1 /* 2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the BSD-type 8 * license below: 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 14 * Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 17 * Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials provided 20 * with the distribution. 21 * 22 * Neither the name of the Network Appliance, Inc. nor the names of 23 * its contributors may be used to endorse or promote products 24 * derived from this software without specific prior written 25 * permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * transport.c 42 * 43 * This file contains the top-level implementation of an RPC RDMA 44 * transport. 45 * 46 * Naming convention: functions beginning with xprt_ are part of the 47 * transport switch. All others are RPC RDMA internal. 48 */ 49 50 #include <linux/module.h> 51 #include <linux/init.h> 52 #include <linux/seq_file.h> 53 54 #include "xprt_rdma.h" 55 56 #ifdef RPC_DEBUG 57 # define RPCDBG_FACILITY RPCDBG_TRANS 58 #endif 59 60 MODULE_LICENSE("Dual BSD/GPL"); 61 62 MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS"); 63 MODULE_AUTHOR("Network Appliance, Inc."); 64 65 /* 66 * tunables 67 */ 68 69 static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE; 70 static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE; 71 static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE; 72 static unsigned int xprt_rdma_inline_write_padding; 73 #if !RPCRDMA_PERSISTENT_REGISTRATION 74 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_REGISTER; /* FMR? */ 75 #else 76 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_ALLPHYSICAL; 77 #endif 78 79 #ifdef RPC_DEBUG 80 81 static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE; 82 static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE; 83 static unsigned int zero; 84 static unsigned int max_padding = PAGE_SIZE; 85 static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS; 86 static unsigned int max_memreg = RPCRDMA_LAST - 1; 87 88 static struct ctl_table_header *sunrpc_table_header; 89 90 static ctl_table xr_tunables_table[] = { 91 { 92 .ctl_name = CTL_UNNUMBERED, 93 .procname = "rdma_slot_table_entries", 94 .data = &xprt_rdma_slot_table_entries, 95 .maxlen = sizeof(unsigned int), 96 .mode = 0644, 97 .proc_handler = &proc_dointvec_minmax, 98 .strategy = &sysctl_intvec, 99 .extra1 = &min_slot_table_size, 100 .extra2 = &max_slot_table_size 101 }, 102 { 103 .ctl_name = CTL_UNNUMBERED, 104 .procname = "rdma_max_inline_read", 105 .data = &xprt_rdma_max_inline_read, 106 .maxlen = sizeof(unsigned int), 107 .mode = 0644, 108 .proc_handler = &proc_dointvec, 109 .strategy = &sysctl_intvec, 110 }, 111 { 112 .ctl_name = CTL_UNNUMBERED, 113 .procname = "rdma_max_inline_write", 114 .data = &xprt_rdma_max_inline_write, 115 .maxlen = sizeof(unsigned int), 116 .mode = 0644, 117 .proc_handler = &proc_dointvec, 118 .strategy = &sysctl_intvec, 119 }, 120 { 121 .ctl_name = CTL_UNNUMBERED, 122 .procname = "rdma_inline_write_padding", 123 .data = &xprt_rdma_inline_write_padding, 124 .maxlen = sizeof(unsigned int), 125 .mode = 0644, 126 .proc_handler = &proc_dointvec_minmax, 127 .strategy = &sysctl_intvec, 128 .extra1 = &zero, 129 .extra2 = &max_padding, 130 }, 131 { 132 .ctl_name = CTL_UNNUMBERED, 133 .procname = "rdma_memreg_strategy", 134 .data = &xprt_rdma_memreg_strategy, 135 .maxlen = sizeof(unsigned int), 136 .mode = 0644, 137 .proc_handler = &proc_dointvec_minmax, 138 .strategy = &sysctl_intvec, 139 .extra1 = &min_memreg, 140 .extra2 = &max_memreg, 141 }, 142 { 143 .ctl_name = 0, 144 }, 145 }; 146 147 static ctl_table sunrpc_table[] = { 148 { 149 .ctl_name = CTL_SUNRPC, 150 .procname = "sunrpc", 151 .mode = 0555, 152 .child = xr_tunables_table 153 }, 154 { 155 .ctl_name = 0, 156 }, 157 }; 158 159 #endif 160 161 static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */ 162 163 static void 164 xprt_rdma_format_addresses(struct rpc_xprt *xprt) 165 { 166 struct sockaddr_in *addr = (struct sockaddr_in *) 167 &rpcx_to_rdmad(xprt).addr; 168 char *buf; 169 170 buf = kzalloc(20, GFP_KERNEL); 171 if (buf) 172 snprintf(buf, 20, NIPQUAD_FMT, NIPQUAD(addr->sin_addr.s_addr)); 173 xprt->address_strings[RPC_DISPLAY_ADDR] = buf; 174 175 buf = kzalloc(8, GFP_KERNEL); 176 if (buf) 177 snprintf(buf, 8, "%u", ntohs(addr->sin_port)); 178 xprt->address_strings[RPC_DISPLAY_PORT] = buf; 179 180 xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma"; 181 182 buf = kzalloc(48, GFP_KERNEL); 183 if (buf) 184 snprintf(buf, 48, "addr="NIPQUAD_FMT" port=%u proto=%s", 185 NIPQUAD(addr->sin_addr.s_addr), 186 ntohs(addr->sin_port), "rdma"); 187 xprt->address_strings[RPC_DISPLAY_ALL] = buf; 188 189 buf = kzalloc(10, GFP_KERNEL); 190 if (buf) 191 snprintf(buf, 10, "%02x%02x%02x%02x", 192 NIPQUAD(addr->sin_addr.s_addr)); 193 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = buf; 194 195 buf = kzalloc(8, GFP_KERNEL); 196 if (buf) 197 snprintf(buf, 8, "%4hx", ntohs(addr->sin_port)); 198 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = buf; 199 200 buf = kzalloc(30, GFP_KERNEL); 201 if (buf) 202 snprintf(buf, 30, NIPQUAD_FMT".%u.%u", 203 NIPQUAD(addr->sin_addr.s_addr), 204 ntohs(addr->sin_port) >> 8, 205 ntohs(addr->sin_port) & 0xff); 206 xprt->address_strings[RPC_DISPLAY_UNIVERSAL_ADDR] = buf; 207 208 /* netid */ 209 xprt->address_strings[RPC_DISPLAY_NETID] = "rdma"; 210 } 211 212 static void 213 xprt_rdma_free_addresses(struct rpc_xprt *xprt) 214 { 215 unsigned int i; 216 217 for (i = 0; i < RPC_DISPLAY_MAX; i++) 218 switch (i) { 219 case RPC_DISPLAY_PROTO: 220 case RPC_DISPLAY_NETID: 221 continue; 222 default: 223 kfree(xprt->address_strings[i]); 224 } 225 } 226 227 static void 228 xprt_rdma_connect_worker(struct work_struct *work) 229 { 230 struct rpcrdma_xprt *r_xprt = 231 container_of(work, struct rpcrdma_xprt, rdma_connect.work); 232 struct rpc_xprt *xprt = &r_xprt->xprt; 233 int rc = 0; 234 235 if (!xprt->shutdown) { 236 xprt_clear_connected(xprt); 237 238 dprintk("RPC: %s: %sconnect\n", __func__, 239 r_xprt->rx_ep.rep_connected != 0 ? "re" : ""); 240 rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia); 241 if (rc) 242 goto out; 243 } 244 goto out_clear; 245 246 out: 247 xprt_wake_pending_tasks(xprt, rc); 248 249 out_clear: 250 dprintk("RPC: %s: exit\n", __func__); 251 xprt_clear_connecting(xprt); 252 } 253 254 /* 255 * xprt_rdma_destroy 256 * 257 * Destroy the xprt. 258 * Free all memory associated with the object, including its own. 259 * NOTE: none of the *destroy methods free memory for their top-level 260 * objects, even though they may have allocated it (they do free 261 * private memory). It's up to the caller to handle it. In this 262 * case (RDMA transport), all structure memory is inlined with the 263 * struct rpcrdma_xprt. 264 */ 265 static void 266 xprt_rdma_destroy(struct rpc_xprt *xprt) 267 { 268 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 269 int rc; 270 271 dprintk("RPC: %s: called\n", __func__); 272 273 cancel_delayed_work(&r_xprt->rdma_connect); 274 flush_scheduled_work(); 275 276 xprt_clear_connected(xprt); 277 278 rpcrdma_buffer_destroy(&r_xprt->rx_buf); 279 rc = rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia); 280 if (rc) 281 dprintk("RPC: %s: rpcrdma_ep_destroy returned %i\n", 282 __func__, rc); 283 rpcrdma_ia_close(&r_xprt->rx_ia); 284 285 xprt_rdma_free_addresses(xprt); 286 287 kfree(xprt->slot); 288 xprt->slot = NULL; 289 kfree(xprt); 290 291 dprintk("RPC: %s: returning\n", __func__); 292 293 module_put(THIS_MODULE); 294 } 295 296 static const struct rpc_timeout xprt_rdma_default_timeout = { 297 .to_initval = 60 * HZ, 298 .to_maxval = 60 * HZ, 299 }; 300 301 /** 302 * xprt_setup_rdma - Set up transport to use RDMA 303 * 304 * @args: rpc transport arguments 305 */ 306 static struct rpc_xprt * 307 xprt_setup_rdma(struct xprt_create *args) 308 { 309 struct rpcrdma_create_data_internal cdata; 310 struct rpc_xprt *xprt; 311 struct rpcrdma_xprt *new_xprt; 312 struct rpcrdma_ep *new_ep; 313 struct sockaddr_in *sin; 314 int rc; 315 316 if (args->addrlen > sizeof(xprt->addr)) { 317 dprintk("RPC: %s: address too large\n", __func__); 318 return ERR_PTR(-EBADF); 319 } 320 321 xprt = kzalloc(sizeof(struct rpcrdma_xprt), GFP_KERNEL); 322 if (xprt == NULL) { 323 dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n", 324 __func__); 325 return ERR_PTR(-ENOMEM); 326 } 327 328 xprt->max_reqs = xprt_rdma_slot_table_entries; 329 xprt->slot = kcalloc(xprt->max_reqs, 330 sizeof(struct rpc_rqst), GFP_KERNEL); 331 if (xprt->slot == NULL) { 332 dprintk("RPC: %s: couldn't allocate %d slots\n", 333 __func__, xprt->max_reqs); 334 kfree(xprt); 335 return ERR_PTR(-ENOMEM); 336 } 337 338 /* 60 second timeout, no retries */ 339 xprt->timeout = &xprt_rdma_default_timeout; 340 xprt->bind_timeout = (60U * HZ); 341 xprt->connect_timeout = (60U * HZ); 342 xprt->reestablish_timeout = (5U * HZ); 343 xprt->idle_timeout = (5U * 60 * HZ); 344 345 xprt->resvport = 0; /* privileged port not needed */ 346 xprt->tsh_size = 0; /* RPC-RDMA handles framing */ 347 xprt->max_payload = RPCRDMA_MAX_DATA_SEGS * PAGE_SIZE; 348 xprt->ops = &xprt_rdma_procs; 349 350 /* 351 * Set up RDMA-specific connect data. 352 */ 353 354 /* Put server RDMA address in local cdata */ 355 memcpy(&cdata.addr, args->dstaddr, args->addrlen); 356 357 /* Ensure xprt->addr holds valid server TCP (not RDMA) 358 * address, for any side protocols which peek at it */ 359 xprt->prot = IPPROTO_TCP; 360 xprt->addrlen = args->addrlen; 361 memcpy(&xprt->addr, &cdata.addr, xprt->addrlen); 362 363 sin = (struct sockaddr_in *)&cdata.addr; 364 if (ntohs(sin->sin_port) != 0) 365 xprt_set_bound(xprt); 366 367 dprintk("RPC: %s: %u.%u.%u.%u:%u\n", __func__, 368 NIPQUAD(sin->sin_addr.s_addr), ntohs(sin->sin_port)); 369 370 /* Set max requests */ 371 cdata.max_requests = xprt->max_reqs; 372 373 /* Set some length limits */ 374 cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */ 375 cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */ 376 377 cdata.inline_wsize = xprt_rdma_max_inline_write; 378 if (cdata.inline_wsize > cdata.wsize) 379 cdata.inline_wsize = cdata.wsize; 380 381 cdata.inline_rsize = xprt_rdma_max_inline_read; 382 if (cdata.inline_rsize > cdata.rsize) 383 cdata.inline_rsize = cdata.rsize; 384 385 cdata.padding = xprt_rdma_inline_write_padding; 386 387 /* 388 * Create new transport instance, which includes initialized 389 * o ia 390 * o endpoint 391 * o buffers 392 */ 393 394 new_xprt = rpcx_to_rdmax(xprt); 395 396 rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr, 397 xprt_rdma_memreg_strategy); 398 if (rc) 399 goto out1; 400 401 /* 402 * initialize and create ep 403 */ 404 new_xprt->rx_data = cdata; 405 new_ep = &new_xprt->rx_ep; 406 new_ep->rep_remote_addr = cdata.addr; 407 408 rc = rpcrdma_ep_create(&new_xprt->rx_ep, 409 &new_xprt->rx_ia, &new_xprt->rx_data); 410 if (rc) 411 goto out2; 412 413 /* 414 * Allocate pre-registered send and receive buffers for headers and 415 * any inline data. Also specify any padding which will be provided 416 * from a preregistered zero buffer. 417 */ 418 rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia, 419 &new_xprt->rx_data); 420 if (rc) 421 goto out3; 422 423 /* 424 * Register a callback for connection events. This is necessary because 425 * connection loss notification is async. We also catch connection loss 426 * when reaping receives. 427 */ 428 INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker); 429 new_ep->rep_func = rpcrdma_conn_func; 430 new_ep->rep_xprt = xprt; 431 432 xprt_rdma_format_addresses(xprt); 433 434 if (!try_module_get(THIS_MODULE)) 435 goto out4; 436 437 return xprt; 438 439 out4: 440 xprt_rdma_free_addresses(xprt); 441 rc = -EINVAL; 442 out3: 443 (void) rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia); 444 out2: 445 rpcrdma_ia_close(&new_xprt->rx_ia); 446 out1: 447 kfree(xprt->slot); 448 kfree(xprt); 449 return ERR_PTR(rc); 450 } 451 452 /* 453 * Close a connection, during shutdown or timeout/reconnect 454 */ 455 static void 456 xprt_rdma_close(struct rpc_xprt *xprt) 457 { 458 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 459 460 dprintk("RPC: %s: closing\n", __func__); 461 xprt_disconnect_done(xprt); 462 (void) rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia); 463 } 464 465 static void 466 xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port) 467 { 468 struct sockaddr_in *sap; 469 470 sap = (struct sockaddr_in *)&xprt->addr; 471 sap->sin_port = htons(port); 472 sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr; 473 sap->sin_port = htons(port); 474 dprintk("RPC: %s: %u\n", __func__, port); 475 } 476 477 static void 478 xprt_rdma_connect(struct rpc_task *task) 479 { 480 struct rpc_xprt *xprt = (struct rpc_xprt *)task->tk_xprt; 481 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 482 483 if (!xprt_test_and_set_connecting(xprt)) { 484 if (r_xprt->rx_ep.rep_connected != 0) { 485 /* Reconnect */ 486 schedule_delayed_work(&r_xprt->rdma_connect, 487 xprt->reestablish_timeout); 488 } else { 489 schedule_delayed_work(&r_xprt->rdma_connect, 0); 490 if (!RPC_IS_ASYNC(task)) 491 flush_scheduled_work(); 492 } 493 } 494 } 495 496 static int 497 xprt_rdma_reserve_xprt(struct rpc_task *task) 498 { 499 struct rpc_xprt *xprt = task->tk_xprt; 500 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 501 int credits = atomic_read(&r_xprt->rx_buf.rb_credits); 502 503 /* == RPC_CWNDSCALE @ init, but *after* setup */ 504 if (r_xprt->rx_buf.rb_cwndscale == 0UL) { 505 r_xprt->rx_buf.rb_cwndscale = xprt->cwnd; 506 dprintk("RPC: %s: cwndscale %lu\n", __func__, 507 r_xprt->rx_buf.rb_cwndscale); 508 BUG_ON(r_xprt->rx_buf.rb_cwndscale <= 0); 509 } 510 xprt->cwnd = credits * r_xprt->rx_buf.rb_cwndscale; 511 return xprt_reserve_xprt_cong(task); 512 } 513 514 /* 515 * The RDMA allocate/free functions need the task structure as a place 516 * to hide the struct rpcrdma_req, which is necessary for the actual send/recv 517 * sequence. For this reason, the recv buffers are attached to send 518 * buffers for portions of the RPC. Note that the RPC layer allocates 519 * both send and receive buffers in the same call. We may register 520 * the receive buffer portion when using reply chunks. 521 */ 522 static void * 523 xprt_rdma_allocate(struct rpc_task *task, size_t size) 524 { 525 struct rpc_xprt *xprt = task->tk_xprt; 526 struct rpcrdma_req *req, *nreq; 527 528 req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf); 529 BUG_ON(NULL == req); 530 531 if (size > req->rl_size) { 532 dprintk("RPC: %s: size %zd too large for buffer[%zd]: " 533 "prog %d vers %d proc %d\n", 534 __func__, size, req->rl_size, 535 task->tk_client->cl_prog, task->tk_client->cl_vers, 536 task->tk_msg.rpc_proc->p_proc); 537 /* 538 * Outgoing length shortage. Our inline write max must have 539 * been configured to perform direct i/o. 540 * 541 * This is therefore a large metadata operation, and the 542 * allocate call was made on the maximum possible message, 543 * e.g. containing long filename(s) or symlink data. In 544 * fact, while these metadata operations *might* carry 545 * large outgoing payloads, they rarely *do*. However, we 546 * have to commit to the request here, so reallocate and 547 * register it now. The data path will never require this 548 * reallocation. 549 * 550 * If the allocation or registration fails, the RPC framework 551 * will (doggedly) retry. 552 */ 553 if (rpcx_to_rdmax(xprt)->rx_ia.ri_memreg_strategy == 554 RPCRDMA_BOUNCEBUFFERS) { 555 /* forced to "pure inline" */ 556 dprintk("RPC: %s: too much data (%zd) for inline " 557 "(r/w max %d/%d)\n", __func__, size, 558 rpcx_to_rdmad(xprt).inline_rsize, 559 rpcx_to_rdmad(xprt).inline_wsize); 560 size = req->rl_size; 561 rpc_exit(task, -EIO); /* fail the operation */ 562 rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++; 563 goto out; 564 } 565 if (task->tk_flags & RPC_TASK_SWAPPER) 566 nreq = kmalloc(sizeof *req + size, GFP_ATOMIC); 567 else 568 nreq = kmalloc(sizeof *req + size, GFP_NOFS); 569 if (nreq == NULL) 570 goto outfail; 571 572 if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia, 573 nreq->rl_base, size + sizeof(struct rpcrdma_req) 574 - offsetof(struct rpcrdma_req, rl_base), 575 &nreq->rl_handle, &nreq->rl_iov)) { 576 kfree(nreq); 577 goto outfail; 578 } 579 rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size; 580 nreq->rl_size = size; 581 nreq->rl_niovs = 0; 582 nreq->rl_nchunks = 0; 583 nreq->rl_buffer = (struct rpcrdma_buffer *)req; 584 nreq->rl_reply = req->rl_reply; 585 memcpy(nreq->rl_segments, 586 req->rl_segments, sizeof nreq->rl_segments); 587 /* flag the swap with an unused field */ 588 nreq->rl_iov.length = 0; 589 req->rl_reply = NULL; 590 req = nreq; 591 } 592 dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req); 593 out: 594 return req->rl_xdr_buf; 595 596 outfail: 597 rpcrdma_buffer_put(req); 598 rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++; 599 return NULL; 600 } 601 602 /* 603 * This function returns all RDMA resources to the pool. 604 */ 605 static void 606 xprt_rdma_free(void *buffer) 607 { 608 struct rpcrdma_req *req; 609 struct rpcrdma_xprt *r_xprt; 610 struct rpcrdma_rep *rep; 611 int i; 612 613 if (buffer == NULL) 614 return; 615 616 req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]); 617 if (req->rl_iov.length == 0) { /* see allocate above */ 618 r_xprt = container_of(((struct rpcrdma_req *) req->rl_buffer)->rl_buffer, 619 struct rpcrdma_xprt, rx_buf); 620 } else 621 r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf); 622 rep = req->rl_reply; 623 624 dprintk("RPC: %s: called on 0x%p%s\n", 625 __func__, rep, (rep && rep->rr_func) ? " (with waiter)" : ""); 626 627 /* 628 * Finish the deregistration. When using mw bind, this was 629 * begun in rpcrdma_reply_handler(). In all other modes, we 630 * do it here, in thread context. The process is considered 631 * complete when the rr_func vector becomes NULL - this 632 * was put in place during rpcrdma_reply_handler() - the wait 633 * call below will not block if the dereg is "done". If 634 * interrupted, our framework will clean up. 635 */ 636 for (i = 0; req->rl_nchunks;) { 637 --req->rl_nchunks; 638 i += rpcrdma_deregister_external( 639 &req->rl_segments[i], r_xprt, NULL); 640 } 641 642 if (rep && wait_event_interruptible(rep->rr_unbind, !rep->rr_func)) { 643 rep->rr_func = NULL; /* abandon the callback */ 644 req->rl_reply = NULL; 645 } 646 647 if (req->rl_iov.length == 0) { /* see allocate above */ 648 struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer; 649 oreq->rl_reply = req->rl_reply; 650 (void) rpcrdma_deregister_internal(&r_xprt->rx_ia, 651 req->rl_handle, 652 &req->rl_iov); 653 kfree(req); 654 req = oreq; 655 } 656 657 /* Put back request+reply buffers */ 658 rpcrdma_buffer_put(req); 659 } 660 661 /* 662 * send_request invokes the meat of RPC RDMA. It must do the following: 663 * 1. Marshal the RPC request into an RPC RDMA request, which means 664 * putting a header in front of data, and creating IOVs for RDMA 665 * from those in the request. 666 * 2. In marshaling, detect opportunities for RDMA, and use them. 667 * 3. Post a recv message to set up asynch completion, then send 668 * the request (rpcrdma_ep_post). 669 * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP). 670 */ 671 672 static int 673 xprt_rdma_send_request(struct rpc_task *task) 674 { 675 struct rpc_rqst *rqst = task->tk_rqstp; 676 struct rpc_xprt *xprt = task->tk_xprt; 677 struct rpcrdma_req *req = rpcr_to_rdmar(rqst); 678 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 679 680 /* marshal the send itself */ 681 if (req->rl_niovs == 0 && rpcrdma_marshal_req(rqst) != 0) { 682 r_xprt->rx_stats.failed_marshal_count++; 683 dprintk("RPC: %s: rpcrdma_marshal_req failed\n", 684 __func__); 685 return -EIO; 686 } 687 688 if (req->rl_reply == NULL) /* e.g. reconnection */ 689 rpcrdma_recv_buffer_get(req); 690 691 if (req->rl_reply) { 692 req->rl_reply->rr_func = rpcrdma_reply_handler; 693 /* this need only be done once, but... */ 694 req->rl_reply->rr_xprt = xprt; 695 } 696 697 if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req)) { 698 xprt_disconnect_done(xprt); 699 return -ENOTCONN; /* implies disconnect */ 700 } 701 702 rqst->rq_bytes_sent = 0; 703 return 0; 704 } 705 706 static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 707 { 708 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 709 long idle_time = 0; 710 711 if (xprt_connected(xprt)) 712 idle_time = (long)(jiffies - xprt->last_used) / HZ; 713 714 seq_printf(seq, 715 "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu " 716 "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n", 717 718 0, /* need a local port? */ 719 xprt->stat.bind_count, 720 xprt->stat.connect_count, 721 xprt->stat.connect_time, 722 idle_time, 723 xprt->stat.sends, 724 xprt->stat.recvs, 725 xprt->stat.bad_xids, 726 xprt->stat.req_u, 727 xprt->stat.bklog_u, 728 729 r_xprt->rx_stats.read_chunk_count, 730 r_xprt->rx_stats.write_chunk_count, 731 r_xprt->rx_stats.reply_chunk_count, 732 r_xprt->rx_stats.total_rdma_request, 733 r_xprt->rx_stats.total_rdma_reply, 734 r_xprt->rx_stats.pullup_copy_count, 735 r_xprt->rx_stats.fixup_copy_count, 736 r_xprt->rx_stats.hardway_register_count, 737 r_xprt->rx_stats.failed_marshal_count, 738 r_xprt->rx_stats.bad_reply_count); 739 } 740 741 /* 742 * Plumbing for rpc transport switch and kernel module 743 */ 744 745 static struct rpc_xprt_ops xprt_rdma_procs = { 746 .reserve_xprt = xprt_rdma_reserve_xprt, 747 .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */ 748 .release_request = xprt_release_rqst_cong, /* ditto */ 749 .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */ 750 .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */ 751 .set_port = xprt_rdma_set_port, 752 .connect = xprt_rdma_connect, 753 .buf_alloc = xprt_rdma_allocate, 754 .buf_free = xprt_rdma_free, 755 .send_request = xprt_rdma_send_request, 756 .close = xprt_rdma_close, 757 .destroy = xprt_rdma_destroy, 758 .print_stats = xprt_rdma_print_stats 759 }; 760 761 static struct xprt_class xprt_rdma = { 762 .list = LIST_HEAD_INIT(xprt_rdma.list), 763 .name = "rdma", 764 .owner = THIS_MODULE, 765 .ident = XPRT_TRANSPORT_RDMA, 766 .setup = xprt_setup_rdma, 767 }; 768 769 static void __exit xprt_rdma_cleanup(void) 770 { 771 int rc; 772 773 dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n"); 774 #ifdef RPC_DEBUG 775 if (sunrpc_table_header) { 776 unregister_sysctl_table(sunrpc_table_header); 777 sunrpc_table_header = NULL; 778 } 779 #endif 780 rc = xprt_unregister_transport(&xprt_rdma); 781 if (rc) 782 dprintk("RPC: %s: xprt_unregister returned %i\n", 783 __func__, rc); 784 } 785 786 static int __init xprt_rdma_init(void) 787 { 788 int rc; 789 790 rc = xprt_register_transport(&xprt_rdma); 791 792 if (rc) 793 return rc; 794 795 dprintk(KERN_INFO "RPCRDMA Module Init, register RPC RDMA transport\n"); 796 797 dprintk(KERN_INFO "Defaults:\n"); 798 dprintk(KERN_INFO "\tSlots %d\n" 799 "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n", 800 xprt_rdma_slot_table_entries, 801 xprt_rdma_max_inline_read, xprt_rdma_max_inline_write); 802 dprintk(KERN_INFO "\tPadding %d\n\tMemreg %d\n", 803 xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy); 804 805 #ifdef RPC_DEBUG 806 if (!sunrpc_table_header) 807 sunrpc_table_header = register_sysctl_table(sunrpc_table); 808 #endif 809 return 0; 810 } 811 812 module_init(xprt_rdma_init); 813 module_exit(xprt_rdma_cleanup); 814