xref: /openbmc/linux/net/sunrpc/xprtrdma/transport.c (revision 9125f19b)
1 /*
2  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  *      Redistributions of source code must retain the above copyright
15  *      notice, this list of conditions and the following disclaimer.
16  *
17  *      Redistributions in binary form must reproduce the above
18  *      copyright notice, this list of conditions and the following
19  *      disclaimer in the documentation and/or other materials provided
20  *      with the distribution.
21  *
22  *      Neither the name of the Network Appliance, Inc. nor the names of
23  *      its contributors may be used to endorse or promote products
24  *      derived from this software without specific prior written
25  *      permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * transport.c
42  *
43  * This file contains the top-level implementation of an RPC RDMA
44  * transport.
45  *
46  * Naming convention: functions beginning with xprt_ are part of the
47  * transport switch. All others are RPC RDMA internal.
48  */
49 
50 #include <linux/module.h>
51 #include <linux/slab.h>
52 #include <linux/seq_file.h>
53 #include <linux/sunrpc/addr.h>
54 
55 #include "xprt_rdma.h"
56 
57 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
58 # define RPCDBG_FACILITY	RPCDBG_TRANS
59 #endif
60 
61 /*
62  * tunables
63  */
64 
65 static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
66 unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
67 static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
68 static unsigned int xprt_rdma_inline_write_padding;
69 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR;
70 		int xprt_rdma_pad_optimize = 1;
71 
72 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
73 
74 static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
75 static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
76 static unsigned int zero;
77 static unsigned int max_padding = PAGE_SIZE;
78 static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
79 static unsigned int max_memreg = RPCRDMA_LAST - 1;
80 
81 static struct ctl_table_header *sunrpc_table_header;
82 
83 static struct ctl_table xr_tunables_table[] = {
84 	{
85 		.procname	= "rdma_slot_table_entries",
86 		.data		= &xprt_rdma_slot_table_entries,
87 		.maxlen		= sizeof(unsigned int),
88 		.mode		= 0644,
89 		.proc_handler	= proc_dointvec_minmax,
90 		.extra1		= &min_slot_table_size,
91 		.extra2		= &max_slot_table_size
92 	},
93 	{
94 		.procname	= "rdma_max_inline_read",
95 		.data		= &xprt_rdma_max_inline_read,
96 		.maxlen		= sizeof(unsigned int),
97 		.mode		= 0644,
98 		.proc_handler	= proc_dointvec,
99 	},
100 	{
101 		.procname	= "rdma_max_inline_write",
102 		.data		= &xprt_rdma_max_inline_write,
103 		.maxlen		= sizeof(unsigned int),
104 		.mode		= 0644,
105 		.proc_handler	= proc_dointvec,
106 	},
107 	{
108 		.procname	= "rdma_inline_write_padding",
109 		.data		= &xprt_rdma_inline_write_padding,
110 		.maxlen		= sizeof(unsigned int),
111 		.mode		= 0644,
112 		.proc_handler	= proc_dointvec_minmax,
113 		.extra1		= &zero,
114 		.extra2		= &max_padding,
115 	},
116 	{
117 		.procname	= "rdma_memreg_strategy",
118 		.data		= &xprt_rdma_memreg_strategy,
119 		.maxlen		= sizeof(unsigned int),
120 		.mode		= 0644,
121 		.proc_handler	= proc_dointvec_minmax,
122 		.extra1		= &min_memreg,
123 		.extra2		= &max_memreg,
124 	},
125 	{
126 		.procname	= "rdma_pad_optimize",
127 		.data		= &xprt_rdma_pad_optimize,
128 		.maxlen		= sizeof(unsigned int),
129 		.mode		= 0644,
130 		.proc_handler	= proc_dointvec,
131 	},
132 	{ },
133 };
134 
135 static struct ctl_table sunrpc_table[] = {
136 	{
137 		.procname	= "sunrpc",
138 		.mode		= 0555,
139 		.child		= xr_tunables_table
140 	},
141 	{ },
142 };
143 
144 #endif
145 
146 static struct rpc_xprt_ops xprt_rdma_procs;	/*forward reference */
147 
148 static void
149 xprt_rdma_format_addresses4(struct rpc_xprt *xprt, struct sockaddr *sap)
150 {
151 	struct sockaddr_in *sin = (struct sockaddr_in *)sap;
152 	char buf[20];
153 
154 	snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
155 	xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
156 
157 	xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA;
158 }
159 
160 static void
161 xprt_rdma_format_addresses6(struct rpc_xprt *xprt, struct sockaddr *sap)
162 {
163 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sap;
164 	char buf[40];
165 
166 	snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr);
167 	xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
168 
169 	xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA6;
170 }
171 
172 void
173 xprt_rdma_format_addresses(struct rpc_xprt *xprt, struct sockaddr *sap)
174 {
175 	char buf[128];
176 
177 	switch (sap->sa_family) {
178 	case AF_INET:
179 		xprt_rdma_format_addresses4(xprt, sap);
180 		break;
181 	case AF_INET6:
182 		xprt_rdma_format_addresses6(xprt, sap);
183 		break;
184 	default:
185 		pr_err("rpcrdma: Unrecognized address family\n");
186 		return;
187 	}
188 
189 	(void)rpc_ntop(sap, buf, sizeof(buf));
190 	xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
191 
192 	snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
193 	xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
194 
195 	snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
196 	xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
197 
198 	xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
199 }
200 
201 void
202 xprt_rdma_free_addresses(struct rpc_xprt *xprt)
203 {
204 	unsigned int i;
205 
206 	for (i = 0; i < RPC_DISPLAY_MAX; i++)
207 		switch (i) {
208 		case RPC_DISPLAY_PROTO:
209 		case RPC_DISPLAY_NETID:
210 			continue;
211 		default:
212 			kfree(xprt->address_strings[i]);
213 		}
214 }
215 
216 static void
217 xprt_rdma_connect_worker(struct work_struct *work)
218 {
219 	struct rpcrdma_xprt *r_xprt = container_of(work, struct rpcrdma_xprt,
220 						   rx_connect_worker.work);
221 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
222 	int rc = 0;
223 
224 	xprt_clear_connected(xprt);
225 
226 	dprintk("RPC:       %s: %sconnect\n", __func__,
227 			r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
228 	rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
229 	if (rc)
230 		xprt_wake_pending_tasks(xprt, rc);
231 
232 	dprintk("RPC:       %s: exit\n", __func__);
233 	xprt_clear_connecting(xprt);
234 }
235 
236 static void
237 xprt_rdma_inject_disconnect(struct rpc_xprt *xprt)
238 {
239 	struct rpcrdma_xprt *r_xprt = container_of(xprt, struct rpcrdma_xprt,
240 						   rx_xprt);
241 
242 	pr_info("rpcrdma: injecting transport disconnect on xprt=%p\n", xprt);
243 	rdma_disconnect(r_xprt->rx_ia.ri_id);
244 }
245 
246 /*
247  * xprt_rdma_destroy
248  *
249  * Destroy the xprt.
250  * Free all memory associated with the object, including its own.
251  * NOTE: none of the *destroy methods free memory for their top-level
252  * objects, even though they may have allocated it (they do free
253  * private memory). It's up to the caller to handle it. In this
254  * case (RDMA transport), all structure memory is inlined with the
255  * struct rpcrdma_xprt.
256  */
257 static void
258 xprt_rdma_destroy(struct rpc_xprt *xprt)
259 {
260 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
261 
262 	dprintk("RPC:       %s: called\n", __func__);
263 
264 	cancel_delayed_work_sync(&r_xprt->rx_connect_worker);
265 
266 	xprt_clear_connected(xprt);
267 
268 	rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
269 	rpcrdma_buffer_destroy(&r_xprt->rx_buf);
270 	rpcrdma_ia_close(&r_xprt->rx_ia);
271 
272 	xprt_rdma_free_addresses(xprt);
273 
274 	xprt_free(xprt);
275 
276 	dprintk("RPC:       %s: returning\n", __func__);
277 
278 	module_put(THIS_MODULE);
279 }
280 
281 static const struct rpc_timeout xprt_rdma_default_timeout = {
282 	.to_initval = 60 * HZ,
283 	.to_maxval = 60 * HZ,
284 };
285 
286 /**
287  * xprt_setup_rdma - Set up transport to use RDMA
288  *
289  * @args: rpc transport arguments
290  */
291 static struct rpc_xprt *
292 xprt_setup_rdma(struct xprt_create *args)
293 {
294 	struct rpcrdma_create_data_internal cdata;
295 	struct rpc_xprt *xprt;
296 	struct rpcrdma_xprt *new_xprt;
297 	struct rpcrdma_ep *new_ep;
298 	struct sockaddr *sap;
299 	int rc;
300 
301 	if (args->addrlen > sizeof(xprt->addr)) {
302 		dprintk("RPC:       %s: address too large\n", __func__);
303 		return ERR_PTR(-EBADF);
304 	}
305 
306 	xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt),
307 			xprt_rdma_slot_table_entries,
308 			xprt_rdma_slot_table_entries);
309 	if (xprt == NULL) {
310 		dprintk("RPC:       %s: couldn't allocate rpcrdma_xprt\n",
311 			__func__);
312 		return ERR_PTR(-ENOMEM);
313 	}
314 
315 	/* 60 second timeout, no retries */
316 	xprt->timeout = &xprt_rdma_default_timeout;
317 	xprt->bind_timeout = RPCRDMA_BIND_TO;
318 	xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
319 	xprt->idle_timeout = RPCRDMA_IDLE_DISC_TO;
320 
321 	xprt->resvport = 0;		/* privileged port not needed */
322 	xprt->tsh_size = 0;		/* RPC-RDMA handles framing */
323 	xprt->ops = &xprt_rdma_procs;
324 
325 	/*
326 	 * Set up RDMA-specific connect data.
327 	 */
328 
329 	sap = (struct sockaddr *)&cdata.addr;
330 	memcpy(sap, args->dstaddr, args->addrlen);
331 
332 	/* Ensure xprt->addr holds valid server TCP (not RDMA)
333 	 * address, for any side protocols which peek at it */
334 	xprt->prot = IPPROTO_TCP;
335 	xprt->addrlen = args->addrlen;
336 	memcpy(&xprt->addr, sap, xprt->addrlen);
337 
338 	if (rpc_get_port(sap))
339 		xprt_set_bound(xprt);
340 
341 	cdata.max_requests = xprt->max_reqs;
342 
343 	cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
344 	cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
345 
346 	cdata.inline_wsize = xprt_rdma_max_inline_write;
347 	if (cdata.inline_wsize > cdata.wsize)
348 		cdata.inline_wsize = cdata.wsize;
349 
350 	cdata.inline_rsize = xprt_rdma_max_inline_read;
351 	if (cdata.inline_rsize > cdata.rsize)
352 		cdata.inline_rsize = cdata.rsize;
353 
354 	cdata.padding = xprt_rdma_inline_write_padding;
355 
356 	/*
357 	 * Create new transport instance, which includes initialized
358 	 *  o ia
359 	 *  o endpoint
360 	 *  o buffers
361 	 */
362 
363 	new_xprt = rpcx_to_rdmax(xprt);
364 
365 	rc = rpcrdma_ia_open(new_xprt, sap, xprt_rdma_memreg_strategy);
366 	if (rc)
367 		goto out1;
368 
369 	/*
370 	 * initialize and create ep
371 	 */
372 	new_xprt->rx_data = cdata;
373 	new_ep = &new_xprt->rx_ep;
374 	new_ep->rep_remote_addr = cdata.addr;
375 
376 	rc = rpcrdma_ep_create(&new_xprt->rx_ep,
377 				&new_xprt->rx_ia, &new_xprt->rx_data);
378 	if (rc)
379 		goto out2;
380 
381 	/*
382 	 * Allocate pre-registered send and receive buffers for headers and
383 	 * any inline data. Also specify any padding which will be provided
384 	 * from a preregistered zero buffer.
385 	 */
386 	rc = rpcrdma_buffer_create(new_xprt);
387 	if (rc)
388 		goto out3;
389 
390 	/*
391 	 * Register a callback for connection events. This is necessary because
392 	 * connection loss notification is async. We also catch connection loss
393 	 * when reaping receives.
394 	 */
395 	INIT_DELAYED_WORK(&new_xprt->rx_connect_worker,
396 			  xprt_rdma_connect_worker);
397 
398 	xprt_rdma_format_addresses(xprt, sap);
399 	xprt->max_payload = new_xprt->rx_ia.ri_ops->ro_maxpages(new_xprt);
400 	if (xprt->max_payload == 0)
401 		goto out4;
402 	xprt->max_payload <<= PAGE_SHIFT;
403 	dprintk("RPC:       %s: transport data payload maximum: %zu bytes\n",
404 		__func__, xprt->max_payload);
405 
406 	if (!try_module_get(THIS_MODULE))
407 		goto out4;
408 
409 	dprintk("RPC:       %s: %s:%s\n", __func__,
410 		xprt->address_strings[RPC_DISPLAY_ADDR],
411 		xprt->address_strings[RPC_DISPLAY_PORT]);
412 	return xprt;
413 
414 out4:
415 	xprt_rdma_free_addresses(xprt);
416 	rc = -EINVAL;
417 out3:
418 	rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
419 out2:
420 	rpcrdma_ia_close(&new_xprt->rx_ia);
421 out1:
422 	xprt_free(xprt);
423 	return ERR_PTR(rc);
424 }
425 
426 /*
427  * Close a connection, during shutdown or timeout/reconnect
428  */
429 static void
430 xprt_rdma_close(struct rpc_xprt *xprt)
431 {
432 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
433 
434 	dprintk("RPC:       %s: closing\n", __func__);
435 	if (r_xprt->rx_ep.rep_connected > 0)
436 		xprt->reestablish_timeout = 0;
437 	xprt_disconnect_done(xprt);
438 	rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia);
439 }
440 
441 static void
442 xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
443 {
444 	struct sockaddr_in *sap;
445 
446 	sap = (struct sockaddr_in *)&xprt->addr;
447 	sap->sin_port = htons(port);
448 	sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
449 	sap->sin_port = htons(port);
450 	dprintk("RPC:       %s: %u\n", __func__, port);
451 }
452 
453 static void
454 xprt_rdma_connect(struct rpc_xprt *xprt, struct rpc_task *task)
455 {
456 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
457 
458 	if (r_xprt->rx_ep.rep_connected != 0) {
459 		/* Reconnect */
460 		schedule_delayed_work(&r_xprt->rx_connect_worker,
461 				      xprt->reestablish_timeout);
462 		xprt->reestablish_timeout <<= 1;
463 		if (xprt->reestablish_timeout > RPCRDMA_MAX_REEST_TO)
464 			xprt->reestablish_timeout = RPCRDMA_MAX_REEST_TO;
465 		else if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
466 			xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
467 	} else {
468 		schedule_delayed_work(&r_xprt->rx_connect_worker, 0);
469 		if (!RPC_IS_ASYNC(task))
470 			flush_delayed_work(&r_xprt->rx_connect_worker);
471 	}
472 }
473 
474 /*
475  * The RDMA allocate/free functions need the task structure as a place
476  * to hide the struct rpcrdma_req, which is necessary for the actual send/recv
477  * sequence.
478  *
479  * The RPC layer allocates both send and receive buffers in the same call
480  * (rq_send_buf and rq_rcv_buf are both part of a single contiguous buffer).
481  * We may register rq_rcv_buf when using reply chunks.
482  */
483 static void *
484 xprt_rdma_allocate(struct rpc_task *task, size_t size)
485 {
486 	struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
487 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
488 	struct rpcrdma_regbuf *rb;
489 	struct rpcrdma_req *req;
490 	size_t min_size;
491 	gfp_t flags;
492 
493 	req = rpcrdma_buffer_get(&r_xprt->rx_buf);
494 	if (req == NULL)
495 		return NULL;
496 
497 	flags = RPCRDMA_DEF_GFP;
498 	if (RPC_IS_SWAPPER(task))
499 		flags = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
500 
501 	if (req->rl_rdmabuf == NULL)
502 		goto out_rdmabuf;
503 	if (req->rl_sendbuf == NULL)
504 		goto out_sendbuf;
505 	if (size > req->rl_sendbuf->rg_size)
506 		goto out_sendbuf;
507 
508 out:
509 	dprintk("RPC:       %s: size %zd, request 0x%p\n", __func__, size, req);
510 	req->rl_connect_cookie = 0;	/* our reserved value */
511 	return req->rl_sendbuf->rg_base;
512 
513 out_rdmabuf:
514 	min_size = RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp);
515 	rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, min_size, flags);
516 	if (IS_ERR(rb))
517 		goto out_fail;
518 	req->rl_rdmabuf = rb;
519 
520 out_sendbuf:
521 	/* XDR encoding and RPC/RDMA marshaling of this request has not
522 	 * yet occurred. Thus a lower bound is needed to prevent buffer
523 	 * overrun during marshaling.
524 	 *
525 	 * RPC/RDMA marshaling may choose to send payload bearing ops
526 	 * inline, if the result is smaller than the inline threshold.
527 	 * The value of the "size" argument accounts for header
528 	 * requirements but not for the payload in these cases.
529 	 *
530 	 * Likewise, allocate enough space to receive a reply up to the
531 	 * size of the inline threshold.
532 	 *
533 	 * It's unlikely that both the send header and the received
534 	 * reply will be large, but slush is provided here to allow
535 	 * flexibility when marshaling.
536 	 */
537 	min_size = RPCRDMA_INLINE_READ_THRESHOLD(task->tk_rqstp);
538 	min_size += RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp);
539 	if (size < min_size)
540 		size = min_size;
541 
542 	rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, size, flags);
543 	if (IS_ERR(rb))
544 		goto out_fail;
545 	rb->rg_owner = req;
546 
547 	r_xprt->rx_stats.hardway_register_count += size;
548 	rpcrdma_free_regbuf(&r_xprt->rx_ia, req->rl_sendbuf);
549 	req->rl_sendbuf = rb;
550 	goto out;
551 
552 out_fail:
553 	rpcrdma_buffer_put(req);
554 	r_xprt->rx_stats.failed_marshal_count++;
555 	return NULL;
556 }
557 
558 /*
559  * This function returns all RDMA resources to the pool.
560  */
561 static void
562 xprt_rdma_free(void *buffer)
563 {
564 	struct rpcrdma_req *req;
565 	struct rpcrdma_xprt *r_xprt;
566 	struct rpcrdma_regbuf *rb;
567 	int i;
568 
569 	if (buffer == NULL)
570 		return;
571 
572 	rb = container_of(buffer, struct rpcrdma_regbuf, rg_base[0]);
573 	req = rb->rg_owner;
574 	if (req->rl_backchannel)
575 		return;
576 
577 	r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf);
578 
579 	dprintk("RPC:       %s: called on 0x%p\n", __func__, req->rl_reply);
580 
581 	for (i = 0; req->rl_nchunks;) {
582 		--req->rl_nchunks;
583 		i += r_xprt->rx_ia.ri_ops->ro_unmap(r_xprt,
584 						    &req->rl_segments[i]);
585 	}
586 
587 	rpcrdma_buffer_put(req);
588 }
589 
590 /*
591  * send_request invokes the meat of RPC RDMA. It must do the following:
592  *  1.  Marshal the RPC request into an RPC RDMA request, which means
593  *	putting a header in front of data, and creating IOVs for RDMA
594  *	from those in the request.
595  *  2.  In marshaling, detect opportunities for RDMA, and use them.
596  *  3.  Post a recv message to set up asynch completion, then send
597  *	the request (rpcrdma_ep_post).
598  *  4.  No partial sends are possible in the RPC-RDMA protocol (as in UDP).
599  */
600 
601 static int
602 xprt_rdma_send_request(struct rpc_task *task)
603 {
604 	struct rpc_rqst *rqst = task->tk_rqstp;
605 	struct rpc_xprt *xprt = rqst->rq_xprt;
606 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
607 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
608 	int rc = 0;
609 
610 	rc = rpcrdma_marshal_req(rqst);
611 	if (rc < 0)
612 		goto failed_marshal;
613 
614 	if (req->rl_reply == NULL) 		/* e.g. reconnection */
615 		rpcrdma_recv_buffer_get(req);
616 
617 	/* Must suppress retransmit to maintain credits */
618 	if (req->rl_connect_cookie == xprt->connect_cookie)
619 		goto drop_connection;
620 	req->rl_connect_cookie = xprt->connect_cookie;
621 
622 	if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
623 		goto drop_connection;
624 
625 	rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len;
626 	rqst->rq_bytes_sent = 0;
627 	return 0;
628 
629 failed_marshal:
630 	r_xprt->rx_stats.failed_marshal_count++;
631 	dprintk("RPC:       %s: rpcrdma_marshal_req failed, status %i\n",
632 		__func__, rc);
633 	if (rc == -EIO)
634 		return -EIO;
635 drop_connection:
636 	xprt_disconnect_done(xprt);
637 	return -ENOTCONN;	/* implies disconnect */
638 }
639 
640 void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
641 {
642 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
643 	long idle_time = 0;
644 
645 	if (xprt_connected(xprt))
646 		idle_time = (long)(jiffies - xprt->last_used) / HZ;
647 
648 	seq_puts(seq, "\txprt:\trdma ");
649 	seq_printf(seq, "%u %lu %lu %lu %ld %lu %lu %lu %llu %llu ",
650 		   0,	/* need a local port? */
651 		   xprt->stat.bind_count,
652 		   xprt->stat.connect_count,
653 		   xprt->stat.connect_time,
654 		   idle_time,
655 		   xprt->stat.sends,
656 		   xprt->stat.recvs,
657 		   xprt->stat.bad_xids,
658 		   xprt->stat.req_u,
659 		   xprt->stat.bklog_u);
660 	seq_printf(seq, "%lu %lu %lu %llu %llu %llu %llu %lu %lu %lu %lu\n",
661 		   r_xprt->rx_stats.read_chunk_count,
662 		   r_xprt->rx_stats.write_chunk_count,
663 		   r_xprt->rx_stats.reply_chunk_count,
664 		   r_xprt->rx_stats.total_rdma_request,
665 		   r_xprt->rx_stats.total_rdma_reply,
666 		   r_xprt->rx_stats.pullup_copy_count,
667 		   r_xprt->rx_stats.fixup_copy_count,
668 		   r_xprt->rx_stats.hardway_register_count,
669 		   r_xprt->rx_stats.failed_marshal_count,
670 		   r_xprt->rx_stats.bad_reply_count,
671 		   r_xprt->rx_stats.nomsg_call_count);
672 }
673 
674 static int
675 xprt_rdma_enable_swap(struct rpc_xprt *xprt)
676 {
677 	return 0;
678 }
679 
680 static void
681 xprt_rdma_disable_swap(struct rpc_xprt *xprt)
682 {
683 }
684 
685 /*
686  * Plumbing for rpc transport switch and kernel module
687  */
688 
689 static struct rpc_xprt_ops xprt_rdma_procs = {
690 	.reserve_xprt		= xprt_reserve_xprt_cong,
691 	.release_xprt		= xprt_release_xprt_cong, /* sunrpc/xprt.c */
692 	.alloc_slot		= xprt_alloc_slot,
693 	.release_request	= xprt_release_rqst_cong,       /* ditto */
694 	.set_retrans_timeout	= xprt_set_retrans_timeout_def, /* ditto */
695 	.rpcbind		= rpcb_getport_async,	/* sunrpc/rpcb_clnt.c */
696 	.set_port		= xprt_rdma_set_port,
697 	.connect		= xprt_rdma_connect,
698 	.buf_alloc		= xprt_rdma_allocate,
699 	.buf_free		= xprt_rdma_free,
700 	.send_request		= xprt_rdma_send_request,
701 	.close			= xprt_rdma_close,
702 	.destroy		= xprt_rdma_destroy,
703 	.print_stats		= xprt_rdma_print_stats,
704 	.enable_swap		= xprt_rdma_enable_swap,
705 	.disable_swap		= xprt_rdma_disable_swap,
706 	.inject_disconnect	= xprt_rdma_inject_disconnect,
707 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
708 	.bc_setup		= xprt_rdma_bc_setup,
709 	.bc_up			= xprt_rdma_bc_up,
710 	.bc_free_rqst		= xprt_rdma_bc_free_rqst,
711 	.bc_destroy		= xprt_rdma_bc_destroy,
712 #endif
713 };
714 
715 static struct xprt_class xprt_rdma = {
716 	.list			= LIST_HEAD_INIT(xprt_rdma.list),
717 	.name			= "rdma",
718 	.owner			= THIS_MODULE,
719 	.ident			= XPRT_TRANSPORT_RDMA,
720 	.setup			= xprt_setup_rdma,
721 };
722 
723 void xprt_rdma_cleanup(void)
724 {
725 	int rc;
726 
727 	dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n");
728 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
729 	if (sunrpc_table_header) {
730 		unregister_sysctl_table(sunrpc_table_header);
731 		sunrpc_table_header = NULL;
732 	}
733 #endif
734 	rc = xprt_unregister_transport(&xprt_rdma);
735 	if (rc)
736 		dprintk("RPC:       %s: xprt_unregister returned %i\n",
737 			__func__, rc);
738 
739 	rpcrdma_destroy_wq();
740 	frwr_destroy_recovery_wq();
741 
742 	rc = xprt_unregister_transport(&xprt_rdma_bc);
743 	if (rc)
744 		dprintk("RPC:       %s: xprt_unregister(bc) returned %i\n",
745 			__func__, rc);
746 }
747 
748 int xprt_rdma_init(void)
749 {
750 	int rc;
751 
752 	rc = frwr_alloc_recovery_wq();
753 	if (rc)
754 		return rc;
755 
756 	rc = rpcrdma_alloc_wq();
757 	if (rc) {
758 		frwr_destroy_recovery_wq();
759 		return rc;
760 	}
761 
762 	rc = xprt_register_transport(&xprt_rdma);
763 	if (rc) {
764 		rpcrdma_destroy_wq();
765 		frwr_destroy_recovery_wq();
766 		return rc;
767 	}
768 
769 	rc = xprt_register_transport(&xprt_rdma_bc);
770 	if (rc) {
771 		xprt_unregister_transport(&xprt_rdma);
772 		rpcrdma_destroy_wq();
773 		frwr_destroy_recovery_wq();
774 		return rc;
775 	}
776 
777 	dprintk("RPCRDMA Module Init, register RPC RDMA transport\n");
778 
779 	dprintk("Defaults:\n");
780 	dprintk("\tSlots %d\n"
781 		"\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
782 		xprt_rdma_slot_table_entries,
783 		xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
784 	dprintk("\tPadding %d\n\tMemreg %d\n",
785 		xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
786 
787 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
788 	if (!sunrpc_table_header)
789 		sunrpc_table_header = register_sysctl_table(sunrpc_table);
790 #endif
791 	return 0;
792 }
793