1 /*
2  * Copyright (c) 2005-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  *      Redistributions of source code must retain the above copyright
15  *      notice, this list of conditions and the following disclaimer.
16  *
17  *      Redistributions in binary form must reproduce the above
18  *      copyright notice, this list of conditions and the following
19  *      disclaimer in the documentation and/or other materials provided
20  *      with the distribution.
21  *
22  *      Neither the name of the Network Appliance, Inc. nor the names of
23  *      its contributors may be used to endorse or promote products
24  *      derived from this software without specific prior written
25  *      permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  *
39  * Author: Tom Tucker <tom@opengridcomputing.com>
40  */
41 
42 #include <linux/sunrpc/svc_xprt.h>
43 #include <linux/sunrpc/debug.h>
44 #include <linux/sunrpc/rpc_rdma.h>
45 #include <linux/spinlock.h>
46 #include <rdma/ib_verbs.h>
47 #include <rdma/rdma_cm.h>
48 #include <linux/sunrpc/svc_rdma.h>
49 
50 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
51 
52 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
53 					struct sockaddr *sa, int salen,
54 					int flags);
55 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt);
56 static void svc_rdma_release_rqst(struct svc_rqst *);
57 static void dto_tasklet_func(unsigned long data);
58 static void svc_rdma_detach(struct svc_xprt *xprt);
59 static void svc_rdma_free(struct svc_xprt *xprt);
60 static int svc_rdma_has_wspace(struct svc_xprt *xprt);
61 static void rq_cq_reap(struct svcxprt_rdma *xprt);
62 static void sq_cq_reap(struct svcxprt_rdma *xprt);
63 
64 static DECLARE_TASKLET(dto_tasklet, dto_tasklet_func, 0UL);
65 static DEFINE_SPINLOCK(dto_lock);
66 static LIST_HEAD(dto_xprt_q);
67 
68 static struct svc_xprt_ops svc_rdma_ops = {
69 	.xpo_create = svc_rdma_create,
70 	.xpo_recvfrom = svc_rdma_recvfrom,
71 	.xpo_sendto = svc_rdma_sendto,
72 	.xpo_release_rqst = svc_rdma_release_rqst,
73 	.xpo_detach = svc_rdma_detach,
74 	.xpo_free = svc_rdma_free,
75 	.xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr,
76 	.xpo_has_wspace = svc_rdma_has_wspace,
77 	.xpo_accept = svc_rdma_accept,
78 };
79 
80 struct svc_xprt_class svc_rdma_class = {
81 	.xcl_name = "rdma",
82 	.xcl_owner = THIS_MODULE,
83 	.xcl_ops = &svc_rdma_ops,
84 	.xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
85 };
86 
87 /* WR context cache. Created in svc_rdma.c  */
88 extern struct kmem_cache *svc_rdma_ctxt_cachep;
89 
90 struct svc_rdma_op_ctxt *svc_rdma_get_context(struct svcxprt_rdma *xprt)
91 {
92 	struct svc_rdma_op_ctxt *ctxt;
93 
94 	while (1) {
95 		ctxt = kmem_cache_alloc(svc_rdma_ctxt_cachep, GFP_KERNEL);
96 		if (ctxt)
97 			break;
98 		schedule_timeout_uninterruptible(msecs_to_jiffies(500));
99 	}
100 	ctxt->xprt = xprt;
101 	INIT_LIST_HEAD(&ctxt->dto_q);
102 	ctxt->count = 0;
103 	ctxt->frmr = NULL;
104 	atomic_inc(&xprt->sc_ctxt_used);
105 	return ctxt;
106 }
107 
108 void svc_rdma_unmap_dma(struct svc_rdma_op_ctxt *ctxt)
109 {
110 	struct svcxprt_rdma *xprt = ctxt->xprt;
111 	int i;
112 	for (i = 0; i < ctxt->count && ctxt->sge[i].length; i++) {
113 		/*
114 		 * Unmap the DMA addr in the SGE if the lkey matches
115 		 * the sc_dma_lkey, otherwise, ignore it since it is
116 		 * an FRMR lkey and will be unmapped later when the
117 		 * last WR that uses it completes.
118 		 */
119 		if (ctxt->sge[i].lkey == xprt->sc_dma_lkey) {
120 			atomic_dec(&xprt->sc_dma_used);
121 			ib_dma_unmap_single(xprt->sc_cm_id->device,
122 					    ctxt->sge[i].addr,
123 					    ctxt->sge[i].length,
124 					    ctxt->direction);
125 		}
126 	}
127 }
128 
129 void svc_rdma_put_context(struct svc_rdma_op_ctxt *ctxt, int free_pages)
130 {
131 	struct svcxprt_rdma *xprt;
132 	int i;
133 
134 	BUG_ON(!ctxt);
135 	xprt = ctxt->xprt;
136 	if (free_pages)
137 		for (i = 0; i < ctxt->count; i++)
138 			put_page(ctxt->pages[i]);
139 
140 	kmem_cache_free(svc_rdma_ctxt_cachep, ctxt);
141 	atomic_dec(&xprt->sc_ctxt_used);
142 }
143 
144 /* Temporary NFS request map cache. Created in svc_rdma.c  */
145 extern struct kmem_cache *svc_rdma_map_cachep;
146 
147 /*
148  * Temporary NFS req mappings are shared across all transport
149  * instances. These are short lived and should be bounded by the number
150  * of concurrent server threads * depth of the SQ.
151  */
152 struct svc_rdma_req_map *svc_rdma_get_req_map(void)
153 {
154 	struct svc_rdma_req_map *map;
155 	while (1) {
156 		map = kmem_cache_alloc(svc_rdma_map_cachep, GFP_KERNEL);
157 		if (map)
158 			break;
159 		schedule_timeout_uninterruptible(msecs_to_jiffies(500));
160 	}
161 	map->count = 0;
162 	map->frmr = NULL;
163 	return map;
164 }
165 
166 void svc_rdma_put_req_map(struct svc_rdma_req_map *map)
167 {
168 	kmem_cache_free(svc_rdma_map_cachep, map);
169 }
170 
171 /* ib_cq event handler */
172 static void cq_event_handler(struct ib_event *event, void *context)
173 {
174 	struct svc_xprt *xprt = context;
175 	dprintk("svcrdma: received CQ event id=%d, context=%p\n",
176 		event->event, context);
177 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
178 }
179 
180 /* QP event handler */
181 static void qp_event_handler(struct ib_event *event, void *context)
182 {
183 	struct svc_xprt *xprt = context;
184 
185 	switch (event->event) {
186 	/* These are considered benign events */
187 	case IB_EVENT_PATH_MIG:
188 	case IB_EVENT_COMM_EST:
189 	case IB_EVENT_SQ_DRAINED:
190 	case IB_EVENT_QP_LAST_WQE_REACHED:
191 		dprintk("svcrdma: QP event %d received for QP=%p\n",
192 			event->event, event->element.qp);
193 		break;
194 	/* These are considered fatal events */
195 	case IB_EVENT_PATH_MIG_ERR:
196 	case IB_EVENT_QP_FATAL:
197 	case IB_EVENT_QP_REQ_ERR:
198 	case IB_EVENT_QP_ACCESS_ERR:
199 	case IB_EVENT_DEVICE_FATAL:
200 	default:
201 		dprintk("svcrdma: QP ERROR event %d received for QP=%p, "
202 			"closing transport\n",
203 			event->event, event->element.qp);
204 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
205 		break;
206 	}
207 }
208 
209 /*
210  * Data Transfer Operation Tasklet
211  *
212  * Walks a list of transports with I/O pending, removing entries as
213  * they are added to the server's I/O pending list. Two bits indicate
214  * if SQ, RQ, or both have I/O pending. The dto_lock is an irqsave
215  * spinlock that serializes access to the transport list with the RQ
216  * and SQ interrupt handlers.
217  */
218 static void dto_tasklet_func(unsigned long data)
219 {
220 	struct svcxprt_rdma *xprt;
221 	unsigned long flags;
222 
223 	spin_lock_irqsave(&dto_lock, flags);
224 	while (!list_empty(&dto_xprt_q)) {
225 		xprt = list_entry(dto_xprt_q.next,
226 				  struct svcxprt_rdma, sc_dto_q);
227 		list_del_init(&xprt->sc_dto_q);
228 		spin_unlock_irqrestore(&dto_lock, flags);
229 
230 		rq_cq_reap(xprt);
231 		sq_cq_reap(xprt);
232 
233 		svc_xprt_put(&xprt->sc_xprt);
234 		spin_lock_irqsave(&dto_lock, flags);
235 	}
236 	spin_unlock_irqrestore(&dto_lock, flags);
237 }
238 
239 /*
240  * Receive Queue Completion Handler
241  *
242  * Since an RQ completion handler is called on interrupt context, we
243  * need to defer the handling of the I/O to a tasklet
244  */
245 static void rq_comp_handler(struct ib_cq *cq, void *cq_context)
246 {
247 	struct svcxprt_rdma *xprt = cq_context;
248 	unsigned long flags;
249 
250 	/* Guard against unconditional flush call for destroyed QP */
251 	if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0)
252 		return;
253 
254 	/*
255 	 * Set the bit regardless of whether or not it's on the list
256 	 * because it may be on the list already due to an SQ
257 	 * completion.
258 	 */
259 	set_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags);
260 
261 	/*
262 	 * If this transport is not already on the DTO transport queue,
263 	 * add it
264 	 */
265 	spin_lock_irqsave(&dto_lock, flags);
266 	if (list_empty(&xprt->sc_dto_q)) {
267 		svc_xprt_get(&xprt->sc_xprt);
268 		list_add_tail(&xprt->sc_dto_q, &dto_xprt_q);
269 	}
270 	spin_unlock_irqrestore(&dto_lock, flags);
271 
272 	/* Tasklet does all the work to avoid irqsave locks. */
273 	tasklet_schedule(&dto_tasklet);
274 }
275 
276 /*
277  * rq_cq_reap - Process the RQ CQ.
278  *
279  * Take all completing WC off the CQE and enqueue the associated DTO
280  * context on the dto_q for the transport.
281  *
282  * Note that caller must hold a transport reference.
283  */
284 static void rq_cq_reap(struct svcxprt_rdma *xprt)
285 {
286 	int ret;
287 	struct ib_wc wc;
288 	struct svc_rdma_op_ctxt *ctxt = NULL;
289 
290 	if (!test_and_clear_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags))
291 		return;
292 
293 	ib_req_notify_cq(xprt->sc_rq_cq, IB_CQ_NEXT_COMP);
294 	atomic_inc(&rdma_stat_rq_poll);
295 
296 	while ((ret = ib_poll_cq(xprt->sc_rq_cq, 1, &wc)) > 0) {
297 		ctxt = (struct svc_rdma_op_ctxt *)(unsigned long)wc.wr_id;
298 		ctxt->wc_status = wc.status;
299 		ctxt->byte_len = wc.byte_len;
300 		svc_rdma_unmap_dma(ctxt);
301 		if (wc.status != IB_WC_SUCCESS) {
302 			/* Close the transport */
303 			dprintk("svcrdma: transport closing putting ctxt %p\n", ctxt);
304 			set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
305 			svc_rdma_put_context(ctxt, 1);
306 			svc_xprt_put(&xprt->sc_xprt);
307 			continue;
308 		}
309 		spin_lock_bh(&xprt->sc_rq_dto_lock);
310 		list_add_tail(&ctxt->dto_q, &xprt->sc_rq_dto_q);
311 		spin_unlock_bh(&xprt->sc_rq_dto_lock);
312 		svc_xprt_put(&xprt->sc_xprt);
313 	}
314 
315 	if (ctxt)
316 		atomic_inc(&rdma_stat_rq_prod);
317 
318 	set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
319 	/*
320 	 * If data arrived before established event,
321 	 * don't enqueue. This defers RPC I/O until the
322 	 * RDMA connection is complete.
323 	 */
324 	if (!test_bit(RDMAXPRT_CONN_PENDING, &xprt->sc_flags))
325 		svc_xprt_enqueue(&xprt->sc_xprt);
326 }
327 
328 /*
329  * Processs a completion context
330  */
331 static void process_context(struct svcxprt_rdma *xprt,
332 			    struct svc_rdma_op_ctxt *ctxt)
333 {
334 	svc_rdma_unmap_dma(ctxt);
335 
336 	switch (ctxt->wr_op) {
337 	case IB_WR_SEND:
338 		if (test_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags))
339 			svc_rdma_put_frmr(xprt, ctxt->frmr);
340 		svc_rdma_put_context(ctxt, 1);
341 		break;
342 
343 	case IB_WR_RDMA_WRITE:
344 		svc_rdma_put_context(ctxt, 0);
345 		break;
346 
347 	case IB_WR_RDMA_READ:
348 	case IB_WR_RDMA_READ_WITH_INV:
349 		if (test_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags)) {
350 			struct svc_rdma_op_ctxt *read_hdr = ctxt->read_hdr;
351 			BUG_ON(!read_hdr);
352 			if (test_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags))
353 				svc_rdma_put_frmr(xprt, ctxt->frmr);
354 			spin_lock_bh(&xprt->sc_rq_dto_lock);
355 			set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
356 			list_add_tail(&read_hdr->dto_q,
357 				      &xprt->sc_read_complete_q);
358 			spin_unlock_bh(&xprt->sc_rq_dto_lock);
359 			svc_xprt_enqueue(&xprt->sc_xprt);
360 		}
361 		svc_rdma_put_context(ctxt, 0);
362 		break;
363 
364 	default:
365 		printk(KERN_ERR "svcrdma: unexpected completion type, "
366 		       "opcode=%d\n",
367 		       ctxt->wr_op);
368 		break;
369 	}
370 }
371 
372 /*
373  * Send Queue Completion Handler - potentially called on interrupt context.
374  *
375  * Note that caller must hold a transport reference.
376  */
377 static void sq_cq_reap(struct svcxprt_rdma *xprt)
378 {
379 	struct svc_rdma_op_ctxt *ctxt = NULL;
380 	struct ib_wc wc;
381 	struct ib_cq *cq = xprt->sc_sq_cq;
382 	int ret;
383 
384 	if (!test_and_clear_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags))
385 		return;
386 
387 	ib_req_notify_cq(xprt->sc_sq_cq, IB_CQ_NEXT_COMP);
388 	atomic_inc(&rdma_stat_sq_poll);
389 	while ((ret = ib_poll_cq(cq, 1, &wc)) > 0) {
390 		if (wc.status != IB_WC_SUCCESS)
391 			/* Close the transport */
392 			set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
393 
394 		/* Decrement used SQ WR count */
395 		atomic_dec(&xprt->sc_sq_count);
396 		wake_up(&xprt->sc_send_wait);
397 
398 		ctxt = (struct svc_rdma_op_ctxt *)(unsigned long)wc.wr_id;
399 		if (ctxt)
400 			process_context(xprt, ctxt);
401 
402 		svc_xprt_put(&xprt->sc_xprt);
403 	}
404 
405 	if (ctxt)
406 		atomic_inc(&rdma_stat_sq_prod);
407 }
408 
409 static void sq_comp_handler(struct ib_cq *cq, void *cq_context)
410 {
411 	struct svcxprt_rdma *xprt = cq_context;
412 	unsigned long flags;
413 
414 	/* Guard against unconditional flush call for destroyed QP */
415 	if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0)
416 		return;
417 
418 	/*
419 	 * Set the bit regardless of whether or not it's on the list
420 	 * because it may be on the list already due to an RQ
421 	 * completion.
422 	 */
423 	set_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags);
424 
425 	/*
426 	 * If this transport is not already on the DTO transport queue,
427 	 * add it
428 	 */
429 	spin_lock_irqsave(&dto_lock, flags);
430 	if (list_empty(&xprt->sc_dto_q)) {
431 		svc_xprt_get(&xprt->sc_xprt);
432 		list_add_tail(&xprt->sc_dto_q, &dto_xprt_q);
433 	}
434 	spin_unlock_irqrestore(&dto_lock, flags);
435 
436 	/* Tasklet does all the work to avoid irqsave locks. */
437 	tasklet_schedule(&dto_tasklet);
438 }
439 
440 static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *serv,
441 					     int listener)
442 {
443 	struct svcxprt_rdma *cma_xprt = kzalloc(sizeof *cma_xprt, GFP_KERNEL);
444 
445 	if (!cma_xprt)
446 		return NULL;
447 	svc_xprt_init(&svc_rdma_class, &cma_xprt->sc_xprt, serv);
448 	INIT_LIST_HEAD(&cma_xprt->sc_accept_q);
449 	INIT_LIST_HEAD(&cma_xprt->sc_dto_q);
450 	INIT_LIST_HEAD(&cma_xprt->sc_rq_dto_q);
451 	INIT_LIST_HEAD(&cma_xprt->sc_read_complete_q);
452 	INIT_LIST_HEAD(&cma_xprt->sc_frmr_q);
453 	init_waitqueue_head(&cma_xprt->sc_send_wait);
454 
455 	spin_lock_init(&cma_xprt->sc_lock);
456 	spin_lock_init(&cma_xprt->sc_rq_dto_lock);
457 	spin_lock_init(&cma_xprt->sc_frmr_q_lock);
458 
459 	cma_xprt->sc_ord = svcrdma_ord;
460 
461 	cma_xprt->sc_max_req_size = svcrdma_max_req_size;
462 	cma_xprt->sc_max_requests = svcrdma_max_requests;
463 	cma_xprt->sc_sq_depth = svcrdma_max_requests * RPCRDMA_SQ_DEPTH_MULT;
464 	atomic_set(&cma_xprt->sc_sq_count, 0);
465 	atomic_set(&cma_xprt->sc_ctxt_used, 0);
466 
467 	if (listener)
468 		set_bit(XPT_LISTENER, &cma_xprt->sc_xprt.xpt_flags);
469 
470 	return cma_xprt;
471 }
472 
473 struct page *svc_rdma_get_page(void)
474 {
475 	struct page *page;
476 
477 	while ((page = alloc_page(GFP_KERNEL)) == NULL) {
478 		/* If we can't get memory, wait a bit and try again */
479 		printk(KERN_INFO "svcrdma: out of memory...retrying in 1000 "
480 		       "jiffies.\n");
481 		schedule_timeout_uninterruptible(msecs_to_jiffies(1000));
482 	}
483 	return page;
484 }
485 
486 int svc_rdma_post_recv(struct svcxprt_rdma *xprt)
487 {
488 	struct ib_recv_wr recv_wr, *bad_recv_wr;
489 	struct svc_rdma_op_ctxt *ctxt;
490 	struct page *page;
491 	dma_addr_t pa;
492 	int sge_no;
493 	int buflen;
494 	int ret;
495 
496 	ctxt = svc_rdma_get_context(xprt);
497 	buflen = 0;
498 	ctxt->direction = DMA_FROM_DEVICE;
499 	for (sge_no = 0; buflen < xprt->sc_max_req_size; sge_no++) {
500 		BUG_ON(sge_no >= xprt->sc_max_sge);
501 		page = svc_rdma_get_page();
502 		ctxt->pages[sge_no] = page;
503 		pa = ib_dma_map_single(xprt->sc_cm_id->device,
504 				     page_address(page), PAGE_SIZE,
505 				     DMA_FROM_DEVICE);
506 		if (ib_dma_mapping_error(xprt->sc_cm_id->device, pa))
507 			goto err_put_ctxt;
508 		atomic_inc(&xprt->sc_dma_used);
509 		ctxt->sge[sge_no].addr = pa;
510 		ctxt->sge[sge_no].length = PAGE_SIZE;
511 		ctxt->sge[sge_no].lkey = xprt->sc_dma_lkey;
512 		buflen += PAGE_SIZE;
513 	}
514 	ctxt->count = sge_no;
515 	recv_wr.next = NULL;
516 	recv_wr.sg_list = &ctxt->sge[0];
517 	recv_wr.num_sge = ctxt->count;
518 	recv_wr.wr_id = (u64)(unsigned long)ctxt;
519 
520 	svc_xprt_get(&xprt->sc_xprt);
521 	ret = ib_post_recv(xprt->sc_qp, &recv_wr, &bad_recv_wr);
522 	if (ret) {
523 		svc_rdma_unmap_dma(ctxt);
524 		svc_rdma_put_context(ctxt, 1);
525 		svc_xprt_put(&xprt->sc_xprt);
526 	}
527 	return ret;
528 
529  err_put_ctxt:
530 	svc_rdma_put_context(ctxt, 1);
531 	return -ENOMEM;
532 }
533 
534 /*
535  * This function handles the CONNECT_REQUEST event on a listening
536  * endpoint. It is passed the cma_id for the _new_ connection. The context in
537  * this cma_id is inherited from the listening cma_id and is the svc_xprt
538  * structure for the listening endpoint.
539  *
540  * This function creates a new xprt for the new connection and enqueues it on
541  * the accept queue for the listent xprt. When the listen thread is kicked, it
542  * will call the recvfrom method on the listen xprt which will accept the new
543  * connection.
544  */
545 static void handle_connect_req(struct rdma_cm_id *new_cma_id, size_t client_ird)
546 {
547 	struct svcxprt_rdma *listen_xprt = new_cma_id->context;
548 	struct svcxprt_rdma *newxprt;
549 	struct sockaddr *sa;
550 
551 	/* Create a new transport */
552 	newxprt = rdma_create_xprt(listen_xprt->sc_xprt.xpt_server, 0);
553 	if (!newxprt) {
554 		dprintk("svcrdma: failed to create new transport\n");
555 		return;
556 	}
557 	newxprt->sc_cm_id = new_cma_id;
558 	new_cma_id->context = newxprt;
559 	dprintk("svcrdma: Creating newxprt=%p, cm_id=%p, listenxprt=%p\n",
560 		newxprt, newxprt->sc_cm_id, listen_xprt);
561 
562 	/* Save client advertised inbound read limit for use later in accept. */
563 	newxprt->sc_ord = client_ird;
564 
565 	/* Set the local and remote addresses in the transport */
566 	sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr;
567 	svc_xprt_set_remote(&newxprt->sc_xprt, sa, svc_addr_len(sa));
568 	sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr;
569 	svc_xprt_set_local(&newxprt->sc_xprt, sa, svc_addr_len(sa));
570 
571 	/*
572 	 * Enqueue the new transport on the accept queue of the listening
573 	 * transport
574 	 */
575 	spin_lock_bh(&listen_xprt->sc_lock);
576 	list_add_tail(&newxprt->sc_accept_q, &listen_xprt->sc_accept_q);
577 	spin_unlock_bh(&listen_xprt->sc_lock);
578 
579 	/*
580 	 * Can't use svc_xprt_received here because we are not on a
581 	 * rqstp thread
582 	*/
583 	set_bit(XPT_CONN, &listen_xprt->sc_xprt.xpt_flags);
584 	svc_xprt_enqueue(&listen_xprt->sc_xprt);
585 }
586 
587 /*
588  * Handles events generated on the listening endpoint. These events will be
589  * either be incoming connect requests or adapter removal  events.
590  */
591 static int rdma_listen_handler(struct rdma_cm_id *cma_id,
592 			       struct rdma_cm_event *event)
593 {
594 	struct svcxprt_rdma *xprt = cma_id->context;
595 	int ret = 0;
596 
597 	switch (event->event) {
598 	case RDMA_CM_EVENT_CONNECT_REQUEST:
599 		dprintk("svcrdma: Connect request on cma_id=%p, xprt = %p, "
600 			"event=%d\n", cma_id, cma_id->context, event->event);
601 		handle_connect_req(cma_id,
602 				   event->param.conn.initiator_depth);
603 		break;
604 
605 	case RDMA_CM_EVENT_ESTABLISHED:
606 		/* Accept complete */
607 		dprintk("svcrdma: Connection completed on LISTEN xprt=%p, "
608 			"cm_id=%p\n", xprt, cma_id);
609 		break;
610 
611 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
612 		dprintk("svcrdma: Device removal xprt=%p, cm_id=%p\n",
613 			xprt, cma_id);
614 		if (xprt)
615 			set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
616 		break;
617 
618 	default:
619 		dprintk("svcrdma: Unexpected event on listening endpoint %p, "
620 			"event=%d\n", cma_id, event->event);
621 		break;
622 	}
623 
624 	return ret;
625 }
626 
627 static int rdma_cma_handler(struct rdma_cm_id *cma_id,
628 			    struct rdma_cm_event *event)
629 {
630 	struct svc_xprt *xprt = cma_id->context;
631 	struct svcxprt_rdma *rdma =
632 		container_of(xprt, struct svcxprt_rdma, sc_xprt);
633 	switch (event->event) {
634 	case RDMA_CM_EVENT_ESTABLISHED:
635 		/* Accept complete */
636 		svc_xprt_get(xprt);
637 		dprintk("svcrdma: Connection completed on DTO xprt=%p, "
638 			"cm_id=%p\n", xprt, cma_id);
639 		clear_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags);
640 		svc_xprt_enqueue(xprt);
641 		break;
642 	case RDMA_CM_EVENT_DISCONNECTED:
643 		dprintk("svcrdma: Disconnect on DTO xprt=%p, cm_id=%p\n",
644 			xprt, cma_id);
645 		if (xprt) {
646 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
647 			svc_xprt_enqueue(xprt);
648 			svc_xprt_put(xprt);
649 		}
650 		break;
651 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
652 		dprintk("svcrdma: Device removal cma_id=%p, xprt = %p, "
653 			"event=%d\n", cma_id, xprt, event->event);
654 		if (xprt) {
655 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
656 			svc_xprt_enqueue(xprt);
657 		}
658 		break;
659 	default:
660 		dprintk("svcrdma: Unexpected event on DTO endpoint %p, "
661 			"event=%d\n", cma_id, event->event);
662 		break;
663 	}
664 	return 0;
665 }
666 
667 /*
668  * Create a listening RDMA service endpoint.
669  */
670 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
671 					struct sockaddr *sa, int salen,
672 					int flags)
673 {
674 	struct rdma_cm_id *listen_id;
675 	struct svcxprt_rdma *cma_xprt;
676 	struct svc_xprt *xprt;
677 	int ret;
678 
679 	dprintk("svcrdma: Creating RDMA socket\n");
680 
681 	cma_xprt = rdma_create_xprt(serv, 1);
682 	if (!cma_xprt)
683 		return ERR_PTR(-ENOMEM);
684 	xprt = &cma_xprt->sc_xprt;
685 
686 	listen_id = rdma_create_id(rdma_listen_handler, cma_xprt, RDMA_PS_TCP);
687 	if (IS_ERR(listen_id)) {
688 		ret = PTR_ERR(listen_id);
689 		dprintk("svcrdma: rdma_create_id failed = %d\n", ret);
690 		goto err0;
691 	}
692 
693 	ret = rdma_bind_addr(listen_id, sa);
694 	if (ret) {
695 		dprintk("svcrdma: rdma_bind_addr failed = %d\n", ret);
696 		goto err1;
697 	}
698 	cma_xprt->sc_cm_id = listen_id;
699 
700 	ret = rdma_listen(listen_id, RPCRDMA_LISTEN_BACKLOG);
701 	if (ret) {
702 		dprintk("svcrdma: rdma_listen failed = %d\n", ret);
703 		goto err1;
704 	}
705 
706 	/*
707 	 * We need to use the address from the cm_id in case the
708 	 * caller specified 0 for the port number.
709 	 */
710 	sa = (struct sockaddr *)&cma_xprt->sc_cm_id->route.addr.src_addr;
711 	svc_xprt_set_local(&cma_xprt->sc_xprt, sa, salen);
712 
713 	return &cma_xprt->sc_xprt;
714 
715  err1:
716 	rdma_destroy_id(listen_id);
717  err0:
718 	kfree(cma_xprt);
719 	return ERR_PTR(ret);
720 }
721 
722 static struct svc_rdma_fastreg_mr *rdma_alloc_frmr(struct svcxprt_rdma *xprt)
723 {
724 	struct ib_mr *mr;
725 	struct ib_fast_reg_page_list *pl;
726 	struct svc_rdma_fastreg_mr *frmr;
727 
728 	frmr = kmalloc(sizeof(*frmr), GFP_KERNEL);
729 	if (!frmr)
730 		goto err;
731 
732 	mr = ib_alloc_fast_reg_mr(xprt->sc_pd, RPCSVC_MAXPAGES);
733 	if (!mr)
734 		goto err_free_frmr;
735 
736 	pl = ib_alloc_fast_reg_page_list(xprt->sc_cm_id->device,
737 					 RPCSVC_MAXPAGES);
738 	if (!pl)
739 		goto err_free_mr;
740 
741 	frmr->mr = mr;
742 	frmr->page_list = pl;
743 	INIT_LIST_HEAD(&frmr->frmr_list);
744 	return frmr;
745 
746  err_free_mr:
747 	ib_dereg_mr(mr);
748  err_free_frmr:
749 	kfree(frmr);
750  err:
751 	return ERR_PTR(-ENOMEM);
752 }
753 
754 static void rdma_dealloc_frmr_q(struct svcxprt_rdma *xprt)
755 {
756 	struct svc_rdma_fastreg_mr *frmr;
757 
758 	while (!list_empty(&xprt->sc_frmr_q)) {
759 		frmr = list_entry(xprt->sc_frmr_q.next,
760 				  struct svc_rdma_fastreg_mr, frmr_list);
761 		list_del_init(&frmr->frmr_list);
762 		ib_dereg_mr(frmr->mr);
763 		ib_free_fast_reg_page_list(frmr->page_list);
764 		kfree(frmr);
765 	}
766 }
767 
768 struct svc_rdma_fastreg_mr *svc_rdma_get_frmr(struct svcxprt_rdma *rdma)
769 {
770 	struct svc_rdma_fastreg_mr *frmr = NULL;
771 
772 	spin_lock_bh(&rdma->sc_frmr_q_lock);
773 	if (!list_empty(&rdma->sc_frmr_q)) {
774 		frmr = list_entry(rdma->sc_frmr_q.next,
775 				  struct svc_rdma_fastreg_mr, frmr_list);
776 		list_del_init(&frmr->frmr_list);
777 		frmr->map_len = 0;
778 		frmr->page_list_len = 0;
779 	}
780 	spin_unlock_bh(&rdma->sc_frmr_q_lock);
781 	if (frmr)
782 		return frmr;
783 
784 	return rdma_alloc_frmr(rdma);
785 }
786 
787 static void frmr_unmap_dma(struct svcxprt_rdma *xprt,
788 			   struct svc_rdma_fastreg_mr *frmr)
789 {
790 	int page_no;
791 	for (page_no = 0; page_no < frmr->page_list_len; page_no++) {
792 		dma_addr_t addr = frmr->page_list->page_list[page_no];
793 		if (ib_dma_mapping_error(frmr->mr->device, addr))
794 			continue;
795 		atomic_dec(&xprt->sc_dma_used);
796 		ib_dma_unmap_single(frmr->mr->device, addr, PAGE_SIZE,
797 				    frmr->direction);
798 	}
799 }
800 
801 void svc_rdma_put_frmr(struct svcxprt_rdma *rdma,
802 		       struct svc_rdma_fastreg_mr *frmr)
803 {
804 	if (frmr) {
805 		frmr_unmap_dma(rdma, frmr);
806 		spin_lock_bh(&rdma->sc_frmr_q_lock);
807 		BUG_ON(!list_empty(&frmr->frmr_list));
808 		list_add(&frmr->frmr_list, &rdma->sc_frmr_q);
809 		spin_unlock_bh(&rdma->sc_frmr_q_lock);
810 	}
811 }
812 
813 /*
814  * This is the xpo_recvfrom function for listening endpoints. Its
815  * purpose is to accept incoming connections. The CMA callback handler
816  * has already created a new transport and attached it to the new CMA
817  * ID.
818  *
819  * There is a queue of pending connections hung on the listening
820  * transport. This queue contains the new svc_xprt structure. This
821  * function takes svc_xprt structures off the accept_q and completes
822  * the connection.
823  */
824 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt)
825 {
826 	struct svcxprt_rdma *listen_rdma;
827 	struct svcxprt_rdma *newxprt = NULL;
828 	struct rdma_conn_param conn_param;
829 	struct ib_qp_init_attr qp_attr;
830 	struct ib_device_attr devattr;
831 	int uninitialized_var(dma_mr_acc);
832 	int need_dma_mr;
833 	int ret;
834 	int i;
835 
836 	listen_rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt);
837 	clear_bit(XPT_CONN, &xprt->xpt_flags);
838 	/* Get the next entry off the accept list */
839 	spin_lock_bh(&listen_rdma->sc_lock);
840 	if (!list_empty(&listen_rdma->sc_accept_q)) {
841 		newxprt = list_entry(listen_rdma->sc_accept_q.next,
842 				     struct svcxprt_rdma, sc_accept_q);
843 		list_del_init(&newxprt->sc_accept_q);
844 	}
845 	if (!list_empty(&listen_rdma->sc_accept_q))
846 		set_bit(XPT_CONN, &listen_rdma->sc_xprt.xpt_flags);
847 	spin_unlock_bh(&listen_rdma->sc_lock);
848 	if (!newxprt)
849 		return NULL;
850 
851 	dprintk("svcrdma: newxprt from accept queue = %p, cm_id=%p\n",
852 		newxprt, newxprt->sc_cm_id);
853 
854 	ret = ib_query_device(newxprt->sc_cm_id->device, &devattr);
855 	if (ret) {
856 		dprintk("svcrdma: could not query device attributes on "
857 			"device %p, rc=%d\n", newxprt->sc_cm_id->device, ret);
858 		goto errout;
859 	}
860 
861 	/* Qualify the transport resource defaults with the
862 	 * capabilities of this particular device */
863 	newxprt->sc_max_sge = min((size_t)devattr.max_sge,
864 				  (size_t)RPCSVC_MAXPAGES);
865 	newxprt->sc_max_requests = min((size_t)devattr.max_qp_wr,
866 				   (size_t)svcrdma_max_requests);
867 	newxprt->sc_sq_depth = RPCRDMA_SQ_DEPTH_MULT * newxprt->sc_max_requests;
868 
869 	/*
870 	 * Limit ORD based on client limit, local device limit, and
871 	 * configured svcrdma limit.
872 	 */
873 	newxprt->sc_ord = min_t(size_t, devattr.max_qp_rd_atom, newxprt->sc_ord);
874 	newxprt->sc_ord = min_t(size_t,	svcrdma_ord, newxprt->sc_ord);
875 
876 	newxprt->sc_pd = ib_alloc_pd(newxprt->sc_cm_id->device);
877 	if (IS_ERR(newxprt->sc_pd)) {
878 		dprintk("svcrdma: error creating PD for connect request\n");
879 		goto errout;
880 	}
881 	newxprt->sc_sq_cq = ib_create_cq(newxprt->sc_cm_id->device,
882 					 sq_comp_handler,
883 					 cq_event_handler,
884 					 newxprt,
885 					 newxprt->sc_sq_depth,
886 					 0);
887 	if (IS_ERR(newxprt->sc_sq_cq)) {
888 		dprintk("svcrdma: error creating SQ CQ for connect request\n");
889 		goto errout;
890 	}
891 	newxprt->sc_rq_cq = ib_create_cq(newxprt->sc_cm_id->device,
892 					 rq_comp_handler,
893 					 cq_event_handler,
894 					 newxprt,
895 					 newxprt->sc_max_requests,
896 					 0);
897 	if (IS_ERR(newxprt->sc_rq_cq)) {
898 		dprintk("svcrdma: error creating RQ CQ for connect request\n");
899 		goto errout;
900 	}
901 
902 	memset(&qp_attr, 0, sizeof qp_attr);
903 	qp_attr.event_handler = qp_event_handler;
904 	qp_attr.qp_context = &newxprt->sc_xprt;
905 	qp_attr.cap.max_send_wr = newxprt->sc_sq_depth;
906 	qp_attr.cap.max_recv_wr = newxprt->sc_max_requests;
907 	qp_attr.cap.max_send_sge = newxprt->sc_max_sge;
908 	qp_attr.cap.max_recv_sge = newxprt->sc_max_sge;
909 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
910 	qp_attr.qp_type = IB_QPT_RC;
911 	qp_attr.send_cq = newxprt->sc_sq_cq;
912 	qp_attr.recv_cq = newxprt->sc_rq_cq;
913 	dprintk("svcrdma: newxprt->sc_cm_id=%p, newxprt->sc_pd=%p\n"
914 		"    cm_id->device=%p, sc_pd->device=%p\n"
915 		"    cap.max_send_wr = %d\n"
916 		"    cap.max_recv_wr = %d\n"
917 		"    cap.max_send_sge = %d\n"
918 		"    cap.max_recv_sge = %d\n",
919 		newxprt->sc_cm_id, newxprt->sc_pd,
920 		newxprt->sc_cm_id->device, newxprt->sc_pd->device,
921 		qp_attr.cap.max_send_wr,
922 		qp_attr.cap.max_recv_wr,
923 		qp_attr.cap.max_send_sge,
924 		qp_attr.cap.max_recv_sge);
925 
926 	ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd, &qp_attr);
927 	if (ret) {
928 		/*
929 		 * XXX: This is a hack. We need a xx_request_qp interface
930 		 * that will adjust the qp_attr's with a best-effort
931 		 * number
932 		 */
933 		qp_attr.cap.max_send_sge -= 2;
934 		qp_attr.cap.max_recv_sge -= 2;
935 		ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd,
936 				     &qp_attr);
937 		if (ret) {
938 			dprintk("svcrdma: failed to create QP, ret=%d\n", ret);
939 			goto errout;
940 		}
941 		newxprt->sc_max_sge = qp_attr.cap.max_send_sge;
942 		newxprt->sc_max_sge = qp_attr.cap.max_recv_sge;
943 		newxprt->sc_sq_depth = qp_attr.cap.max_send_wr;
944 		newxprt->sc_max_requests = qp_attr.cap.max_recv_wr;
945 	}
946 	newxprt->sc_qp = newxprt->sc_cm_id->qp;
947 
948 	/*
949 	 * Use the most secure set of MR resources based on the
950 	 * transport type and available memory management features in
951 	 * the device. Here's the table implemented below:
952 	 *
953 	 *		Fast	Global	DMA	Remote WR
954 	 *		Reg	LKEY	MR	Access
955 	 *		Sup'd	Sup'd	Needed	Needed
956 	 *
957 	 * IWARP	N	N	Y	Y
958 	 *		N	Y	Y	Y
959 	 *		Y	N	Y	N
960 	 *		Y	Y	N	-
961 	 *
962 	 * IB		N	N	Y	N
963 	 *		N	Y	N	-
964 	 *		Y	N	Y	N
965 	 *		Y	Y	N	-
966 	 *
967 	 * NB:	iWARP requires remote write access for the data sink
968 	 *	of an RDMA_READ. IB does not.
969 	 */
970 	if (devattr.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) {
971 		newxprt->sc_frmr_pg_list_len =
972 			devattr.max_fast_reg_page_list_len;
973 		newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_FAST_REG;
974 	}
975 
976 	/*
977 	 * Determine if a DMA MR is required and if so, what privs are required
978 	 */
979 	switch (rdma_node_get_transport(newxprt->sc_cm_id->device->node_type)) {
980 	case RDMA_TRANSPORT_IWARP:
981 		newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_READ_W_INV;
982 		if (!(newxprt->sc_dev_caps & SVCRDMA_DEVCAP_FAST_REG)) {
983 			need_dma_mr = 1;
984 			dma_mr_acc =
985 				(IB_ACCESS_LOCAL_WRITE |
986 				 IB_ACCESS_REMOTE_WRITE);
987 		} else if (!(devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) {
988 			need_dma_mr = 1;
989 			dma_mr_acc = IB_ACCESS_LOCAL_WRITE;
990 		} else
991 			need_dma_mr = 0;
992 		break;
993 	case RDMA_TRANSPORT_IB:
994 		if (!(devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) {
995 			need_dma_mr = 1;
996 			dma_mr_acc = IB_ACCESS_LOCAL_WRITE;
997 		} else
998 			need_dma_mr = 0;
999 		break;
1000 	default:
1001 		goto errout;
1002 	}
1003 
1004 	/* Create the DMA MR if needed, otherwise, use the DMA LKEY */
1005 	if (need_dma_mr) {
1006 		/* Register all of physical memory */
1007 		newxprt->sc_phys_mr =
1008 			ib_get_dma_mr(newxprt->sc_pd, dma_mr_acc);
1009 		if (IS_ERR(newxprt->sc_phys_mr)) {
1010 			dprintk("svcrdma: Failed to create DMA MR ret=%d\n",
1011 				ret);
1012 			goto errout;
1013 		}
1014 		newxprt->sc_dma_lkey = newxprt->sc_phys_mr->lkey;
1015 	} else
1016 		newxprt->sc_dma_lkey =
1017 			newxprt->sc_cm_id->device->local_dma_lkey;
1018 
1019 	/* Post receive buffers */
1020 	for (i = 0; i < newxprt->sc_max_requests; i++) {
1021 		ret = svc_rdma_post_recv(newxprt);
1022 		if (ret) {
1023 			dprintk("svcrdma: failure posting receive buffers\n");
1024 			goto errout;
1025 		}
1026 	}
1027 
1028 	/* Swap out the handler */
1029 	newxprt->sc_cm_id->event_handler = rdma_cma_handler;
1030 
1031 	/*
1032 	 * Arm the CQs for the SQ and RQ before accepting so we can't
1033 	 * miss the first message
1034 	 */
1035 	ib_req_notify_cq(newxprt->sc_sq_cq, IB_CQ_NEXT_COMP);
1036 	ib_req_notify_cq(newxprt->sc_rq_cq, IB_CQ_NEXT_COMP);
1037 
1038 	/* Accept Connection */
1039 	set_bit(RDMAXPRT_CONN_PENDING, &newxprt->sc_flags);
1040 	memset(&conn_param, 0, sizeof conn_param);
1041 	conn_param.responder_resources = 0;
1042 	conn_param.initiator_depth = newxprt->sc_ord;
1043 	ret = rdma_accept(newxprt->sc_cm_id, &conn_param);
1044 	if (ret) {
1045 		dprintk("svcrdma: failed to accept new connection, ret=%d\n",
1046 		       ret);
1047 		goto errout;
1048 	}
1049 
1050 	dprintk("svcrdma: new connection %p accepted with the following "
1051 		"attributes:\n"
1052 		"    local_ip        : %pI4\n"
1053 		"    local_port	     : %d\n"
1054 		"    remote_ip       : %pI4\n"
1055 		"    remote_port     : %d\n"
1056 		"    max_sge         : %d\n"
1057 		"    sq_depth        : %d\n"
1058 		"    max_requests    : %d\n"
1059 		"    ord             : %d\n",
1060 		newxprt,
1061 		&((struct sockaddr_in *)&newxprt->sc_cm_id->
1062 			 route.addr.src_addr)->sin_addr.s_addr,
1063 		ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id->
1064 		       route.addr.src_addr)->sin_port),
1065 		&((struct sockaddr_in *)&newxprt->sc_cm_id->
1066 			 route.addr.dst_addr)->sin_addr.s_addr,
1067 		ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id->
1068 		       route.addr.dst_addr)->sin_port),
1069 		newxprt->sc_max_sge,
1070 		newxprt->sc_sq_depth,
1071 		newxprt->sc_max_requests,
1072 		newxprt->sc_ord);
1073 
1074 	return &newxprt->sc_xprt;
1075 
1076  errout:
1077 	dprintk("svcrdma: failure accepting new connection rc=%d.\n", ret);
1078 	/* Take a reference in case the DTO handler runs */
1079 	svc_xprt_get(&newxprt->sc_xprt);
1080 	if (newxprt->sc_qp && !IS_ERR(newxprt->sc_qp))
1081 		ib_destroy_qp(newxprt->sc_qp);
1082 	rdma_destroy_id(newxprt->sc_cm_id);
1083 	/* This call to put will destroy the transport */
1084 	svc_xprt_put(&newxprt->sc_xprt);
1085 	return NULL;
1086 }
1087 
1088 static void svc_rdma_release_rqst(struct svc_rqst *rqstp)
1089 {
1090 }
1091 
1092 /*
1093  * When connected, an svc_xprt has at least two references:
1094  *
1095  * - A reference held by the cm_id between the ESTABLISHED and
1096  *   DISCONNECTED events. If the remote peer disconnected first, this
1097  *   reference could be gone.
1098  *
1099  * - A reference held by the svc_recv code that called this function
1100  *   as part of close processing.
1101  *
1102  * At a minimum one references should still be held.
1103  */
1104 static void svc_rdma_detach(struct svc_xprt *xprt)
1105 {
1106 	struct svcxprt_rdma *rdma =
1107 		container_of(xprt, struct svcxprt_rdma, sc_xprt);
1108 	dprintk("svc: svc_rdma_detach(%p)\n", xprt);
1109 
1110 	/* Disconnect and flush posted WQE */
1111 	rdma_disconnect(rdma->sc_cm_id);
1112 }
1113 
1114 static void __svc_rdma_free(struct work_struct *work)
1115 {
1116 	struct svcxprt_rdma *rdma =
1117 		container_of(work, struct svcxprt_rdma, sc_work);
1118 	dprintk("svcrdma: svc_rdma_free(%p)\n", rdma);
1119 
1120 	/* We should only be called from kref_put */
1121 	BUG_ON(atomic_read(&rdma->sc_xprt.xpt_ref.refcount) != 0);
1122 
1123 	/*
1124 	 * Destroy queued, but not processed read completions. Note
1125 	 * that this cleanup has to be done before destroying the
1126 	 * cm_id because the device ptr is needed to unmap the dma in
1127 	 * svc_rdma_put_context.
1128 	 */
1129 	while (!list_empty(&rdma->sc_read_complete_q)) {
1130 		struct svc_rdma_op_ctxt *ctxt;
1131 		ctxt = list_entry(rdma->sc_read_complete_q.next,
1132 				  struct svc_rdma_op_ctxt,
1133 				  dto_q);
1134 		list_del_init(&ctxt->dto_q);
1135 		svc_rdma_put_context(ctxt, 1);
1136 	}
1137 
1138 	/* Destroy queued, but not processed recv completions */
1139 	while (!list_empty(&rdma->sc_rq_dto_q)) {
1140 		struct svc_rdma_op_ctxt *ctxt;
1141 		ctxt = list_entry(rdma->sc_rq_dto_q.next,
1142 				  struct svc_rdma_op_ctxt,
1143 				  dto_q);
1144 		list_del_init(&ctxt->dto_q);
1145 		svc_rdma_put_context(ctxt, 1);
1146 	}
1147 
1148 	/* Warn if we leaked a resource or under-referenced */
1149 	WARN_ON(atomic_read(&rdma->sc_ctxt_used) != 0);
1150 	WARN_ON(atomic_read(&rdma->sc_dma_used) != 0);
1151 
1152 	/* De-allocate fastreg mr */
1153 	rdma_dealloc_frmr_q(rdma);
1154 
1155 	/* Destroy the QP if present (not a listener) */
1156 	if (rdma->sc_qp && !IS_ERR(rdma->sc_qp))
1157 		ib_destroy_qp(rdma->sc_qp);
1158 
1159 	if (rdma->sc_sq_cq && !IS_ERR(rdma->sc_sq_cq))
1160 		ib_destroy_cq(rdma->sc_sq_cq);
1161 
1162 	if (rdma->sc_rq_cq && !IS_ERR(rdma->sc_rq_cq))
1163 		ib_destroy_cq(rdma->sc_rq_cq);
1164 
1165 	if (rdma->sc_phys_mr && !IS_ERR(rdma->sc_phys_mr))
1166 		ib_dereg_mr(rdma->sc_phys_mr);
1167 
1168 	if (rdma->sc_pd && !IS_ERR(rdma->sc_pd))
1169 		ib_dealloc_pd(rdma->sc_pd);
1170 
1171 	/* Destroy the CM ID */
1172 	rdma_destroy_id(rdma->sc_cm_id);
1173 
1174 	kfree(rdma);
1175 }
1176 
1177 static void svc_rdma_free(struct svc_xprt *xprt)
1178 {
1179 	struct svcxprt_rdma *rdma =
1180 		container_of(xprt, struct svcxprt_rdma, sc_xprt);
1181 	INIT_WORK(&rdma->sc_work, __svc_rdma_free);
1182 	schedule_work(&rdma->sc_work);
1183 }
1184 
1185 static int svc_rdma_has_wspace(struct svc_xprt *xprt)
1186 {
1187 	struct svcxprt_rdma *rdma =
1188 		container_of(xprt, struct svcxprt_rdma, sc_xprt);
1189 
1190 	/*
1191 	 * If there are fewer SQ WR available than required to send a
1192 	 * simple response, return false.
1193 	 */
1194 	if ((rdma->sc_sq_depth - atomic_read(&rdma->sc_sq_count) < 3))
1195 		return 0;
1196 
1197 	/*
1198 	 * ...or there are already waiters on the SQ,
1199 	 * return false.
1200 	 */
1201 	if (waitqueue_active(&rdma->sc_send_wait))
1202 		return 0;
1203 
1204 	/* Otherwise return true. */
1205 	return 1;
1206 }
1207 
1208 /*
1209  * Attempt to register the kvec representing the RPC memory with the
1210  * device.
1211  *
1212  * Returns:
1213  *  NULL : The device does not support fastreg or there were no more
1214  *         fastreg mr.
1215  *  frmr : The kvec register request was successfully posted.
1216  *    <0 : An error was encountered attempting to register the kvec.
1217  */
1218 int svc_rdma_fastreg(struct svcxprt_rdma *xprt,
1219 		     struct svc_rdma_fastreg_mr *frmr)
1220 {
1221 	struct ib_send_wr fastreg_wr;
1222 	u8 key;
1223 
1224 	/* Bump the key */
1225 	key = (u8)(frmr->mr->lkey & 0x000000FF);
1226 	ib_update_fast_reg_key(frmr->mr, ++key);
1227 
1228 	/* Prepare FASTREG WR */
1229 	memset(&fastreg_wr, 0, sizeof fastreg_wr);
1230 	fastreg_wr.opcode = IB_WR_FAST_REG_MR;
1231 	fastreg_wr.send_flags = IB_SEND_SIGNALED;
1232 	fastreg_wr.wr.fast_reg.iova_start = (unsigned long)frmr->kva;
1233 	fastreg_wr.wr.fast_reg.page_list = frmr->page_list;
1234 	fastreg_wr.wr.fast_reg.page_list_len = frmr->page_list_len;
1235 	fastreg_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
1236 	fastreg_wr.wr.fast_reg.length = frmr->map_len;
1237 	fastreg_wr.wr.fast_reg.access_flags = frmr->access_flags;
1238 	fastreg_wr.wr.fast_reg.rkey = frmr->mr->lkey;
1239 	return svc_rdma_send(xprt, &fastreg_wr);
1240 }
1241 
1242 int svc_rdma_send(struct svcxprt_rdma *xprt, struct ib_send_wr *wr)
1243 {
1244 	struct ib_send_wr *bad_wr, *n_wr;
1245 	int wr_count;
1246 	int i;
1247 	int ret;
1248 
1249 	if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
1250 		return -ENOTCONN;
1251 
1252 	BUG_ON(wr->send_flags != IB_SEND_SIGNALED);
1253 	wr_count = 1;
1254 	for (n_wr = wr->next; n_wr; n_wr = n_wr->next)
1255 		wr_count++;
1256 
1257 	/* If the SQ is full, wait until an SQ entry is available */
1258 	while (1) {
1259 		spin_lock_bh(&xprt->sc_lock);
1260 		if (xprt->sc_sq_depth < atomic_read(&xprt->sc_sq_count) + wr_count) {
1261 			spin_unlock_bh(&xprt->sc_lock);
1262 			atomic_inc(&rdma_stat_sq_starve);
1263 
1264 			/* See if we can opportunistically reap SQ WR to make room */
1265 			sq_cq_reap(xprt);
1266 
1267 			/* Wait until SQ WR available if SQ still full */
1268 			wait_event(xprt->sc_send_wait,
1269 				   atomic_read(&xprt->sc_sq_count) <
1270 				   xprt->sc_sq_depth);
1271 			if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
1272 				return 0;
1273 			continue;
1274 		}
1275 		/* Take a transport ref for each WR posted */
1276 		for (i = 0; i < wr_count; i++)
1277 			svc_xprt_get(&xprt->sc_xprt);
1278 
1279 		/* Bump used SQ WR count and post */
1280 		atomic_add(wr_count, &xprt->sc_sq_count);
1281 		ret = ib_post_send(xprt->sc_qp, wr, &bad_wr);
1282 		if (ret) {
1283 			set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
1284 			atomic_sub(wr_count, &xprt->sc_sq_count);
1285 			for (i = 0; i < wr_count; i ++)
1286 				svc_xprt_put(&xprt->sc_xprt);
1287 			dprintk("svcrdma: failed to post SQ WR rc=%d, "
1288 			       "sc_sq_count=%d, sc_sq_depth=%d\n",
1289 			       ret, atomic_read(&xprt->sc_sq_count),
1290 			       xprt->sc_sq_depth);
1291 		}
1292 		spin_unlock_bh(&xprt->sc_lock);
1293 		if (ret)
1294 			wake_up(&xprt->sc_send_wait);
1295 		break;
1296 	}
1297 	return ret;
1298 }
1299 
1300 void svc_rdma_send_error(struct svcxprt_rdma *xprt, struct rpcrdma_msg *rmsgp,
1301 			 enum rpcrdma_errcode err)
1302 {
1303 	struct ib_send_wr err_wr;
1304 	struct ib_sge sge;
1305 	struct page *p;
1306 	struct svc_rdma_op_ctxt *ctxt;
1307 	u32 *va;
1308 	int length;
1309 	int ret;
1310 
1311 	p = svc_rdma_get_page();
1312 	va = page_address(p);
1313 
1314 	/* XDR encode error */
1315 	length = svc_rdma_xdr_encode_error(xprt, rmsgp, err, va);
1316 
1317 	/* Prepare SGE for local address */
1318 	sge.addr = ib_dma_map_single(xprt->sc_cm_id->device,
1319 				   page_address(p), PAGE_SIZE, DMA_FROM_DEVICE);
1320 	if (ib_dma_mapping_error(xprt->sc_cm_id->device, sge.addr)) {
1321 		put_page(p);
1322 		return;
1323 	}
1324 	atomic_inc(&xprt->sc_dma_used);
1325 	sge.lkey = xprt->sc_dma_lkey;
1326 	sge.length = length;
1327 
1328 	ctxt = svc_rdma_get_context(xprt);
1329 	ctxt->count = 1;
1330 	ctxt->pages[0] = p;
1331 
1332 	/* Prepare SEND WR */
1333 	memset(&err_wr, 0, sizeof err_wr);
1334 	ctxt->wr_op = IB_WR_SEND;
1335 	err_wr.wr_id = (unsigned long)ctxt;
1336 	err_wr.sg_list = &sge;
1337 	err_wr.num_sge = 1;
1338 	err_wr.opcode = IB_WR_SEND;
1339 	err_wr.send_flags = IB_SEND_SIGNALED;
1340 
1341 	/* Post It */
1342 	ret = svc_rdma_send(xprt, &err_wr);
1343 	if (ret) {
1344 		dprintk("svcrdma: Error %d posting send for protocol error\n",
1345 			ret);
1346 		ib_dma_unmap_single(xprt->sc_cm_id->device,
1347 				  sge.addr, PAGE_SIZE,
1348 				  DMA_FROM_DEVICE);
1349 		svc_rdma_put_context(ctxt, 1);
1350 	}
1351 }
1352