1 /* 2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the BSD-type 8 * license below: 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 14 * Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 17 * Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials provided 20 * with the distribution. 21 * 22 * Neither the name of the Network Appliance, Inc. nor the names of 23 * its contributors may be used to endorse or promote products 24 * derived from this software without specific prior written 25 * permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * transport.c 42 * 43 * This file contains the top-level implementation of an RPC RDMA 44 * transport. 45 * 46 * Naming convention: functions beginning with xprt_ are part of the 47 * transport switch. All others are RPC RDMA internal. 48 */ 49 50 #include <linux/module.h> 51 #include <linux/slab.h> 52 #include <linux/seq_file.h> 53 #include <linux/sunrpc/addr.h> 54 55 #include "xprt_rdma.h" 56 57 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 58 # define RPCDBG_FACILITY RPCDBG_TRANS 59 #endif 60 61 /* 62 * tunables 63 */ 64 65 static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE; 66 unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE; 67 static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE; 68 static unsigned int xprt_rdma_inline_write_padding; 69 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR; 70 int xprt_rdma_pad_optimize = 1; 71 72 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 73 74 static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE; 75 static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE; 76 static unsigned int min_inline_size = RPCRDMA_MIN_INLINE; 77 static unsigned int max_inline_size = RPCRDMA_MAX_INLINE; 78 static unsigned int zero; 79 static unsigned int max_padding = PAGE_SIZE; 80 static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS; 81 static unsigned int max_memreg = RPCRDMA_LAST - 1; 82 83 static struct ctl_table_header *sunrpc_table_header; 84 85 static struct ctl_table xr_tunables_table[] = { 86 { 87 .procname = "rdma_slot_table_entries", 88 .data = &xprt_rdma_slot_table_entries, 89 .maxlen = sizeof(unsigned int), 90 .mode = 0644, 91 .proc_handler = proc_dointvec_minmax, 92 .extra1 = &min_slot_table_size, 93 .extra2 = &max_slot_table_size 94 }, 95 { 96 .procname = "rdma_max_inline_read", 97 .data = &xprt_rdma_max_inline_read, 98 .maxlen = sizeof(unsigned int), 99 .mode = 0644, 100 .proc_handler = proc_dointvec_minmax, 101 .extra1 = &min_inline_size, 102 .extra2 = &max_inline_size, 103 }, 104 { 105 .procname = "rdma_max_inline_write", 106 .data = &xprt_rdma_max_inline_write, 107 .maxlen = sizeof(unsigned int), 108 .mode = 0644, 109 .proc_handler = proc_dointvec_minmax, 110 .extra1 = &min_inline_size, 111 .extra2 = &max_inline_size, 112 }, 113 { 114 .procname = "rdma_inline_write_padding", 115 .data = &xprt_rdma_inline_write_padding, 116 .maxlen = sizeof(unsigned int), 117 .mode = 0644, 118 .proc_handler = proc_dointvec_minmax, 119 .extra1 = &zero, 120 .extra2 = &max_padding, 121 }, 122 { 123 .procname = "rdma_memreg_strategy", 124 .data = &xprt_rdma_memreg_strategy, 125 .maxlen = sizeof(unsigned int), 126 .mode = 0644, 127 .proc_handler = proc_dointvec_minmax, 128 .extra1 = &min_memreg, 129 .extra2 = &max_memreg, 130 }, 131 { 132 .procname = "rdma_pad_optimize", 133 .data = &xprt_rdma_pad_optimize, 134 .maxlen = sizeof(unsigned int), 135 .mode = 0644, 136 .proc_handler = proc_dointvec, 137 }, 138 { }, 139 }; 140 141 static struct ctl_table sunrpc_table[] = { 142 { 143 .procname = "sunrpc", 144 .mode = 0555, 145 .child = xr_tunables_table 146 }, 147 { }, 148 }; 149 150 #endif 151 152 static struct rpc_xprt_ops xprt_rdma_procs; /*forward reference */ 153 154 static void 155 xprt_rdma_format_addresses4(struct rpc_xprt *xprt, struct sockaddr *sap) 156 { 157 struct sockaddr_in *sin = (struct sockaddr_in *)sap; 158 char buf[20]; 159 160 snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr)); 161 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL); 162 163 xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA; 164 } 165 166 static void 167 xprt_rdma_format_addresses6(struct rpc_xprt *xprt, struct sockaddr *sap) 168 { 169 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sap; 170 char buf[40]; 171 172 snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr); 173 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL); 174 175 xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA6; 176 } 177 178 void 179 xprt_rdma_format_addresses(struct rpc_xprt *xprt, struct sockaddr *sap) 180 { 181 char buf[128]; 182 183 switch (sap->sa_family) { 184 case AF_INET: 185 xprt_rdma_format_addresses4(xprt, sap); 186 break; 187 case AF_INET6: 188 xprt_rdma_format_addresses6(xprt, sap); 189 break; 190 default: 191 pr_err("rpcrdma: Unrecognized address family\n"); 192 return; 193 } 194 195 (void)rpc_ntop(sap, buf, sizeof(buf)); 196 xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL); 197 198 snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap)); 199 xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL); 200 201 snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap)); 202 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL); 203 204 xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma"; 205 } 206 207 void 208 xprt_rdma_free_addresses(struct rpc_xprt *xprt) 209 { 210 unsigned int i; 211 212 for (i = 0; i < RPC_DISPLAY_MAX; i++) 213 switch (i) { 214 case RPC_DISPLAY_PROTO: 215 case RPC_DISPLAY_NETID: 216 continue; 217 default: 218 kfree(xprt->address_strings[i]); 219 } 220 } 221 222 void 223 rpcrdma_conn_func(struct rpcrdma_ep *ep) 224 { 225 schedule_delayed_work(&ep->rep_connect_worker, 0); 226 } 227 228 void 229 rpcrdma_connect_worker(struct work_struct *work) 230 { 231 struct rpcrdma_ep *ep = 232 container_of(work, struct rpcrdma_ep, rep_connect_worker.work); 233 struct rpcrdma_xprt *r_xprt = 234 container_of(ep, struct rpcrdma_xprt, rx_ep); 235 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 236 237 spin_lock_bh(&xprt->transport_lock); 238 if (++xprt->connect_cookie == 0) /* maintain a reserved value */ 239 ++xprt->connect_cookie; 240 if (ep->rep_connected > 0) { 241 if (!xprt_test_and_set_connected(xprt)) 242 xprt_wake_pending_tasks(xprt, 0); 243 } else { 244 if (xprt_test_and_clear_connected(xprt)) 245 xprt_wake_pending_tasks(xprt, -ENOTCONN); 246 } 247 spin_unlock_bh(&xprt->transport_lock); 248 } 249 250 static void 251 xprt_rdma_connect_worker(struct work_struct *work) 252 { 253 struct rpcrdma_xprt *r_xprt = container_of(work, struct rpcrdma_xprt, 254 rx_connect_worker.work); 255 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 256 int rc = 0; 257 258 xprt_clear_connected(xprt); 259 260 dprintk("RPC: %s: %sconnect\n", __func__, 261 r_xprt->rx_ep.rep_connected != 0 ? "re" : ""); 262 rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia); 263 if (rc) 264 xprt_wake_pending_tasks(xprt, rc); 265 266 dprintk("RPC: %s: exit\n", __func__); 267 xprt_clear_connecting(xprt); 268 } 269 270 static void 271 xprt_rdma_inject_disconnect(struct rpc_xprt *xprt) 272 { 273 struct rpcrdma_xprt *r_xprt = container_of(xprt, struct rpcrdma_xprt, 274 rx_xprt); 275 276 pr_info("rpcrdma: injecting transport disconnect on xprt=%p\n", xprt); 277 rdma_disconnect(r_xprt->rx_ia.ri_id); 278 } 279 280 /* 281 * xprt_rdma_destroy 282 * 283 * Destroy the xprt. 284 * Free all memory associated with the object, including its own. 285 * NOTE: none of the *destroy methods free memory for their top-level 286 * objects, even though they may have allocated it (they do free 287 * private memory). It's up to the caller to handle it. In this 288 * case (RDMA transport), all structure memory is inlined with the 289 * struct rpcrdma_xprt. 290 */ 291 static void 292 xprt_rdma_destroy(struct rpc_xprt *xprt) 293 { 294 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 295 296 dprintk("RPC: %s: called\n", __func__); 297 298 cancel_delayed_work_sync(&r_xprt->rx_connect_worker); 299 300 xprt_clear_connected(xprt); 301 302 rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia); 303 rpcrdma_buffer_destroy(&r_xprt->rx_buf); 304 rpcrdma_ia_close(&r_xprt->rx_ia); 305 306 xprt_rdma_free_addresses(xprt); 307 308 xprt_free(xprt); 309 310 dprintk("RPC: %s: returning\n", __func__); 311 312 module_put(THIS_MODULE); 313 } 314 315 static const struct rpc_timeout xprt_rdma_default_timeout = { 316 .to_initval = 60 * HZ, 317 .to_maxval = 60 * HZ, 318 }; 319 320 /** 321 * xprt_setup_rdma - Set up transport to use RDMA 322 * 323 * @args: rpc transport arguments 324 */ 325 static struct rpc_xprt * 326 xprt_setup_rdma(struct xprt_create *args) 327 { 328 struct rpcrdma_create_data_internal cdata; 329 struct rpc_xprt *xprt; 330 struct rpcrdma_xprt *new_xprt; 331 struct rpcrdma_ep *new_ep; 332 struct sockaddr *sap; 333 int rc; 334 335 if (args->addrlen > sizeof(xprt->addr)) { 336 dprintk("RPC: %s: address too large\n", __func__); 337 return ERR_PTR(-EBADF); 338 } 339 340 xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt), 341 xprt_rdma_slot_table_entries, 342 xprt_rdma_slot_table_entries); 343 if (xprt == NULL) { 344 dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n", 345 __func__); 346 return ERR_PTR(-ENOMEM); 347 } 348 349 /* 60 second timeout, no retries */ 350 xprt->timeout = &xprt_rdma_default_timeout; 351 xprt->bind_timeout = RPCRDMA_BIND_TO; 352 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO; 353 xprt->idle_timeout = RPCRDMA_IDLE_DISC_TO; 354 355 xprt->resvport = 0; /* privileged port not needed */ 356 xprt->tsh_size = 0; /* RPC-RDMA handles framing */ 357 xprt->ops = &xprt_rdma_procs; 358 359 /* 360 * Set up RDMA-specific connect data. 361 */ 362 363 sap = (struct sockaddr *)&cdata.addr; 364 memcpy(sap, args->dstaddr, args->addrlen); 365 366 /* Ensure xprt->addr holds valid server TCP (not RDMA) 367 * address, for any side protocols which peek at it */ 368 xprt->prot = IPPROTO_TCP; 369 xprt->addrlen = args->addrlen; 370 memcpy(&xprt->addr, sap, xprt->addrlen); 371 372 if (rpc_get_port(sap)) 373 xprt_set_bound(xprt); 374 375 cdata.max_requests = xprt->max_reqs; 376 377 cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */ 378 cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */ 379 380 cdata.inline_wsize = xprt_rdma_max_inline_write; 381 if (cdata.inline_wsize > cdata.wsize) 382 cdata.inline_wsize = cdata.wsize; 383 384 cdata.inline_rsize = xprt_rdma_max_inline_read; 385 if (cdata.inline_rsize > cdata.rsize) 386 cdata.inline_rsize = cdata.rsize; 387 388 cdata.padding = xprt_rdma_inline_write_padding; 389 390 /* 391 * Create new transport instance, which includes initialized 392 * o ia 393 * o endpoint 394 * o buffers 395 */ 396 397 new_xprt = rpcx_to_rdmax(xprt); 398 399 rc = rpcrdma_ia_open(new_xprt, sap, xprt_rdma_memreg_strategy); 400 if (rc) 401 goto out1; 402 403 /* 404 * initialize and create ep 405 */ 406 new_xprt->rx_data = cdata; 407 new_ep = &new_xprt->rx_ep; 408 new_ep->rep_remote_addr = cdata.addr; 409 410 rc = rpcrdma_ep_create(&new_xprt->rx_ep, 411 &new_xprt->rx_ia, &new_xprt->rx_data); 412 if (rc) 413 goto out2; 414 415 /* 416 * Allocate pre-registered send and receive buffers for headers and 417 * any inline data. Also specify any padding which will be provided 418 * from a preregistered zero buffer. 419 */ 420 rc = rpcrdma_buffer_create(new_xprt); 421 if (rc) 422 goto out3; 423 424 /* 425 * Register a callback for connection events. This is necessary because 426 * connection loss notification is async. We also catch connection loss 427 * when reaping receives. 428 */ 429 INIT_DELAYED_WORK(&new_xprt->rx_connect_worker, 430 xprt_rdma_connect_worker); 431 432 xprt_rdma_format_addresses(xprt, sap); 433 xprt->max_payload = new_xprt->rx_ia.ri_ops->ro_maxpages(new_xprt); 434 if (xprt->max_payload == 0) 435 goto out4; 436 xprt->max_payload <<= PAGE_SHIFT; 437 dprintk("RPC: %s: transport data payload maximum: %zu bytes\n", 438 __func__, xprt->max_payload); 439 440 if (!try_module_get(THIS_MODULE)) 441 goto out4; 442 443 dprintk("RPC: %s: %s:%s\n", __func__, 444 xprt->address_strings[RPC_DISPLAY_ADDR], 445 xprt->address_strings[RPC_DISPLAY_PORT]); 446 return xprt; 447 448 out4: 449 xprt_rdma_free_addresses(xprt); 450 rc = -EINVAL; 451 out3: 452 rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia); 453 out2: 454 rpcrdma_ia_close(&new_xprt->rx_ia); 455 out1: 456 xprt_free(xprt); 457 return ERR_PTR(rc); 458 } 459 460 /* 461 * Close a connection, during shutdown or timeout/reconnect 462 */ 463 static void 464 xprt_rdma_close(struct rpc_xprt *xprt) 465 { 466 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 467 468 dprintk("RPC: %s: closing\n", __func__); 469 if (r_xprt->rx_ep.rep_connected > 0) 470 xprt->reestablish_timeout = 0; 471 xprt_disconnect_done(xprt); 472 rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia); 473 } 474 475 static void 476 xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port) 477 { 478 struct sockaddr_in *sap; 479 480 sap = (struct sockaddr_in *)&xprt->addr; 481 sap->sin_port = htons(port); 482 sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr; 483 sap->sin_port = htons(port); 484 dprintk("RPC: %s: %u\n", __func__, port); 485 } 486 487 static void 488 xprt_rdma_connect(struct rpc_xprt *xprt, struct rpc_task *task) 489 { 490 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 491 492 if (r_xprt->rx_ep.rep_connected != 0) { 493 /* Reconnect */ 494 schedule_delayed_work(&r_xprt->rx_connect_worker, 495 xprt->reestablish_timeout); 496 xprt->reestablish_timeout <<= 1; 497 if (xprt->reestablish_timeout > RPCRDMA_MAX_REEST_TO) 498 xprt->reestablish_timeout = RPCRDMA_MAX_REEST_TO; 499 else if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO) 500 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO; 501 } else { 502 schedule_delayed_work(&r_xprt->rx_connect_worker, 0); 503 if (!RPC_IS_ASYNC(task)) 504 flush_delayed_work(&r_xprt->rx_connect_worker); 505 } 506 } 507 508 /* Allocate a fixed-size buffer in which to construct and send the 509 * RPC-over-RDMA header for this request. 510 */ 511 static bool 512 rpcrdma_get_rdmabuf(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, 513 gfp_t flags) 514 { 515 size_t size = RPCRDMA_HDRBUF_SIZE; 516 struct rpcrdma_regbuf *rb; 517 518 if (req->rl_rdmabuf) 519 return true; 520 521 rb = rpcrdma_alloc_regbuf(size, DMA_TO_DEVICE, flags); 522 if (IS_ERR(rb)) 523 return false; 524 525 r_xprt->rx_stats.hardway_register_count += size; 526 req->rl_rdmabuf = rb; 527 return true; 528 } 529 530 static bool 531 rpcrdma_get_sendbuf(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, 532 size_t size, gfp_t flags) 533 { 534 struct rpcrdma_regbuf *rb; 535 536 if (req->rl_sendbuf && rdmab_length(req->rl_sendbuf) >= size) 537 return true; 538 539 rb = rpcrdma_alloc_regbuf(size, DMA_TO_DEVICE, flags); 540 if (IS_ERR(rb)) 541 return false; 542 543 rpcrdma_free_regbuf(req->rl_sendbuf); 544 r_xprt->rx_stats.hardway_register_count += size; 545 req->rl_sendbuf = rb; 546 return true; 547 } 548 549 /* The rq_rcv_buf is used only if a Reply chunk is necessary. 550 * The decision to use a Reply chunk is made later in 551 * rpcrdma_marshal_req. This buffer is registered at that time. 552 * 553 * Otherwise, the associated RPC Reply arrives in a separate 554 * Receive buffer, arbitrarily chosen by the HCA. The buffer 555 * allocated here for the RPC Reply is not utilized in that 556 * case. See rpcrdma_inline_fixup. 557 * 558 * A regbuf is used here to remember the buffer size. 559 */ 560 static bool 561 rpcrdma_get_recvbuf(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, 562 size_t size, gfp_t flags) 563 { 564 struct rpcrdma_regbuf *rb; 565 566 if (req->rl_recvbuf && rdmab_length(req->rl_recvbuf) >= size) 567 return true; 568 569 rb = rpcrdma_alloc_regbuf(size, DMA_NONE, flags); 570 if (IS_ERR(rb)) 571 return false; 572 573 rpcrdma_free_regbuf(req->rl_recvbuf); 574 r_xprt->rx_stats.hardway_register_count += size; 575 req->rl_recvbuf = rb; 576 return true; 577 } 578 579 /** 580 * xprt_rdma_allocate - allocate transport resources for an RPC 581 * @task: RPC task 582 * 583 * Return values: 584 * 0: Success; rq_buffer points to RPC buffer to use 585 * ENOMEM: Out of memory, call again later 586 * EIO: A permanent error occurred, do not retry 587 * 588 * The RDMA allocate/free functions need the task structure as a place 589 * to hide the struct rpcrdma_req, which is necessary for the actual 590 * send/recv sequence. 591 * 592 * xprt_rdma_allocate provides buffers that are already mapped for 593 * DMA, and a local DMA lkey is provided for each. 594 */ 595 static int 596 xprt_rdma_allocate(struct rpc_task *task) 597 { 598 struct rpc_rqst *rqst = task->tk_rqstp; 599 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt); 600 struct rpcrdma_req *req; 601 gfp_t flags; 602 603 req = rpcrdma_buffer_get(&r_xprt->rx_buf); 604 if (req == NULL) 605 return -ENOMEM; 606 607 flags = RPCRDMA_DEF_GFP; 608 if (RPC_IS_SWAPPER(task)) 609 flags = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN; 610 611 if (!rpcrdma_get_rdmabuf(r_xprt, req, flags)) 612 goto out_fail; 613 if (!rpcrdma_get_sendbuf(r_xprt, req, rqst->rq_callsize, flags)) 614 goto out_fail; 615 if (!rpcrdma_get_recvbuf(r_xprt, req, rqst->rq_rcvsize, flags)) 616 goto out_fail; 617 618 dprintk("RPC: %5u %s: send size = %zd, recv size = %zd, req = %p\n", 619 task->tk_pid, __func__, rqst->rq_callsize, 620 rqst->rq_rcvsize, req); 621 622 req->rl_connect_cookie = 0; /* our reserved value */ 623 rpcrdma_set_xprtdata(rqst, req); 624 rqst->rq_buffer = req->rl_sendbuf->rg_base; 625 rqst->rq_rbuffer = req->rl_recvbuf->rg_base; 626 return 0; 627 628 out_fail: 629 rpcrdma_buffer_put(req); 630 return -ENOMEM; 631 } 632 633 /** 634 * xprt_rdma_free - release resources allocated by xprt_rdma_allocate 635 * @task: RPC task 636 * 637 * Caller guarantees rqst->rq_buffer is non-NULL. 638 */ 639 static void 640 xprt_rdma_free(struct rpc_task *task) 641 { 642 struct rpc_rqst *rqst = task->tk_rqstp; 643 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt); 644 struct rpcrdma_req *req = rpcr_to_rdmar(rqst); 645 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 646 647 if (req->rl_backchannel) 648 return; 649 650 dprintk("RPC: %s: called on 0x%p\n", __func__, req->rl_reply); 651 652 if (unlikely(!list_empty(&req->rl_registered))) 653 ia->ri_ops->ro_unmap_safe(r_xprt, req, !RPC_IS_ASYNC(task)); 654 rpcrdma_unmap_sges(ia, req); 655 rpcrdma_buffer_put(req); 656 } 657 658 /** 659 * xprt_rdma_send_request - marshal and send an RPC request 660 * @task: RPC task with an RPC message in rq_snd_buf 661 * 662 * Return values: 663 * 0: The request has been sent 664 * ENOTCONN: Caller needs to invoke connect logic then call again 665 * ENOBUFS: Call again later to send the request 666 * EIO: A permanent error occurred. The request was not sent, 667 * and don't try it again 668 * 669 * send_request invokes the meat of RPC RDMA. It must do the following: 670 * 671 * 1. Marshal the RPC request into an RPC RDMA request, which means 672 * putting a header in front of data, and creating IOVs for RDMA 673 * from those in the request. 674 * 2. In marshaling, detect opportunities for RDMA, and use them. 675 * 3. Post a recv message to set up asynch completion, then send 676 * the request (rpcrdma_ep_post). 677 * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP). 678 */ 679 static int 680 xprt_rdma_send_request(struct rpc_task *task) 681 { 682 struct rpc_rqst *rqst = task->tk_rqstp; 683 struct rpc_xprt *xprt = rqst->rq_xprt; 684 struct rpcrdma_req *req = rpcr_to_rdmar(rqst); 685 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 686 int rc = 0; 687 688 /* On retransmit, remove any previously registered chunks */ 689 if (unlikely(!list_empty(&req->rl_registered))) 690 r_xprt->rx_ia.ri_ops->ro_unmap_safe(r_xprt, req, false); 691 692 rc = rpcrdma_marshal_req(rqst); 693 if (rc < 0) 694 goto failed_marshal; 695 696 if (req->rl_reply == NULL) /* e.g. reconnection */ 697 rpcrdma_recv_buffer_get(req); 698 699 /* Must suppress retransmit to maintain credits */ 700 if (req->rl_connect_cookie == xprt->connect_cookie) 701 goto drop_connection; 702 req->rl_connect_cookie = xprt->connect_cookie; 703 704 if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req)) 705 goto drop_connection; 706 707 rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len; 708 rqst->rq_bytes_sent = 0; 709 return 0; 710 711 failed_marshal: 712 dprintk("RPC: %s: rpcrdma_marshal_req failed, status %i\n", 713 __func__, rc); 714 if (rc == -EIO) 715 r_xprt->rx_stats.failed_marshal_count++; 716 if (rc != -ENOTCONN) 717 return rc; 718 drop_connection: 719 xprt_disconnect_done(xprt); 720 return -ENOTCONN; /* implies disconnect */ 721 } 722 723 void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) 724 { 725 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 726 long idle_time = 0; 727 728 if (xprt_connected(xprt)) 729 idle_time = (long)(jiffies - xprt->last_used) / HZ; 730 731 seq_puts(seq, "\txprt:\trdma "); 732 seq_printf(seq, "%u %lu %lu %lu %ld %lu %lu %lu %llu %llu ", 733 0, /* need a local port? */ 734 xprt->stat.bind_count, 735 xprt->stat.connect_count, 736 xprt->stat.connect_time, 737 idle_time, 738 xprt->stat.sends, 739 xprt->stat.recvs, 740 xprt->stat.bad_xids, 741 xprt->stat.req_u, 742 xprt->stat.bklog_u); 743 seq_printf(seq, "%lu %lu %lu %llu %llu %llu %llu %lu %lu %lu %lu ", 744 r_xprt->rx_stats.read_chunk_count, 745 r_xprt->rx_stats.write_chunk_count, 746 r_xprt->rx_stats.reply_chunk_count, 747 r_xprt->rx_stats.total_rdma_request, 748 r_xprt->rx_stats.total_rdma_reply, 749 r_xprt->rx_stats.pullup_copy_count, 750 r_xprt->rx_stats.fixup_copy_count, 751 r_xprt->rx_stats.hardway_register_count, 752 r_xprt->rx_stats.failed_marshal_count, 753 r_xprt->rx_stats.bad_reply_count, 754 r_xprt->rx_stats.nomsg_call_count); 755 seq_printf(seq, "%lu %lu %lu %lu\n", 756 r_xprt->rx_stats.mrs_recovered, 757 r_xprt->rx_stats.mrs_orphaned, 758 r_xprt->rx_stats.mrs_allocated, 759 r_xprt->rx_stats.local_inv_needed); 760 } 761 762 static int 763 xprt_rdma_enable_swap(struct rpc_xprt *xprt) 764 { 765 return 0; 766 } 767 768 static void 769 xprt_rdma_disable_swap(struct rpc_xprt *xprt) 770 { 771 } 772 773 /* 774 * Plumbing for rpc transport switch and kernel module 775 */ 776 777 static struct rpc_xprt_ops xprt_rdma_procs = { 778 .reserve_xprt = xprt_reserve_xprt_cong, 779 .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */ 780 .alloc_slot = xprt_alloc_slot, 781 .release_request = xprt_release_rqst_cong, /* ditto */ 782 .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */ 783 .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */ 784 .set_port = xprt_rdma_set_port, 785 .connect = xprt_rdma_connect, 786 .buf_alloc = xprt_rdma_allocate, 787 .buf_free = xprt_rdma_free, 788 .send_request = xprt_rdma_send_request, 789 .close = xprt_rdma_close, 790 .destroy = xprt_rdma_destroy, 791 .print_stats = xprt_rdma_print_stats, 792 .enable_swap = xprt_rdma_enable_swap, 793 .disable_swap = xprt_rdma_disable_swap, 794 .inject_disconnect = xprt_rdma_inject_disconnect, 795 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 796 .bc_setup = xprt_rdma_bc_setup, 797 .bc_up = xprt_rdma_bc_up, 798 .bc_maxpayload = xprt_rdma_bc_maxpayload, 799 .bc_free_rqst = xprt_rdma_bc_free_rqst, 800 .bc_destroy = xprt_rdma_bc_destroy, 801 #endif 802 }; 803 804 static struct xprt_class xprt_rdma = { 805 .list = LIST_HEAD_INIT(xprt_rdma.list), 806 .name = "rdma", 807 .owner = THIS_MODULE, 808 .ident = XPRT_TRANSPORT_RDMA, 809 .setup = xprt_setup_rdma, 810 }; 811 812 void xprt_rdma_cleanup(void) 813 { 814 int rc; 815 816 dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n"); 817 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 818 if (sunrpc_table_header) { 819 unregister_sysctl_table(sunrpc_table_header); 820 sunrpc_table_header = NULL; 821 } 822 #endif 823 rc = xprt_unregister_transport(&xprt_rdma); 824 if (rc) 825 dprintk("RPC: %s: xprt_unregister returned %i\n", 826 __func__, rc); 827 828 rpcrdma_destroy_wq(); 829 830 rc = xprt_unregister_transport(&xprt_rdma_bc); 831 if (rc) 832 dprintk("RPC: %s: xprt_unregister(bc) returned %i\n", 833 __func__, rc); 834 } 835 836 int xprt_rdma_init(void) 837 { 838 int rc; 839 840 rc = rpcrdma_alloc_wq(); 841 if (rc) 842 return rc; 843 844 rc = xprt_register_transport(&xprt_rdma); 845 if (rc) { 846 rpcrdma_destroy_wq(); 847 return rc; 848 } 849 850 rc = xprt_register_transport(&xprt_rdma_bc); 851 if (rc) { 852 xprt_unregister_transport(&xprt_rdma); 853 rpcrdma_destroy_wq(); 854 return rc; 855 } 856 857 dprintk("RPCRDMA Module Init, register RPC RDMA transport\n"); 858 859 dprintk("Defaults:\n"); 860 dprintk("\tSlots %d\n" 861 "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n", 862 xprt_rdma_slot_table_entries, 863 xprt_rdma_max_inline_read, xprt_rdma_max_inline_write); 864 dprintk("\tPadding %d\n\tMemreg %d\n", 865 xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy); 866 867 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 868 if (!sunrpc_table_header) 869 sunrpc_table_header = register_sysctl_table(sunrpc_table); 870 #endif 871 return 0; 872 } 873