1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (c) 2014-2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the BSD-type 10 * license below: 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 19 * Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials provided 22 * with the distribution. 23 * 24 * Neither the name of the Network Appliance, Inc. nor the names of 25 * its contributors may be used to endorse or promote products 26 * derived from this software without specific prior written 27 * permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42 /* 43 * verbs.c 44 * 45 * Encapsulates the major functions managing: 46 * o adapters 47 * o endpoints 48 * o connections 49 * o buffer memory 50 */ 51 52 #include <linux/interrupt.h> 53 #include <linux/slab.h> 54 #include <linux/sunrpc/addr.h> 55 #include <linux/sunrpc/svc_rdma.h> 56 57 #include <asm-generic/barrier.h> 58 #include <asm/bitops.h> 59 60 #include <rdma/ib_cm.h> 61 62 #include "xprt_rdma.h" 63 #include <trace/events/rpcrdma.h> 64 65 /* 66 * Globals/Macros 67 */ 68 69 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 70 # define RPCDBG_FACILITY RPCDBG_TRANS 71 #endif 72 73 /* 74 * internal functions 75 */ 76 static void rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc); 77 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt); 78 static void rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf); 79 static int rpcrdma_create_rep(struct rpcrdma_xprt *r_xprt, bool temp); 80 static void rpcrdma_dma_unmap_regbuf(struct rpcrdma_regbuf *rb); 81 static void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp); 82 83 /* Wait for outstanding transport work to finish. 84 */ 85 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt) 86 { 87 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 88 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 89 90 /* Flush Receives, then wait for deferred Reply work 91 * to complete. 92 */ 93 ib_drain_qp(ia->ri_id->qp); 94 drain_workqueue(buf->rb_completion_wq); 95 96 /* Deferred Reply processing might have scheduled 97 * local invalidations. 98 */ 99 ib_drain_sq(ia->ri_id->qp); 100 } 101 102 /** 103 * rpcrdma_qp_event_handler - Handle one QP event (error notification) 104 * @event: details of the event 105 * @context: ep that owns QP where event occurred 106 * 107 * Called from the RDMA provider (device driver) possibly in an interrupt 108 * context. 109 */ 110 static void 111 rpcrdma_qp_event_handler(struct ib_event *event, void *context) 112 { 113 struct rpcrdma_ep *ep = context; 114 struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt, 115 rx_ep); 116 117 trace_xprtrdma_qp_event(r_xprt, event); 118 } 119 120 /** 121 * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC 122 * @cq: completion queue (ignored) 123 * @wc: completed WR 124 * 125 */ 126 static void 127 rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc) 128 { 129 struct ib_cqe *cqe = wc->wr_cqe; 130 struct rpcrdma_sendctx *sc = 131 container_of(cqe, struct rpcrdma_sendctx, sc_cqe); 132 133 /* WARNING: Only wr_cqe and status are reliable at this point */ 134 trace_xprtrdma_wc_send(sc, wc); 135 if (wc->status != IB_WC_SUCCESS && wc->status != IB_WC_WR_FLUSH_ERR) 136 pr_err("rpcrdma: Send: %s (%u/0x%x)\n", 137 ib_wc_status_msg(wc->status), 138 wc->status, wc->vendor_err); 139 140 rpcrdma_sendctx_put_locked(sc); 141 } 142 143 /** 144 * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC 145 * @cq: completion queue (ignored) 146 * @wc: completed WR 147 * 148 */ 149 static void 150 rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc) 151 { 152 struct ib_cqe *cqe = wc->wr_cqe; 153 struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep, 154 rr_cqe); 155 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; 156 157 /* WARNING: Only wr_cqe and status are reliable at this point */ 158 trace_xprtrdma_wc_receive(wc); 159 --r_xprt->rx_ep.rep_receive_count; 160 if (wc->status != IB_WC_SUCCESS) 161 goto out_flushed; 162 163 /* status == SUCCESS means all fields in wc are trustworthy */ 164 rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len); 165 rep->rr_wc_flags = wc->wc_flags; 166 rep->rr_inv_rkey = wc->ex.invalidate_rkey; 167 168 ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf), 169 rdmab_addr(rep->rr_rdmabuf), 170 wc->byte_len, DMA_FROM_DEVICE); 171 172 rpcrdma_post_recvs(r_xprt, false); 173 rpcrdma_reply_handler(rep); 174 return; 175 176 out_flushed: 177 if (wc->status != IB_WC_WR_FLUSH_ERR) 178 pr_err("rpcrdma: Recv: %s (%u/0x%x)\n", 179 ib_wc_status_msg(wc->status), 180 wc->status, wc->vendor_err); 181 rpcrdma_recv_buffer_put(rep); 182 } 183 184 static void 185 rpcrdma_update_connect_private(struct rpcrdma_xprt *r_xprt, 186 struct rdma_conn_param *param) 187 { 188 struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; 189 const struct rpcrdma_connect_private *pmsg = param->private_data; 190 unsigned int rsize, wsize; 191 192 /* Default settings for RPC-over-RDMA Version One */ 193 r_xprt->rx_ia.ri_implicit_roundup = xprt_rdma_pad_optimize; 194 rsize = RPCRDMA_V1_DEF_INLINE_SIZE; 195 wsize = RPCRDMA_V1_DEF_INLINE_SIZE; 196 197 if (pmsg && 198 pmsg->cp_magic == rpcrdma_cmp_magic && 199 pmsg->cp_version == RPCRDMA_CMP_VERSION) { 200 r_xprt->rx_ia.ri_implicit_roundup = true; 201 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size); 202 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size); 203 } 204 205 if (rsize < cdata->inline_rsize) 206 cdata->inline_rsize = rsize; 207 if (wsize < cdata->inline_wsize) 208 cdata->inline_wsize = wsize; 209 dprintk("RPC: %s: max send %u, max recv %u\n", 210 __func__, cdata->inline_wsize, cdata->inline_rsize); 211 rpcrdma_set_max_header_sizes(r_xprt); 212 } 213 214 /** 215 * rpcrdma_cm_event_handler - Handle RDMA CM events 216 * @id: rdma_cm_id on which an event has occurred 217 * @event: details of the event 218 * 219 * Called with @id's mutex held. Returns 1 if caller should 220 * destroy @id, otherwise 0. 221 */ 222 static int 223 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event) 224 { 225 struct rpcrdma_xprt *r_xprt = id->context; 226 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 227 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 228 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 229 230 might_sleep(); 231 232 trace_xprtrdma_cm_event(r_xprt, event); 233 switch (event->event) { 234 case RDMA_CM_EVENT_ADDR_RESOLVED: 235 case RDMA_CM_EVENT_ROUTE_RESOLVED: 236 ia->ri_async_rc = 0; 237 complete(&ia->ri_done); 238 return 0; 239 case RDMA_CM_EVENT_ADDR_ERROR: 240 ia->ri_async_rc = -EPROTO; 241 complete(&ia->ri_done); 242 return 0; 243 case RDMA_CM_EVENT_ROUTE_ERROR: 244 ia->ri_async_rc = -ENETUNREACH; 245 complete(&ia->ri_done); 246 return 0; 247 case RDMA_CM_EVENT_DEVICE_REMOVAL: 248 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 249 pr_info("rpcrdma: removing device %s for %s:%s\n", 250 ia->ri_device->name, 251 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt)); 252 #endif 253 set_bit(RPCRDMA_IAF_REMOVING, &ia->ri_flags); 254 ep->rep_connected = -ENODEV; 255 xprt_force_disconnect(xprt); 256 wait_for_completion(&ia->ri_remove_done); 257 258 ia->ri_id = NULL; 259 ia->ri_device = NULL; 260 /* Return 1 to ensure the core destroys the id. */ 261 return 1; 262 case RDMA_CM_EVENT_ESTABLISHED: 263 ++xprt->connect_cookie; 264 ep->rep_connected = 1; 265 rpcrdma_update_connect_private(r_xprt, &event->param.conn); 266 wake_up_all(&ep->rep_connect_wait); 267 break; 268 case RDMA_CM_EVENT_CONNECT_ERROR: 269 ep->rep_connected = -ENOTCONN; 270 goto disconnected; 271 case RDMA_CM_EVENT_UNREACHABLE: 272 ep->rep_connected = -ENETUNREACH; 273 goto disconnected; 274 case RDMA_CM_EVENT_REJECTED: 275 dprintk("rpcrdma: connection to %s:%s rejected: %s\n", 276 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt), 277 rdma_reject_msg(id, event->status)); 278 ep->rep_connected = -ECONNREFUSED; 279 if (event->status == IB_CM_REJ_STALE_CONN) 280 ep->rep_connected = -EAGAIN; 281 goto disconnected; 282 case RDMA_CM_EVENT_DISCONNECTED: 283 ep->rep_connected = -ECONNABORTED; 284 disconnected: 285 xprt_force_disconnect(xprt); 286 wake_up_all(&ep->rep_connect_wait); 287 break; 288 default: 289 break; 290 } 291 292 dprintk("RPC: %s: %s:%s on %s/frwr: %s\n", __func__, 293 rpcrdma_addrstr(r_xprt), rpcrdma_portstr(r_xprt), 294 ia->ri_device->name, rdma_event_msg(event->event)); 295 return 0; 296 } 297 298 static struct rdma_cm_id * 299 rpcrdma_create_id(struct rpcrdma_xprt *xprt, struct rpcrdma_ia *ia) 300 { 301 unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1; 302 struct rdma_cm_id *id; 303 int rc; 304 305 trace_xprtrdma_conn_start(xprt); 306 307 init_completion(&ia->ri_done); 308 init_completion(&ia->ri_remove_done); 309 310 id = rdma_create_id(xprt->rx_xprt.xprt_net, rpcrdma_cm_event_handler, 311 xprt, RDMA_PS_TCP, IB_QPT_RC); 312 if (IS_ERR(id)) 313 return id; 314 315 ia->ri_async_rc = -ETIMEDOUT; 316 rc = rdma_resolve_addr(id, NULL, 317 (struct sockaddr *)&xprt->rx_xprt.addr, 318 RDMA_RESOLVE_TIMEOUT); 319 if (rc) 320 goto out; 321 rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout); 322 if (rc < 0) { 323 trace_xprtrdma_conn_tout(xprt); 324 goto out; 325 } 326 327 rc = ia->ri_async_rc; 328 if (rc) 329 goto out; 330 331 ia->ri_async_rc = -ETIMEDOUT; 332 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); 333 if (rc) 334 goto out; 335 rc = wait_for_completion_interruptible_timeout(&ia->ri_done, wtimeout); 336 if (rc < 0) { 337 trace_xprtrdma_conn_tout(xprt); 338 goto out; 339 } 340 rc = ia->ri_async_rc; 341 if (rc) 342 goto out; 343 344 return id; 345 346 out: 347 rdma_destroy_id(id); 348 return ERR_PTR(rc); 349 } 350 351 /* 352 * Exported functions. 353 */ 354 355 /** 356 * rpcrdma_ia_open - Open and initialize an Interface Adapter. 357 * @xprt: transport with IA to (re)initialize 358 * 359 * Returns 0 on success, negative errno if an appropriate 360 * Interface Adapter could not be found and opened. 361 */ 362 int 363 rpcrdma_ia_open(struct rpcrdma_xprt *xprt) 364 { 365 struct rpcrdma_ia *ia = &xprt->rx_ia; 366 int rc; 367 368 ia->ri_id = rpcrdma_create_id(xprt, ia); 369 if (IS_ERR(ia->ri_id)) { 370 rc = PTR_ERR(ia->ri_id); 371 goto out_err; 372 } 373 ia->ri_device = ia->ri_id->device; 374 375 ia->ri_pd = ib_alloc_pd(ia->ri_device, 0); 376 if (IS_ERR(ia->ri_pd)) { 377 rc = PTR_ERR(ia->ri_pd); 378 pr_err("rpcrdma: ib_alloc_pd() returned %d\n", rc); 379 goto out_err; 380 } 381 382 switch (xprt_rdma_memreg_strategy) { 383 case RPCRDMA_FRWR: 384 if (frwr_is_supported(ia)) 385 break; 386 /*FALLTHROUGH*/ 387 default: 388 pr_err("rpcrdma: Device %s does not support memreg mode %d\n", 389 ia->ri_device->name, xprt_rdma_memreg_strategy); 390 rc = -EINVAL; 391 goto out_err; 392 } 393 394 return 0; 395 396 out_err: 397 rpcrdma_ia_close(ia); 398 return rc; 399 } 400 401 /** 402 * rpcrdma_ia_remove - Handle device driver unload 403 * @ia: interface adapter being removed 404 * 405 * Divest transport H/W resources associated with this adapter, 406 * but allow it to be restored later. 407 */ 408 void 409 rpcrdma_ia_remove(struct rpcrdma_ia *ia) 410 { 411 struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt, 412 rx_ia); 413 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 414 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 415 struct rpcrdma_req *req; 416 struct rpcrdma_rep *rep; 417 418 cancel_delayed_work_sync(&buf->rb_refresh_worker); 419 420 /* This is similar to rpcrdma_ep_destroy, but: 421 * - Don't cancel the connect worker. 422 * - Don't call rpcrdma_ep_disconnect, which waits 423 * for another conn upcall, which will deadlock. 424 * - rdma_disconnect is unneeded, the underlying 425 * connection is already gone. 426 */ 427 if (ia->ri_id->qp) { 428 rpcrdma_xprt_drain(r_xprt); 429 rdma_destroy_qp(ia->ri_id); 430 ia->ri_id->qp = NULL; 431 } 432 ib_free_cq(ep->rep_attr.recv_cq); 433 ep->rep_attr.recv_cq = NULL; 434 ib_free_cq(ep->rep_attr.send_cq); 435 ep->rep_attr.send_cq = NULL; 436 437 /* The ULP is responsible for ensuring all DMA 438 * mappings and MRs are gone. 439 */ 440 list_for_each_entry(rep, &buf->rb_recv_bufs, rr_list) 441 rpcrdma_dma_unmap_regbuf(rep->rr_rdmabuf); 442 list_for_each_entry(req, &buf->rb_allreqs, rl_all) { 443 rpcrdma_dma_unmap_regbuf(req->rl_rdmabuf); 444 rpcrdma_dma_unmap_regbuf(req->rl_sendbuf); 445 rpcrdma_dma_unmap_regbuf(req->rl_recvbuf); 446 } 447 rpcrdma_mrs_destroy(buf); 448 ib_dealloc_pd(ia->ri_pd); 449 ia->ri_pd = NULL; 450 451 /* Allow waiters to continue */ 452 complete(&ia->ri_remove_done); 453 454 trace_xprtrdma_remove(r_xprt); 455 } 456 457 /** 458 * rpcrdma_ia_close - Clean up/close an IA. 459 * @ia: interface adapter to close 460 * 461 */ 462 void 463 rpcrdma_ia_close(struct rpcrdma_ia *ia) 464 { 465 if (ia->ri_id != NULL && !IS_ERR(ia->ri_id)) { 466 if (ia->ri_id->qp) 467 rdma_destroy_qp(ia->ri_id); 468 rdma_destroy_id(ia->ri_id); 469 } 470 ia->ri_id = NULL; 471 ia->ri_device = NULL; 472 473 /* If the pd is still busy, xprtrdma missed freeing a resource */ 474 if (ia->ri_pd && !IS_ERR(ia->ri_pd)) 475 ib_dealloc_pd(ia->ri_pd); 476 ia->ri_pd = NULL; 477 } 478 479 /* 480 * Create unconnected endpoint. 481 */ 482 int 483 rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia, 484 struct rpcrdma_create_data_internal *cdata) 485 { 486 struct rpcrdma_connect_private *pmsg = &ep->rep_cm_private; 487 struct ib_cq *sendcq, *recvcq; 488 unsigned int max_sge; 489 int rc; 490 491 max_sge = min_t(unsigned int, ia->ri_device->attrs.max_send_sge, 492 RPCRDMA_MAX_SEND_SGES); 493 if (max_sge < RPCRDMA_MIN_SEND_SGES) { 494 pr_warn("rpcrdma: HCA provides only %d send SGEs\n", max_sge); 495 return -ENOMEM; 496 } 497 ia->ri_max_send_sges = max_sge; 498 499 rc = frwr_open(ia, ep, cdata); 500 if (rc) 501 return rc; 502 503 ep->rep_attr.event_handler = rpcrdma_qp_event_handler; 504 ep->rep_attr.qp_context = ep; 505 ep->rep_attr.srq = NULL; 506 ep->rep_attr.cap.max_send_sge = max_sge; 507 ep->rep_attr.cap.max_recv_sge = 1; 508 ep->rep_attr.cap.max_inline_data = 0; 509 ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 510 ep->rep_attr.qp_type = IB_QPT_RC; 511 ep->rep_attr.port_num = ~0; 512 513 dprintk("RPC: %s: requested max: dtos: send %d recv %d; " 514 "iovs: send %d recv %d\n", 515 __func__, 516 ep->rep_attr.cap.max_send_wr, 517 ep->rep_attr.cap.max_recv_wr, 518 ep->rep_attr.cap.max_send_sge, 519 ep->rep_attr.cap.max_recv_sge); 520 521 /* set trigger for requesting send completion */ 522 ep->rep_send_batch = min_t(unsigned int, RPCRDMA_MAX_SEND_BATCH, 523 cdata->max_requests >> 2); 524 ep->rep_send_count = ep->rep_send_batch; 525 init_waitqueue_head(&ep->rep_connect_wait); 526 ep->rep_receive_count = 0; 527 528 sendcq = ib_alloc_cq(ia->ri_device, NULL, 529 ep->rep_attr.cap.max_send_wr + 1, 530 ia->ri_device->num_comp_vectors > 1 ? 1 : 0, 531 IB_POLL_WORKQUEUE); 532 if (IS_ERR(sendcq)) { 533 rc = PTR_ERR(sendcq); 534 goto out1; 535 } 536 537 recvcq = ib_alloc_cq(ia->ri_device, NULL, 538 ep->rep_attr.cap.max_recv_wr + 1, 539 0, IB_POLL_WORKQUEUE); 540 if (IS_ERR(recvcq)) { 541 rc = PTR_ERR(recvcq); 542 goto out2; 543 } 544 545 ep->rep_attr.send_cq = sendcq; 546 ep->rep_attr.recv_cq = recvcq; 547 548 /* Initialize cma parameters */ 549 memset(&ep->rep_remote_cma, 0, sizeof(ep->rep_remote_cma)); 550 551 /* Prepare RDMA-CM private message */ 552 pmsg->cp_magic = rpcrdma_cmp_magic; 553 pmsg->cp_version = RPCRDMA_CMP_VERSION; 554 pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK; 555 pmsg->cp_send_size = rpcrdma_encode_buffer_size(cdata->inline_wsize); 556 pmsg->cp_recv_size = rpcrdma_encode_buffer_size(cdata->inline_rsize); 557 ep->rep_remote_cma.private_data = pmsg; 558 ep->rep_remote_cma.private_data_len = sizeof(*pmsg); 559 560 /* Client offers RDMA Read but does not initiate */ 561 ep->rep_remote_cma.initiator_depth = 0; 562 ep->rep_remote_cma.responder_resources = 563 min_t(int, U8_MAX, ia->ri_device->attrs.max_qp_rd_atom); 564 565 /* Limit transport retries so client can detect server 566 * GID changes quickly. RPC layer handles re-establishing 567 * transport connection and retransmission. 568 */ 569 ep->rep_remote_cma.retry_count = 6; 570 571 /* RPC-over-RDMA handles its own flow control. In addition, 572 * make all RNR NAKs visible so we know that RPC-over-RDMA 573 * flow control is working correctly (no NAKs should be seen). 574 */ 575 ep->rep_remote_cma.flow_control = 0; 576 ep->rep_remote_cma.rnr_retry_count = 0; 577 578 return 0; 579 580 out2: 581 ib_free_cq(sendcq); 582 out1: 583 return rc; 584 } 585 586 /* 587 * rpcrdma_ep_destroy 588 * 589 * Disconnect and destroy endpoint. After this, the only 590 * valid operations on the ep are to free it (if dynamically 591 * allocated) or re-create it. 592 */ 593 void 594 rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 595 { 596 if (ia->ri_id && ia->ri_id->qp) { 597 rpcrdma_ep_disconnect(ep, ia); 598 rdma_destroy_qp(ia->ri_id); 599 ia->ri_id->qp = NULL; 600 } 601 602 if (ep->rep_attr.recv_cq) 603 ib_free_cq(ep->rep_attr.recv_cq); 604 if (ep->rep_attr.send_cq) 605 ib_free_cq(ep->rep_attr.send_cq); 606 } 607 608 /* Re-establish a connection after a device removal event. 609 * Unlike a normal reconnection, a fresh PD and a new set 610 * of MRs and buffers is needed. 611 */ 612 static int 613 rpcrdma_ep_recreate_xprt(struct rpcrdma_xprt *r_xprt, 614 struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 615 { 616 int rc, err; 617 618 trace_xprtrdma_reinsert(r_xprt); 619 620 rc = -EHOSTUNREACH; 621 if (rpcrdma_ia_open(r_xprt)) 622 goto out1; 623 624 rc = -ENOMEM; 625 err = rpcrdma_ep_create(ep, ia, &r_xprt->rx_data); 626 if (err) { 627 pr_err("rpcrdma: rpcrdma_ep_create returned %d\n", err); 628 goto out2; 629 } 630 631 rc = -ENETUNREACH; 632 err = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr); 633 if (err) { 634 pr_err("rpcrdma: rdma_create_qp returned %d\n", err); 635 goto out3; 636 } 637 638 rpcrdma_mrs_create(r_xprt); 639 return 0; 640 641 out3: 642 rpcrdma_ep_destroy(ep, ia); 643 out2: 644 rpcrdma_ia_close(ia); 645 out1: 646 return rc; 647 } 648 649 static int 650 rpcrdma_ep_reconnect(struct rpcrdma_xprt *r_xprt, struct rpcrdma_ep *ep, 651 struct rpcrdma_ia *ia) 652 { 653 struct rdma_cm_id *id, *old; 654 int err, rc; 655 656 trace_xprtrdma_reconnect(r_xprt); 657 658 rpcrdma_ep_disconnect(ep, ia); 659 660 rc = -EHOSTUNREACH; 661 id = rpcrdma_create_id(r_xprt, ia); 662 if (IS_ERR(id)) 663 goto out; 664 665 /* As long as the new ID points to the same device as the 666 * old ID, we can reuse the transport's existing PD and all 667 * previously allocated MRs. Also, the same device means 668 * the transport's previous DMA mappings are still valid. 669 * 670 * This is a sanity check only. There should be no way these 671 * point to two different devices here. 672 */ 673 old = id; 674 rc = -ENETUNREACH; 675 if (ia->ri_device != id->device) { 676 pr_err("rpcrdma: can't reconnect on different device!\n"); 677 goto out_destroy; 678 } 679 680 err = rdma_create_qp(id, ia->ri_pd, &ep->rep_attr); 681 if (err) 682 goto out_destroy; 683 684 /* Atomically replace the transport's ID and QP. */ 685 rc = 0; 686 old = ia->ri_id; 687 ia->ri_id = id; 688 rdma_destroy_qp(old); 689 690 out_destroy: 691 rdma_destroy_id(old); 692 out: 693 return rc; 694 } 695 696 /* 697 * Connect unconnected endpoint. 698 */ 699 int 700 rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 701 { 702 struct rpcrdma_xprt *r_xprt = container_of(ia, struct rpcrdma_xprt, 703 rx_ia); 704 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 705 int rc; 706 707 retry: 708 switch (ep->rep_connected) { 709 case 0: 710 dprintk("RPC: %s: connecting...\n", __func__); 711 rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr); 712 if (rc) { 713 rc = -ENETUNREACH; 714 goto out_noupdate; 715 } 716 break; 717 case -ENODEV: 718 rc = rpcrdma_ep_recreate_xprt(r_xprt, ep, ia); 719 if (rc) 720 goto out_noupdate; 721 break; 722 default: 723 rc = rpcrdma_ep_reconnect(r_xprt, ep, ia); 724 if (rc) 725 goto out; 726 } 727 728 ep->rep_connected = 0; 729 xprt_clear_connected(xprt); 730 731 rpcrdma_post_recvs(r_xprt, true); 732 733 rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma); 734 if (rc) 735 goto out; 736 737 wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0); 738 if (ep->rep_connected <= 0) { 739 if (ep->rep_connected == -EAGAIN) 740 goto retry; 741 rc = ep->rep_connected; 742 goto out; 743 } 744 745 dprintk("RPC: %s: connected\n", __func__); 746 747 out: 748 if (rc) 749 ep->rep_connected = rc; 750 751 out_noupdate: 752 return rc; 753 } 754 755 /** 756 * rpcrdma_ep_disconnect - Disconnect underlying transport 757 * @ep: endpoint to disconnect 758 * @ia: associated interface adapter 759 * 760 * This is separate from destroy to facilitate the ability 761 * to reconnect without recreating the endpoint. 762 * 763 * This call is not reentrant, and must not be made in parallel 764 * on the same endpoint. 765 */ 766 void 767 rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) 768 { 769 struct rpcrdma_xprt *r_xprt = container_of(ep, struct rpcrdma_xprt, 770 rx_ep); 771 int rc; 772 773 /* returns without wait if ID is not connected */ 774 rc = rdma_disconnect(ia->ri_id); 775 if (!rc) 776 wait_event_interruptible(ep->rep_connect_wait, 777 ep->rep_connected != 1); 778 else 779 ep->rep_connected = rc; 780 trace_xprtrdma_disconnect(r_xprt, rc); 781 782 rpcrdma_xprt_drain(r_xprt); 783 } 784 785 /* Fixed-size circular FIFO queue. This implementation is wait-free and 786 * lock-free. 787 * 788 * Consumer is the code path that posts Sends. This path dequeues a 789 * sendctx for use by a Send operation. Multiple consumer threads 790 * are serialized by the RPC transport lock, which allows only one 791 * ->send_request call at a time. 792 * 793 * Producer is the code path that handles Send completions. This path 794 * enqueues a sendctx that has been completed. Multiple producer 795 * threads are serialized by the ib_poll_cq() function. 796 */ 797 798 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced 799 * queue activity, and ib_drain_qp has flushed all remaining Send 800 * requests. 801 */ 802 static void rpcrdma_sendctxs_destroy(struct rpcrdma_buffer *buf) 803 { 804 unsigned long i; 805 806 for (i = 0; i <= buf->rb_sc_last; i++) 807 kfree(buf->rb_sc_ctxs[i]); 808 kfree(buf->rb_sc_ctxs); 809 } 810 811 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ia *ia) 812 { 813 struct rpcrdma_sendctx *sc; 814 815 sc = kzalloc(sizeof(*sc) + 816 ia->ri_max_send_sges * sizeof(struct ib_sge), 817 GFP_KERNEL); 818 if (!sc) 819 return NULL; 820 821 sc->sc_wr.wr_cqe = &sc->sc_cqe; 822 sc->sc_wr.sg_list = sc->sc_sges; 823 sc->sc_wr.opcode = IB_WR_SEND; 824 sc->sc_cqe.done = rpcrdma_wc_send; 825 return sc; 826 } 827 828 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt) 829 { 830 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 831 struct rpcrdma_sendctx *sc; 832 unsigned long i; 833 834 /* Maximum number of concurrent outstanding Send WRs. Capping 835 * the circular queue size stops Send Queue overflow by causing 836 * the ->send_request call to fail temporarily before too many 837 * Sends are posted. 838 */ 839 i = buf->rb_max_requests + RPCRDMA_MAX_BC_REQUESTS; 840 dprintk("RPC: %s: allocating %lu send_ctxs\n", __func__, i); 841 buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL); 842 if (!buf->rb_sc_ctxs) 843 return -ENOMEM; 844 845 buf->rb_sc_last = i - 1; 846 for (i = 0; i <= buf->rb_sc_last; i++) { 847 sc = rpcrdma_sendctx_create(&r_xprt->rx_ia); 848 if (!sc) 849 return -ENOMEM; 850 851 sc->sc_xprt = r_xprt; 852 buf->rb_sc_ctxs[i] = sc; 853 } 854 855 return 0; 856 } 857 858 /* The sendctx queue is not guaranteed to have a size that is a 859 * power of two, thus the helpers in circ_buf.h cannot be used. 860 * The other option is to use modulus (%), which can be expensive. 861 */ 862 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf, 863 unsigned long item) 864 { 865 return likely(item < buf->rb_sc_last) ? item + 1 : 0; 866 } 867 868 /** 869 * rpcrdma_sendctx_get_locked - Acquire a send context 870 * @buf: transport buffers from which to acquire an unused context 871 * 872 * Returns pointer to a free send completion context; or NULL if 873 * the queue is empty. 874 * 875 * Usage: Called to acquire an SGE array before preparing a Send WR. 876 * 877 * The caller serializes calls to this function (per rpcrdma_buffer), 878 * and provides an effective memory barrier that flushes the new value 879 * of rb_sc_head. 880 */ 881 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_buffer *buf) 882 { 883 struct rpcrdma_xprt *r_xprt; 884 struct rpcrdma_sendctx *sc; 885 unsigned long next_head; 886 887 next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head); 888 889 if (next_head == READ_ONCE(buf->rb_sc_tail)) 890 goto out_emptyq; 891 892 /* ORDER: item must be accessed _before_ head is updated */ 893 sc = buf->rb_sc_ctxs[next_head]; 894 895 /* Releasing the lock in the caller acts as a memory 896 * barrier that flushes rb_sc_head. 897 */ 898 buf->rb_sc_head = next_head; 899 900 return sc; 901 902 out_emptyq: 903 /* The queue is "empty" if there have not been enough Send 904 * completions recently. This is a sign the Send Queue is 905 * backing up. Cause the caller to pause and try again. 906 */ 907 set_bit(RPCRDMA_BUF_F_EMPTY_SCQ, &buf->rb_flags); 908 r_xprt = container_of(buf, struct rpcrdma_xprt, rx_buf); 909 r_xprt->rx_stats.empty_sendctx_q++; 910 return NULL; 911 } 912 913 /** 914 * rpcrdma_sendctx_put_locked - Release a send context 915 * @sc: send context to release 916 * 917 * Usage: Called from Send completion to return a sendctxt 918 * to the queue. 919 * 920 * The caller serializes calls to this function (per rpcrdma_buffer). 921 */ 922 static void 923 rpcrdma_sendctx_put_locked(struct rpcrdma_sendctx *sc) 924 { 925 struct rpcrdma_buffer *buf = &sc->sc_xprt->rx_buf; 926 unsigned long next_tail; 927 928 /* Unmap SGEs of previously completed by unsignaled 929 * Sends by walking up the queue until @sc is found. 930 */ 931 next_tail = buf->rb_sc_tail; 932 do { 933 next_tail = rpcrdma_sendctx_next(buf, next_tail); 934 935 /* ORDER: item must be accessed _before_ tail is updated */ 936 rpcrdma_unmap_sendctx(buf->rb_sc_ctxs[next_tail]); 937 938 } while (buf->rb_sc_ctxs[next_tail] != sc); 939 940 /* Paired with READ_ONCE */ 941 smp_store_release(&buf->rb_sc_tail, next_tail); 942 943 if (test_and_clear_bit(RPCRDMA_BUF_F_EMPTY_SCQ, &buf->rb_flags)) { 944 smp_mb__after_atomic(); 945 xprt_write_space(&sc->sc_xprt->rx_xprt); 946 } 947 } 948 949 static void 950 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt) 951 { 952 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 953 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 954 unsigned int count; 955 LIST_HEAD(free); 956 LIST_HEAD(all); 957 958 for (count = 0; count < ia->ri_max_segs; count++) { 959 struct rpcrdma_mr *mr; 960 int rc; 961 962 mr = kzalloc(sizeof(*mr), GFP_KERNEL); 963 if (!mr) 964 break; 965 966 rc = frwr_init_mr(ia, mr); 967 if (rc) { 968 kfree(mr); 969 break; 970 } 971 972 mr->mr_xprt = r_xprt; 973 974 list_add(&mr->mr_list, &free); 975 list_add(&mr->mr_all, &all); 976 } 977 978 spin_lock(&buf->rb_mrlock); 979 list_splice(&free, &buf->rb_mrs); 980 list_splice(&all, &buf->rb_all); 981 r_xprt->rx_stats.mrs_allocated += count; 982 spin_unlock(&buf->rb_mrlock); 983 trace_xprtrdma_createmrs(r_xprt, count); 984 985 xprt_write_space(&r_xprt->rx_xprt); 986 } 987 988 static void 989 rpcrdma_mr_refresh_worker(struct work_struct *work) 990 { 991 struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer, 992 rb_refresh_worker.work); 993 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, 994 rx_buf); 995 996 rpcrdma_mrs_create(r_xprt); 997 } 998 999 struct rpcrdma_req * 1000 rpcrdma_create_req(struct rpcrdma_xprt *r_xprt) 1001 { 1002 struct rpcrdma_buffer *buffer = &r_xprt->rx_buf; 1003 struct rpcrdma_regbuf *rb; 1004 struct rpcrdma_req *req; 1005 1006 req = kzalloc(sizeof(*req), GFP_KERNEL); 1007 if (req == NULL) 1008 return ERR_PTR(-ENOMEM); 1009 1010 rb = rpcrdma_alloc_regbuf(RPCRDMA_HDRBUF_SIZE, 1011 DMA_TO_DEVICE, GFP_KERNEL); 1012 if (IS_ERR(rb)) { 1013 kfree(req); 1014 return ERR_PTR(-ENOMEM); 1015 } 1016 req->rl_rdmabuf = rb; 1017 xdr_buf_init(&req->rl_hdrbuf, rb->rg_base, rdmab_length(rb)); 1018 req->rl_buffer = buffer; 1019 INIT_LIST_HEAD(&req->rl_registered); 1020 1021 spin_lock(&buffer->rb_lock); 1022 list_add(&req->rl_all, &buffer->rb_allreqs); 1023 spin_unlock(&buffer->rb_lock); 1024 return req; 1025 } 1026 1027 static int 1028 rpcrdma_create_rep(struct rpcrdma_xprt *r_xprt, bool temp) 1029 { 1030 struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; 1031 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1032 struct rpcrdma_rep *rep; 1033 int rc; 1034 1035 rc = -ENOMEM; 1036 rep = kzalloc(sizeof(*rep), GFP_KERNEL); 1037 if (rep == NULL) 1038 goto out; 1039 1040 rep->rr_rdmabuf = rpcrdma_alloc_regbuf(cdata->inline_rsize, 1041 DMA_FROM_DEVICE, GFP_KERNEL); 1042 if (IS_ERR(rep->rr_rdmabuf)) { 1043 rc = PTR_ERR(rep->rr_rdmabuf); 1044 goto out_free; 1045 } 1046 xdr_buf_init(&rep->rr_hdrbuf, rep->rr_rdmabuf->rg_base, 1047 rdmab_length(rep->rr_rdmabuf)); 1048 1049 rep->rr_cqe.done = rpcrdma_wc_receive; 1050 rep->rr_rxprt = r_xprt; 1051 INIT_WORK(&rep->rr_work, rpcrdma_deferred_completion); 1052 rep->rr_recv_wr.next = NULL; 1053 rep->rr_recv_wr.wr_cqe = &rep->rr_cqe; 1054 rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov; 1055 rep->rr_recv_wr.num_sge = 1; 1056 rep->rr_temp = temp; 1057 1058 spin_lock(&buf->rb_lock); 1059 list_add(&rep->rr_list, &buf->rb_recv_bufs); 1060 spin_unlock(&buf->rb_lock); 1061 return 0; 1062 1063 out_free: 1064 kfree(rep); 1065 out: 1066 return rc; 1067 } 1068 1069 int 1070 rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt) 1071 { 1072 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1073 int i, rc; 1074 1075 buf->rb_flags = 0; 1076 buf->rb_max_requests = r_xprt->rx_data.max_requests; 1077 buf->rb_bc_srv_max_requests = 0; 1078 spin_lock_init(&buf->rb_mrlock); 1079 spin_lock_init(&buf->rb_lock); 1080 INIT_LIST_HEAD(&buf->rb_mrs); 1081 INIT_LIST_HEAD(&buf->rb_all); 1082 INIT_DELAYED_WORK(&buf->rb_refresh_worker, 1083 rpcrdma_mr_refresh_worker); 1084 1085 rpcrdma_mrs_create(r_xprt); 1086 1087 INIT_LIST_HEAD(&buf->rb_send_bufs); 1088 INIT_LIST_HEAD(&buf->rb_allreqs); 1089 for (i = 0; i < buf->rb_max_requests; i++) { 1090 struct rpcrdma_req *req; 1091 1092 req = rpcrdma_create_req(r_xprt); 1093 if (IS_ERR(req)) { 1094 dprintk("RPC: %s: request buffer %d alloc" 1095 " failed\n", __func__, i); 1096 rc = PTR_ERR(req); 1097 goto out; 1098 } 1099 list_add(&req->rl_list, &buf->rb_send_bufs); 1100 } 1101 1102 buf->rb_credits = 1; 1103 INIT_LIST_HEAD(&buf->rb_recv_bufs); 1104 1105 rc = rpcrdma_sendctxs_create(r_xprt); 1106 if (rc) 1107 goto out; 1108 1109 buf->rb_completion_wq = alloc_workqueue("rpcrdma-%s", 1110 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1111 0, 1112 r_xprt->rx_xprt.address_strings[RPC_DISPLAY_ADDR]); 1113 if (!buf->rb_completion_wq) { 1114 rc = -ENOMEM; 1115 goto out; 1116 } 1117 1118 return 0; 1119 out: 1120 rpcrdma_buffer_destroy(buf); 1121 return rc; 1122 } 1123 1124 static void 1125 rpcrdma_destroy_rep(struct rpcrdma_rep *rep) 1126 { 1127 rpcrdma_free_regbuf(rep->rr_rdmabuf); 1128 kfree(rep); 1129 } 1130 1131 /** 1132 * rpcrdma_req_destroy - Destroy an rpcrdma_req object 1133 * @req: unused object to be destroyed 1134 * 1135 * This function assumes that the caller prevents concurrent device 1136 * unload and transport tear-down. 1137 */ 1138 void 1139 rpcrdma_req_destroy(struct rpcrdma_req *req) 1140 { 1141 list_del(&req->rl_all); 1142 1143 rpcrdma_free_regbuf(req->rl_recvbuf); 1144 rpcrdma_free_regbuf(req->rl_sendbuf); 1145 rpcrdma_free_regbuf(req->rl_rdmabuf); 1146 kfree(req); 1147 } 1148 1149 static void 1150 rpcrdma_mrs_destroy(struct rpcrdma_buffer *buf) 1151 { 1152 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt, 1153 rx_buf); 1154 struct rpcrdma_mr *mr; 1155 unsigned int count; 1156 1157 count = 0; 1158 spin_lock(&buf->rb_mrlock); 1159 while (!list_empty(&buf->rb_all)) { 1160 mr = list_entry(buf->rb_all.next, struct rpcrdma_mr, mr_all); 1161 list_del(&mr->mr_all); 1162 1163 spin_unlock(&buf->rb_mrlock); 1164 1165 /* Ensure MW is not on any rl_registered list */ 1166 if (!list_empty(&mr->mr_list)) 1167 list_del(&mr->mr_list); 1168 1169 frwr_release_mr(mr); 1170 count++; 1171 spin_lock(&buf->rb_mrlock); 1172 } 1173 spin_unlock(&buf->rb_mrlock); 1174 r_xprt->rx_stats.mrs_allocated = 0; 1175 1176 dprintk("RPC: %s: released %u MRs\n", __func__, count); 1177 } 1178 1179 /** 1180 * rpcrdma_buffer_destroy - Release all hw resources 1181 * @buf: root control block for resources 1182 * 1183 * ORDERING: relies on a prior ib_drain_qp : 1184 * - No more Send or Receive completions can occur 1185 * - All MRs, reps, and reqs are returned to their free lists 1186 */ 1187 void 1188 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf) 1189 { 1190 cancel_delayed_work_sync(&buf->rb_refresh_worker); 1191 1192 if (buf->rb_completion_wq) { 1193 destroy_workqueue(buf->rb_completion_wq); 1194 buf->rb_completion_wq = NULL; 1195 } 1196 1197 rpcrdma_sendctxs_destroy(buf); 1198 1199 while (!list_empty(&buf->rb_recv_bufs)) { 1200 struct rpcrdma_rep *rep; 1201 1202 rep = list_first_entry(&buf->rb_recv_bufs, 1203 struct rpcrdma_rep, rr_list); 1204 list_del(&rep->rr_list); 1205 rpcrdma_destroy_rep(rep); 1206 } 1207 1208 while (!list_empty(&buf->rb_send_bufs)) { 1209 struct rpcrdma_req *req; 1210 1211 req = list_first_entry(&buf->rb_send_bufs, 1212 struct rpcrdma_req, rl_list); 1213 list_del(&req->rl_list); 1214 rpcrdma_req_destroy(req); 1215 } 1216 1217 rpcrdma_mrs_destroy(buf); 1218 } 1219 1220 /** 1221 * rpcrdma_mr_get - Allocate an rpcrdma_mr object 1222 * @r_xprt: controlling transport 1223 * 1224 * Returns an initialized rpcrdma_mr or NULL if no free 1225 * rpcrdma_mr objects are available. 1226 */ 1227 struct rpcrdma_mr * 1228 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt) 1229 { 1230 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1231 struct rpcrdma_mr *mr = NULL; 1232 1233 spin_lock(&buf->rb_mrlock); 1234 if (!list_empty(&buf->rb_mrs)) 1235 mr = rpcrdma_mr_pop(&buf->rb_mrs); 1236 spin_unlock(&buf->rb_mrlock); 1237 1238 if (!mr) 1239 goto out_nomrs; 1240 return mr; 1241 1242 out_nomrs: 1243 trace_xprtrdma_nomrs(r_xprt); 1244 if (r_xprt->rx_ep.rep_connected != -ENODEV) 1245 schedule_delayed_work(&buf->rb_refresh_worker, 0); 1246 1247 /* Allow the reply handler and refresh worker to run */ 1248 cond_resched(); 1249 1250 return NULL; 1251 } 1252 1253 static void 1254 __rpcrdma_mr_put(struct rpcrdma_buffer *buf, struct rpcrdma_mr *mr) 1255 { 1256 spin_lock(&buf->rb_mrlock); 1257 rpcrdma_mr_push(mr, &buf->rb_mrs); 1258 spin_unlock(&buf->rb_mrlock); 1259 } 1260 1261 /** 1262 * rpcrdma_mr_put - Release an rpcrdma_mr object 1263 * @mr: object to release 1264 * 1265 */ 1266 void 1267 rpcrdma_mr_put(struct rpcrdma_mr *mr) 1268 { 1269 __rpcrdma_mr_put(&mr->mr_xprt->rx_buf, mr); 1270 } 1271 1272 /** 1273 * rpcrdma_mr_unmap_and_put - DMA unmap an MR and release it 1274 * @mr: object to release 1275 * 1276 */ 1277 void 1278 rpcrdma_mr_unmap_and_put(struct rpcrdma_mr *mr) 1279 { 1280 struct rpcrdma_xprt *r_xprt = mr->mr_xprt; 1281 1282 if (mr->mr_dir != DMA_NONE) { 1283 trace_xprtrdma_mr_unmap(mr); 1284 ib_dma_unmap_sg(r_xprt->rx_ia.ri_device, 1285 mr->mr_sg, mr->mr_nents, mr->mr_dir); 1286 mr->mr_dir = DMA_NONE; 1287 } 1288 __rpcrdma_mr_put(&r_xprt->rx_buf, mr); 1289 } 1290 1291 /** 1292 * rpcrdma_buffer_get - Get a request buffer 1293 * @buffers: Buffer pool from which to obtain a buffer 1294 * 1295 * Returns a fresh rpcrdma_req, or NULL if none are available. 1296 */ 1297 struct rpcrdma_req * 1298 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers) 1299 { 1300 struct rpcrdma_req *req; 1301 1302 spin_lock(&buffers->rb_lock); 1303 req = list_first_entry_or_null(&buffers->rb_send_bufs, 1304 struct rpcrdma_req, rl_list); 1305 if (req) 1306 list_del_init(&req->rl_list); 1307 spin_unlock(&buffers->rb_lock); 1308 return req; 1309 } 1310 1311 /** 1312 * rpcrdma_buffer_put - Put request/reply buffers back into pool 1313 * @req: object to return 1314 * 1315 */ 1316 void 1317 rpcrdma_buffer_put(struct rpcrdma_req *req) 1318 { 1319 struct rpcrdma_buffer *buffers = req->rl_buffer; 1320 struct rpcrdma_rep *rep = req->rl_reply; 1321 1322 req->rl_reply = NULL; 1323 1324 spin_lock(&buffers->rb_lock); 1325 list_add(&req->rl_list, &buffers->rb_send_bufs); 1326 if (rep) { 1327 if (!rep->rr_temp) { 1328 list_add(&rep->rr_list, &buffers->rb_recv_bufs); 1329 rep = NULL; 1330 } 1331 } 1332 spin_unlock(&buffers->rb_lock); 1333 if (rep) 1334 rpcrdma_destroy_rep(rep); 1335 } 1336 1337 /* 1338 * Put reply buffers back into pool when not attached to 1339 * request. This happens in error conditions. 1340 */ 1341 void 1342 rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep) 1343 { 1344 struct rpcrdma_buffer *buffers = &rep->rr_rxprt->rx_buf; 1345 1346 if (!rep->rr_temp) { 1347 spin_lock(&buffers->rb_lock); 1348 list_add(&rep->rr_list, &buffers->rb_recv_bufs); 1349 spin_unlock(&buffers->rb_lock); 1350 } else { 1351 rpcrdma_destroy_rep(rep); 1352 } 1353 } 1354 1355 /** 1356 * rpcrdma_alloc_regbuf - allocate and DMA-map memory for SEND/RECV buffers 1357 * @size: size of buffer to be allocated, in bytes 1358 * @direction: direction of data movement 1359 * @flags: GFP flags 1360 * 1361 * Returns an ERR_PTR, or a pointer to a regbuf, a buffer that 1362 * can be persistently DMA-mapped for I/O. 1363 * 1364 * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for 1365 * receiving the payload of RDMA RECV operations. During Long Calls 1366 * or Replies they may be registered externally via frwr_map. 1367 */ 1368 struct rpcrdma_regbuf * 1369 rpcrdma_alloc_regbuf(size_t size, enum dma_data_direction direction, 1370 gfp_t flags) 1371 { 1372 struct rpcrdma_regbuf *rb; 1373 1374 rb = kmalloc(sizeof(*rb) + size, flags); 1375 if (rb == NULL) 1376 return ERR_PTR(-ENOMEM); 1377 1378 rb->rg_device = NULL; 1379 rb->rg_direction = direction; 1380 rb->rg_iov.length = size; 1381 1382 return rb; 1383 } 1384 1385 /** 1386 * __rpcrdma_map_regbuf - DMA-map a regbuf 1387 * @ia: controlling rpcrdma_ia 1388 * @rb: regbuf to be mapped 1389 */ 1390 bool 1391 __rpcrdma_dma_map_regbuf(struct rpcrdma_ia *ia, struct rpcrdma_regbuf *rb) 1392 { 1393 struct ib_device *device = ia->ri_device; 1394 1395 if (rb->rg_direction == DMA_NONE) 1396 return false; 1397 1398 rb->rg_iov.addr = ib_dma_map_single(device, 1399 (void *)rb->rg_base, 1400 rdmab_length(rb), 1401 rb->rg_direction); 1402 if (ib_dma_mapping_error(device, rdmab_addr(rb))) { 1403 trace_xprtrdma_dma_maperr(rdmab_addr(rb)); 1404 return false; 1405 } 1406 1407 rb->rg_device = device; 1408 rb->rg_iov.lkey = ia->ri_pd->local_dma_lkey; 1409 return true; 1410 } 1411 1412 static void 1413 rpcrdma_dma_unmap_regbuf(struct rpcrdma_regbuf *rb) 1414 { 1415 if (!rb) 1416 return; 1417 1418 if (!rpcrdma_regbuf_is_mapped(rb)) 1419 return; 1420 1421 ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), 1422 rdmab_length(rb), rb->rg_direction); 1423 rb->rg_device = NULL; 1424 } 1425 1426 /** 1427 * rpcrdma_free_regbuf - deregister and free registered buffer 1428 * @rb: regbuf to be deregistered and freed 1429 */ 1430 void 1431 rpcrdma_free_regbuf(struct rpcrdma_regbuf *rb) 1432 { 1433 rpcrdma_dma_unmap_regbuf(rb); 1434 kfree(rb); 1435 } 1436 1437 /** 1438 * rpcrdma_ep_post - Post WRs to a transport's Send Queue 1439 * @ia: transport's device information 1440 * @ep: transport's RDMA endpoint information 1441 * @req: rpcrdma_req containing the Send WR to post 1442 * 1443 * Returns 0 if the post was successful, otherwise -ENOTCONN 1444 * is returned. 1445 */ 1446 int 1447 rpcrdma_ep_post(struct rpcrdma_ia *ia, 1448 struct rpcrdma_ep *ep, 1449 struct rpcrdma_req *req) 1450 { 1451 struct ib_send_wr *send_wr = &req->rl_sendctx->sc_wr; 1452 int rc; 1453 1454 if (!ep->rep_send_count || 1455 test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) { 1456 send_wr->send_flags |= IB_SEND_SIGNALED; 1457 ep->rep_send_count = ep->rep_send_batch; 1458 } else { 1459 send_wr->send_flags &= ~IB_SEND_SIGNALED; 1460 --ep->rep_send_count; 1461 } 1462 1463 rc = frwr_send(ia, req); 1464 trace_xprtrdma_post_send(req, rc); 1465 if (rc) 1466 return -ENOTCONN; 1467 return 0; 1468 } 1469 1470 static void 1471 rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, bool temp) 1472 { 1473 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1474 struct rpcrdma_ep *ep = &r_xprt->rx_ep; 1475 struct ib_recv_wr *wr, *bad_wr; 1476 int needed, count, rc; 1477 1478 rc = 0; 1479 count = 0; 1480 needed = buf->rb_credits + (buf->rb_bc_srv_max_requests << 1); 1481 if (ep->rep_receive_count > needed) 1482 goto out; 1483 needed -= ep->rep_receive_count; 1484 if (!temp) 1485 needed += RPCRDMA_MAX_RECV_BATCH; 1486 1487 count = 0; 1488 wr = NULL; 1489 while (needed) { 1490 struct rpcrdma_regbuf *rb; 1491 struct rpcrdma_rep *rep; 1492 1493 spin_lock(&buf->rb_lock); 1494 rep = list_first_entry_or_null(&buf->rb_recv_bufs, 1495 struct rpcrdma_rep, rr_list); 1496 if (likely(rep)) 1497 list_del(&rep->rr_list); 1498 spin_unlock(&buf->rb_lock); 1499 if (!rep) { 1500 if (rpcrdma_create_rep(r_xprt, temp)) 1501 break; 1502 continue; 1503 } 1504 1505 rb = rep->rr_rdmabuf; 1506 if (!rpcrdma_regbuf_is_mapped(rb)) { 1507 if (!__rpcrdma_dma_map_regbuf(&r_xprt->rx_ia, rb)) { 1508 rpcrdma_recv_buffer_put(rep); 1509 break; 1510 } 1511 } 1512 1513 trace_xprtrdma_post_recv(rep->rr_recv_wr.wr_cqe); 1514 rep->rr_recv_wr.next = wr; 1515 wr = &rep->rr_recv_wr; 1516 ++count; 1517 --needed; 1518 } 1519 if (!count) 1520 goto out; 1521 1522 rc = ib_post_recv(r_xprt->rx_ia.ri_id->qp, wr, 1523 (const struct ib_recv_wr **)&bad_wr); 1524 if (rc) { 1525 for (wr = bad_wr; wr; wr = wr->next) { 1526 struct rpcrdma_rep *rep; 1527 1528 rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr); 1529 rpcrdma_recv_buffer_put(rep); 1530 --count; 1531 } 1532 } 1533 ep->rep_receive_count += count; 1534 out: 1535 trace_xprtrdma_post_recvs(r_xprt, count, rc); 1536 } 1537