1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (c) 2014-2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the BSD-type 10 * license below: 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 19 * Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials provided 22 * with the distribution. 23 * 24 * Neither the name of the Network Appliance, Inc. nor the names of 25 * its contributors may be used to endorse or promote products 26 * derived from this software without specific prior written 27 * permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42 /* 43 * verbs.c 44 * 45 * Encapsulates the major functions managing: 46 * o adapters 47 * o endpoints 48 * o connections 49 * o buffer memory 50 */ 51 52 #include <linux/interrupt.h> 53 #include <linux/slab.h> 54 #include <linux/sunrpc/addr.h> 55 #include <linux/sunrpc/svc_rdma.h> 56 57 #include <asm-generic/barrier.h> 58 #include <asm/bitops.h> 59 60 #include <rdma/ib_cm.h> 61 62 #include "xprt_rdma.h" 63 #include <trace/events/rpcrdma.h> 64 65 /* 66 * Globals/Macros 67 */ 68 69 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 70 # define RPCDBG_FACILITY RPCDBG_TRANS 71 #endif 72 73 /* 74 * internal functions 75 */ 76 static void rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc); 77 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt); 78 static void rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf); 79 static struct rpcrdma_regbuf * 80 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction, 81 gfp_t flags); 82 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb); 83 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb); 84 static void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp); 85 86 /* Wait for outstanding transport work to finish. ib_drain_qp 87 * handles the drains in the wrong order for us, so open code 88 * them here. 89 */ 90 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt) 91 { 92 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 93 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 94 95 /* Flush Receives, then wait for deferred Reply work 96 * to complete. 97 */ 98 ib_drain_rq(ia->ri_id->qp); 99 drain_workqueue(buf->rb_completion_wq); 100 101 /* Deferred Reply processing might have scheduled 102 * local invalidations. 103 */ 104 ib_drain_sq(ia->ri_id->qp); 105 } 106 107 /** 108 * rpcrdma_qp_event_handler - Handle one QP event (error notification) 109 * @event: details of the event 110 * @context: ep that owns QP where event occurred 111 * 112 * Called from the RDMA provider (device driver) possibly in an interrupt 113 * context. 114 */ 115 static void 116 rpcrdma_qp_event_handler(struct ib_event *event, void *context) 117 { 118 struct rpcrdma_ep *ep = context; 119 struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt, 120 rx_ep); 121 122 trace_xprtrdma_qp_event(r_xprt, event); 123 } 124 125 /** 126 * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC 127 * @cq: completion queue (ignored) 128 * @wc: completed WR 129 * 130 */ 131 static void 132 rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc) 133 { 134 struct ib_cqe *cqe = wc->wr_cqe; 135 struct rpcrdma_sendctx *sc = 136 container_of(cqe, struct rpcrdma_sendctx, sc_cqe); 137 138 /* WARNING: Only wr_cqe and status are reliable at this point */ 139 trace_xprtrdma_wc_send(sc, wc); 140 rpcrdma_sendctx_put_locked(sc); 141 } 142 143 /** 144 * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC 145 * @cq: completion queue (ignored) 146 * @wc: completed WR 147 * 148 */ 149 static void 150 rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc) 151 { 152 struct ib_cqe *cqe = wc->wr_cqe; 153 struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep, 154 rr_cqe); 155 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; 156 157 /* WARNING: Only wr_cqe and status are reliable at this point */ 158 trace_xprtrdma_wc_receive(wc); 159 --r_xprt->rx_ep.rep_receive_count; 160 if (wc->status != IB_WC_SUCCESS) 161 goto out_flushed; 162 163 /* status == SUCCESS means all fields in wc are trustworthy */ 164 rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len); 165 rep->rr_wc_flags = wc->wc_flags; 166 rep->rr_inv_rkey = wc->ex.invalidate_rkey; 167 168 ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf), 169 rdmab_addr(rep->rr_rdmabuf), 170 wc->byte_len, DMA_FROM_DEVICE); 171 172 rpcrdma_post_recvs(r_xprt, false); 173 rpcrdma_reply_handler(rep); 174 return; 175 176 out_flushed: 177 rpcrdma_recv_buffer_put(rep); 178 } 179 180 static void 181 rpcrdma_update_connect_private(struct rpcrdma_xprt *r_xprt, 182 struct rdma_conn_param *param) 183 { 184 const struct rpcrdma_connect_private *pmsg = param->private_data; 185 unsigned int rsize, wsize; 186 187 /* Default settings for RPC-over-RDMA Version One */ 188 r_xprt->rx_ia.ri_implicit_roundup = xprt_rdma_pad_optimize; 189 rsize = RPCRDMA_V1_DEF_INLINE_SIZE; 190 wsize = RPCRDMA_V1_DEF_INLINE_SIZE; 191 192 if (pmsg && 193 pmsg->cp_magic == rpcrdma_cmp_magic && 194 pmsg->cp_version == RPCRDMA_CMP_VERSION) { 195 r_xprt->rx_ia.ri_implicit_roundup = true; 196 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size); 197 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size); 198 } 199 200 if (rsize < r_xprt->rx_ep.rep_inline_recv) 201 r_xprt->rx_ep.rep_inline_recv = rsize; 202 if (wsize < r_xprt->rx_ep.rep_inline_send) 203 r_xprt->rx_ep.rep_inline_send = wsize; 204 dprintk("RPC: %s: max send %u, max recv %u\n", __func__, 205 r_xprt->rx_ep.rep_inline_send, 206 r_xprt->rx_ep.rep_inline_recv); 207 rpcrdma_set_max_header_sizes(r_xprt); 208 } 209 210 /** 211 * rpcrdma_cm_event_handler - Handle RDMA CM events 212 * @id: rdma_cm_id on which an event has occurred 213 * @event: details of the event 214 * 215 * Called with @id's mutex held. Returns 1 if caller should 216 * destroy @id, otherwise 0. 217 */ 218 static int 219 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event) 220 { 221 struct rpcrdma_xprt *r_xprt = id->context; 222 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 223 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 224 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 225 226 might_sleep(); 227 228 trace_xprtrdma_cm_event(r_xprt, event); 229 switch (event->event) { 230 case RDMA_CM_EVENT_ADDR_RESOLVED: 231 case RDMA_CM_EVENT_ROUTE_RESOLVED: 232 ia->ri_async_rc = 0; 233 complete(&ia->ri_done); 234 return 0; 235 case RDMA_CM_EVENT_ADDR_ERROR: 236 ia->ri_async_rc = -EPROTO; 237 complete(&ia->ri_done); 238 return 0; 239 case RDMA_CM_EVENT_ROUTE_ERROR: 240 ia->ri_async_rc = -ENETUNREACH; 241 complete(&ia->ri_done); 242 return 0; 243 case RDMA_CM_EVENT_DEVICE_REMOVAL: 244 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 245 pr_info("rpcrdma: removing device %s for %s:%s\n", 246 ia->ri_id->device->name, 247 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt)); 248 #endif 249 set_bit(RPCRDMA_IAF_REMOVING, &ia->ri_flags); 250 ep->rep_connected = -ENODEV; 251 xprt_force_disconnect(xprt); 252 wait_for_completion(&ia->ri_remove_done); 253 254 ia->ri_id = NULL; 255 /* Return 1 to ensure the core destroys the id. */ 256 return 1; 257 case RDMA_CM_EVENT_ESTABLISHED: 258 ++xprt->connect_cookie; 259 ep->rep_connected = 1; 260 rpcrdma_update_connect_private(r_xprt, &event->param.conn); 261 wake_up_all(&ep->rep_connect_wait); 262 break; 263 case RDMA_CM_EVENT_CONNECT_ERROR: 264 ep->rep_connected = -ENOTCONN; 265 goto disconnected; 266 case RDMA_CM_EVENT_UNREACHABLE: 267 ep->rep_connected = -ENETUNREACH; 268 goto disconnected; 269 case RDMA_CM_EVENT_REJECTED: 270 dprintk("rpcrdma: connection to %s:%s rejected: %s\n", 271 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt), 272 rdma_reject_msg(id, event->status)); 273 ep->rep_connected = -ECONNREFUSED; 274 if (event->status == IB_CM_REJ_STALE_CONN) 275 ep->rep_connected = -EAGAIN; 276 goto disconnected; 277 case RDMA_CM_EVENT_DISCONNECTED: 278 ep->rep_connected = -ECONNABORTED; 279 disconnected: 280 xprt_force_disconnect(xprt); 281 wake_up_all(&ep->rep_connect_wait); 282 break; 283 default: 284 break; 285 } 286 287 dprintk("RPC: %s: %s:%s on %s/frwr: %s\n", __func__, 288 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt), 289 ia->ri_id->device->name, rdma_event_msg(event->event)); 290 return 0; 291 } 292 293 static struct rdma_cm_id * 294 rpcrdma_create_id(struct rpcrdma_xprt *xprt, struct rpcrdma_ia *ia) 295 { 296 unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1; 297 struct rdma_cm_id *id; 298 int rc; 299 300 trace_xprtrdma_conn_start(xprt); 301 302 init_completion(&ia->ri_done); 303 init_completion(&ia->ri_remove_done); 304 305 id = rdma_create_id(xprt->rx_xprt.xprt_net, rpcrdma_cm_event_handler, 306 xprt, RDMA_PS_TCP, IB_QPT_RC); 307 if (IS_ERR(id)) 308 return id; 309 310 ia->ri_async_rc = -ETIMEDOUT; 311 rc = rdma_resolve_addr(id, NULL, 312 (struct sockaddr *)&xprt->rx_xprt.addr, 313 RDMA_RESOLVE_TIMEOUT); 314 if (rc) 315 goto out; 316 rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout); 317 if (rc < 0) { 318 trace_xprtrdma_conn_tout(xprt); 319 goto out; 320 } 321 322 rc = ia->ri_async_rc; 323 if (rc) 324 goto out; 325 326 ia->ri_async_rc = -ETIMEDOUT; 327 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); 328 if (rc) 329 goto out; 330 rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout); 331 if (rc < 0) { 332 trace_xprtrdma_conn_tout(xprt); 333 goto out; 334 } 335 rc = ia->ri_async_rc; 336 if (rc) 337 goto out; 338 339 return id; 340 341 out: 342 rdma_destroy_id(id); 343 return ERR_PTR(rc); 344 } 345 346 /* 347 * Exported functions. 348 */ 349 350 /** 351 * rpcrdma_ia_open - Open and initialize an Interface Adapter. 352 * @xprt: transport with IA to (re)initialize 353 * 354 * Returns 0 on success, negative errno if an appropriate 355 * Interface Adapter could not be found and opened. 356 */ 357 int 358 rpcrdma_ia_open(struct rpcrdma_xprt *xprt) 359 { 360 struct rpcrdma_ia *ia = &xprt->rx_ia; 361 int rc; 362 363 ia->ri_id = rpcrdma_create_id(xprt, ia); 364 if (IS_ERR(ia->ri_id)) { 365 rc = PTR_ERR(ia->ri_id); 366 goto out_err; 367 } 368 369 ia->ri_pd = ib_alloc_pd(ia->ri_id->device, 0); 370 if (IS_ERR(ia->ri_pd)) { 371 rc = PTR_ERR(ia->ri_pd); 372 pr_err("rpcrdma: ib_alloc_pd() returned %d\n", rc); 373 goto out_err; 374 } 375 376 switch (xprt_rdma_memreg_strategy) { 377 case RPCRDMA_FRWR: 378 if (frwr_is_supported(ia->ri_id->device)) 379 break; 380 /*FALLTHROUGH*/ 381 default: 382 pr_err("rpcrdma: Device %s does not support memreg mode %d\n", 383 ia->ri_id->device->name, xprt_rdma_memreg_strategy); 384 rc = -EINVAL; 385 goto out_err; 386 } 387 388 return 0; 389 390 out_err: 391 rpcrdma_ia_close(ia); 392 return rc; 393 } 394 395 /** 396 * rpcrdma_ia_remove - Handle device driver unload 397 * @ia: interface adapter being removed 398 * 399 * Divest transport H/W resources associated with this adapter, 400 * but allow it to be restored later. 401 */ 402 void 403 rpcrdma_ia_remove(struct rpcrdma_ia *ia) 404 { 405 struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt, 406 rx_ia); 407 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 408 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 409 struct rpcrdma_req *req; 410 struct rpcrdma_rep *rep; 411 412 cancel_delayed_work_sync(&buf->rb_refresh_worker); 413 414 /* This is similar to rpcrdma_ep_destroy, but: 415 * - Don't cancel the connect worker. 416 * - Don't call rpcrdma_ep_disconnect, which waits 417 * for another conn upcall, which will deadlock. 418 * - rdma_disconnect is unneeded, the underlying 419 * connection is already gone. 420 */ 421 if (ia->ri_id->qp) { 422 rpcrdma_xprt_drain(r_xprt); 423 rdma_destroy_qp(ia->ri_id); 424 ia->ri_id->qp = NULL; 425 } 426 ib_free_cq(ep->rep_attr.recv_cq); 427 ep->rep_attr.recv_cq = NULL; 428 ib_free_cq(ep->rep_attr.send_cq); 429 ep->rep_attr.send_cq = NULL; 430 431 /* The ULP is responsible for ensuring all DMA 432 * mappings and MRs are gone. 433 */ 434 list_for_each_entry(rep, &buf->rb_recv_bufs, rr_list) 435 rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf); 436 list_for_each_entry(req, &buf->rb_allreqs, rl_all) { 437 rpcrdma_regbuf_dma_unmap(req->rl_rdmabuf); 438 rpcrdma_regbuf_dma_unmap(req->rl_sendbuf); 439 rpcrdma_regbuf_dma_unmap(req->rl_recvbuf); 440 } 441 rpcrdma_mrs_destroy(buf); 442 ib_dealloc_pd(ia->ri_pd); 443 ia->ri_pd = NULL; 444 445 /* Allow waiters to continue */ 446 complete(&ia->ri_remove_done); 447 448 trace_xprtrdma_remove(r_xprt); 449 } 450 451 /** 452 * rpcrdma_ia_close - Clean up/close an IA. 453 * @ia: interface adapter to close 454 * 455 */ 456 void 457 rpcrdma_ia_close(struct rpcrdma_ia *ia) 458 { 459 if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) { 460 if (ia->ri_id->qp) 461 rdma_destroy_qp(ia->ri_id); 462 rdma_destroy_id(ia->ri_id); 463 } 464 ia->ri_id = NULL; 465 466 /* If the pd is still busy, xprtrdma missed freeing a resource */ 467 if (ia->ri_pd && !IS_ERR(ia->ri_pd)) 468 ib_dealloc_pd(ia->ri_pd); 469 ia->ri_pd = NULL; 470 } 471 472 /** 473 * rpcrdma_ep_create - Create unconnected endpoint 474 * @r_xprt: transport to instantiate 475 * 476 * Returns zero on success, or a negative errno. 477 */ 478 int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt) 479 { 480 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 481 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 482 struct rpcrdma_connect_private *pmsg = &ep->rep_cm_private; 483 struct ib_cq *sendcq, *recvcq; 484 unsigned int max_sge; 485 int rc; 486 487 ep->rep_max_requests = xprt_rdma_slot_table_entries; 488 ep->rep_inline_send = xprt_rdma_max_inline_write; 489 ep->rep_inline_recv = xprt_rdma_max_inline_read; 490 491 max_sge = min_t(unsigned int, ia->ri_id->device->attrs.max_send_sge, 492 RPCRDMA_MAX_SEND_SGES); 493 if (max_sge < RPCRDMA_MIN_SEND_SGES) { 494 pr_warn("rpcrdma: HCA provides only %d send SGEs\n", max_sge); 495 return -ENOMEM; 496 } 497 ia->ri_max_send_sges = max_sge; 498 499 rc = frwr_open(ia, ep); 500 if (rc) 501 return rc; 502 503 ep->rep_attr.event_handler = rpcrdma_qp_event_handler; 504 ep->rep_attr.qp_context = ep; 505 ep->rep_attr.srq = NULL; 506 ep->rep_attr.cap.max_send_sge = max_sge; 507 ep->rep_attr.cap.max_recv_sge = 1; 508 ep->rep_attr.cap.max_inline_data = 0; 509 ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 510 ep->rep_attr.qp_type = IB_QPT_RC; 511 ep->rep_attr.port_num = ~0; 512 513 dprintk("RPC: %s: requested max: dtos: send %d recv %d; " 514 "iovs: send %d recv %d\n", 515 __func__, 516 ep->rep_attr.cap.max_send_wr, 517 ep->rep_attr.cap.max_recv_wr, 518 ep->rep_attr.cap.max_send_sge, 519 ep->rep_attr.cap.max_recv_sge); 520 521 ep->rep_send_batch = ep->rep_max_requests >> 3; 522 ep->rep_send_count = ep->rep_send_batch; 523 init_waitqueue_head(&ep->rep_connect_wait); 524 ep->rep_receive_count = 0; 525 526 sendcq = ib_alloc_cq(ia->ri_id->device, NULL, 527 ep->rep_attr.cap.max_send_wr + 1, 528 ia->ri_id->device->num_comp_vectors > 1 ? 1 : 0, 529 IB_POLL_WORKQUEUE); 530 if (IS_ERR(sendcq)) { 531 rc = PTR_ERR(sendcq); 532 goto out1; 533 } 534 535 recvcq = ib_alloc_cq(ia->ri_id->device, NULL, 536 ep->rep_attr.cap.max_recv_wr + 1, 537 0, IB_POLL_WORKQUEUE); 538 if (IS_ERR(recvcq)) { 539 rc = PTR_ERR(recvcq); 540 goto out2; 541 } 542 543 ep->rep_attr.send_cq = sendcq; 544 ep->rep_attr.recv_cq = recvcq; 545 546 /* Initialize cma parameters */ 547 memset(&ep->rep_remote_cma, 0, sizeof(ep->rep_remote_cma)); 548 549 /* Prepare RDMA-CM private message */ 550 pmsg->cp_magic = rpcrdma_cmp_magic; 551 pmsg->cp_version = RPCRDMA_CMP_VERSION; 552 pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK; 553 pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->rep_inline_send); 554 pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->rep_inline_recv); 555 ep->rep_remote_cma.private_data = pmsg; 556 ep->rep_remote_cma.private_data_len = sizeof(*pmsg); 557 558 /* Client offers RDMA Read but does not initiate */ 559 ep->rep_remote_cma.initiator_depth = 0; 560 ep->rep_remote_cma.responder_resources = 561 min_t(int, U8_MAX, ia->ri_id->device->attrs.max_qp_rd_atom); 562 563 /* Limit transport retries so client can detect server 564 * GID changes quickly. RPC layer handles re-establishing 565 * transport connection and retransmission. 566 */ 567 ep->rep_remote_cma.retry_count = 6; 568 569 /* RPC-over-RDMA handles its own flow control. In addition, 570 * make all RNR NAKs visible so we know that RPC-over-RDMA 571 * flow control is working correctly (no NAKs should be seen). 572 */ 573 ep->rep_remote_cma.flow_control = 0; 574 ep->rep_remote_cma.rnr_retry_count = 0; 575 576 return 0; 577 578 out2: 579 ib_free_cq(sendcq); 580 out1: 581 return rc; 582 } 583 584 /** 585 * rpcrdma_ep_destroy - Disconnect and destroy endpoint. 586 * @r_xprt: transport instance to shut down 587 * 588 */ 589 void rpcrdma_ep_destroy(struct rpcrdma_xprt *r_xprt) 590 { 591 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 592 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 593 594 if (ia->ri_id && ia->ri_id->qp) { 595 rpcrdma_ep_disconnect(ep, ia); 596 rdma_destroy_qp(ia->ri_id); 597 ia->ri_id->qp = NULL; 598 } 599 600 if (ep->rep_attr.recv_cq) 601 ib_free_cq(ep->rep_attr.recv_cq); 602 if (ep->rep_attr.send_cq) 603 ib_free_cq(ep->rep_attr.send_cq); 604 } 605 606 /* Re-establish a connection after a device removal event. 607 * Unlike a normal reconnection, a fresh PD and a new set 608 * of MRs and buffers is needed. 609 */ 610 static int 611 rpcrdma_ep_recreate_xprt(struct rpcrdma_xprt *r_xprt, 612 struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 613 { 614 int rc, err; 615 616 trace_xprtrdma_reinsert(r_xprt); 617 618 rc = -EHOSTUNREACH; 619 if (rpcrdma_ia_open(r_xprt)) 620 goto out1; 621 622 rc = -ENOMEM; 623 err = rpcrdma_ep_create(r_xprt); 624 if (err) { 625 pr_err("rpcrdma: rpcrdma_ep_create returned %d\n", err); 626 goto out2; 627 } 628 629 rc = -ENETUNREACH; 630 err = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr); 631 if (err) { 632 pr_err("rpcrdma: rdma_create_qp returned %d\n", err); 633 goto out3; 634 } 635 636 rpcrdma_mrs_create(r_xprt); 637 return 0; 638 639 out3: 640 rpcrdma_ep_destroy(r_xprt); 641 out2: 642 rpcrdma_ia_close(ia); 643 out1: 644 return rc; 645 } 646 647 static int 648 rpcrdma_ep_reconnect(struct rpcrdma_xprt *r_xprt, struct rpcrdma_ep *ep, 649 struct rpcrdma_ia *ia) 650 { 651 struct rdma_cm_id *id, *old; 652 int err, rc; 653 654 trace_xprtrdma_reconnect(r_xprt); 655 656 rpcrdma_ep_disconnect(ep, ia); 657 658 rc = -EHOSTUNREACH; 659 id = rpcrdma_create_id(r_xprt, ia); 660 if (IS_ERR(id)) 661 goto out; 662 663 /* As long as the new ID points to the same device as the 664 * old ID, we can reuse the transport's existing PD and all 665 * previously allocated MRs. Also, the same device means 666 * the transport's previous DMA mappings are still valid. 667 * 668 * This is a sanity check only. There should be no way these 669 * point to two different devices here. 670 */ 671 old = id; 672 rc = -ENETUNREACH; 673 if (ia->ri_id->device != id->device) { 674 pr_err("rpcrdma: can't reconnect on different device!\n"); 675 goto out_destroy; 676 } 677 678 err = rdma_create_qp(id, ia->ri_pd, &ep->rep_attr); 679 if (err) 680 goto out_destroy; 681 682 /* Atomically replace the transport's ID and QP. */ 683 rc = 0; 684 old = ia->ri_id; 685 ia->ri_id = id; 686 rdma_destroy_qp(old); 687 688 out_destroy: 689 rdma_destroy_id(old); 690 out: 691 return rc; 692 } 693 694 /* 695 * Connect unconnected endpoint. 696 */ 697 int 698 rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 699 { 700 struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt, 701 rx_ia); 702 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 703 int rc; 704 705 retry: 706 switch (ep->rep_connected) { 707 case 0: 708 dprintk("RPC: %s: connecting...\n", __func__); 709 rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr); 710 if (rc) { 711 rc = -ENETUNREACH; 712 goto out_noupdate; 713 } 714 break; 715 case -ENODEV: 716 rc = rpcrdma_ep_recreate_xprt(r_xprt, ep, ia); 717 if (rc) 718 goto out_noupdate; 719 break; 720 default: 721 rc = rpcrdma_ep_reconnect(r_xprt, ep, ia); 722 if (rc) 723 goto out; 724 } 725 726 ep->rep_connected = 0; 727 xprt_clear_connected(xprt); 728 729 rpcrdma_post_recvs(r_xprt, true); 730 731 rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma); 732 if (rc) 733 goto out; 734 735 wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0); 736 if (ep->rep_connected <= 0) { 737 if (ep->rep_connected == -EAGAIN) 738 goto retry; 739 rc = ep->rep_connected; 740 goto out; 741 } 742 743 dprintk("RPC: %s: connected\n", __func__); 744 745 out: 746 if (rc) 747 ep->rep_connected = rc; 748 749 out_noupdate: 750 return rc; 751 } 752 753 /** 754 * rpcrdma_ep_disconnect - Disconnect underlying transport 755 * @ep: endpoint to disconnect 756 * @ia: associated interface adapter 757 * 758 * This is separate from destroy to facilitate the ability 759 * to reconnect without recreating the endpoint. 760 * 761 * This call is not reentrant, and must not be made in parallel 762 * on the same endpoint. 763 */ 764 void 765 rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 766 { 767 struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt, 768 rx_ep); 769 int rc; 770 771 /* returns without wait if ID is not connected */ 772 rc = rdma_disconnect(ia->ri_id); 773 if (!rc) 774 wait_event_interruptible(ep->rep_connect_wait, 775 ep->rep_connected != 1); 776 else 777 ep->rep_connected = rc; 778 trace_xprtrdma_disconnect(r_xprt, rc); 779 780 rpcrdma_xprt_drain(r_xprt); 781 } 782 783 /* Fixed-size circular FIFO queue. This implementation is wait-free and 784 * lock-free. 785 * 786 * Consumer is the code path that posts Sends. This path dequeues a 787 * sendctx for use by a Send operation. Multiple consumer threads 788 * are serialized by the RPC transport lock, which allows only one 789 * ->send_request call at a time. 790 * 791 * Producer is the code path that handles Send completions. This path 792 * enqueues a sendctx that has been completed. Multiple producer 793 * threads are serialized by the ib_poll_cq() function. 794 */ 795 796 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced 797 * queue activity, and rpcrdma_xprt_drain has flushed all remaining 798 * Send requests. 799 */ 800 static void rpcrdma_sendctxs_destroy(struct rpcrdma_buffer *buf) 801 { 802 unsigned long i; 803 804 for (i = 0; i <= buf->rb_sc_last; i++) 805 kfree(buf->rb_sc_ctxs[i]); 806 kfree(buf->rb_sc_ctxs); 807 } 808 809 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ia *ia) 810 { 811 struct rpcrdma_sendctx *sc; 812 813 sc = kzalloc(struct_size(sc, sc_sges, ia->ri_max_send_sges), 814 GFP_KERNEL); 815 if (!sc) 816 return NULL; 817 818 sc->sc_wr.wr_cqe = &sc->sc_cqe; 819 sc->sc_wr.sg_list = sc->sc_sges; 820 sc->sc_wr.opcode = IB_WR_SEND; 821 sc->sc_cqe.done = rpcrdma_wc_send; 822 return sc; 823 } 824 825 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt) 826 { 827 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 828 struct rpcrdma_sendctx *sc; 829 unsigned long i; 830 831 /* Maximum number of concurrent outstanding Send WRs. Capping 832 * the circular queue size stops Send Queue overflow by causing 833 * the ->send_request call to fail temporarily before too many 834 * Sends are posted. 835 */ 836 i = buf->rb_max_requests + RPCRDMA_MAX_BC_REQUESTS; 837 dprintk("RPC: %s: allocating %lu send_ctxs\n", __func__, i); 838 buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL); 839 if (!buf->rb_sc_ctxs) 840 return -ENOMEM; 841 842 buf->rb_sc_last = i - 1; 843 for (i = 0; i <= buf->rb_sc_last; i++) { 844 sc = rpcrdma_sendctx_create(&r_xprt->rx_ia); 845 if (!sc) 846 return -ENOMEM; 847 848 sc->sc_xprt = r_xprt; 849 buf->rb_sc_ctxs[i] = sc; 850 } 851 852 return 0; 853 } 854 855 /* The sendctx queue is not guaranteed to have a size that is a 856 * power of two, thus the helpers in circ_buf.h cannot be used. 857 * The other option is to use modulus (%), which can be expensive. 858 */ 859 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf, 860 unsigned long item) 861 { 862 return likely(item < buf->rb_sc_last) ? item + 1 : 0; 863 } 864 865 /** 866 * rpcrdma_sendctx_get_locked - Acquire a send context 867 * @r_xprt: controlling transport instance 868 * 869 * Returns pointer to a free send completion context; or NULL if 870 * the queue is empty. 871 * 872 * Usage: Called to acquire an SGE array before preparing a Send WR. 873 * 874 * The caller serializes calls to this function (per transport), and 875 * provides an effective memory barrier that flushes the new value 876 * of rb_sc_head. 877 */ 878 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt) 879 { 880 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 881 struct rpcrdma_sendctx *sc; 882 unsigned long next_head; 883 884 next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head); 885 886 if (next_head == READ_ONCE(buf->rb_sc_tail)) 887 goto out_emptyq; 888 889 /* ORDER: item must be accessed _before_ head is updated */ 890 sc = buf->rb_sc_ctxs[next_head]; 891 892 /* Releasing the lock in the caller acts as a memory 893 * barrier that flushes rb_sc_head. 894 */ 895 buf->rb_sc_head = next_head; 896 897 return sc; 898 899 out_emptyq: 900 /* The queue is "empty" if there have not been enough Send 901 * completions recently. This is a sign the Send Queue is 902 * backing up. Cause the caller to pause and try again. 903 */ 904 set_bit(RPCRDMA_BUF_F_EMPTY_SCQ, &buf->rb_flags); 905 r_xprt->rx_stats.empty_sendctx_q++; 906 return NULL; 907 } 908 909 /** 910 * rpcrdma_sendctx_put_locked - Release a send context 911 * @sc: send context to release 912 * 913 * Usage: Called from Send completion to return a sendctxt 914 * to the queue. 915 * 916 * The caller serializes calls to this function (per transport). 917 */ 918 static void 919 rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc) 920 { 921 struct rpcrdma_buffer *buf = &sc->sc_xprt->rx_buf; 922 unsigned long next_tail; 923 924 /* Unmap SGEs of previously completed but unsignaled 925 * Sends by walking up the queue until @sc is found. 926 */ 927 next_tail = buf->rb_sc_tail; 928 do { 929 next_tail = rpcrdma_sendctx_next(buf, next_tail); 930 931 /* ORDER: item must be accessed _before_ tail is updated */ 932 rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]); 933 934 } while (buf->rb_sc_ctxs[next_tail] != sc); 935 936 /* Paired with READ_ONCE */ 937 smp_store_release(&buf->rb_sc_tail, next_tail); 938 939 if (test_and_clear_bit(RPCRDMA_BUF_F_EMPTY_SCQ, &buf->rb_flags)) { 940 smp_mb__after_atomic(); 941 xprt_write_space(&sc->sc_xprt->rx_xprt); 942 } 943 } 944 945 static void 946 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt) 947 { 948 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 949 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 950 unsigned int count; 951 LIST_HEAD(free); 952 LIST_HEAD(all); 953 954 for (count = 0; count < ia->ri_max_segs; count++) { 955 struct rpcrdma_mr *mr; 956 int rc; 957 958 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 959 if (!mr) 960 break; 961 962 rc = frwr_init_mr(ia, mr); 963 if (rc) { 964 kfree(mr); 965 break; 966 } 967 968 mr->mr_xprt = r_xprt; 969 970 list_add(&mr->mr_list, &free); 971 list_add(&mr->mr_all, &all); 972 } 973 974 spin_lock(&buf->rb_mrlock); 975 list_splice(&free, &buf->rb_mrs); 976 list_splice(&all, &buf->rb_all); 977 r_xprt->rx_stats.mrs_allocated += count; 978 spin_unlock(&buf->rb_mrlock); 979 trace_xprtrdma_createmrs(r_xprt, count); 980 981 xprt_write_space(&r_xprt->rx_xprt); 982 } 983 984 static void 985 rpcrdma_mr_refresh_worker(struct work_struct *work) 986 { 987 struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer, 988 rb_refresh_worker.work); 989 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, 990 rx_buf); 991 992 rpcrdma_mrs_create(r_xprt); 993 } 994 995 /** 996 * rpcrdma_req_create - Allocate an rpcrdma_req object 997 * @r_xprt: controlling r_xprt 998 * @size: initial size, in bytes, of send and receive buffers 999 * @flags: GFP flags passed to memory allocators 1000 * 1001 * Returns an allocated and fully initialized rpcrdma_req or NULL. 1002 */ 1003 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size, 1004 gfp_t flags) 1005 { 1006 struct rpcrdma_buffer *buffer = &r_xprt->rx_buf; 1007 struct rpcrdma_regbuf *rb; 1008 struct rpcrdma_req *req; 1009 1010 req = kzalloc(sizeof(*req), flags); 1011 if (req == NULL) 1012 goto out1; 1013 1014 rb = rpcrdma_regbuf_alloc(RPCRDMA_HDRBUF_SIZE, DMA_TO_DEVICE, flags); 1015 if (!rb) 1016 goto out2; 1017 req->rl_rdmabuf = rb; 1018 xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb)); 1019 1020 req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags); 1021 if (!req->rl_sendbuf) 1022 goto out3; 1023 1024 req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags); 1025 if (!req->rl_recvbuf) 1026 goto out4; 1027 1028 req->rl_buffer = buffer; 1029 INIT_LIST_HEAD(&req->rl_registered); 1030 spin_lock(&buffer->rb_lock); 1031 list_add(&req->rl_all, &buffer->rb_allreqs); 1032 spin_unlock(&buffer->rb_lock); 1033 return req; 1034 1035 out4: 1036 kfree(req->rl_sendbuf); 1037 out3: 1038 kfree(req->rl_rdmabuf); 1039 out2: 1040 kfree(req); 1041 out1: 1042 return NULL; 1043 } 1044 1045 static bool rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt, bool temp) 1046 { 1047 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1048 struct rpcrdma_rep *rep; 1049 1050 rep = kzalloc(sizeof(*rep), GFP_KERNEL); 1051 if (rep == NULL) 1052 goto out; 1053 1054 rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep.rep_inline_recv, 1055 DMA_FROM_DEVICE, GFP_KERNEL); 1056 if (!rep->rr_rdmabuf) 1057 goto out_free; 1058 xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf), 1059 rdmab_length(rep->rr_rdmabuf)); 1060 1061 rep->rr_cqe.done = rpcrdma_wc_receive; 1062 rep->rr_rxprt = r_xprt; 1063 INIT_WORK(&rep->rr_work, rpcrdma_deferred_completion); 1064 rep->rr_recv_wr.next = NULL; 1065 rep->rr_recv_wr.wr_cqe = &rep->rr_cqe; 1066 rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov; 1067 rep->rr_recv_wr.num_sge = 1; 1068 rep->rr_temp = temp; 1069 1070 spin_lock(&buf->rb_lock); 1071 list_add(&rep->rr_list, &buf->rb_recv_bufs); 1072 spin_unlock(&buf->rb_lock); 1073 return true; 1074 1075 out_free: 1076 kfree(rep); 1077 out: 1078 return false; 1079 } 1080 1081 /** 1082 * rpcrdma_buffer_create - Create initial set of req/rep objects 1083 * @r_xprt: transport instance to (re)initialize 1084 * 1085 * Returns zero on success, otherwise a negative errno. 1086 */ 1087 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt) 1088 { 1089 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1090 int i, rc; 1091 1092 buf->rb_flags = 0; 1093 buf->rb_max_requests = r_xprt->rx_ep.rep_max_requests; 1094 buf->rb_bc_srv_max_requests = 0; 1095 spin_lock_init(&buf->rb_mrlock); 1096 spin_lock_init(&buf->rb_lock); 1097 INIT_LIST_HEAD(&buf->rb_mrs); 1098 INIT_LIST_HEAD(&buf->rb_all); 1099 INIT_DELAYED_WORK(&buf->rb_refresh_worker, 1100 rpcrdma_mr_refresh_worker); 1101 1102 rpcrdma_mrs_create(r_xprt); 1103 1104 INIT_LIST_HEAD(&buf->rb_send_bufs); 1105 INIT_LIST_HEAD(&buf->rb_allreqs); 1106 1107 rc = -ENOMEM; 1108 for (i = 0; i < buf->rb_max_requests; i++) { 1109 struct rpcrdma_req *req; 1110 1111 req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE, 1112 GFP_KERNEL); 1113 if (!req) 1114 goto out; 1115 list_add(&req->rl_list, &buf->rb_send_bufs); 1116 } 1117 1118 buf->rb_credits = 1; 1119 INIT_LIST_HEAD(&buf->rb_recv_bufs); 1120 1121 rc = rpcrdma_sendctxs_create(r_xprt); 1122 if (rc) 1123 goto out; 1124 1125 buf->rb_completion_wq = alloc_workqueue("rpcrdma-%s", 1126 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1127 0, 1128 r_xprt->rx_xprt.address_strings[RPC_DISPLAY_ADDR]); 1129 if (!buf->rb_completion_wq) { 1130 rc = -ENOMEM; 1131 goto out; 1132 } 1133 1134 return 0; 1135 out: 1136 rpcrdma_buffer_destroy(buf); 1137 return rc; 1138 } 1139 1140 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep) 1141 { 1142 rpcrdma_regbuf_free(rep->rr_rdmabuf); 1143 kfree(rep); 1144 } 1145 1146 /** 1147 * rpcrdma_req_destroy - Destroy an rpcrdma_req object 1148 * @req: unused object to be destroyed 1149 * 1150 * This function assumes that the caller prevents concurrent device 1151 * unload and transport tear-down. 1152 */ 1153 void 1154 rpcrdma_req_destroy(struct rpcrdma_req *req) 1155 { 1156 list_del(&req->rl_all); 1157 1158 rpcrdma_regbuf_free(req->rl_recvbuf); 1159 rpcrdma_regbuf_free(req->rl_sendbuf); 1160 rpcrdma_regbuf_free(req->rl_rdmabuf); 1161 kfree(req); 1162 } 1163 1164 static void 1165 rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf) 1166 { 1167 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, 1168 rx_buf); 1169 struct rpcrdma_mr *mr; 1170 unsigned int count; 1171 1172 count = 0; 1173 spin_lock(&buf->rb_mrlock); 1174 while (!list_empty(&buf->rb_all)) { 1175 mr = list_entry(buf->rb_all.next, struct rpcrdma_mr, mr_all); 1176 list_del(&mr->mr_all); 1177 1178 spin_unlock(&buf->rb_mrlock); 1179 1180 /* Ensure MW is not on any rl_registered list */ 1181 if (!list_empty(&mr->mr_list)) 1182 list_del(&mr->mr_list); 1183 1184 frwr_release_mr(mr); 1185 count++; 1186 spin_lock(&buf->rb_mrlock); 1187 } 1188 spin_unlock(&buf->rb_mrlock); 1189 r_xprt->rx_stats.mrs_allocated = 0; 1190 1191 dprintk("RPC: %s: released %u MRs\n", __func__, count); 1192 } 1193 1194 /** 1195 * rpcrdma_buffer_destroy - Release all hw resources 1196 * @buf: root control block for resources 1197 * 1198 * ORDERING: relies on a prior rpcrdma_xprt_drain : 1199 * - No more Send or Receive completions can occur 1200 * - All MRs, reps, and reqs are returned to their free lists 1201 */ 1202 void 1203 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf) 1204 { 1205 cancel_delayed_work_sync(&buf->rb_refresh_worker); 1206 1207 if (buf->rb_completion_wq) { 1208 destroy_workqueue(buf->rb_completion_wq); 1209 buf->rb_completion_wq = NULL; 1210 } 1211 1212 rpcrdma_sendctxs_destroy(buf); 1213 1214 while (!list_empty(&buf->rb_recv_bufs)) { 1215 struct rpcrdma_rep *rep; 1216 1217 rep = list_first_entry(&buf->rb_recv_bufs, 1218 struct rpcrdma_rep, rr_list); 1219 list_del(&rep->rr_list); 1220 rpcrdma_rep_destroy(rep); 1221 } 1222 1223 while (!list_empty(&buf->rb_send_bufs)) { 1224 struct rpcrdma_req *req; 1225 1226 req = list_first_entry(&buf->rb_send_bufs, 1227 struct rpcrdma_req, rl_list); 1228 list_del(&req->rl_list); 1229 rpcrdma_req_destroy(req); 1230 } 1231 1232 rpcrdma_mrs_destroy(buf); 1233 } 1234 1235 /** 1236 * rpcrdma_mr_get - Allocate an rpcrdma_mr object 1237 * @r_xprt: controlling transport 1238 * 1239 * Returns an initialized rpcrdma_mr or NULL if no free 1240 * rpcrdma_mr objects are available. 1241 */ 1242 struct rpcrdma_mr * 1243 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt) 1244 { 1245 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1246 struct rpcrdma_mr *mr = NULL; 1247 1248 spin_lock(&buf->rb_mrlock); 1249 if (!list_empty(&buf->rb_mrs)) 1250 mr = rpcrdma_mr_pop(&buf->rb_mrs); 1251 spin_unlock(&buf->rb_mrlock); 1252 1253 if (!mr) 1254 goto out_nomrs; 1255 return mr; 1256 1257 out_nomrs: 1258 trace_xprtrdma_nomrs(r_xprt); 1259 if (r_xprt->rx_ep.rep_connected != -ENODEV) 1260 schedule_delayed_work(&buf->rb_refresh_worker, 0); 1261 1262 /* Allow the reply handler and refresh worker to run */ 1263 cond_resched(); 1264 1265 return NULL; 1266 } 1267 1268 static void 1269 __rpcrdma_mr_put(struct rpcrdma_buffer *buf, struct rpcrdma_mr *mr) 1270 { 1271 spin_lock(&buf->rb_mrlock); 1272 rpcrdma_mr_push(mr, &buf->rb_mrs); 1273 spin_unlock(&buf->rb_mrlock); 1274 } 1275 1276 /** 1277 * rpcrdma_mr_put - Release an rpcrdma_mr object 1278 * @mr: object to release 1279 * 1280 */ 1281 void 1282 rpcrdma_mr_put(struct rpcrdma_mr *mr) 1283 { 1284 __rpcrdma_mr_put(&mr->mr_xprt->rx_buf, mr); 1285 } 1286 1287 /** 1288 * rpcrdma_mr_unmap_and_put - DMA unmap an MR and release it 1289 * @mr: object to release 1290 * 1291 */ 1292 void 1293 rpcrdma_mr_unmap_and_put(struct rpcrdma_mr *mr) 1294 { 1295 struct rpcrdma_xprt *r_xprt = mr->mr_xprt; 1296 1297 if (mr->mr_dir != DMA_NONE) { 1298 trace_xprtrdma_mr_unmap(mr); 1299 ib_dma_unmap_sg(r_xprt->rx_ia.ri_id->device, 1300 mr->mr_sg, mr->mr_nents, mr->mr_dir); 1301 mr->mr_dir = DMA_NONE; 1302 } 1303 __rpcrdma_mr_put(&r_xprt->rx_buf, mr); 1304 } 1305 1306 /** 1307 * rpcrdma_buffer_get - Get a request buffer 1308 * @buffers: Buffer pool from which to obtain a buffer 1309 * 1310 * Returns a fresh rpcrdma_req, or NULL if none are available. 1311 */ 1312 struct rpcrdma_req * 1313 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers) 1314 { 1315 struct rpcrdma_req *req; 1316 1317 spin_lock(&buffers->rb_lock); 1318 req = list_first_entry_or_null(&buffers->rb_send_bufs, 1319 struct rpcrdma_req, rl_list); 1320 if (req) 1321 list_del_init(&req->rl_list); 1322 spin_unlock(&buffers->rb_lock); 1323 return req; 1324 } 1325 1326 /** 1327 * rpcrdma_buffer_put - Put request/reply buffers back into pool 1328 * @req: object to return 1329 * 1330 */ 1331 void 1332 rpcrdma_buffer_put(struct rpcrdma_req *req) 1333 { 1334 struct rpcrdma_buffer *buffers = req->rl_buffer; 1335 struct rpcrdma_rep *rep = req->rl_reply; 1336 1337 req->rl_reply = NULL; 1338 1339 spin_lock(&buffers->rb_lock); 1340 list_add(&req->rl_list, &buffers->rb_send_bufs); 1341 if (rep) { 1342 if (!rep->rr_temp) { 1343 list_add(&rep->rr_list, &buffers->rb_recv_bufs); 1344 rep = NULL; 1345 } 1346 } 1347 spin_unlock(&buffers->rb_lock); 1348 if (rep) 1349 rpcrdma_rep_destroy(rep); 1350 } 1351 1352 /* 1353 * Put reply buffers back into pool when not attached to 1354 * request. This happens in error conditions. 1355 */ 1356 void 1357 rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep) 1358 { 1359 struct rpcrdma_buffer *buffers = &rep->rr_rxprt->rx_buf; 1360 1361 if (!rep->rr_temp) { 1362 spin_lock(&buffers->rb_lock); 1363 list_add(&rep->rr_list, &buffers->rb_recv_bufs); 1364 spin_unlock(&buffers->rb_lock); 1365 } else { 1366 rpcrdma_rep_destroy(rep); 1367 } 1368 } 1369 1370 /* Returns a pointer to a rpcrdma_regbuf object, or NULL. 1371 * 1372 * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for 1373 * receiving the payload of RDMA RECV operations. During Long Calls 1374 * or Replies they may be registered externally via frwr_map. 1375 */ 1376 static struct rpcrdma_regbuf * 1377 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction, 1378 gfp_t flags) 1379 { 1380 struct rpcrdma_regbuf *rb; 1381 1382 rb = kmalloc(sizeof(*rb), flags); 1383 if (!rb) 1384 return NULL; 1385 rb->rg_data = kmalloc(size, flags); 1386 if (!rb->rg_data) { 1387 kfree(rb); 1388 return NULL; 1389 } 1390 1391 rb->rg_device = NULL; 1392 rb->rg_direction = direction; 1393 rb->rg_iov.length = size; 1394 return rb; 1395 } 1396 1397 /** 1398 * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer 1399 * @rb: regbuf to reallocate 1400 * @size: size of buffer to be allocated, in bytes 1401 * @flags: GFP flags 1402 * 1403 * Returns true if reallocation was successful. If false is 1404 * returned, @rb is left untouched. 1405 */ 1406 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags) 1407 { 1408 void *buf; 1409 1410 buf = kmalloc(size, flags); 1411 if (!buf) 1412 return false; 1413 1414 rpcrdma_regbuf_dma_unmap(rb); 1415 kfree(rb->rg_data); 1416 1417 rb->rg_data = buf; 1418 rb->rg_iov.length = size; 1419 return true; 1420 } 1421 1422 /** 1423 * __rpcrdma_regbuf_dma_map - DMA-map a regbuf 1424 * @r_xprt: controlling transport instance 1425 * @rb: regbuf to be mapped 1426 * 1427 * Returns true if the buffer is now DMA mapped to @r_xprt's device 1428 */ 1429 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt, 1430 struct rpcrdma_regbuf *rb) 1431 { 1432 struct ib_device *device = r_xprt->rx_ia.ri_id->device; 1433 1434 if (rb->rg_direction == DMA_NONE) 1435 return false; 1436 1437 rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb), 1438 rdmab_length(rb), rb->rg_direction); 1439 if (ib_dma_mapping_error(device, rdmab_addr(rb))) { 1440 trace_xprtrdma_dma_maperr(rdmab_addr(rb)); 1441 return false; 1442 } 1443 1444 rb->rg_device = device; 1445 rb->rg_iov.lkey = r_xprt->rx_ia.ri_pd->local_dma_lkey; 1446 return true; 1447 } 1448 1449 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb) 1450 { 1451 if (!rb) 1452 return; 1453 1454 if (!rpcrdma_regbuf_is_mapped(rb)) 1455 return; 1456 1457 ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb), 1458 rb->rg_direction); 1459 rb->rg_device = NULL; 1460 } 1461 1462 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb) 1463 { 1464 rpcrdma_regbuf_dma_unmap(rb); 1465 if (rb) 1466 kfree(rb->rg_data); 1467 kfree(rb); 1468 } 1469 1470 /** 1471 * rpcrdma_ep_post - Post WRs to a transport's Send Queue 1472 * @ia: transport's device information 1473 * @ep: transport's RDMA endpoint information 1474 * @req: rpcrdma_req containing the Send WR to post 1475 * 1476 * Returns 0 if the post was successful, otherwise -ENOTCONN 1477 * is returned. 1478 */ 1479 int 1480 rpcrdma_ep_post(struct rpcrdma_ia *ia, 1481 struct rpcrdma_ep *ep, 1482 struct rpcrdma_req *req) 1483 { 1484 struct ib_send_wr *send_wr = &req->rl_sendctx->sc_wr; 1485 int rc; 1486 1487 if (!ep->rep_send_count || 1488 test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) { 1489 send_wr->send_flags |= IB_SEND_SIGNALED; 1490 ep->rep_send_count = ep->rep_send_batch; 1491 } else { 1492 send_wr->send_flags &= ~IB_SEND_SIGNALED; 1493 --ep->rep_send_count; 1494 } 1495 1496 rc = frwr_send(ia, req); 1497 trace_xprtrdma_post_send(req, rc); 1498 if (rc) 1499 return -ENOTCONN; 1500 return 0; 1501 } 1502 1503 static void 1504 rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp) 1505 { 1506 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1507 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 1508 struct ib_recv_wr *wr, *bad_wr; 1509 int needed, count, rc; 1510 1511 rc = 0; 1512 count = 0; 1513 needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1); 1514 if (ep->rep_receive_count > needed) 1515 goto out; 1516 needed -= ep->rep_receive_count; 1517 if (!temp) 1518 needed += RPCRDMA_MAX_RECV_BATCH; 1519 1520 count = 0; 1521 wr = NULL; 1522 while (needed) { 1523 struct rpcrdma_regbuf *rb; 1524 struct rpcrdma_rep *rep; 1525 1526 spin_lock(&buf->rb_lock); 1527 rep = list_first_entry_or_null(&buf->rb_recv_bufs, 1528 struct rpcrdma_rep, rr_list); 1529 if (likely(rep)) 1530 list_del(&rep->rr_list); 1531 spin_unlock(&buf->rb_lock); 1532 if (!rep) { 1533 if (!rpcrdma_rep_create(r_xprt, temp)) 1534 break; 1535 continue; 1536 } 1537 1538 rb = rep->rr_rdmabuf; 1539 if (!rpcrdma_regbuf_dma_map(r_xprt, rb)) { 1540 rpcrdma_recv_buffer_put(rep); 1541 break; 1542 } 1543 1544 trace_xprtrdma_post_recv(rep->rr_recv_wr.wr_cqe); 1545 rep->rr_recv_wr.next = wr; 1546 wr = &rep->rr_recv_wr; 1547 ++count; 1548 --needed; 1549 } 1550 if (!count) 1551 goto out; 1552 1553 rc = ib_post_recv(r_xprt->rx_ia.ri_id->qp, wr, 1554 (const struct ib_recv_wr **)&bad_wr); 1555 if (rc) { 1556 for (wr = bad_wr; wr; wr = wr->next) { 1557 struct rpcrdma_rep *rep; 1558 1559 rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr); 1560 rpcrdma_recv_buffer_put(rep); 1561 --count; 1562 } 1563 } 1564 ep->rep_receive_count += count; 1565 out: 1566 trace_xprtrdma_post_recvs(r_xprt, count, rc); 1567 } 1568