1 /*
2  * Copyright (c) 2005-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  *      Redistributions of source code must retain the above copyright
15  *      notice, this list of conditions and the following disclaimer.
16  *
17  *      Redistributions in binary form must reproduce the above
18  *      copyright notice, this list of conditions and the following
19  *      disclaimer in the documentation and/or other materials provided
20  *      with the distribution.
21  *
22  *      Neither the name of the Network Appliance, Inc. nor the names of
23  *      its contributors may be used to endorse or promote products
24  *      derived from this software without specific prior written
25  *      permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  *
39  * Author: Tom Tucker <tom@opengridcomputing.com>
40  */
41 
42 #include <linux/sunrpc/svc_xprt.h>
43 #include <linux/sunrpc/debug.h>
44 #include <linux/sunrpc/rpc_rdma.h>
45 #include <linux/interrupt.h>
46 #include <linux/sched.h>
47 #include <linux/slab.h>
48 #include <linux/spinlock.h>
49 #include <linux/workqueue.h>
50 #include <rdma/ib_verbs.h>
51 #include <rdma/rdma_cm.h>
52 #include <linux/sunrpc/svc_rdma.h>
53 #include <linux/export.h>
54 #include "xprt_rdma.h"
55 
56 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
57 
58 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
59 					struct net *net,
60 					struct sockaddr *sa, int salen,
61 					int flags);
62 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt);
63 static void svc_rdma_release_rqst(struct svc_rqst *);
64 static void dto_tasklet_func(unsigned long data);
65 static void svc_rdma_detach(struct svc_xprt *xprt);
66 static void svc_rdma_free(struct svc_xprt *xprt);
67 static int svc_rdma_has_wspace(struct svc_xprt *xprt);
68 static void rq_cq_reap(struct svcxprt_rdma *xprt);
69 static void sq_cq_reap(struct svcxprt_rdma *xprt);
70 
71 static DECLARE_TASKLET(dto_tasklet, dto_tasklet_func, 0UL);
72 static DEFINE_SPINLOCK(dto_lock);
73 static LIST_HEAD(dto_xprt_q);
74 
75 static struct svc_xprt_ops svc_rdma_ops = {
76 	.xpo_create = svc_rdma_create,
77 	.xpo_recvfrom = svc_rdma_recvfrom,
78 	.xpo_sendto = svc_rdma_sendto,
79 	.xpo_release_rqst = svc_rdma_release_rqst,
80 	.xpo_detach = svc_rdma_detach,
81 	.xpo_free = svc_rdma_free,
82 	.xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr,
83 	.xpo_has_wspace = svc_rdma_has_wspace,
84 	.xpo_accept = svc_rdma_accept,
85 };
86 
87 struct svc_xprt_class svc_rdma_class = {
88 	.xcl_name = "rdma",
89 	.xcl_owner = THIS_MODULE,
90 	.xcl_ops = &svc_rdma_ops,
91 	.xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
92 };
93 
94 struct svc_rdma_op_ctxt *svc_rdma_get_context(struct svcxprt_rdma *xprt)
95 {
96 	struct svc_rdma_op_ctxt *ctxt;
97 
98 	while (1) {
99 		ctxt = kmem_cache_alloc(svc_rdma_ctxt_cachep, GFP_KERNEL);
100 		if (ctxt)
101 			break;
102 		schedule_timeout_uninterruptible(msecs_to_jiffies(500));
103 	}
104 	ctxt->xprt = xprt;
105 	INIT_LIST_HEAD(&ctxt->dto_q);
106 	ctxt->count = 0;
107 	ctxt->frmr = NULL;
108 	atomic_inc(&xprt->sc_ctxt_used);
109 	return ctxt;
110 }
111 
112 void svc_rdma_unmap_dma(struct svc_rdma_op_ctxt *ctxt)
113 {
114 	struct svcxprt_rdma *xprt = ctxt->xprt;
115 	int i;
116 	for (i = 0; i < ctxt->count && ctxt->sge[i].length; i++) {
117 		/*
118 		 * Unmap the DMA addr in the SGE if the lkey matches
119 		 * the sc_dma_lkey, otherwise, ignore it since it is
120 		 * an FRMR lkey and will be unmapped later when the
121 		 * last WR that uses it completes.
122 		 */
123 		if (ctxt->sge[i].lkey == xprt->sc_dma_lkey) {
124 			atomic_dec(&xprt->sc_dma_used);
125 			ib_dma_unmap_page(xprt->sc_cm_id->device,
126 					    ctxt->sge[i].addr,
127 					    ctxt->sge[i].length,
128 					    ctxt->direction);
129 		}
130 	}
131 }
132 
133 void svc_rdma_put_context(struct svc_rdma_op_ctxt *ctxt, int free_pages)
134 {
135 	struct svcxprt_rdma *xprt;
136 	int i;
137 
138 	BUG_ON(!ctxt);
139 	xprt = ctxt->xprt;
140 	if (free_pages)
141 		for (i = 0; i < ctxt->count; i++)
142 			put_page(ctxt->pages[i]);
143 
144 	kmem_cache_free(svc_rdma_ctxt_cachep, ctxt);
145 	atomic_dec(&xprt->sc_ctxt_used);
146 }
147 
148 /*
149  * Temporary NFS req mappings are shared across all transport
150  * instances. These are short lived and should be bounded by the number
151  * of concurrent server threads * depth of the SQ.
152  */
153 struct svc_rdma_req_map *svc_rdma_get_req_map(void)
154 {
155 	struct svc_rdma_req_map *map;
156 	while (1) {
157 		map = kmem_cache_alloc(svc_rdma_map_cachep, GFP_KERNEL);
158 		if (map)
159 			break;
160 		schedule_timeout_uninterruptible(msecs_to_jiffies(500));
161 	}
162 	map->count = 0;
163 	map->frmr = NULL;
164 	return map;
165 }
166 
167 void svc_rdma_put_req_map(struct svc_rdma_req_map *map)
168 {
169 	kmem_cache_free(svc_rdma_map_cachep, map);
170 }
171 
172 /* ib_cq event handler */
173 static void cq_event_handler(struct ib_event *event, void *context)
174 {
175 	struct svc_xprt *xprt = context;
176 	dprintk("svcrdma: received CQ event id=%d, context=%p\n",
177 		event->event, context);
178 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
179 }
180 
181 /* QP event handler */
182 static void qp_event_handler(struct ib_event *event, void *context)
183 {
184 	struct svc_xprt *xprt = context;
185 
186 	switch (event->event) {
187 	/* These are considered benign events */
188 	case IB_EVENT_PATH_MIG:
189 	case IB_EVENT_COMM_EST:
190 	case IB_EVENT_SQ_DRAINED:
191 	case IB_EVENT_QP_LAST_WQE_REACHED:
192 		dprintk("svcrdma: QP event %d received for QP=%p\n",
193 			event->event, event->element.qp);
194 		break;
195 	/* These are considered fatal events */
196 	case IB_EVENT_PATH_MIG_ERR:
197 	case IB_EVENT_QP_FATAL:
198 	case IB_EVENT_QP_REQ_ERR:
199 	case IB_EVENT_QP_ACCESS_ERR:
200 	case IB_EVENT_DEVICE_FATAL:
201 	default:
202 		dprintk("svcrdma: QP ERROR event %d received for QP=%p, "
203 			"closing transport\n",
204 			event->event, event->element.qp);
205 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
206 		break;
207 	}
208 }
209 
210 /*
211  * Data Transfer Operation Tasklet
212  *
213  * Walks a list of transports with I/O pending, removing entries as
214  * they are added to the server's I/O pending list. Two bits indicate
215  * if SQ, RQ, or both have I/O pending. The dto_lock is an irqsave
216  * spinlock that serializes access to the transport list with the RQ
217  * and SQ interrupt handlers.
218  */
219 static void dto_tasklet_func(unsigned long data)
220 {
221 	struct svcxprt_rdma *xprt;
222 	unsigned long flags;
223 
224 	spin_lock_irqsave(&dto_lock, flags);
225 	while (!list_empty(&dto_xprt_q)) {
226 		xprt = list_entry(dto_xprt_q.next,
227 				  struct svcxprt_rdma, sc_dto_q);
228 		list_del_init(&xprt->sc_dto_q);
229 		spin_unlock_irqrestore(&dto_lock, flags);
230 
231 		rq_cq_reap(xprt);
232 		sq_cq_reap(xprt);
233 
234 		svc_xprt_put(&xprt->sc_xprt);
235 		spin_lock_irqsave(&dto_lock, flags);
236 	}
237 	spin_unlock_irqrestore(&dto_lock, flags);
238 }
239 
240 /*
241  * Receive Queue Completion Handler
242  *
243  * Since an RQ completion handler is called on interrupt context, we
244  * need to defer the handling of the I/O to a tasklet
245  */
246 static void rq_comp_handler(struct ib_cq *cq, void *cq_context)
247 {
248 	struct svcxprt_rdma *xprt = cq_context;
249 	unsigned long flags;
250 
251 	/* Guard against unconditional flush call for destroyed QP */
252 	if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0)
253 		return;
254 
255 	/*
256 	 * Set the bit regardless of whether or not it's on the list
257 	 * because it may be on the list already due to an SQ
258 	 * completion.
259 	 */
260 	set_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags);
261 
262 	/*
263 	 * If this transport is not already on the DTO transport queue,
264 	 * add it
265 	 */
266 	spin_lock_irqsave(&dto_lock, flags);
267 	if (list_empty(&xprt->sc_dto_q)) {
268 		svc_xprt_get(&xprt->sc_xprt);
269 		list_add_tail(&xprt->sc_dto_q, &dto_xprt_q);
270 	}
271 	spin_unlock_irqrestore(&dto_lock, flags);
272 
273 	/* Tasklet does all the work to avoid irqsave locks. */
274 	tasklet_schedule(&dto_tasklet);
275 }
276 
277 /*
278  * rq_cq_reap - Process the RQ CQ.
279  *
280  * Take all completing WC off the CQE and enqueue the associated DTO
281  * context on the dto_q for the transport.
282  *
283  * Note that caller must hold a transport reference.
284  */
285 static void rq_cq_reap(struct svcxprt_rdma *xprt)
286 {
287 	int ret;
288 	struct ib_wc wc;
289 	struct svc_rdma_op_ctxt *ctxt = NULL;
290 
291 	if (!test_and_clear_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags))
292 		return;
293 
294 	ib_req_notify_cq(xprt->sc_rq_cq, IB_CQ_NEXT_COMP);
295 	atomic_inc(&rdma_stat_rq_poll);
296 
297 	while ((ret = ib_poll_cq(xprt->sc_rq_cq, 1, &wc)) > 0) {
298 		ctxt = (struct svc_rdma_op_ctxt *)(unsigned long)wc.wr_id;
299 		ctxt->wc_status = wc.status;
300 		ctxt->byte_len = wc.byte_len;
301 		svc_rdma_unmap_dma(ctxt);
302 		if (wc.status != IB_WC_SUCCESS) {
303 			/* Close the transport */
304 			dprintk("svcrdma: transport closing putting ctxt %p\n", ctxt);
305 			set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
306 			svc_rdma_put_context(ctxt, 1);
307 			svc_xprt_put(&xprt->sc_xprt);
308 			continue;
309 		}
310 		spin_lock_bh(&xprt->sc_rq_dto_lock);
311 		list_add_tail(&ctxt->dto_q, &xprt->sc_rq_dto_q);
312 		spin_unlock_bh(&xprt->sc_rq_dto_lock);
313 		svc_xprt_put(&xprt->sc_xprt);
314 	}
315 
316 	if (ctxt)
317 		atomic_inc(&rdma_stat_rq_prod);
318 
319 	set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
320 	/*
321 	 * If data arrived before established event,
322 	 * don't enqueue. This defers RPC I/O until the
323 	 * RDMA connection is complete.
324 	 */
325 	if (!test_bit(RDMAXPRT_CONN_PENDING, &xprt->sc_flags))
326 		svc_xprt_enqueue(&xprt->sc_xprt);
327 }
328 
329 /*
330  * Process a completion context
331  */
332 static void process_context(struct svcxprt_rdma *xprt,
333 			    struct svc_rdma_op_ctxt *ctxt)
334 {
335 	svc_rdma_unmap_dma(ctxt);
336 
337 	switch (ctxt->wr_op) {
338 	case IB_WR_SEND:
339 		if (test_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags))
340 			svc_rdma_put_frmr(xprt, ctxt->frmr);
341 		svc_rdma_put_context(ctxt, 1);
342 		break;
343 
344 	case IB_WR_RDMA_WRITE:
345 		svc_rdma_put_context(ctxt, 0);
346 		break;
347 
348 	case IB_WR_RDMA_READ:
349 	case IB_WR_RDMA_READ_WITH_INV:
350 		if (test_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags)) {
351 			struct svc_rdma_op_ctxt *read_hdr = ctxt->read_hdr;
352 			BUG_ON(!read_hdr);
353 			if (test_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags))
354 				svc_rdma_put_frmr(xprt, ctxt->frmr);
355 			spin_lock_bh(&xprt->sc_rq_dto_lock);
356 			set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
357 			list_add_tail(&read_hdr->dto_q,
358 				      &xprt->sc_read_complete_q);
359 			spin_unlock_bh(&xprt->sc_rq_dto_lock);
360 			svc_xprt_enqueue(&xprt->sc_xprt);
361 		}
362 		svc_rdma_put_context(ctxt, 0);
363 		break;
364 
365 	default:
366 		printk(KERN_ERR "svcrdma: unexpected completion type, "
367 		       "opcode=%d\n",
368 		       ctxt->wr_op);
369 		break;
370 	}
371 }
372 
373 /*
374  * Send Queue Completion Handler - potentially called on interrupt context.
375  *
376  * Note that caller must hold a transport reference.
377  */
378 static void sq_cq_reap(struct svcxprt_rdma *xprt)
379 {
380 	struct svc_rdma_op_ctxt *ctxt = NULL;
381 	struct ib_wc wc;
382 	struct ib_cq *cq = xprt->sc_sq_cq;
383 	int ret;
384 
385 	if (!test_and_clear_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags))
386 		return;
387 
388 	ib_req_notify_cq(xprt->sc_sq_cq, IB_CQ_NEXT_COMP);
389 	atomic_inc(&rdma_stat_sq_poll);
390 	while ((ret = ib_poll_cq(cq, 1, &wc)) > 0) {
391 		if (wc.status != IB_WC_SUCCESS)
392 			/* Close the transport */
393 			set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
394 
395 		/* Decrement used SQ WR count */
396 		atomic_dec(&xprt->sc_sq_count);
397 		wake_up(&xprt->sc_send_wait);
398 
399 		ctxt = (struct svc_rdma_op_ctxt *)(unsigned long)wc.wr_id;
400 		if (ctxt)
401 			process_context(xprt, ctxt);
402 
403 		svc_xprt_put(&xprt->sc_xprt);
404 	}
405 
406 	if (ctxt)
407 		atomic_inc(&rdma_stat_sq_prod);
408 }
409 
410 static void sq_comp_handler(struct ib_cq *cq, void *cq_context)
411 {
412 	struct svcxprt_rdma *xprt = cq_context;
413 	unsigned long flags;
414 
415 	/* Guard against unconditional flush call for destroyed QP */
416 	if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0)
417 		return;
418 
419 	/*
420 	 * Set the bit regardless of whether or not it's on the list
421 	 * because it may be on the list already due to an RQ
422 	 * completion.
423 	 */
424 	set_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags);
425 
426 	/*
427 	 * If this transport is not already on the DTO transport queue,
428 	 * add it
429 	 */
430 	spin_lock_irqsave(&dto_lock, flags);
431 	if (list_empty(&xprt->sc_dto_q)) {
432 		svc_xprt_get(&xprt->sc_xprt);
433 		list_add_tail(&xprt->sc_dto_q, &dto_xprt_q);
434 	}
435 	spin_unlock_irqrestore(&dto_lock, flags);
436 
437 	/* Tasklet does all the work to avoid irqsave locks. */
438 	tasklet_schedule(&dto_tasklet);
439 }
440 
441 static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *serv,
442 					     int listener)
443 {
444 	struct svcxprt_rdma *cma_xprt = kzalloc(sizeof *cma_xprt, GFP_KERNEL);
445 
446 	if (!cma_xprt)
447 		return NULL;
448 	svc_xprt_init(&init_net, &svc_rdma_class, &cma_xprt->sc_xprt, serv);
449 	INIT_LIST_HEAD(&cma_xprt->sc_accept_q);
450 	INIT_LIST_HEAD(&cma_xprt->sc_dto_q);
451 	INIT_LIST_HEAD(&cma_xprt->sc_rq_dto_q);
452 	INIT_LIST_HEAD(&cma_xprt->sc_read_complete_q);
453 	INIT_LIST_HEAD(&cma_xprt->sc_frmr_q);
454 	init_waitqueue_head(&cma_xprt->sc_send_wait);
455 
456 	spin_lock_init(&cma_xprt->sc_lock);
457 	spin_lock_init(&cma_xprt->sc_rq_dto_lock);
458 	spin_lock_init(&cma_xprt->sc_frmr_q_lock);
459 
460 	cma_xprt->sc_ord = svcrdma_ord;
461 
462 	cma_xprt->sc_max_req_size = svcrdma_max_req_size;
463 	cma_xprt->sc_max_requests = svcrdma_max_requests;
464 	cma_xprt->sc_sq_depth = svcrdma_max_requests * RPCRDMA_SQ_DEPTH_MULT;
465 	atomic_set(&cma_xprt->sc_sq_count, 0);
466 	atomic_set(&cma_xprt->sc_ctxt_used, 0);
467 
468 	if (listener)
469 		set_bit(XPT_LISTENER, &cma_xprt->sc_xprt.xpt_flags);
470 
471 	return cma_xprt;
472 }
473 
474 struct page *svc_rdma_get_page(void)
475 {
476 	struct page *page;
477 
478 	while ((page = alloc_page(GFP_KERNEL)) == NULL) {
479 		/* If we can't get memory, wait a bit and try again */
480 		printk(KERN_INFO "svcrdma: out of memory...retrying in 1s\n");
481 		schedule_timeout_uninterruptible(msecs_to_jiffies(1000));
482 	}
483 	return page;
484 }
485 
486 int svc_rdma_post_recv(struct svcxprt_rdma *xprt)
487 {
488 	struct ib_recv_wr recv_wr, *bad_recv_wr;
489 	struct svc_rdma_op_ctxt *ctxt;
490 	struct page *page;
491 	dma_addr_t pa;
492 	int sge_no;
493 	int buflen;
494 	int ret;
495 
496 	ctxt = svc_rdma_get_context(xprt);
497 	buflen = 0;
498 	ctxt->direction = DMA_FROM_DEVICE;
499 	for (sge_no = 0; buflen < xprt->sc_max_req_size; sge_no++) {
500 		BUG_ON(sge_no >= xprt->sc_max_sge);
501 		page = svc_rdma_get_page();
502 		ctxt->pages[sge_no] = page;
503 		pa = ib_dma_map_page(xprt->sc_cm_id->device,
504 				     page, 0, PAGE_SIZE,
505 				     DMA_FROM_DEVICE);
506 		if (ib_dma_mapping_error(xprt->sc_cm_id->device, pa))
507 			goto err_put_ctxt;
508 		atomic_inc(&xprt->sc_dma_used);
509 		ctxt->sge[sge_no].addr = pa;
510 		ctxt->sge[sge_no].length = PAGE_SIZE;
511 		ctxt->sge[sge_no].lkey = xprt->sc_dma_lkey;
512 		ctxt->count = sge_no + 1;
513 		buflen += PAGE_SIZE;
514 	}
515 	recv_wr.next = NULL;
516 	recv_wr.sg_list = &ctxt->sge[0];
517 	recv_wr.num_sge = ctxt->count;
518 	recv_wr.wr_id = (u64)(unsigned long)ctxt;
519 
520 	svc_xprt_get(&xprt->sc_xprt);
521 	ret = ib_post_recv(xprt->sc_qp, &recv_wr, &bad_recv_wr);
522 	if (ret) {
523 		svc_rdma_unmap_dma(ctxt);
524 		svc_rdma_put_context(ctxt, 1);
525 		svc_xprt_put(&xprt->sc_xprt);
526 	}
527 	return ret;
528 
529  err_put_ctxt:
530 	svc_rdma_unmap_dma(ctxt);
531 	svc_rdma_put_context(ctxt, 1);
532 	return -ENOMEM;
533 }
534 
535 /*
536  * This function handles the CONNECT_REQUEST event on a listening
537  * endpoint. It is passed the cma_id for the _new_ connection. The context in
538  * this cma_id is inherited from the listening cma_id and is the svc_xprt
539  * structure for the listening endpoint.
540  *
541  * This function creates a new xprt for the new connection and enqueues it on
542  * the accept queue for the listent xprt. When the listen thread is kicked, it
543  * will call the recvfrom method on the listen xprt which will accept the new
544  * connection.
545  */
546 static void handle_connect_req(struct rdma_cm_id *new_cma_id, size_t client_ird)
547 {
548 	struct svcxprt_rdma *listen_xprt = new_cma_id->context;
549 	struct svcxprt_rdma *newxprt;
550 	struct sockaddr *sa;
551 
552 	/* Create a new transport */
553 	newxprt = rdma_create_xprt(listen_xprt->sc_xprt.xpt_server, 0);
554 	if (!newxprt) {
555 		dprintk("svcrdma: failed to create new transport\n");
556 		return;
557 	}
558 	newxprt->sc_cm_id = new_cma_id;
559 	new_cma_id->context = newxprt;
560 	dprintk("svcrdma: Creating newxprt=%p, cm_id=%p, listenxprt=%p\n",
561 		newxprt, newxprt->sc_cm_id, listen_xprt);
562 
563 	/* Save client advertised inbound read limit for use later in accept. */
564 	newxprt->sc_ord = client_ird;
565 
566 	/* Set the local and remote addresses in the transport */
567 	sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr;
568 	svc_xprt_set_remote(&newxprt->sc_xprt, sa, svc_addr_len(sa));
569 	sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr;
570 	svc_xprt_set_local(&newxprt->sc_xprt, sa, svc_addr_len(sa));
571 
572 	/*
573 	 * Enqueue the new transport on the accept queue of the listening
574 	 * transport
575 	 */
576 	spin_lock_bh(&listen_xprt->sc_lock);
577 	list_add_tail(&newxprt->sc_accept_q, &listen_xprt->sc_accept_q);
578 	spin_unlock_bh(&listen_xprt->sc_lock);
579 
580 	set_bit(XPT_CONN, &listen_xprt->sc_xprt.xpt_flags);
581 	svc_xprt_enqueue(&listen_xprt->sc_xprt);
582 }
583 
584 /*
585  * Handles events generated on the listening endpoint. These events will be
586  * either be incoming connect requests or adapter removal  events.
587  */
588 static int rdma_listen_handler(struct rdma_cm_id *cma_id,
589 			       struct rdma_cm_event *event)
590 {
591 	struct svcxprt_rdma *xprt = cma_id->context;
592 	int ret = 0;
593 
594 	switch (event->event) {
595 	case RDMA_CM_EVENT_CONNECT_REQUEST:
596 		dprintk("svcrdma: Connect request on cma_id=%p, xprt = %p, "
597 			"event=%d\n", cma_id, cma_id->context, event->event);
598 		handle_connect_req(cma_id,
599 				   event->param.conn.initiator_depth);
600 		break;
601 
602 	case RDMA_CM_EVENT_ESTABLISHED:
603 		/* Accept complete */
604 		dprintk("svcrdma: Connection completed on LISTEN xprt=%p, "
605 			"cm_id=%p\n", xprt, cma_id);
606 		break;
607 
608 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
609 		dprintk("svcrdma: Device removal xprt=%p, cm_id=%p\n",
610 			xprt, cma_id);
611 		if (xprt)
612 			set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
613 		break;
614 
615 	default:
616 		dprintk("svcrdma: Unexpected event on listening endpoint %p, "
617 			"event=%d\n", cma_id, event->event);
618 		break;
619 	}
620 
621 	return ret;
622 }
623 
624 static int rdma_cma_handler(struct rdma_cm_id *cma_id,
625 			    struct rdma_cm_event *event)
626 {
627 	struct svc_xprt *xprt = cma_id->context;
628 	struct svcxprt_rdma *rdma =
629 		container_of(xprt, struct svcxprt_rdma, sc_xprt);
630 	switch (event->event) {
631 	case RDMA_CM_EVENT_ESTABLISHED:
632 		/* Accept complete */
633 		svc_xprt_get(xprt);
634 		dprintk("svcrdma: Connection completed on DTO xprt=%p, "
635 			"cm_id=%p\n", xprt, cma_id);
636 		clear_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags);
637 		svc_xprt_enqueue(xprt);
638 		break;
639 	case RDMA_CM_EVENT_DISCONNECTED:
640 		dprintk("svcrdma: Disconnect on DTO xprt=%p, cm_id=%p\n",
641 			xprt, cma_id);
642 		if (xprt) {
643 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
644 			svc_xprt_enqueue(xprt);
645 			svc_xprt_put(xprt);
646 		}
647 		break;
648 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
649 		dprintk("svcrdma: Device removal cma_id=%p, xprt = %p, "
650 			"event=%d\n", cma_id, xprt, event->event);
651 		if (xprt) {
652 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
653 			svc_xprt_enqueue(xprt);
654 		}
655 		break;
656 	default:
657 		dprintk("svcrdma: Unexpected event on DTO endpoint %p, "
658 			"event=%d\n", cma_id, event->event);
659 		break;
660 	}
661 	return 0;
662 }
663 
664 /*
665  * Create a listening RDMA service endpoint.
666  */
667 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
668 					struct net *net,
669 					struct sockaddr *sa, int salen,
670 					int flags)
671 {
672 	struct rdma_cm_id *listen_id;
673 	struct svcxprt_rdma *cma_xprt;
674 	struct svc_xprt *xprt;
675 	int ret;
676 
677 	dprintk("svcrdma: Creating RDMA socket\n");
678 	if (sa->sa_family != AF_INET) {
679 		dprintk("svcrdma: Address family %d is not supported.\n", sa->sa_family);
680 		return ERR_PTR(-EAFNOSUPPORT);
681 	}
682 	cma_xprt = rdma_create_xprt(serv, 1);
683 	if (!cma_xprt)
684 		return ERR_PTR(-ENOMEM);
685 	xprt = &cma_xprt->sc_xprt;
686 
687 	listen_id = rdma_create_id(rdma_listen_handler, cma_xprt, RDMA_PS_TCP,
688 				   IB_QPT_RC);
689 	if (IS_ERR(listen_id)) {
690 		ret = PTR_ERR(listen_id);
691 		dprintk("svcrdma: rdma_create_id failed = %d\n", ret);
692 		goto err0;
693 	}
694 
695 	ret = rdma_bind_addr(listen_id, sa);
696 	if (ret) {
697 		dprintk("svcrdma: rdma_bind_addr failed = %d\n", ret);
698 		goto err1;
699 	}
700 	cma_xprt->sc_cm_id = listen_id;
701 
702 	ret = rdma_listen(listen_id, RPCRDMA_LISTEN_BACKLOG);
703 	if (ret) {
704 		dprintk("svcrdma: rdma_listen failed = %d\n", ret);
705 		goto err1;
706 	}
707 
708 	/*
709 	 * We need to use the address from the cm_id in case the
710 	 * caller specified 0 for the port number.
711 	 */
712 	sa = (struct sockaddr *)&cma_xprt->sc_cm_id->route.addr.src_addr;
713 	svc_xprt_set_local(&cma_xprt->sc_xprt, sa, salen);
714 
715 	return &cma_xprt->sc_xprt;
716 
717  err1:
718 	rdma_destroy_id(listen_id);
719  err0:
720 	kfree(cma_xprt);
721 	return ERR_PTR(ret);
722 }
723 
724 static struct svc_rdma_fastreg_mr *rdma_alloc_frmr(struct svcxprt_rdma *xprt)
725 {
726 	struct ib_mr *mr;
727 	struct ib_fast_reg_page_list *pl;
728 	struct svc_rdma_fastreg_mr *frmr;
729 
730 	frmr = kmalloc(sizeof(*frmr), GFP_KERNEL);
731 	if (!frmr)
732 		goto err;
733 
734 	mr = ib_alloc_fast_reg_mr(xprt->sc_pd, RPCSVC_MAXPAGES);
735 	if (IS_ERR(mr))
736 		goto err_free_frmr;
737 
738 	pl = ib_alloc_fast_reg_page_list(xprt->sc_cm_id->device,
739 					 RPCSVC_MAXPAGES);
740 	if (IS_ERR(pl))
741 		goto err_free_mr;
742 
743 	frmr->mr = mr;
744 	frmr->page_list = pl;
745 	INIT_LIST_HEAD(&frmr->frmr_list);
746 	return frmr;
747 
748  err_free_mr:
749 	ib_dereg_mr(mr);
750  err_free_frmr:
751 	kfree(frmr);
752  err:
753 	return ERR_PTR(-ENOMEM);
754 }
755 
756 static void rdma_dealloc_frmr_q(struct svcxprt_rdma *xprt)
757 {
758 	struct svc_rdma_fastreg_mr *frmr;
759 
760 	while (!list_empty(&xprt->sc_frmr_q)) {
761 		frmr = list_entry(xprt->sc_frmr_q.next,
762 				  struct svc_rdma_fastreg_mr, frmr_list);
763 		list_del_init(&frmr->frmr_list);
764 		ib_dereg_mr(frmr->mr);
765 		ib_free_fast_reg_page_list(frmr->page_list);
766 		kfree(frmr);
767 	}
768 }
769 
770 struct svc_rdma_fastreg_mr *svc_rdma_get_frmr(struct svcxprt_rdma *rdma)
771 {
772 	struct svc_rdma_fastreg_mr *frmr = NULL;
773 
774 	spin_lock_bh(&rdma->sc_frmr_q_lock);
775 	if (!list_empty(&rdma->sc_frmr_q)) {
776 		frmr = list_entry(rdma->sc_frmr_q.next,
777 				  struct svc_rdma_fastreg_mr, frmr_list);
778 		list_del_init(&frmr->frmr_list);
779 		frmr->map_len = 0;
780 		frmr->page_list_len = 0;
781 	}
782 	spin_unlock_bh(&rdma->sc_frmr_q_lock);
783 	if (frmr)
784 		return frmr;
785 
786 	return rdma_alloc_frmr(rdma);
787 }
788 
789 static void frmr_unmap_dma(struct svcxprt_rdma *xprt,
790 			   struct svc_rdma_fastreg_mr *frmr)
791 {
792 	int page_no;
793 	for (page_no = 0; page_no < frmr->page_list_len; page_no++) {
794 		dma_addr_t addr = frmr->page_list->page_list[page_no];
795 		if (ib_dma_mapping_error(frmr->mr->device, addr))
796 			continue;
797 		atomic_dec(&xprt->sc_dma_used);
798 		ib_dma_unmap_page(frmr->mr->device, addr, PAGE_SIZE,
799 				  frmr->direction);
800 	}
801 }
802 
803 void svc_rdma_put_frmr(struct svcxprt_rdma *rdma,
804 		       struct svc_rdma_fastreg_mr *frmr)
805 {
806 	if (frmr) {
807 		frmr_unmap_dma(rdma, frmr);
808 		spin_lock_bh(&rdma->sc_frmr_q_lock);
809 		BUG_ON(!list_empty(&frmr->frmr_list));
810 		list_add(&frmr->frmr_list, &rdma->sc_frmr_q);
811 		spin_unlock_bh(&rdma->sc_frmr_q_lock);
812 	}
813 }
814 
815 /*
816  * This is the xpo_recvfrom function for listening endpoints. Its
817  * purpose is to accept incoming connections. The CMA callback handler
818  * has already created a new transport and attached it to the new CMA
819  * ID.
820  *
821  * There is a queue of pending connections hung on the listening
822  * transport. This queue contains the new svc_xprt structure. This
823  * function takes svc_xprt structures off the accept_q and completes
824  * the connection.
825  */
826 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt)
827 {
828 	struct svcxprt_rdma *listen_rdma;
829 	struct svcxprt_rdma *newxprt = NULL;
830 	struct rdma_conn_param conn_param;
831 	struct ib_qp_init_attr qp_attr;
832 	struct ib_device_attr devattr;
833 	int uninitialized_var(dma_mr_acc);
834 	int need_dma_mr;
835 	int ret;
836 	int i;
837 
838 	listen_rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt);
839 	clear_bit(XPT_CONN, &xprt->xpt_flags);
840 	/* Get the next entry off the accept list */
841 	spin_lock_bh(&listen_rdma->sc_lock);
842 	if (!list_empty(&listen_rdma->sc_accept_q)) {
843 		newxprt = list_entry(listen_rdma->sc_accept_q.next,
844 				     struct svcxprt_rdma, sc_accept_q);
845 		list_del_init(&newxprt->sc_accept_q);
846 	}
847 	if (!list_empty(&listen_rdma->sc_accept_q))
848 		set_bit(XPT_CONN, &listen_rdma->sc_xprt.xpt_flags);
849 	spin_unlock_bh(&listen_rdma->sc_lock);
850 	if (!newxprt)
851 		return NULL;
852 
853 	dprintk("svcrdma: newxprt from accept queue = %p, cm_id=%p\n",
854 		newxprt, newxprt->sc_cm_id);
855 
856 	ret = ib_query_device(newxprt->sc_cm_id->device, &devattr);
857 	if (ret) {
858 		dprintk("svcrdma: could not query device attributes on "
859 			"device %p, rc=%d\n", newxprt->sc_cm_id->device, ret);
860 		goto errout;
861 	}
862 
863 	/* Qualify the transport resource defaults with the
864 	 * capabilities of this particular device */
865 	newxprt->sc_max_sge = min((size_t)devattr.max_sge,
866 				  (size_t)RPCSVC_MAXPAGES);
867 	newxprt->sc_max_requests = min((size_t)devattr.max_qp_wr,
868 				   (size_t)svcrdma_max_requests);
869 	newxprt->sc_sq_depth = RPCRDMA_SQ_DEPTH_MULT * newxprt->sc_max_requests;
870 
871 	/*
872 	 * Limit ORD based on client limit, local device limit, and
873 	 * configured svcrdma limit.
874 	 */
875 	newxprt->sc_ord = min_t(size_t, devattr.max_qp_rd_atom, newxprt->sc_ord);
876 	newxprt->sc_ord = min_t(size_t,	svcrdma_ord, newxprt->sc_ord);
877 
878 	newxprt->sc_pd = ib_alloc_pd(newxprt->sc_cm_id->device);
879 	if (IS_ERR(newxprt->sc_pd)) {
880 		dprintk("svcrdma: error creating PD for connect request\n");
881 		goto errout;
882 	}
883 	newxprt->sc_sq_cq = ib_create_cq(newxprt->sc_cm_id->device,
884 					 sq_comp_handler,
885 					 cq_event_handler,
886 					 newxprt,
887 					 newxprt->sc_sq_depth,
888 					 0);
889 	if (IS_ERR(newxprt->sc_sq_cq)) {
890 		dprintk("svcrdma: error creating SQ CQ for connect request\n");
891 		goto errout;
892 	}
893 	newxprt->sc_rq_cq = ib_create_cq(newxprt->sc_cm_id->device,
894 					 rq_comp_handler,
895 					 cq_event_handler,
896 					 newxprt,
897 					 newxprt->sc_max_requests,
898 					 0);
899 	if (IS_ERR(newxprt->sc_rq_cq)) {
900 		dprintk("svcrdma: error creating RQ CQ for connect request\n");
901 		goto errout;
902 	}
903 
904 	memset(&qp_attr, 0, sizeof qp_attr);
905 	qp_attr.event_handler = qp_event_handler;
906 	qp_attr.qp_context = &newxprt->sc_xprt;
907 	qp_attr.cap.max_send_wr = newxprt->sc_sq_depth;
908 	qp_attr.cap.max_recv_wr = newxprt->sc_max_requests;
909 	qp_attr.cap.max_send_sge = newxprt->sc_max_sge;
910 	qp_attr.cap.max_recv_sge = newxprt->sc_max_sge;
911 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
912 	qp_attr.qp_type = IB_QPT_RC;
913 	qp_attr.send_cq = newxprt->sc_sq_cq;
914 	qp_attr.recv_cq = newxprt->sc_rq_cq;
915 	dprintk("svcrdma: newxprt->sc_cm_id=%p, newxprt->sc_pd=%p\n"
916 		"    cm_id->device=%p, sc_pd->device=%p\n"
917 		"    cap.max_send_wr = %d\n"
918 		"    cap.max_recv_wr = %d\n"
919 		"    cap.max_send_sge = %d\n"
920 		"    cap.max_recv_sge = %d\n",
921 		newxprt->sc_cm_id, newxprt->sc_pd,
922 		newxprt->sc_cm_id->device, newxprt->sc_pd->device,
923 		qp_attr.cap.max_send_wr,
924 		qp_attr.cap.max_recv_wr,
925 		qp_attr.cap.max_send_sge,
926 		qp_attr.cap.max_recv_sge);
927 
928 	ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd, &qp_attr);
929 	if (ret) {
930 		/*
931 		 * XXX: This is a hack. We need a xx_request_qp interface
932 		 * that will adjust the qp_attr's with a best-effort
933 		 * number
934 		 */
935 		qp_attr.cap.max_send_sge -= 2;
936 		qp_attr.cap.max_recv_sge -= 2;
937 		ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd,
938 				     &qp_attr);
939 		if (ret) {
940 			dprintk("svcrdma: failed to create QP, ret=%d\n", ret);
941 			goto errout;
942 		}
943 		newxprt->sc_max_sge = qp_attr.cap.max_send_sge;
944 		newxprt->sc_max_sge = qp_attr.cap.max_recv_sge;
945 		newxprt->sc_sq_depth = qp_attr.cap.max_send_wr;
946 		newxprt->sc_max_requests = qp_attr.cap.max_recv_wr;
947 	}
948 	newxprt->sc_qp = newxprt->sc_cm_id->qp;
949 
950 	/*
951 	 * Use the most secure set of MR resources based on the
952 	 * transport type and available memory management features in
953 	 * the device. Here's the table implemented below:
954 	 *
955 	 *		Fast	Global	DMA	Remote WR
956 	 *		Reg	LKEY	MR	Access
957 	 *		Sup'd	Sup'd	Needed	Needed
958 	 *
959 	 * IWARP	N	N	Y	Y
960 	 *		N	Y	Y	Y
961 	 *		Y	N	Y	N
962 	 *		Y	Y	N	-
963 	 *
964 	 * IB		N	N	Y	N
965 	 *		N	Y	N	-
966 	 *		Y	N	Y	N
967 	 *		Y	Y	N	-
968 	 *
969 	 * NB:	iWARP requires remote write access for the data sink
970 	 *	of an RDMA_READ. IB does not.
971 	 */
972 	if (devattr.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) {
973 		newxprt->sc_frmr_pg_list_len =
974 			devattr.max_fast_reg_page_list_len;
975 		newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_FAST_REG;
976 	}
977 
978 	/*
979 	 * Determine if a DMA MR is required and if so, what privs are required
980 	 */
981 	switch (rdma_node_get_transport(newxprt->sc_cm_id->device->node_type)) {
982 	case RDMA_TRANSPORT_IWARP:
983 		newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_READ_W_INV;
984 		if (!(newxprt->sc_dev_caps & SVCRDMA_DEVCAP_FAST_REG)) {
985 			need_dma_mr = 1;
986 			dma_mr_acc =
987 				(IB_ACCESS_LOCAL_WRITE |
988 				 IB_ACCESS_REMOTE_WRITE);
989 		} else if (!(devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) {
990 			need_dma_mr = 1;
991 			dma_mr_acc = IB_ACCESS_LOCAL_WRITE;
992 		} else
993 			need_dma_mr = 0;
994 		break;
995 	case RDMA_TRANSPORT_IB:
996 		if (!(devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) {
997 			need_dma_mr = 1;
998 			dma_mr_acc = IB_ACCESS_LOCAL_WRITE;
999 		} else
1000 			need_dma_mr = 0;
1001 		break;
1002 	default:
1003 		goto errout;
1004 	}
1005 
1006 	/* Create the DMA MR if needed, otherwise, use the DMA LKEY */
1007 	if (need_dma_mr) {
1008 		/* Register all of physical memory */
1009 		newxprt->sc_phys_mr =
1010 			ib_get_dma_mr(newxprt->sc_pd, dma_mr_acc);
1011 		if (IS_ERR(newxprt->sc_phys_mr)) {
1012 			dprintk("svcrdma: Failed to create DMA MR ret=%d\n",
1013 				ret);
1014 			goto errout;
1015 		}
1016 		newxprt->sc_dma_lkey = newxprt->sc_phys_mr->lkey;
1017 	} else
1018 		newxprt->sc_dma_lkey =
1019 			newxprt->sc_cm_id->device->local_dma_lkey;
1020 
1021 	/* Post receive buffers */
1022 	for (i = 0; i < newxprt->sc_max_requests; i++) {
1023 		ret = svc_rdma_post_recv(newxprt);
1024 		if (ret) {
1025 			dprintk("svcrdma: failure posting receive buffers\n");
1026 			goto errout;
1027 		}
1028 	}
1029 
1030 	/* Swap out the handler */
1031 	newxprt->sc_cm_id->event_handler = rdma_cma_handler;
1032 
1033 	/*
1034 	 * Arm the CQs for the SQ and RQ before accepting so we can't
1035 	 * miss the first message
1036 	 */
1037 	ib_req_notify_cq(newxprt->sc_sq_cq, IB_CQ_NEXT_COMP);
1038 	ib_req_notify_cq(newxprt->sc_rq_cq, IB_CQ_NEXT_COMP);
1039 
1040 	/* Accept Connection */
1041 	set_bit(RDMAXPRT_CONN_PENDING, &newxprt->sc_flags);
1042 	memset(&conn_param, 0, sizeof conn_param);
1043 	conn_param.responder_resources = 0;
1044 	conn_param.initiator_depth = newxprt->sc_ord;
1045 	ret = rdma_accept(newxprt->sc_cm_id, &conn_param);
1046 	if (ret) {
1047 		dprintk("svcrdma: failed to accept new connection, ret=%d\n",
1048 		       ret);
1049 		goto errout;
1050 	}
1051 
1052 	dprintk("svcrdma: new connection %p accepted with the following "
1053 		"attributes:\n"
1054 		"    local_ip        : %pI4\n"
1055 		"    local_port	     : %d\n"
1056 		"    remote_ip       : %pI4\n"
1057 		"    remote_port     : %d\n"
1058 		"    max_sge         : %d\n"
1059 		"    sq_depth        : %d\n"
1060 		"    max_requests    : %d\n"
1061 		"    ord             : %d\n",
1062 		newxprt,
1063 		&((struct sockaddr_in *)&newxprt->sc_cm_id->
1064 			 route.addr.src_addr)->sin_addr.s_addr,
1065 		ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id->
1066 		       route.addr.src_addr)->sin_port),
1067 		&((struct sockaddr_in *)&newxprt->sc_cm_id->
1068 			 route.addr.dst_addr)->sin_addr.s_addr,
1069 		ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id->
1070 		       route.addr.dst_addr)->sin_port),
1071 		newxprt->sc_max_sge,
1072 		newxprt->sc_sq_depth,
1073 		newxprt->sc_max_requests,
1074 		newxprt->sc_ord);
1075 
1076 	return &newxprt->sc_xprt;
1077 
1078  errout:
1079 	dprintk("svcrdma: failure accepting new connection rc=%d.\n", ret);
1080 	/* Take a reference in case the DTO handler runs */
1081 	svc_xprt_get(&newxprt->sc_xprt);
1082 	if (newxprt->sc_qp && !IS_ERR(newxprt->sc_qp))
1083 		ib_destroy_qp(newxprt->sc_qp);
1084 	rdma_destroy_id(newxprt->sc_cm_id);
1085 	/* This call to put will destroy the transport */
1086 	svc_xprt_put(&newxprt->sc_xprt);
1087 	return NULL;
1088 }
1089 
1090 static void svc_rdma_release_rqst(struct svc_rqst *rqstp)
1091 {
1092 }
1093 
1094 /*
1095  * When connected, an svc_xprt has at least two references:
1096  *
1097  * - A reference held by the cm_id between the ESTABLISHED and
1098  *   DISCONNECTED events. If the remote peer disconnected first, this
1099  *   reference could be gone.
1100  *
1101  * - A reference held by the svc_recv code that called this function
1102  *   as part of close processing.
1103  *
1104  * At a minimum one references should still be held.
1105  */
1106 static void svc_rdma_detach(struct svc_xprt *xprt)
1107 {
1108 	struct svcxprt_rdma *rdma =
1109 		container_of(xprt, struct svcxprt_rdma, sc_xprt);
1110 	dprintk("svc: svc_rdma_detach(%p)\n", xprt);
1111 
1112 	/* Disconnect and flush posted WQE */
1113 	rdma_disconnect(rdma->sc_cm_id);
1114 }
1115 
1116 static void __svc_rdma_free(struct work_struct *work)
1117 {
1118 	struct svcxprt_rdma *rdma =
1119 		container_of(work, struct svcxprt_rdma, sc_work);
1120 	dprintk("svcrdma: svc_rdma_free(%p)\n", rdma);
1121 
1122 	/* We should only be called from kref_put */
1123 	BUG_ON(atomic_read(&rdma->sc_xprt.xpt_ref.refcount) != 0);
1124 
1125 	/*
1126 	 * Destroy queued, but not processed read completions. Note
1127 	 * that this cleanup has to be done before destroying the
1128 	 * cm_id because the device ptr is needed to unmap the dma in
1129 	 * svc_rdma_put_context.
1130 	 */
1131 	while (!list_empty(&rdma->sc_read_complete_q)) {
1132 		struct svc_rdma_op_ctxt *ctxt;
1133 		ctxt = list_entry(rdma->sc_read_complete_q.next,
1134 				  struct svc_rdma_op_ctxt,
1135 				  dto_q);
1136 		list_del_init(&ctxt->dto_q);
1137 		svc_rdma_put_context(ctxt, 1);
1138 	}
1139 
1140 	/* Destroy queued, but not processed recv completions */
1141 	while (!list_empty(&rdma->sc_rq_dto_q)) {
1142 		struct svc_rdma_op_ctxt *ctxt;
1143 		ctxt = list_entry(rdma->sc_rq_dto_q.next,
1144 				  struct svc_rdma_op_ctxt,
1145 				  dto_q);
1146 		list_del_init(&ctxt->dto_q);
1147 		svc_rdma_put_context(ctxt, 1);
1148 	}
1149 
1150 	/* Warn if we leaked a resource or under-referenced */
1151 	WARN_ON(atomic_read(&rdma->sc_ctxt_used) != 0);
1152 	WARN_ON(atomic_read(&rdma->sc_dma_used) != 0);
1153 
1154 	/* De-allocate fastreg mr */
1155 	rdma_dealloc_frmr_q(rdma);
1156 
1157 	/* Destroy the QP if present (not a listener) */
1158 	if (rdma->sc_qp && !IS_ERR(rdma->sc_qp))
1159 		ib_destroy_qp(rdma->sc_qp);
1160 
1161 	if (rdma->sc_sq_cq && !IS_ERR(rdma->sc_sq_cq))
1162 		ib_destroy_cq(rdma->sc_sq_cq);
1163 
1164 	if (rdma->sc_rq_cq && !IS_ERR(rdma->sc_rq_cq))
1165 		ib_destroy_cq(rdma->sc_rq_cq);
1166 
1167 	if (rdma->sc_phys_mr && !IS_ERR(rdma->sc_phys_mr))
1168 		ib_dereg_mr(rdma->sc_phys_mr);
1169 
1170 	if (rdma->sc_pd && !IS_ERR(rdma->sc_pd))
1171 		ib_dealloc_pd(rdma->sc_pd);
1172 
1173 	/* Destroy the CM ID */
1174 	rdma_destroy_id(rdma->sc_cm_id);
1175 
1176 	kfree(rdma);
1177 }
1178 
1179 static void svc_rdma_free(struct svc_xprt *xprt)
1180 {
1181 	struct svcxprt_rdma *rdma =
1182 		container_of(xprt, struct svcxprt_rdma, sc_xprt);
1183 	INIT_WORK(&rdma->sc_work, __svc_rdma_free);
1184 	queue_work(svc_rdma_wq, &rdma->sc_work);
1185 }
1186 
1187 static int svc_rdma_has_wspace(struct svc_xprt *xprt)
1188 {
1189 	struct svcxprt_rdma *rdma =
1190 		container_of(xprt, struct svcxprt_rdma, sc_xprt);
1191 
1192 	/*
1193 	 * If there are fewer SQ WR available than required to send a
1194 	 * simple response, return false.
1195 	 */
1196 	if ((rdma->sc_sq_depth - atomic_read(&rdma->sc_sq_count) < 3))
1197 		return 0;
1198 
1199 	/*
1200 	 * ...or there are already waiters on the SQ,
1201 	 * return false.
1202 	 */
1203 	if (waitqueue_active(&rdma->sc_send_wait))
1204 		return 0;
1205 
1206 	/* Otherwise return true. */
1207 	return 1;
1208 }
1209 
1210 /*
1211  * Attempt to register the kvec representing the RPC memory with the
1212  * device.
1213  *
1214  * Returns:
1215  *  NULL : The device does not support fastreg or there were no more
1216  *         fastreg mr.
1217  *  frmr : The kvec register request was successfully posted.
1218  *    <0 : An error was encountered attempting to register the kvec.
1219  */
1220 int svc_rdma_fastreg(struct svcxprt_rdma *xprt,
1221 		     struct svc_rdma_fastreg_mr *frmr)
1222 {
1223 	struct ib_send_wr fastreg_wr;
1224 	u8 key;
1225 
1226 	/* Bump the key */
1227 	key = (u8)(frmr->mr->lkey & 0x000000FF);
1228 	ib_update_fast_reg_key(frmr->mr, ++key);
1229 
1230 	/* Prepare FASTREG WR */
1231 	memset(&fastreg_wr, 0, sizeof fastreg_wr);
1232 	fastreg_wr.opcode = IB_WR_FAST_REG_MR;
1233 	fastreg_wr.send_flags = IB_SEND_SIGNALED;
1234 	fastreg_wr.wr.fast_reg.iova_start = (unsigned long)frmr->kva;
1235 	fastreg_wr.wr.fast_reg.page_list = frmr->page_list;
1236 	fastreg_wr.wr.fast_reg.page_list_len = frmr->page_list_len;
1237 	fastreg_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
1238 	fastreg_wr.wr.fast_reg.length = frmr->map_len;
1239 	fastreg_wr.wr.fast_reg.access_flags = frmr->access_flags;
1240 	fastreg_wr.wr.fast_reg.rkey = frmr->mr->lkey;
1241 	return svc_rdma_send(xprt, &fastreg_wr);
1242 }
1243 
1244 int svc_rdma_send(struct svcxprt_rdma *xprt, struct ib_send_wr *wr)
1245 {
1246 	struct ib_send_wr *bad_wr, *n_wr;
1247 	int wr_count;
1248 	int i;
1249 	int ret;
1250 
1251 	if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
1252 		return -ENOTCONN;
1253 
1254 	BUG_ON(wr->send_flags != IB_SEND_SIGNALED);
1255 	wr_count = 1;
1256 	for (n_wr = wr->next; n_wr; n_wr = n_wr->next)
1257 		wr_count++;
1258 
1259 	/* If the SQ is full, wait until an SQ entry is available */
1260 	while (1) {
1261 		spin_lock_bh(&xprt->sc_lock);
1262 		if (xprt->sc_sq_depth < atomic_read(&xprt->sc_sq_count) + wr_count) {
1263 			spin_unlock_bh(&xprt->sc_lock);
1264 			atomic_inc(&rdma_stat_sq_starve);
1265 
1266 			/* See if we can opportunistically reap SQ WR to make room */
1267 			sq_cq_reap(xprt);
1268 
1269 			/* Wait until SQ WR available if SQ still full */
1270 			wait_event(xprt->sc_send_wait,
1271 				   atomic_read(&xprt->sc_sq_count) <
1272 				   xprt->sc_sq_depth);
1273 			if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
1274 				return -ENOTCONN;
1275 			continue;
1276 		}
1277 		/* Take a transport ref for each WR posted */
1278 		for (i = 0; i < wr_count; i++)
1279 			svc_xprt_get(&xprt->sc_xprt);
1280 
1281 		/* Bump used SQ WR count and post */
1282 		atomic_add(wr_count, &xprt->sc_sq_count);
1283 		ret = ib_post_send(xprt->sc_qp, wr, &bad_wr);
1284 		if (ret) {
1285 			set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
1286 			atomic_sub(wr_count, &xprt->sc_sq_count);
1287 			for (i = 0; i < wr_count; i ++)
1288 				svc_xprt_put(&xprt->sc_xprt);
1289 			dprintk("svcrdma: failed to post SQ WR rc=%d, "
1290 			       "sc_sq_count=%d, sc_sq_depth=%d\n",
1291 			       ret, atomic_read(&xprt->sc_sq_count),
1292 			       xprt->sc_sq_depth);
1293 		}
1294 		spin_unlock_bh(&xprt->sc_lock);
1295 		if (ret)
1296 			wake_up(&xprt->sc_send_wait);
1297 		break;
1298 	}
1299 	return ret;
1300 }
1301 
1302 void svc_rdma_send_error(struct svcxprt_rdma *xprt, struct rpcrdma_msg *rmsgp,
1303 			 enum rpcrdma_errcode err)
1304 {
1305 	struct ib_send_wr err_wr;
1306 	struct page *p;
1307 	struct svc_rdma_op_ctxt *ctxt;
1308 	u32 *va;
1309 	int length;
1310 	int ret;
1311 
1312 	p = svc_rdma_get_page();
1313 	va = page_address(p);
1314 
1315 	/* XDR encode error */
1316 	length = svc_rdma_xdr_encode_error(xprt, rmsgp, err, va);
1317 
1318 	ctxt = svc_rdma_get_context(xprt);
1319 	ctxt->direction = DMA_FROM_DEVICE;
1320 	ctxt->count = 1;
1321 	ctxt->pages[0] = p;
1322 
1323 	/* Prepare SGE for local address */
1324 	ctxt->sge[0].addr = ib_dma_map_page(xprt->sc_cm_id->device,
1325 					    p, 0, length, DMA_FROM_DEVICE);
1326 	if (ib_dma_mapping_error(xprt->sc_cm_id->device, ctxt->sge[0].addr)) {
1327 		put_page(p);
1328 		svc_rdma_put_context(ctxt, 1);
1329 		return;
1330 	}
1331 	atomic_inc(&xprt->sc_dma_used);
1332 	ctxt->sge[0].lkey = xprt->sc_dma_lkey;
1333 	ctxt->sge[0].length = length;
1334 
1335 	/* Prepare SEND WR */
1336 	memset(&err_wr, 0, sizeof err_wr);
1337 	ctxt->wr_op = IB_WR_SEND;
1338 	err_wr.wr_id = (unsigned long)ctxt;
1339 	err_wr.sg_list = ctxt->sge;
1340 	err_wr.num_sge = 1;
1341 	err_wr.opcode = IB_WR_SEND;
1342 	err_wr.send_flags = IB_SEND_SIGNALED;
1343 
1344 	/* Post It */
1345 	ret = svc_rdma_send(xprt, &err_wr);
1346 	if (ret) {
1347 		dprintk("svcrdma: Error %d posting send for protocol error\n",
1348 			ret);
1349 		svc_rdma_unmap_dma(ctxt);
1350 		svc_rdma_put_context(ctxt, 1);
1351 	}
1352 }
1353