1 /* 2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the BSD-type 8 * license below: 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 14 * Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 17 * Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials provided 20 * with the distribution. 21 * 22 * Neither the name of the Network Appliance, Inc. nor the names of 23 * its contributors may be used to endorse or promote products 24 * derived from this software without specific prior written 25 * permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * transport.c 42 * 43 * This file contains the top-level implementation of an RPC RDMA 44 * transport. 45 * 46 * Naming convention: functions beginning with xprt_ are part of the 47 * transport switch. All others are RPC RDMA internal. 48 */ 49 50 #include <linux/module.h> 51 #include <linux/slab.h> 52 #include <linux/seq_file.h> 53 #include <linux/sunrpc/addr.h> 54 55 #include "xprt_rdma.h" 56 57 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 58 # define RPCDBG_FACILITY RPCDBG_TRANS 59 #endif 60 61 /* 62 * tunables 63 */ 64 65 static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE; 66 static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE; 67 static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE; 68 static unsigned int xprt_rdma_inline_write_padding; 69 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR; 70 int xprt_rdma_pad_optimize = 1; 71 72 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 73 74 static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE; 75 static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE; 76 static unsigned int zero; 77 static unsigned int max_padding = PAGE_SIZE; 78 static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS; 79 static unsigned int max_memreg = RPCRDMA_LAST - 1; 80 81 static struct ctl_table_header *sunrpc_table_header; 82 83 static struct ctl_table xr_tunables_table[] = { 84 { 85 .procname = "rdma_slot_table_entries", 86 .data = &xprt_rdma_slot_table_entries, 87 .maxlen = sizeof(unsigned int), 88 .mode = 0644, 89 .proc_handler = proc_dointvec_minmax, 90 .extra1 = &min_slot_table_size, 91 .extra2 = &max_slot_table_size 92 }, 93 { 94 .procname = "rdma_max_inline_read", 95 .data = &xprt_rdma_max_inline_read, 96 .maxlen = sizeof(unsigned int), 97 .mode = 0644, 98 .proc_handler = proc_dointvec, 99 }, 100 { 101 .procname = "rdma_max_inline_write", 102 .data = &xprt_rdma_max_inline_write, 103 .maxlen = sizeof(unsigned int), 104 .mode = 0644, 105 .proc_handler = proc_dointvec, 106 }, 107 { 108 .procname = "rdma_inline_write_padding", 109 .data = &xprt_rdma_inline_write_padding, 110 .maxlen = sizeof(unsigned int), 111 .mode = 0644, 112 .proc_handler = proc_dointvec_minmax, 113 .extra1 = &zero, 114 .extra2 = &max_padding, 115 }, 116 { 117 .procname = "rdma_memreg_strategy", 118 .data = &xprt_rdma_memreg_strategy, 119 .maxlen = sizeof(unsigned int), 120 .mode = 0644, 121 .proc_handler = proc_dointvec_minmax, 122 .extra1 = &min_memreg, 123 .extra2 = &max_memreg, 124 }, 125 { 126 .procname = "rdma_pad_optimize", 127 .data = &xprt_rdma_pad_optimize, 128 .maxlen = sizeof(unsigned int), 129 .mode = 0644, 130 .proc_handler = proc_dointvec, 131 }, 132 { }, 133 }; 134 135 static struct ctl_table sunrpc_table[] = { 136 { 137 .procname = "sunrpc", 138 .mode = 0555, 139 .child = xr_tunables_table 140 }, 141 { }, 142 }; 143 144 #endif 145 146 #define RPCRDMA_BIND_TO (60U * HZ) 147 #define RPCRDMA_INIT_REEST_TO (5U * HZ) 148 #define RPCRDMA_MAX_REEST_TO (30U * HZ) 149 #define RPCRDMA_IDLE_DISC_TO (5U * 60 * HZ) 150 151 static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */ 152 153 static void 154 xprt_rdma_format_addresses4(struct rpc_xprt *xprt, struct sockaddr *sap) 155 { 156 struct sockaddr_in *sin = (struct sockaddr_in *)sap; 157 char buf[20]; 158 159 snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr)); 160 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL); 161 162 xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA; 163 } 164 165 static void 166 xprt_rdma_format_addresses6(struct rpc_xprt *xprt, struct sockaddr *sap) 167 { 168 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sap; 169 char buf[40]; 170 171 snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr); 172 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL); 173 174 xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA6; 175 } 176 177 static void 178 xprt_rdma_format_addresses(struct rpc_xprt *xprt, struct sockaddr *sap) 179 { 180 char buf[128]; 181 182 switch (sap->sa_family) { 183 case AF_INET: 184 xprt_rdma_format_addresses4(xprt, sap); 185 break; 186 case AF_INET6: 187 xprt_rdma_format_addresses6(xprt, sap); 188 break; 189 default: 190 pr_err("rpcrdma: Unrecognized address family\n"); 191 return; 192 } 193 194 (void)rpc_ntop(sap, buf, sizeof(buf)); 195 xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL); 196 197 snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap)); 198 xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL); 199 200 snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap)); 201 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL); 202 203 xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma"; 204 } 205 206 static void 207 xprt_rdma_free_addresses(struct rpc_xprt *xprt) 208 { 209 unsigned int i; 210 211 for (i = 0; i < RPC_DISPLAY_MAX; i++) 212 switch (i) { 213 case RPC_DISPLAY_PROTO: 214 case RPC_DISPLAY_NETID: 215 continue; 216 default: 217 kfree(xprt->address_strings[i]); 218 } 219 } 220 221 static void 222 xprt_rdma_connect_worker(struct work_struct *work) 223 { 224 struct rpcrdma_xprt *r_xprt = container_of(work, struct rpcrdma_xprt, 225 rx_connect_worker.work); 226 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 227 int rc = 0; 228 229 xprt_clear_connected(xprt); 230 231 dprintk("RPC: %s: %sconnect\n", __func__, 232 r_xprt->rx_ep.rep_connected != 0 ? "re" : ""); 233 rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia); 234 if (rc) 235 xprt_wake_pending_tasks(xprt, rc); 236 237 dprintk("RPC: %s: exit\n", __func__); 238 xprt_clear_connecting(xprt); 239 } 240 241 static void 242 xprt_rdma_inject_disconnect(struct rpc_xprt *xprt) 243 { 244 struct rpcrdma_xprt *r_xprt = container_of(xprt, struct rpcrdma_xprt, 245 rx_xprt); 246 247 pr_info("rpcrdma: injecting transport disconnect on xprt=%p\n", xprt); 248 rdma_disconnect(r_xprt->rx_ia.ri_id); 249 } 250 251 /* 252 * xprt_rdma_destroy 253 * 254 * Destroy the xprt. 255 * Free all memory associated with the object, including its own. 256 * NOTE: none of the *destroy methods free memory for their top-level 257 * objects, even though they may have allocated it (they do free 258 * private memory). It's up to the caller to handle it. In this 259 * case (RDMA transport), all structure memory is inlined with the 260 * struct rpcrdma_xprt. 261 */ 262 static void 263 xprt_rdma_destroy(struct rpc_xprt *xprt) 264 { 265 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 266 267 dprintk("RPC: %s: called\n", __func__); 268 269 cancel_delayed_work_sync(&r_xprt->rx_connect_worker); 270 271 xprt_clear_connected(xprt); 272 273 rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia); 274 rpcrdma_buffer_destroy(&r_xprt->rx_buf); 275 rpcrdma_ia_close(&r_xprt->rx_ia); 276 277 xprt_rdma_free_addresses(xprt); 278 279 xprt_free(xprt); 280 281 dprintk("RPC: %s: returning\n", __func__); 282 283 module_put(THIS_MODULE); 284 } 285 286 static const struct rpc_timeout xprt_rdma_default_timeout = { 287 .to_initval = 60 * HZ, 288 .to_maxval = 60 * HZ, 289 }; 290 291 /** 292 * xprt_setup_rdma - Set up transport to use RDMA 293 * 294 * @args: rpc transport arguments 295 */ 296 static struct rpc_xprt * 297 xprt_setup_rdma(struct xprt_create *args) 298 { 299 struct rpcrdma_create_data_internal cdata; 300 struct rpc_xprt *xprt; 301 struct rpcrdma_xprt *new_xprt; 302 struct rpcrdma_ep *new_ep; 303 struct sockaddr *sap; 304 int rc; 305 306 if (args->addrlen > sizeof(xprt->addr)) { 307 dprintk("RPC: %s: address too large\n", __func__); 308 return ERR_PTR(-EBADF); 309 } 310 311 xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt), 312 xprt_rdma_slot_table_entries, 313 xprt_rdma_slot_table_entries); 314 if (xprt == NULL) { 315 dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n", 316 __func__); 317 return ERR_PTR(-ENOMEM); 318 } 319 320 /* 60 second timeout, no retries */ 321 xprt->timeout = &xprt_rdma_default_timeout; 322 xprt->bind_timeout = RPCRDMA_BIND_TO; 323 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO; 324 xprt->idle_timeout = RPCRDMA_IDLE_DISC_TO; 325 326 xprt->resvport = 0; /* privileged port not needed */ 327 xprt->tsh_size = 0; /* RPC-RDMA handles framing */ 328 xprt->ops = &xprt_rdma_procs; 329 330 /* 331 * Set up RDMA-specific connect data. 332 */ 333 334 sap = (struct sockaddr *)&cdata.addr; 335 memcpy(sap, args->dstaddr, args->addrlen); 336 337 /* Ensure xprt->addr holds valid server TCP (not RDMA) 338 * address, for any side protocols which peek at it */ 339 xprt->prot = IPPROTO_TCP; 340 xprt->addrlen = args->addrlen; 341 memcpy(&xprt->addr, sap, xprt->addrlen); 342 343 if (rpc_get_port(sap)) 344 xprt_set_bound(xprt); 345 346 cdata.max_requests = xprt->max_reqs; 347 348 cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */ 349 cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */ 350 351 cdata.inline_wsize = xprt_rdma_max_inline_write; 352 if (cdata.inline_wsize > cdata.wsize) 353 cdata.inline_wsize = cdata.wsize; 354 355 cdata.inline_rsize = xprt_rdma_max_inline_read; 356 if (cdata.inline_rsize > cdata.rsize) 357 cdata.inline_rsize = cdata.rsize; 358 359 cdata.padding = xprt_rdma_inline_write_padding; 360 361 /* 362 * Create new transport instance, which includes initialized 363 * o ia 364 * o endpoint 365 * o buffers 366 */ 367 368 new_xprt = rpcx_to_rdmax(xprt); 369 370 rc = rpcrdma_ia_open(new_xprt, sap, xprt_rdma_memreg_strategy); 371 if (rc) 372 goto out1; 373 374 /* 375 * initialize and create ep 376 */ 377 new_xprt->rx_data = cdata; 378 new_ep = &new_xprt->rx_ep; 379 new_ep->rep_remote_addr = cdata.addr; 380 381 rc = rpcrdma_ep_create(&new_xprt->rx_ep, 382 &new_xprt->rx_ia, &new_xprt->rx_data); 383 if (rc) 384 goto out2; 385 386 /* 387 * Allocate pre-registered send and receive buffers for headers and 388 * any inline data. Also specify any padding which will be provided 389 * from a preregistered zero buffer. 390 */ 391 rc = rpcrdma_buffer_create(new_xprt); 392 if (rc) 393 goto out3; 394 395 /* 396 * Register a callback for connection events. This is necessary because 397 * connection loss notification is async. We also catch connection loss 398 * when reaping receives. 399 */ 400 INIT_DELAYED_WORK(&new_xprt->rx_connect_worker, 401 xprt_rdma_connect_worker); 402 403 xprt_rdma_format_addresses(xprt, sap); 404 xprt->max_payload = new_xprt->rx_ia.ri_ops->ro_maxpages(new_xprt); 405 if (xprt->max_payload == 0) 406 goto out4; 407 xprt->max_payload <<= PAGE_SHIFT; 408 dprintk("RPC: %s: transport data payload maximum: %zu bytes\n", 409 __func__, xprt->max_payload); 410 411 if (!try_module_get(THIS_MODULE)) 412 goto out4; 413 414 dprintk("RPC: %s: %s:%s\n", __func__, 415 xprt->address_strings[RPC_DISPLAY_ADDR], 416 xprt->address_strings[RPC_DISPLAY_PORT]); 417 return xprt; 418 419 out4: 420 xprt_rdma_free_addresses(xprt); 421 rc = -EINVAL; 422 out3: 423 rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia); 424 out2: 425 rpcrdma_ia_close(&new_xprt->rx_ia); 426 out1: 427 xprt_free(xprt); 428 return ERR_PTR(rc); 429 } 430 431 /* 432 * Close a connection, during shutdown or timeout/reconnect 433 */ 434 static void 435 xprt_rdma_close(struct rpc_xprt *xprt) 436 { 437 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 438 439 dprintk("RPC: %s: closing\n", __func__); 440 if (r_xprt->rx_ep.rep_connected > 0) 441 xprt->reestablish_timeout = 0; 442 xprt_disconnect_done(xprt); 443 rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia); 444 } 445 446 static void 447 xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port) 448 { 449 struct sockaddr_in *sap; 450 451 sap = (struct sockaddr_in *)&xprt->addr; 452 sap->sin_port = htons(port); 453 sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr; 454 sap->sin_port = htons(port); 455 dprintk("RPC: %s: %u\n", __func__, port); 456 } 457 458 static void 459 xprt_rdma_connect(struct rpc_xprt *xprt, struct rpc_task *task) 460 { 461 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 462 463 if (r_xprt->rx_ep.rep_connected != 0) { 464 /* Reconnect */ 465 schedule_delayed_work(&r_xprt->rx_connect_worker, 466 xprt->reestablish_timeout); 467 xprt->reestablish_timeout <<= 1; 468 if (xprt->reestablish_timeout > RPCRDMA_MAX_REEST_TO) 469 xprt->reestablish_timeout = RPCRDMA_MAX_REEST_TO; 470 else if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO) 471 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO; 472 } else { 473 schedule_delayed_work(&r_xprt->rx_connect_worker, 0); 474 if (!RPC_IS_ASYNC(task)) 475 flush_delayed_work(&r_xprt->rx_connect_worker); 476 } 477 } 478 479 /* 480 * The RDMA allocate/free functions need the task structure as a place 481 * to hide the struct rpcrdma_req, which is necessary for the actual send/recv 482 * sequence. 483 * 484 * The RPC layer allocates both send and receive buffers in the same call 485 * (rq_send_buf and rq_rcv_buf are both part of a single contiguous buffer). 486 * We may register rq_rcv_buf when using reply chunks. 487 */ 488 static void * 489 xprt_rdma_allocate(struct rpc_task *task, size_t size) 490 { 491 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; 492 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 493 struct rpcrdma_regbuf *rb; 494 struct rpcrdma_req *req; 495 size_t min_size; 496 gfp_t flags; 497 498 req = rpcrdma_buffer_get(&r_xprt->rx_buf); 499 if (req == NULL) 500 return NULL; 501 502 flags = GFP_NOIO | __GFP_NOWARN; 503 if (RPC_IS_SWAPPER(task)) 504 flags = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN; 505 506 if (req->rl_rdmabuf == NULL) 507 goto out_rdmabuf; 508 if (req->rl_sendbuf == NULL) 509 goto out_sendbuf; 510 if (size > req->rl_sendbuf->rg_size) 511 goto out_sendbuf; 512 513 out: 514 dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req); 515 req->rl_connect_cookie = 0; /* our reserved value */ 516 return req->rl_sendbuf->rg_base; 517 518 out_rdmabuf: 519 min_size = RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp); 520 rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, min_size, flags); 521 if (IS_ERR(rb)) 522 goto out_fail; 523 req->rl_rdmabuf = rb; 524 525 out_sendbuf: 526 /* XDR encoding and RPC/RDMA marshaling of this request has not 527 * yet occurred. Thus a lower bound is needed to prevent buffer 528 * overrun during marshaling. 529 * 530 * RPC/RDMA marshaling may choose to send payload bearing ops 531 * inline, if the result is smaller than the inline threshold. 532 * The value of the "size" argument accounts for header 533 * requirements but not for the payload in these cases. 534 * 535 * Likewise, allocate enough space to receive a reply up to the 536 * size of the inline threshold. 537 * 538 * It's unlikely that both the send header and the received 539 * reply will be large, but slush is provided here to allow 540 * flexibility when marshaling. 541 */ 542 min_size = RPCRDMA_INLINE_READ_THRESHOLD(task->tk_rqstp); 543 min_size += RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp); 544 if (size < min_size) 545 size = min_size; 546 547 rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, size, flags); 548 if (IS_ERR(rb)) 549 goto out_fail; 550 rb->rg_owner = req; 551 552 r_xprt->rx_stats.hardway_register_count += size; 553 rpcrdma_free_regbuf(&r_xprt->rx_ia, req->rl_sendbuf); 554 req->rl_sendbuf = rb; 555 goto out; 556 557 out_fail: 558 rpcrdma_buffer_put(req); 559 r_xprt->rx_stats.failed_marshal_count++; 560 return NULL; 561 } 562 563 /* 564 * This function returns all RDMA resources to the pool. 565 */ 566 static void 567 xprt_rdma_free(void *buffer) 568 { 569 struct rpcrdma_req *req; 570 struct rpcrdma_xprt *r_xprt; 571 struct rpcrdma_regbuf *rb; 572 int i; 573 574 if (buffer == NULL) 575 return; 576 577 rb = container_of(buffer, struct rpcrdma_regbuf, rg_base[0]); 578 req = rb->rg_owner; 579 r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf); 580 581 dprintk("RPC: %s: called on 0x%p\n", __func__, req->rl_reply); 582 583 for (i = 0; req->rl_nchunks;) { 584 --req->rl_nchunks; 585 i += r_xprt->rx_ia.ri_ops->ro_unmap(r_xprt, 586 &req->rl_segments[i]); 587 } 588 589 rpcrdma_buffer_put(req); 590 } 591 592 /* 593 * send_request invokes the meat of RPC RDMA. It must do the following: 594 * 1. Marshal the RPC request into an RPC RDMA request, which means 595 * putting a header in front of data, and creating IOVs for RDMA 596 * from those in the request. 597 * 2. In marshaling, detect opportunities for RDMA, and use them. 598 * 3. Post a recv message to set up asynch completion, then send 599 * the request (rpcrdma_ep_post). 600 * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP). 601 */ 602 603 static int 604 xprt_rdma_send_request(struct rpc_task *task) 605 { 606 struct rpc_rqst *rqst = task->tk_rqstp; 607 struct rpc_xprt *xprt = rqst->rq_xprt; 608 struct rpcrdma_req *req = rpcr_to_rdmar(rqst); 609 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 610 int rc = 0; 611 612 rc = rpcrdma_marshal_req(rqst); 613 if (rc < 0) 614 goto failed_marshal; 615 616 if (req->rl_reply == NULL) /* e.g. reconnection */ 617 rpcrdma_recv_buffer_get(req); 618 619 /* Must suppress retransmit to maintain credits */ 620 if (req->rl_connect_cookie == xprt->connect_cookie) 621 goto drop_connection; 622 req->rl_connect_cookie = xprt->connect_cookie; 623 624 if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req)) 625 goto drop_connection; 626 627 rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len; 628 rqst->rq_bytes_sent = 0; 629 return 0; 630 631 failed_marshal: 632 r_xprt->rx_stats.failed_marshal_count++; 633 dprintk("RPC: %s: rpcrdma_marshal_req failed, status %i\n", 634 __func__, rc); 635 if (rc == -EIO) 636 return -EIO; 637 drop_connection: 638 xprt_disconnect_done(xprt); 639 return -ENOTCONN; /* implies disconnect */ 640 } 641 642 static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 643 { 644 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 645 long idle_time = 0; 646 647 if (xprt_connected(xprt)) 648 idle_time = (long)(jiffies - xprt->last_used) / HZ; 649 650 seq_puts(seq, "\txprt:\trdma "); 651 seq_printf(seq, "%u %lu %lu %lu %ld %lu %lu %lu %llu %llu ", 652 0, /* need a local port? */ 653 xprt->stat.bind_count, 654 xprt->stat.connect_count, 655 xprt->stat.connect_time, 656 idle_time, 657 xprt->stat.sends, 658 xprt->stat.recvs, 659 xprt->stat.bad_xids, 660 xprt->stat.req_u, 661 xprt->stat.bklog_u); 662 seq_printf(seq, "%lu %lu %lu %llu %llu %llu %llu %lu %lu %lu %lu\n", 663 r_xprt->rx_stats.read_chunk_count, 664 r_xprt->rx_stats.write_chunk_count, 665 r_xprt->rx_stats.reply_chunk_count, 666 r_xprt->rx_stats.total_rdma_request, 667 r_xprt->rx_stats.total_rdma_reply, 668 r_xprt->rx_stats.pullup_copy_count, 669 r_xprt->rx_stats.fixup_copy_count, 670 r_xprt->rx_stats.hardway_register_count, 671 r_xprt->rx_stats.failed_marshal_count, 672 r_xprt->rx_stats.bad_reply_count, 673 r_xprt->rx_stats.nomsg_call_count); 674 } 675 676 static int 677 xprt_rdma_enable_swap(struct rpc_xprt *xprt) 678 { 679 return -EINVAL; 680 } 681 682 static void 683 xprt_rdma_disable_swap(struct rpc_xprt *xprt) 684 { 685 } 686 687 /* 688 * Plumbing for rpc transport switch and kernel module 689 */ 690 691 static struct rpc_xprt_ops xprt_rdma_procs = { 692 .reserve_xprt = xprt_reserve_xprt_cong, 693 .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */ 694 .alloc_slot = xprt_alloc_slot, 695 .release_request = xprt_release_rqst_cong, /* ditto */ 696 .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */ 697 .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */ 698 .set_port = xprt_rdma_set_port, 699 .connect = xprt_rdma_connect, 700 .buf_alloc = xprt_rdma_allocate, 701 .buf_free = xprt_rdma_free, 702 .send_request = xprt_rdma_send_request, 703 .close = xprt_rdma_close, 704 .destroy = xprt_rdma_destroy, 705 .print_stats = xprt_rdma_print_stats, 706 .enable_swap = xprt_rdma_enable_swap, 707 .disable_swap = xprt_rdma_disable_swap, 708 .inject_disconnect = xprt_rdma_inject_disconnect 709 }; 710 711 static struct xprt_class xprt_rdma = { 712 .list = LIST_HEAD_INIT(xprt_rdma.list), 713 .name = "rdma", 714 .owner = THIS_MODULE, 715 .ident = XPRT_TRANSPORT_RDMA, 716 .setup = xprt_setup_rdma, 717 }; 718 719 void xprt_rdma_cleanup(void) 720 { 721 int rc; 722 723 dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n"); 724 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 725 if (sunrpc_table_header) { 726 unregister_sysctl_table(sunrpc_table_header); 727 sunrpc_table_header = NULL; 728 } 729 #endif 730 rc = xprt_unregister_transport(&xprt_rdma); 731 if (rc) 732 dprintk("RPC: %s: xprt_unregister returned %i\n", 733 __func__, rc); 734 735 frwr_destroy_recovery_wq(); 736 } 737 738 int xprt_rdma_init(void) 739 { 740 int rc; 741 742 rc = frwr_alloc_recovery_wq(); 743 if (rc) 744 return rc; 745 746 rc = xprt_register_transport(&xprt_rdma); 747 if (rc) { 748 frwr_destroy_recovery_wq(); 749 return rc; 750 } 751 752 dprintk("RPCRDMA Module Init, register RPC RDMA transport\n"); 753 754 dprintk("Defaults:\n"); 755 dprintk("\tSlots %d\n" 756 "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n", 757 xprt_rdma_slot_table_entries, 758 xprt_rdma_max_inline_read, xprt_rdma_max_inline_write); 759 dprintk("\tPadding %d\n\tMemreg %d\n", 760 xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy); 761 762 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 763 if (!sunrpc_table_header) 764 sunrpc_table_header = register_sysctl_table(sunrpc_table); 765 #endif 766 return 0; 767 } 768