 1244 } 1245 1246 /* Returns a pointer to a rpcrdma_regbuf object, or NULL. 1247 * 1248 * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for 1249 * receiving the payload of RDMA RECV operations. During Long Calls 1250 * or Replies they may be registered externally via frwr_map. 1251 */ 1252 static struct rpcrdma_regbuf * 1253 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction, 1254 gfp_t flags) 1255 { 1256 struct rpcrdma_regbuf *rb; 1257 1258 rb = kmalloc(sizeof(*rb), flags); 1259 if (!rb) 1260 return NULL; 1261 rb->rg_data = kmalloc(size, flags); 1262 if (!rb->rg_data) { 1263 kfree(rb); 1264 return NULL; 1265 } 1266 1267 rb->rg_device = NULL; 1268 rb->rg_direction = direction; 1269 rb->rg_iov.length = size; 1270 return rb; 1271 } 1272 1273 /** 1274 * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer 1275 * @rb: regbuf to reallocate 1276 * @size: size of buffer to be allocated, in bytes 1277 * @flags: GFP flags 1278 * 1279 * Returns true if reallocation was successful. If false is 1280 * returned, @rb is left untouched. 1281 */ 1282 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags) 1283 { 1284 void *buf; 1285 1286 buf = kmalloc(size, flags); 1287 if (!buf) 1288 return false; 1289 1290 rpcrdma_regbuf_dma_unmap(rb); 1291 kfree(rb->rg_data); 1292 1293 rb->rg_data = buf; 1294 rb->rg_iov.length = size; 1295 return true; 1296 } 1297 1298 /** 1299 * __rpcrdma_regbuf_dma_map - DMA-map a regbuf 1300 * @r_xprt: controlling transport instance 1301 * @rb: regbuf to be mapped 1302 * 1303 * Returns true if the buffer is now DMA mapped to @r_xprt's device 1304 */ 1305 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt, 1306 struct rpcrdma_regbuf *rb) 1307 { 1308 struct ib_device *device = r_xprt->rx_ep->re_id->device; 1309 1310 if (rb->rg_direction == DMA_NONE) 1311 return false; 1312 1313 rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb), 1314 rdmab_length(rb), rb->rg_direction); 1315 if (ib_dma_mapping_error(device, rdmab_addr(rb))) { 1316 trace_xprtrdma_dma_maperr(rdmab_addr(rb)); 1317 return false; 1318 } 1319 1320 rb->rg_device = device; 1321 rb->rg_iov.lkey = r_xprt->rx_ep->re_pd->local_dma_lkey; 1322 return true; 1323 } 1324 1325 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb) 1326 { 1327 if (!rb) 1328 return; 1329 1330 if (!rpcrdma_regbuf_is_mapped(rb)) 1331 return; 1332 1333 ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb), 1334 rb->rg_direction); 1335 rb->rg_device = NULL; 1336 } 1337 1338 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb) 1339 { 1340 rpcrdma_regbuf_dma_unmap(rb); 1341 if (rb) 1342 kfree(rb->rg_data); 1343 kfree(rb); 1344 } 1345 1346 /** 1347 * rpcrdma_post_sends - Post WRs to a transport's Send Queue 1348 * @r_xprt: controlling transport instance 1349 * @req: rpcrdma_req containing the Send WR to post 1350 * 1351 * Returns 0 if the post was successful, otherwise -ENOTCONN 1352 * is returned. 1353 */ 1354 int rpcrdma_post_sends(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 1355 { 1356 struct ib_send_wr *send_wr = &req->rl_wr; 1357 struct rpcrdma_ep *ep = r_xprt->rx_ep; 1358 int rc; 1359 1360 if (!ep->re_send_count || kref_read(&req->rl_kref) > 1) { 1361 send_wr->send_flags |= IB_SEND_SIGNALED; 1362 ep->re_send_count = ep->re_send_batch; 1363 } else { 1364 send_wr->send_flags &= ~IB_SEND_SIGNALED; 1365 --ep->re_send_count; 1366 } 1367 1368 trace_xprtrdma_post_send(req); 1369 rc = frwr_send(r_xprt, req); 1370 if (rc) 1371 return -ENOTCONN; 1372 return 0; 1373 } 1374 1375 /** 1376 * rpcrdma_post_recvs - Refill the Receive Queue 1377 * @r_xprt: controlling transport instance 1378 * @temp: mark Receive buffers to be deleted after use 1379 * 1380 */ 1381 void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp) 1382 { 1383 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1384 struct rpcrdma_ep *ep = r_xprt->rx_ep; 1385 struct ib_recv_wr *wr, *bad_wr; 1386 struct rpcrdma_rep *rep; 1387 int needed, count, rc; 1388 1389 rc = 0; 1390 count = 0; 1391 1392 needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1); 1393 if (likely(ep->re_receive_count > needed)) 1394 goto out; 1395 needed -= ep->re_receive_count; 1396 if (!temp) 1397 needed += RPCRDMA_MAX_RECV_BATCH; 1398 1399 /* fast path: all needed reps can be found on the free list */ 1400 wr = NULL; 1401 while (needed) { 1402 rep = rpcrdma_rep_get_locked(buf); 1403 if (rep && rep->rr_temp) { 1404 rpcrdma_rep_destroy(rep); 1405 continue; 1406 } 1407 if (!rep) 1408 rep = rpcrdma_rep_create(r_xprt, temp); 1409 if (!rep) 1410 break; 1411 1412 trace_xprtrdma_post_recv(rep); 1413 rep->rr_recv_wr.next = wr; 1414 wr = &rep->rr_recv_wr; 1415 --needed; 1416 ++count; 1417 } 1418 if (!wr) 1419 goto out; 1420 1421 rc = ib_post_recv(ep->re_id->qp, wr, 1422 (const struct ib_recv_wr **)&bad_wr); 1423 out: 1424 trace_xprtrdma_post_recvs(r_xprt, count, rc); 1425 if (rc) { 1426 for (wr = bad_wr; wr;) { 1427 struct rpcrdma_rep *rep; 1428 1429 rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr); 1430 wr = wr->next; 1431 rpcrdma_recv_buffer_put(rep); 1432 --count; 1433 } 1434 } 1435 ep->re_receive_count += count; 1436 return; 1437 } 1438