xref: /openbmc/linux/net/sunrpc/xprtrdma/verbs.c (revision 2427f03f)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (c) 2014-2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the BSD-type
10  * license below:
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  *
16  *      Redistributions of source code must retain the above copyright
17  *      notice, this list of conditions and the following disclaimer.
18  *
19  *      Redistributions in binary form must reproduce the above
20  *      copyright notice, this list of conditions and the following
21  *      disclaimer in the documentation and/or other materials provided
22  *      with the distribution.
23  *
24  *      Neither the name of the Network Appliance, Inc. nor the names of
25  *      its contributors may be used to endorse or promote products
26  *      derived from this software without specific prior written
27  *      permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41 
42 /*
43  * verbs.c
44  *
45  * Encapsulates the major functions managing:
46  *  o adapters
47  *  o endpoints
48  *  o connections
49  *  o buffer memory
50  */
51 
52 #include <linux/interrupt.h>
53 #include <linux/slab.h>
54 #include <linux/sunrpc/addr.h>
55 #include <linux/sunrpc/svc_rdma.h>
56 #include <linux/log2.h>
57 
58 #include <asm-generic/barrier.h>
59 #include <asm/bitops.h>
60 
61 #include <rdma/ib_cm.h>
62 
63 #include "xprt_rdma.h"
64 #include <trace/events/rpcrdma.h>
65 
66 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt);
67 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt);
68 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
69 				       struct rpcrdma_sendctx *sc);
70 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt);
71 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt);
72 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep);
73 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt);
74 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt);
75 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt);
76 static void rpcrdma_ep_get(struct rpcrdma_ep *ep);
77 static int rpcrdma_ep_put(struct rpcrdma_ep *ep);
78 static struct rpcrdma_regbuf *
79 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
80 		     gfp_t flags);
81 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb);
82 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb);
83 
84 /* Wait for outstanding transport work to finish. ib_drain_qp
85  * handles the drains in the wrong order for us, so open code
86  * them here.
87  */
88 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt)
89 {
90 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
91 	struct rdma_cm_id *id = ep->re_id;
92 
93 	/* Wait for rpcrdma_post_recvs() to leave its critical
94 	 * section.
95 	 */
96 	if (atomic_inc_return(&ep->re_receiving) > 1)
97 		wait_for_completion(&ep->re_done);
98 
99 	/* Flush Receives, then wait for deferred Reply work
100 	 * to complete.
101 	 */
102 	ib_drain_rq(id->qp);
103 
104 	/* Deferred Reply processing might have scheduled
105 	 * local invalidations.
106 	 */
107 	ib_drain_sq(id->qp);
108 
109 	rpcrdma_ep_put(ep);
110 }
111 
112 /* Ensure xprt_force_disconnect() is invoked exactly once when a
113  * connection is closed or lost. (The important thing is it needs
114  * to be invoked "at least" once).
115  */
116 void rpcrdma_force_disconnect(struct rpcrdma_ep *ep)
117 {
118 	if (atomic_add_unless(&ep->re_force_disconnect, 1, 1))
119 		xprt_force_disconnect(ep->re_xprt);
120 }
121 
122 /**
123  * rpcrdma_flush_disconnect - Disconnect on flushed completion
124  * @r_xprt: transport to disconnect
125  * @wc: work completion entry
126  *
127  * Must be called in process context.
128  */
129 void rpcrdma_flush_disconnect(struct rpcrdma_xprt *r_xprt, struct ib_wc *wc)
130 {
131 	if (wc->status != IB_WC_SUCCESS)
132 		rpcrdma_force_disconnect(r_xprt->rx_ep);
133 }
134 
135 /**
136  * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
137  * @cq:	completion queue
138  * @wc:	WCE for a completed Send WR
139  *
140  */
141 static void rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
142 {
143 	struct ib_cqe *cqe = wc->wr_cqe;
144 	struct rpcrdma_sendctx *sc =
145 		container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
146 	struct rpcrdma_xprt *r_xprt = cq->cq_context;
147 
148 	/* WARNING: Only wr_cqe and status are reliable at this point */
149 	trace_xprtrdma_wc_send(wc, &sc->sc_cid);
150 	rpcrdma_sendctx_put_locked(r_xprt, sc);
151 	rpcrdma_flush_disconnect(r_xprt, wc);
152 }
153 
154 /**
155  * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
156  * @cq:	completion queue
157  * @wc:	WCE for a completed Receive WR
158  *
159  */
160 static void rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
161 {
162 	struct ib_cqe *cqe = wc->wr_cqe;
163 	struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
164 					       rr_cqe);
165 	struct rpcrdma_xprt *r_xprt = cq->cq_context;
166 
167 	/* WARNING: Only wr_cqe and status are reliable at this point */
168 	trace_xprtrdma_wc_receive(wc, &rep->rr_cid);
169 	--r_xprt->rx_ep->re_receive_count;
170 	if (wc->status != IB_WC_SUCCESS)
171 		goto out_flushed;
172 
173 	/* status == SUCCESS means all fields in wc are trustworthy */
174 	rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
175 	rep->rr_wc_flags = wc->wc_flags;
176 	rep->rr_inv_rkey = wc->ex.invalidate_rkey;
177 
178 	ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
179 				   rdmab_addr(rep->rr_rdmabuf),
180 				   wc->byte_len, DMA_FROM_DEVICE);
181 
182 	rpcrdma_reply_handler(rep);
183 	return;
184 
185 out_flushed:
186 	rpcrdma_flush_disconnect(r_xprt, wc);
187 	rpcrdma_rep_put(&r_xprt->rx_buf, rep);
188 }
189 
190 static void rpcrdma_update_cm_private(struct rpcrdma_ep *ep,
191 				      struct rdma_conn_param *param)
192 {
193 	const struct rpcrdma_connect_private *pmsg = param->private_data;
194 	unsigned int rsize, wsize;
195 
196 	/* Default settings for RPC-over-RDMA Version One */
197 	rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
198 	wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
199 
200 	if (pmsg &&
201 	    pmsg->cp_magic == rpcrdma_cmp_magic &&
202 	    pmsg->cp_version == RPCRDMA_CMP_VERSION) {
203 		rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
204 		wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
205 	}
206 
207 	if (rsize < ep->re_inline_recv)
208 		ep->re_inline_recv = rsize;
209 	if (wsize < ep->re_inline_send)
210 		ep->re_inline_send = wsize;
211 
212 	rpcrdma_set_max_header_sizes(ep);
213 }
214 
215 /**
216  * rpcrdma_cm_event_handler - Handle RDMA CM events
217  * @id: rdma_cm_id on which an event has occurred
218  * @event: details of the event
219  *
220  * Called with @id's mutex held. Returns 1 if caller should
221  * destroy @id, otherwise 0.
222  */
223 static int
224 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event)
225 {
226 	struct sockaddr *sap = (struct sockaddr *)&id->route.addr.dst_addr;
227 	struct rpcrdma_ep *ep = id->context;
228 
229 	might_sleep();
230 
231 	switch (event->event) {
232 	case RDMA_CM_EVENT_ADDR_RESOLVED:
233 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
234 		ep->re_async_rc = 0;
235 		complete(&ep->re_done);
236 		return 0;
237 	case RDMA_CM_EVENT_ADDR_ERROR:
238 		ep->re_async_rc = -EPROTO;
239 		complete(&ep->re_done);
240 		return 0;
241 	case RDMA_CM_EVENT_ROUTE_ERROR:
242 		ep->re_async_rc = -ENETUNREACH;
243 		complete(&ep->re_done);
244 		return 0;
245 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
246 		pr_info("rpcrdma: removing device %s for %pISpc\n",
247 			ep->re_id->device->name, sap);
248 		fallthrough;
249 	case RDMA_CM_EVENT_ADDR_CHANGE:
250 		ep->re_connect_status = -ENODEV;
251 		goto disconnected;
252 	case RDMA_CM_EVENT_ESTABLISHED:
253 		rpcrdma_ep_get(ep);
254 		ep->re_connect_status = 1;
255 		rpcrdma_update_cm_private(ep, &event->param.conn);
256 		trace_xprtrdma_inline_thresh(ep);
257 		wake_up_all(&ep->re_connect_wait);
258 		break;
259 	case RDMA_CM_EVENT_CONNECT_ERROR:
260 		ep->re_connect_status = -ENOTCONN;
261 		goto wake_connect_worker;
262 	case RDMA_CM_EVENT_UNREACHABLE:
263 		ep->re_connect_status = -ENETUNREACH;
264 		goto wake_connect_worker;
265 	case RDMA_CM_EVENT_REJECTED:
266 		ep->re_connect_status = -ECONNREFUSED;
267 		if (event->status == IB_CM_REJ_STALE_CONN)
268 			ep->re_connect_status = -ENOTCONN;
269 wake_connect_worker:
270 		wake_up_all(&ep->re_connect_wait);
271 		return 0;
272 	case RDMA_CM_EVENT_DISCONNECTED:
273 		ep->re_connect_status = -ECONNABORTED;
274 disconnected:
275 		rpcrdma_force_disconnect(ep);
276 		return rpcrdma_ep_put(ep);
277 	default:
278 		break;
279 	}
280 
281 	return 0;
282 }
283 
284 static struct rdma_cm_id *rpcrdma_create_id(struct rpcrdma_xprt *r_xprt,
285 					    struct rpcrdma_ep *ep)
286 {
287 	unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
288 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
289 	struct rdma_cm_id *id;
290 	int rc;
291 
292 	init_completion(&ep->re_done);
293 
294 	id = rdma_create_id(xprt->xprt_net, rpcrdma_cm_event_handler, ep,
295 			    RDMA_PS_TCP, IB_QPT_RC);
296 	if (IS_ERR(id))
297 		return id;
298 
299 	ep->re_async_rc = -ETIMEDOUT;
300 	rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)&xprt->addr,
301 			       RDMA_RESOLVE_TIMEOUT);
302 	if (rc)
303 		goto out;
304 	rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
305 	if (rc < 0)
306 		goto out;
307 
308 	rc = ep->re_async_rc;
309 	if (rc)
310 		goto out;
311 
312 	ep->re_async_rc = -ETIMEDOUT;
313 	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
314 	if (rc)
315 		goto out;
316 	rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
317 	if (rc < 0)
318 		goto out;
319 	rc = ep->re_async_rc;
320 	if (rc)
321 		goto out;
322 
323 	return id;
324 
325 out:
326 	rdma_destroy_id(id);
327 	return ERR_PTR(rc);
328 }
329 
330 static void rpcrdma_ep_destroy(struct kref *kref)
331 {
332 	struct rpcrdma_ep *ep = container_of(kref, struct rpcrdma_ep, re_kref);
333 
334 	if (ep->re_id->qp) {
335 		rdma_destroy_qp(ep->re_id);
336 		ep->re_id->qp = NULL;
337 	}
338 
339 	if (ep->re_attr.recv_cq)
340 		ib_free_cq(ep->re_attr.recv_cq);
341 	ep->re_attr.recv_cq = NULL;
342 	if (ep->re_attr.send_cq)
343 		ib_free_cq(ep->re_attr.send_cq);
344 	ep->re_attr.send_cq = NULL;
345 
346 	if (ep->re_pd)
347 		ib_dealloc_pd(ep->re_pd);
348 	ep->re_pd = NULL;
349 
350 	kfree(ep);
351 	module_put(THIS_MODULE);
352 }
353 
354 static noinline void rpcrdma_ep_get(struct rpcrdma_ep *ep)
355 {
356 	kref_get(&ep->re_kref);
357 }
358 
359 /* Returns:
360  *     %0 if @ep still has a positive kref count, or
361  *     %1 if @ep was destroyed successfully.
362  */
363 static noinline int rpcrdma_ep_put(struct rpcrdma_ep *ep)
364 {
365 	return kref_put(&ep->re_kref, rpcrdma_ep_destroy);
366 }
367 
368 static int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt)
369 {
370 	struct rpcrdma_connect_private *pmsg;
371 	struct ib_device *device;
372 	struct rdma_cm_id *id;
373 	struct rpcrdma_ep *ep;
374 	int rc;
375 
376 	ep = kzalloc(sizeof(*ep), GFP_NOFS);
377 	if (!ep)
378 		return -ENOTCONN;
379 	ep->re_xprt = &r_xprt->rx_xprt;
380 	kref_init(&ep->re_kref);
381 
382 	id = rpcrdma_create_id(r_xprt, ep);
383 	if (IS_ERR(id)) {
384 		kfree(ep);
385 		return PTR_ERR(id);
386 	}
387 	__module_get(THIS_MODULE);
388 	device = id->device;
389 	ep->re_id = id;
390 	reinit_completion(&ep->re_done);
391 
392 	ep->re_max_requests = r_xprt->rx_xprt.max_reqs;
393 	ep->re_inline_send = xprt_rdma_max_inline_write;
394 	ep->re_inline_recv = xprt_rdma_max_inline_read;
395 	rc = frwr_query_device(ep, device);
396 	if (rc)
397 		goto out_destroy;
398 
399 	r_xprt->rx_buf.rb_max_requests = cpu_to_be32(ep->re_max_requests);
400 
401 	ep->re_attr.srq = NULL;
402 	ep->re_attr.cap.max_inline_data = 0;
403 	ep->re_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
404 	ep->re_attr.qp_type = IB_QPT_RC;
405 	ep->re_attr.port_num = ~0;
406 
407 	ep->re_send_batch = ep->re_max_requests >> 3;
408 	ep->re_send_count = ep->re_send_batch;
409 	init_waitqueue_head(&ep->re_connect_wait);
410 
411 	ep->re_attr.send_cq = ib_alloc_cq_any(device, r_xprt,
412 					      ep->re_attr.cap.max_send_wr,
413 					      IB_POLL_WORKQUEUE);
414 	if (IS_ERR(ep->re_attr.send_cq)) {
415 		rc = PTR_ERR(ep->re_attr.send_cq);
416 		goto out_destroy;
417 	}
418 
419 	ep->re_attr.recv_cq = ib_alloc_cq_any(device, r_xprt,
420 					      ep->re_attr.cap.max_recv_wr,
421 					      IB_POLL_WORKQUEUE);
422 	if (IS_ERR(ep->re_attr.recv_cq)) {
423 		rc = PTR_ERR(ep->re_attr.recv_cq);
424 		goto out_destroy;
425 	}
426 	ep->re_receive_count = 0;
427 
428 	/* Initialize cma parameters */
429 	memset(&ep->re_remote_cma, 0, sizeof(ep->re_remote_cma));
430 
431 	/* Prepare RDMA-CM private message */
432 	pmsg = &ep->re_cm_private;
433 	pmsg->cp_magic = rpcrdma_cmp_magic;
434 	pmsg->cp_version = RPCRDMA_CMP_VERSION;
435 	pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK;
436 	pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->re_inline_send);
437 	pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->re_inline_recv);
438 	ep->re_remote_cma.private_data = pmsg;
439 	ep->re_remote_cma.private_data_len = sizeof(*pmsg);
440 
441 	/* Client offers RDMA Read but does not initiate */
442 	ep->re_remote_cma.initiator_depth = 0;
443 	ep->re_remote_cma.responder_resources =
444 		min_t(int, U8_MAX, device->attrs.max_qp_rd_atom);
445 
446 	/* Limit transport retries so client can detect server
447 	 * GID changes quickly. RPC layer handles re-establishing
448 	 * transport connection and retransmission.
449 	 */
450 	ep->re_remote_cma.retry_count = 6;
451 
452 	/* RPC-over-RDMA handles its own flow control. In addition,
453 	 * make all RNR NAKs visible so we know that RPC-over-RDMA
454 	 * flow control is working correctly (no NAKs should be seen).
455 	 */
456 	ep->re_remote_cma.flow_control = 0;
457 	ep->re_remote_cma.rnr_retry_count = 0;
458 
459 	ep->re_pd = ib_alloc_pd(device, 0);
460 	if (IS_ERR(ep->re_pd)) {
461 		rc = PTR_ERR(ep->re_pd);
462 		goto out_destroy;
463 	}
464 
465 	rc = rdma_create_qp(id, ep->re_pd, &ep->re_attr);
466 	if (rc)
467 		goto out_destroy;
468 
469 	r_xprt->rx_ep = ep;
470 	return 0;
471 
472 out_destroy:
473 	rpcrdma_ep_put(ep);
474 	rdma_destroy_id(id);
475 	return rc;
476 }
477 
478 /**
479  * rpcrdma_xprt_connect - Connect an unconnected transport
480  * @r_xprt: controlling transport instance
481  *
482  * Returns 0 on success or a negative errno.
483  */
484 int rpcrdma_xprt_connect(struct rpcrdma_xprt *r_xprt)
485 {
486 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
487 	struct rpcrdma_ep *ep;
488 	int rc;
489 
490 	rc = rpcrdma_ep_create(r_xprt);
491 	if (rc)
492 		return rc;
493 	ep = r_xprt->rx_ep;
494 
495 	xprt_clear_connected(xprt);
496 	rpcrdma_reset_cwnd(r_xprt);
497 
498 	/* Bump the ep's reference count while there are
499 	 * outstanding Receives.
500 	 */
501 	rpcrdma_ep_get(ep);
502 	rpcrdma_post_recvs(r_xprt, 1, true);
503 
504 	rc = rdma_connect(ep->re_id, &ep->re_remote_cma);
505 	if (rc)
506 		goto out;
507 
508 	if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
509 		xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
510 	wait_event_interruptible(ep->re_connect_wait,
511 				 ep->re_connect_status != 0);
512 	if (ep->re_connect_status <= 0) {
513 		rc = ep->re_connect_status;
514 		goto out;
515 	}
516 
517 	rc = rpcrdma_sendctxs_create(r_xprt);
518 	if (rc) {
519 		rc = -ENOTCONN;
520 		goto out;
521 	}
522 
523 	rc = rpcrdma_reqs_setup(r_xprt);
524 	if (rc) {
525 		rc = -ENOTCONN;
526 		goto out;
527 	}
528 	rpcrdma_mrs_create(r_xprt);
529 	frwr_wp_create(r_xprt);
530 
531 out:
532 	trace_xprtrdma_connect(r_xprt, rc);
533 	return rc;
534 }
535 
536 /**
537  * rpcrdma_xprt_disconnect - Disconnect underlying transport
538  * @r_xprt: controlling transport instance
539  *
540  * Caller serializes. Either the transport send lock is held,
541  * or we're being called to destroy the transport.
542  *
543  * On return, @r_xprt is completely divested of all hardware
544  * resources and prepared for the next ->connect operation.
545  */
546 void rpcrdma_xprt_disconnect(struct rpcrdma_xprt *r_xprt)
547 {
548 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
549 	struct rdma_cm_id *id;
550 	int rc;
551 
552 	if (!ep)
553 		return;
554 
555 	id = ep->re_id;
556 	rc = rdma_disconnect(id);
557 	trace_xprtrdma_disconnect(r_xprt, rc);
558 
559 	rpcrdma_xprt_drain(r_xprt);
560 	rpcrdma_reps_unmap(r_xprt);
561 	rpcrdma_reqs_reset(r_xprt);
562 	rpcrdma_mrs_destroy(r_xprt);
563 	rpcrdma_sendctxs_destroy(r_xprt);
564 
565 	if (rpcrdma_ep_put(ep))
566 		rdma_destroy_id(id);
567 
568 	r_xprt->rx_ep = NULL;
569 }
570 
571 /* Fixed-size circular FIFO queue. This implementation is wait-free and
572  * lock-free.
573  *
574  * Consumer is the code path that posts Sends. This path dequeues a
575  * sendctx for use by a Send operation. Multiple consumer threads
576  * are serialized by the RPC transport lock, which allows only one
577  * ->send_request call at a time.
578  *
579  * Producer is the code path that handles Send completions. This path
580  * enqueues a sendctx that has been completed. Multiple producer
581  * threads are serialized by the ib_poll_cq() function.
582  */
583 
584 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
585  * queue activity, and rpcrdma_xprt_drain has flushed all remaining
586  * Send requests.
587  */
588 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt)
589 {
590 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
591 	unsigned long i;
592 
593 	if (!buf->rb_sc_ctxs)
594 		return;
595 	for (i = 0; i <= buf->rb_sc_last; i++)
596 		kfree(buf->rb_sc_ctxs[i]);
597 	kfree(buf->rb_sc_ctxs);
598 	buf->rb_sc_ctxs = NULL;
599 }
600 
601 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ep *ep)
602 {
603 	struct rpcrdma_sendctx *sc;
604 
605 	sc = kzalloc(struct_size(sc, sc_sges, ep->re_attr.cap.max_send_sge),
606 		     GFP_KERNEL);
607 	if (!sc)
608 		return NULL;
609 
610 	sc->sc_cqe.done = rpcrdma_wc_send;
611 	sc->sc_cid.ci_queue_id = ep->re_attr.send_cq->res.id;
612 	sc->sc_cid.ci_completion_id =
613 		atomic_inc_return(&ep->re_completion_ids);
614 	return sc;
615 }
616 
617 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
618 {
619 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
620 	struct rpcrdma_sendctx *sc;
621 	unsigned long i;
622 
623 	/* Maximum number of concurrent outstanding Send WRs. Capping
624 	 * the circular queue size stops Send Queue overflow by causing
625 	 * the ->send_request call to fail temporarily before too many
626 	 * Sends are posted.
627 	 */
628 	i = r_xprt->rx_ep->re_max_requests + RPCRDMA_MAX_BC_REQUESTS;
629 	buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL);
630 	if (!buf->rb_sc_ctxs)
631 		return -ENOMEM;
632 
633 	buf->rb_sc_last = i - 1;
634 	for (i = 0; i <= buf->rb_sc_last; i++) {
635 		sc = rpcrdma_sendctx_create(r_xprt->rx_ep);
636 		if (!sc)
637 			return -ENOMEM;
638 
639 		buf->rb_sc_ctxs[i] = sc;
640 	}
641 
642 	buf->rb_sc_head = 0;
643 	buf->rb_sc_tail = 0;
644 	return 0;
645 }
646 
647 /* The sendctx queue is not guaranteed to have a size that is a
648  * power of two, thus the helpers in circ_buf.h cannot be used.
649  * The other option is to use modulus (%), which can be expensive.
650  */
651 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
652 					  unsigned long item)
653 {
654 	return likely(item < buf->rb_sc_last) ? item + 1 : 0;
655 }
656 
657 /**
658  * rpcrdma_sendctx_get_locked - Acquire a send context
659  * @r_xprt: controlling transport instance
660  *
661  * Returns pointer to a free send completion context; or NULL if
662  * the queue is empty.
663  *
664  * Usage: Called to acquire an SGE array before preparing a Send WR.
665  *
666  * The caller serializes calls to this function (per transport), and
667  * provides an effective memory barrier that flushes the new value
668  * of rb_sc_head.
669  */
670 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt)
671 {
672 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
673 	struct rpcrdma_sendctx *sc;
674 	unsigned long next_head;
675 
676 	next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
677 
678 	if (next_head == READ_ONCE(buf->rb_sc_tail))
679 		goto out_emptyq;
680 
681 	/* ORDER: item must be accessed _before_ head is updated */
682 	sc = buf->rb_sc_ctxs[next_head];
683 
684 	/* Releasing the lock in the caller acts as a memory
685 	 * barrier that flushes rb_sc_head.
686 	 */
687 	buf->rb_sc_head = next_head;
688 
689 	return sc;
690 
691 out_emptyq:
692 	/* The queue is "empty" if there have not been enough Send
693 	 * completions recently. This is a sign the Send Queue is
694 	 * backing up. Cause the caller to pause and try again.
695 	 */
696 	xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
697 	r_xprt->rx_stats.empty_sendctx_q++;
698 	return NULL;
699 }
700 
701 /**
702  * rpcrdma_sendctx_put_locked - Release a send context
703  * @r_xprt: controlling transport instance
704  * @sc: send context to release
705  *
706  * Usage: Called from Send completion to return a sendctxt
707  * to the queue.
708  *
709  * The caller serializes calls to this function (per transport).
710  */
711 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
712 				       struct rpcrdma_sendctx *sc)
713 {
714 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
715 	unsigned long next_tail;
716 
717 	/* Unmap SGEs of previously completed but unsignaled
718 	 * Sends by walking up the queue until @sc is found.
719 	 */
720 	next_tail = buf->rb_sc_tail;
721 	do {
722 		next_tail = rpcrdma_sendctx_next(buf, next_tail);
723 
724 		/* ORDER: item must be accessed _before_ tail is updated */
725 		rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]);
726 
727 	} while (buf->rb_sc_ctxs[next_tail] != sc);
728 
729 	/* Paired with READ_ONCE */
730 	smp_store_release(&buf->rb_sc_tail, next_tail);
731 
732 	xprt_write_space(&r_xprt->rx_xprt);
733 }
734 
735 static void
736 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt)
737 {
738 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
739 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
740 	unsigned int count;
741 
742 	for (count = 0; count < ep->re_max_rdma_segs; count++) {
743 		struct rpcrdma_mr *mr;
744 		int rc;
745 
746 		mr = kzalloc(sizeof(*mr), GFP_NOFS);
747 		if (!mr)
748 			break;
749 
750 		rc = frwr_mr_init(r_xprt, mr);
751 		if (rc) {
752 			kfree(mr);
753 			break;
754 		}
755 
756 		spin_lock(&buf->rb_lock);
757 		rpcrdma_mr_push(mr, &buf->rb_mrs);
758 		list_add(&mr->mr_all, &buf->rb_all_mrs);
759 		spin_unlock(&buf->rb_lock);
760 	}
761 
762 	r_xprt->rx_stats.mrs_allocated += count;
763 	trace_xprtrdma_createmrs(r_xprt, count);
764 }
765 
766 static void
767 rpcrdma_mr_refresh_worker(struct work_struct *work)
768 {
769 	struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
770 						  rb_refresh_worker);
771 	struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
772 						   rx_buf);
773 
774 	rpcrdma_mrs_create(r_xprt);
775 	xprt_write_space(&r_xprt->rx_xprt);
776 }
777 
778 /**
779  * rpcrdma_mrs_refresh - Wake the MR refresh worker
780  * @r_xprt: controlling transport instance
781  *
782  */
783 void rpcrdma_mrs_refresh(struct rpcrdma_xprt *r_xprt)
784 {
785 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
786 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
787 
788 	/* If there is no underlying connection, it's no use
789 	 * to wake the refresh worker.
790 	 */
791 	if (ep->re_connect_status == 1) {
792 		/* The work is scheduled on a WQ_MEM_RECLAIM
793 		 * workqueue in order to prevent MR allocation
794 		 * from recursing into NFS during direct reclaim.
795 		 */
796 		queue_work(xprtiod_workqueue, &buf->rb_refresh_worker);
797 	}
798 }
799 
800 /**
801  * rpcrdma_req_create - Allocate an rpcrdma_req object
802  * @r_xprt: controlling r_xprt
803  * @size: initial size, in bytes, of send and receive buffers
804  * @flags: GFP flags passed to memory allocators
805  *
806  * Returns an allocated and fully initialized rpcrdma_req or NULL.
807  */
808 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size,
809 				       gfp_t flags)
810 {
811 	struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
812 	struct rpcrdma_req *req;
813 
814 	req = kzalloc(sizeof(*req), flags);
815 	if (req == NULL)
816 		goto out1;
817 
818 	req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags);
819 	if (!req->rl_sendbuf)
820 		goto out2;
821 
822 	req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags);
823 	if (!req->rl_recvbuf)
824 		goto out3;
825 
826 	INIT_LIST_HEAD(&req->rl_free_mrs);
827 	INIT_LIST_HEAD(&req->rl_registered);
828 	spin_lock(&buffer->rb_lock);
829 	list_add(&req->rl_all, &buffer->rb_allreqs);
830 	spin_unlock(&buffer->rb_lock);
831 	return req;
832 
833 out3:
834 	kfree(req->rl_sendbuf);
835 out2:
836 	kfree(req);
837 out1:
838 	return NULL;
839 }
840 
841 /**
842  * rpcrdma_req_setup - Per-connection instance setup of an rpcrdma_req object
843  * @r_xprt: controlling transport instance
844  * @req: rpcrdma_req object to set up
845  *
846  * Returns zero on success, and a negative errno on failure.
847  */
848 int rpcrdma_req_setup(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
849 {
850 	struct rpcrdma_regbuf *rb;
851 	size_t maxhdrsize;
852 
853 	/* Compute maximum header buffer size in bytes */
854 	maxhdrsize = rpcrdma_fixed_maxsz + 3 +
855 		     r_xprt->rx_ep->re_max_rdma_segs * rpcrdma_readchunk_maxsz;
856 	maxhdrsize *= sizeof(__be32);
857 	rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize),
858 				  DMA_TO_DEVICE, GFP_KERNEL);
859 	if (!rb)
860 		goto out;
861 
862 	if (!__rpcrdma_regbuf_dma_map(r_xprt, rb))
863 		goto out_free;
864 
865 	req->rl_rdmabuf = rb;
866 	xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb));
867 	return 0;
868 
869 out_free:
870 	rpcrdma_regbuf_free(rb);
871 out:
872 	return -ENOMEM;
873 }
874 
875 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
876  * and thus can be walked without holding rb_lock. Eg. the
877  * caller is holding the transport send lock to exclude
878  * device removal or disconnection.
879  */
880 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt)
881 {
882 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
883 	struct rpcrdma_req *req;
884 	int rc;
885 
886 	list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
887 		rc = rpcrdma_req_setup(r_xprt, req);
888 		if (rc)
889 			return rc;
890 	}
891 	return 0;
892 }
893 
894 static void rpcrdma_req_reset(struct rpcrdma_req *req)
895 {
896 	/* Credits are valid for only one connection */
897 	req->rl_slot.rq_cong = 0;
898 
899 	rpcrdma_regbuf_free(req->rl_rdmabuf);
900 	req->rl_rdmabuf = NULL;
901 
902 	rpcrdma_regbuf_dma_unmap(req->rl_sendbuf);
903 	rpcrdma_regbuf_dma_unmap(req->rl_recvbuf);
904 
905 	frwr_reset(req);
906 }
907 
908 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
909  * and thus can be walked without holding rb_lock. Eg. the
910  * caller is holding the transport send lock to exclude
911  * device removal or disconnection.
912  */
913 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt)
914 {
915 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
916 	struct rpcrdma_req *req;
917 
918 	list_for_each_entry(req, &buf->rb_allreqs, rl_all)
919 		rpcrdma_req_reset(req);
920 }
921 
922 static noinline
923 struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt,
924 				       bool temp)
925 {
926 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
927 	struct rpcrdma_rep *rep;
928 
929 	rep = kzalloc(sizeof(*rep), GFP_KERNEL);
930 	if (rep == NULL)
931 		goto out;
932 
933 	rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep->re_inline_recv,
934 					       DMA_FROM_DEVICE, GFP_KERNEL);
935 	if (!rep->rr_rdmabuf)
936 		goto out_free;
937 
938 	if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf))
939 		goto out_free_regbuf;
940 
941 	rep->rr_cid.ci_completion_id =
942 		atomic_inc_return(&r_xprt->rx_ep->re_completion_ids);
943 
944 	xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf),
945 		     rdmab_length(rep->rr_rdmabuf));
946 	rep->rr_cqe.done = rpcrdma_wc_receive;
947 	rep->rr_rxprt = r_xprt;
948 	rep->rr_recv_wr.next = NULL;
949 	rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
950 	rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
951 	rep->rr_recv_wr.num_sge = 1;
952 	rep->rr_temp = temp;
953 
954 	spin_lock(&buf->rb_lock);
955 	list_add(&rep->rr_all, &buf->rb_all_reps);
956 	spin_unlock(&buf->rb_lock);
957 	return rep;
958 
959 out_free_regbuf:
960 	rpcrdma_regbuf_free(rep->rr_rdmabuf);
961 out_free:
962 	kfree(rep);
963 out:
964 	return NULL;
965 }
966 
967 static void rpcrdma_rep_free(struct rpcrdma_rep *rep)
968 {
969 	rpcrdma_regbuf_free(rep->rr_rdmabuf);
970 	kfree(rep);
971 }
972 
973 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep)
974 {
975 	struct rpcrdma_buffer *buf = &rep->rr_rxprt->rx_buf;
976 
977 	spin_lock(&buf->rb_lock);
978 	list_del(&rep->rr_all);
979 	spin_unlock(&buf->rb_lock);
980 
981 	rpcrdma_rep_free(rep);
982 }
983 
984 static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf)
985 {
986 	struct llist_node *node;
987 
988 	/* Calls to llist_del_first are required to be serialized */
989 	node = llist_del_first(&buf->rb_free_reps);
990 	if (!node)
991 		return NULL;
992 	return llist_entry(node, struct rpcrdma_rep, rr_node);
993 }
994 
995 /**
996  * rpcrdma_rep_put - Release rpcrdma_rep back to free list
997  * @buf: buffer pool
998  * @rep: rep to release
999  *
1000  */
1001 void rpcrdma_rep_put(struct rpcrdma_buffer *buf, struct rpcrdma_rep *rep)
1002 {
1003 	llist_add(&rep->rr_node, &buf->rb_free_reps);
1004 }
1005 
1006 /* Caller must ensure the QP is quiescent (RQ is drained) before
1007  * invoking this function, to guarantee rb_all_reps is not
1008  * changing.
1009  */
1010 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt)
1011 {
1012 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1013 	struct rpcrdma_rep *rep;
1014 
1015 	list_for_each_entry(rep, &buf->rb_all_reps, rr_all) {
1016 		rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf);
1017 		rep->rr_temp = true;	/* Mark this rep for destruction */
1018 	}
1019 }
1020 
1021 static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf)
1022 {
1023 	struct rpcrdma_rep *rep;
1024 
1025 	spin_lock(&buf->rb_lock);
1026 	while ((rep = list_first_entry_or_null(&buf->rb_all_reps,
1027 					       struct rpcrdma_rep,
1028 					       rr_all)) != NULL) {
1029 		list_del(&rep->rr_all);
1030 		spin_unlock(&buf->rb_lock);
1031 
1032 		rpcrdma_rep_free(rep);
1033 
1034 		spin_lock(&buf->rb_lock);
1035 	}
1036 	spin_unlock(&buf->rb_lock);
1037 }
1038 
1039 /**
1040  * rpcrdma_buffer_create - Create initial set of req/rep objects
1041  * @r_xprt: transport instance to (re)initialize
1042  *
1043  * Returns zero on success, otherwise a negative errno.
1044  */
1045 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1046 {
1047 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1048 	int i, rc;
1049 
1050 	buf->rb_bc_srv_max_requests = 0;
1051 	spin_lock_init(&buf->rb_lock);
1052 	INIT_LIST_HEAD(&buf->rb_mrs);
1053 	INIT_LIST_HEAD(&buf->rb_all_mrs);
1054 	INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker);
1055 
1056 	INIT_LIST_HEAD(&buf->rb_send_bufs);
1057 	INIT_LIST_HEAD(&buf->rb_allreqs);
1058 	INIT_LIST_HEAD(&buf->rb_all_reps);
1059 
1060 	rc = -ENOMEM;
1061 	for (i = 0; i < r_xprt->rx_xprt.max_reqs; i++) {
1062 		struct rpcrdma_req *req;
1063 
1064 		req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE * 2,
1065 					 GFP_KERNEL);
1066 		if (!req)
1067 			goto out;
1068 		list_add(&req->rl_list, &buf->rb_send_bufs);
1069 	}
1070 
1071 	init_llist_head(&buf->rb_free_reps);
1072 
1073 	return 0;
1074 out:
1075 	rpcrdma_buffer_destroy(buf);
1076 	return rc;
1077 }
1078 
1079 /**
1080  * rpcrdma_req_destroy - Destroy an rpcrdma_req object
1081  * @req: unused object to be destroyed
1082  *
1083  * Relies on caller holding the transport send lock to protect
1084  * removing req->rl_all from buf->rb_all_reqs safely.
1085  */
1086 void rpcrdma_req_destroy(struct rpcrdma_req *req)
1087 {
1088 	struct rpcrdma_mr *mr;
1089 
1090 	list_del(&req->rl_all);
1091 
1092 	while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) {
1093 		struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf;
1094 
1095 		spin_lock(&buf->rb_lock);
1096 		list_del(&mr->mr_all);
1097 		spin_unlock(&buf->rb_lock);
1098 
1099 		frwr_mr_release(mr);
1100 	}
1101 
1102 	rpcrdma_regbuf_free(req->rl_recvbuf);
1103 	rpcrdma_regbuf_free(req->rl_sendbuf);
1104 	rpcrdma_regbuf_free(req->rl_rdmabuf);
1105 	kfree(req);
1106 }
1107 
1108 /**
1109  * rpcrdma_mrs_destroy - Release all of a transport's MRs
1110  * @r_xprt: controlling transport instance
1111  *
1112  * Relies on caller holding the transport send lock to protect
1113  * removing mr->mr_list from req->rl_free_mrs safely.
1114  */
1115 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt)
1116 {
1117 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1118 	struct rpcrdma_mr *mr;
1119 
1120 	cancel_work_sync(&buf->rb_refresh_worker);
1121 
1122 	spin_lock(&buf->rb_lock);
1123 	while ((mr = list_first_entry_or_null(&buf->rb_all_mrs,
1124 					      struct rpcrdma_mr,
1125 					      mr_all)) != NULL) {
1126 		list_del(&mr->mr_list);
1127 		list_del(&mr->mr_all);
1128 		spin_unlock(&buf->rb_lock);
1129 
1130 		frwr_mr_release(mr);
1131 
1132 		spin_lock(&buf->rb_lock);
1133 	}
1134 	spin_unlock(&buf->rb_lock);
1135 }
1136 
1137 /**
1138  * rpcrdma_buffer_destroy - Release all hw resources
1139  * @buf: root control block for resources
1140  *
1141  * ORDERING: relies on a prior rpcrdma_xprt_drain :
1142  * - No more Send or Receive completions can occur
1143  * - All MRs, reps, and reqs are returned to their free lists
1144  */
1145 void
1146 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1147 {
1148 	rpcrdma_reps_destroy(buf);
1149 
1150 	while (!list_empty(&buf->rb_send_bufs)) {
1151 		struct rpcrdma_req *req;
1152 
1153 		req = list_first_entry(&buf->rb_send_bufs,
1154 				       struct rpcrdma_req, rl_list);
1155 		list_del(&req->rl_list);
1156 		rpcrdma_req_destroy(req);
1157 	}
1158 }
1159 
1160 /**
1161  * rpcrdma_mr_get - Allocate an rpcrdma_mr object
1162  * @r_xprt: controlling transport
1163  *
1164  * Returns an initialized rpcrdma_mr or NULL if no free
1165  * rpcrdma_mr objects are available.
1166  */
1167 struct rpcrdma_mr *
1168 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt)
1169 {
1170 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1171 	struct rpcrdma_mr *mr;
1172 
1173 	spin_lock(&buf->rb_lock);
1174 	mr = rpcrdma_mr_pop(&buf->rb_mrs);
1175 	spin_unlock(&buf->rb_lock);
1176 	return mr;
1177 }
1178 
1179 /**
1180  * rpcrdma_reply_put - Put reply buffers back into pool
1181  * @buffers: buffer pool
1182  * @req: object to return
1183  *
1184  */
1185 void rpcrdma_reply_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1186 {
1187 	if (req->rl_reply) {
1188 		rpcrdma_rep_put(buffers, req->rl_reply);
1189 		req->rl_reply = NULL;
1190 	}
1191 }
1192 
1193 /**
1194  * rpcrdma_buffer_get - Get a request buffer
1195  * @buffers: Buffer pool from which to obtain a buffer
1196  *
1197  * Returns a fresh rpcrdma_req, or NULL if none are available.
1198  */
1199 struct rpcrdma_req *
1200 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1201 {
1202 	struct rpcrdma_req *req;
1203 
1204 	spin_lock(&buffers->rb_lock);
1205 	req = list_first_entry_or_null(&buffers->rb_send_bufs,
1206 				       struct rpcrdma_req, rl_list);
1207 	if (req)
1208 		list_del_init(&req->rl_list);
1209 	spin_unlock(&buffers->rb_lock);
1210 	return req;
1211 }
1212 
1213 /**
1214  * rpcrdma_buffer_put - Put request/reply buffers back into pool
1215  * @buffers: buffer pool
1216  * @req: object to return
1217  *
1218  */
1219 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1220 {
1221 	rpcrdma_reply_put(buffers, req);
1222 
1223 	spin_lock(&buffers->rb_lock);
1224 	list_add(&req->rl_list, &buffers->rb_send_bufs);
1225 	spin_unlock(&buffers->rb_lock);
1226 }
1227 
1228 /* Returns a pointer to a rpcrdma_regbuf object, or NULL.
1229  *
1230  * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1231  * receiving the payload of RDMA RECV operations. During Long Calls
1232  * or Replies they may be registered externally via frwr_map.
1233  */
1234 static struct rpcrdma_regbuf *
1235 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
1236 		     gfp_t flags)
1237 {
1238 	struct rpcrdma_regbuf *rb;
1239 
1240 	rb = kmalloc(sizeof(*rb), flags);
1241 	if (!rb)
1242 		return NULL;
1243 	rb->rg_data = kmalloc(size, flags);
1244 	if (!rb->rg_data) {
1245 		kfree(rb);
1246 		return NULL;
1247 	}
1248 
1249 	rb->rg_device = NULL;
1250 	rb->rg_direction = direction;
1251 	rb->rg_iov.length = size;
1252 	return rb;
1253 }
1254 
1255 /**
1256  * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer
1257  * @rb: regbuf to reallocate
1258  * @size: size of buffer to be allocated, in bytes
1259  * @flags: GFP flags
1260  *
1261  * Returns true if reallocation was successful. If false is
1262  * returned, @rb is left untouched.
1263  */
1264 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags)
1265 {
1266 	void *buf;
1267 
1268 	buf = kmalloc(size, flags);
1269 	if (!buf)
1270 		return false;
1271 
1272 	rpcrdma_regbuf_dma_unmap(rb);
1273 	kfree(rb->rg_data);
1274 
1275 	rb->rg_data = buf;
1276 	rb->rg_iov.length = size;
1277 	return true;
1278 }
1279 
1280 /**
1281  * __rpcrdma_regbuf_dma_map - DMA-map a regbuf
1282  * @r_xprt: controlling transport instance
1283  * @rb: regbuf to be mapped
1284  *
1285  * Returns true if the buffer is now DMA mapped to @r_xprt's device
1286  */
1287 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt,
1288 			      struct rpcrdma_regbuf *rb)
1289 {
1290 	struct ib_device *device = r_xprt->rx_ep->re_id->device;
1291 
1292 	if (rb->rg_direction == DMA_NONE)
1293 		return false;
1294 
1295 	rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb),
1296 					    rdmab_length(rb), rb->rg_direction);
1297 	if (ib_dma_mapping_error(device, rdmab_addr(rb))) {
1298 		trace_xprtrdma_dma_maperr(rdmab_addr(rb));
1299 		return false;
1300 	}
1301 
1302 	rb->rg_device = device;
1303 	rb->rg_iov.lkey = r_xprt->rx_ep->re_pd->local_dma_lkey;
1304 	return true;
1305 }
1306 
1307 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb)
1308 {
1309 	if (!rb)
1310 		return;
1311 
1312 	if (!rpcrdma_regbuf_is_mapped(rb))
1313 		return;
1314 
1315 	ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb),
1316 			    rb->rg_direction);
1317 	rb->rg_device = NULL;
1318 }
1319 
1320 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb)
1321 {
1322 	rpcrdma_regbuf_dma_unmap(rb);
1323 	if (rb)
1324 		kfree(rb->rg_data);
1325 	kfree(rb);
1326 }
1327 
1328 /**
1329  * rpcrdma_post_recvs - Refill the Receive Queue
1330  * @r_xprt: controlling transport instance
1331  * @needed: current credit grant
1332  * @temp: mark Receive buffers to be deleted after one use
1333  *
1334  */
1335 void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, int needed, bool temp)
1336 {
1337 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1338 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
1339 	struct ib_recv_wr *wr, *bad_wr;
1340 	struct rpcrdma_rep *rep;
1341 	int count, rc;
1342 
1343 	rc = 0;
1344 	count = 0;
1345 
1346 	if (likely(ep->re_receive_count > needed))
1347 		goto out;
1348 	needed -= ep->re_receive_count;
1349 	if (!temp)
1350 		needed += RPCRDMA_MAX_RECV_BATCH;
1351 
1352 	if (atomic_inc_return(&ep->re_receiving) > 1)
1353 		goto out;
1354 
1355 	/* fast path: all needed reps can be found on the free list */
1356 	wr = NULL;
1357 	while (needed) {
1358 		rep = rpcrdma_rep_get_locked(buf);
1359 		if (rep && rep->rr_temp) {
1360 			rpcrdma_rep_destroy(rep);
1361 			continue;
1362 		}
1363 		if (!rep)
1364 			rep = rpcrdma_rep_create(r_xprt, temp);
1365 		if (!rep)
1366 			break;
1367 
1368 		rep->rr_cid.ci_queue_id = ep->re_attr.recv_cq->res.id;
1369 		trace_xprtrdma_post_recv(rep);
1370 		rep->rr_recv_wr.next = wr;
1371 		wr = &rep->rr_recv_wr;
1372 		--needed;
1373 		++count;
1374 	}
1375 	if (!wr)
1376 		goto out;
1377 
1378 	rc = ib_post_recv(ep->re_id->qp, wr,
1379 			  (const struct ib_recv_wr **)&bad_wr);
1380 	if (rc) {
1381 		trace_xprtrdma_post_recvs_err(r_xprt, rc);
1382 		for (wr = bad_wr; wr;) {
1383 			struct rpcrdma_rep *rep;
1384 
1385 			rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr);
1386 			wr = wr->next;
1387 			rpcrdma_rep_put(buf, rep);
1388 			--count;
1389 		}
1390 	}
1391 	if (atomic_dec_return(&ep->re_receiving) > 0)
1392 		complete(&ep->re_done);
1393 
1394 out:
1395 	trace_xprtrdma_post_recvs(r_xprt, count);
1396 	ep->re_receive_count += count;
1397 	return;
1398 }
1399