1 /*
2  * Copyright (c) 2005-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  *      Redistributions of source code must retain the above copyright
15  *      notice, this list of conditions and the following disclaimer.
16  *
17  *      Redistributions in binary form must reproduce the above
18  *      copyright notice, this list of conditions and the following
19  *      disclaimer in the documentation and/or other materials provided
20  *      with the distribution.
21  *
22  *      Neither the name of the Network Appliance, Inc. nor the names of
23  *      its contributors may be used to endorse or promote products
24  *      derived from this software without specific prior written
25  *      permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  *
39  * Author: Tom Tucker <tom@opengridcomputing.com>
40  */
41 
42 #include <linux/sunrpc/svc_xprt.h>
43 #include <linux/sunrpc/debug.h>
44 #include <linux/sunrpc/rpc_rdma.h>
45 #include <linux/sched.h>
46 #include <linux/spinlock.h>
47 #include <rdma/ib_verbs.h>
48 #include <rdma/rdma_cm.h>
49 #include <linux/sunrpc/svc_rdma.h>
50 
51 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
52 
53 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
54 					struct sockaddr *sa, int salen,
55 					int flags);
56 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt);
57 static void svc_rdma_release_rqst(struct svc_rqst *);
58 static void dto_tasklet_func(unsigned long data);
59 static void svc_rdma_detach(struct svc_xprt *xprt);
60 static void svc_rdma_free(struct svc_xprt *xprt);
61 static int svc_rdma_has_wspace(struct svc_xprt *xprt);
62 static void rq_cq_reap(struct svcxprt_rdma *xprt);
63 static void sq_cq_reap(struct svcxprt_rdma *xprt);
64 
65 static DECLARE_TASKLET(dto_tasklet, dto_tasklet_func, 0UL);
66 static DEFINE_SPINLOCK(dto_lock);
67 static LIST_HEAD(dto_xprt_q);
68 
69 static struct svc_xprt_ops svc_rdma_ops = {
70 	.xpo_create = svc_rdma_create,
71 	.xpo_recvfrom = svc_rdma_recvfrom,
72 	.xpo_sendto = svc_rdma_sendto,
73 	.xpo_release_rqst = svc_rdma_release_rqst,
74 	.xpo_detach = svc_rdma_detach,
75 	.xpo_free = svc_rdma_free,
76 	.xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr,
77 	.xpo_has_wspace = svc_rdma_has_wspace,
78 	.xpo_accept = svc_rdma_accept,
79 };
80 
81 struct svc_xprt_class svc_rdma_class = {
82 	.xcl_name = "rdma",
83 	.xcl_owner = THIS_MODULE,
84 	.xcl_ops = &svc_rdma_ops,
85 	.xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
86 };
87 
88 /* WR context cache. Created in svc_rdma.c  */
89 extern struct kmem_cache *svc_rdma_ctxt_cachep;
90 
91 struct svc_rdma_op_ctxt *svc_rdma_get_context(struct svcxprt_rdma *xprt)
92 {
93 	struct svc_rdma_op_ctxt *ctxt;
94 
95 	while (1) {
96 		ctxt = kmem_cache_alloc(svc_rdma_ctxt_cachep, GFP_KERNEL);
97 		if (ctxt)
98 			break;
99 		schedule_timeout_uninterruptible(msecs_to_jiffies(500));
100 	}
101 	ctxt->xprt = xprt;
102 	INIT_LIST_HEAD(&ctxt->dto_q);
103 	ctxt->count = 0;
104 	ctxt->frmr = NULL;
105 	atomic_inc(&xprt->sc_ctxt_used);
106 	return ctxt;
107 }
108 
109 void svc_rdma_unmap_dma(struct svc_rdma_op_ctxt *ctxt)
110 {
111 	struct svcxprt_rdma *xprt = ctxt->xprt;
112 	int i;
113 	for (i = 0; i < ctxt->count && ctxt->sge[i].length; i++) {
114 		/*
115 		 * Unmap the DMA addr in the SGE if the lkey matches
116 		 * the sc_dma_lkey, otherwise, ignore it since it is
117 		 * an FRMR lkey and will be unmapped later when the
118 		 * last WR that uses it completes.
119 		 */
120 		if (ctxt->sge[i].lkey == xprt->sc_dma_lkey) {
121 			atomic_dec(&xprt->sc_dma_used);
122 			ib_dma_unmap_single(xprt->sc_cm_id->device,
123 					    ctxt->sge[i].addr,
124 					    ctxt->sge[i].length,
125 					    ctxt->direction);
126 		}
127 	}
128 }
129 
130 void svc_rdma_put_context(struct svc_rdma_op_ctxt *ctxt, int free_pages)
131 {
132 	struct svcxprt_rdma *xprt;
133 	int i;
134 
135 	BUG_ON(!ctxt);
136 	xprt = ctxt->xprt;
137 	if (free_pages)
138 		for (i = 0; i < ctxt->count; i++)
139 			put_page(ctxt->pages[i]);
140 
141 	kmem_cache_free(svc_rdma_ctxt_cachep, ctxt);
142 	atomic_dec(&xprt->sc_ctxt_used);
143 }
144 
145 /* Temporary NFS request map cache. Created in svc_rdma.c  */
146 extern struct kmem_cache *svc_rdma_map_cachep;
147 
148 /*
149  * Temporary NFS req mappings are shared across all transport
150  * instances. These are short lived and should be bounded by the number
151  * of concurrent server threads * depth of the SQ.
152  */
153 struct svc_rdma_req_map *svc_rdma_get_req_map(void)
154 {
155 	struct svc_rdma_req_map *map;
156 	while (1) {
157 		map = kmem_cache_alloc(svc_rdma_map_cachep, GFP_KERNEL);
158 		if (map)
159 			break;
160 		schedule_timeout_uninterruptible(msecs_to_jiffies(500));
161 	}
162 	map->count = 0;
163 	map->frmr = NULL;
164 	return map;
165 }
166 
167 void svc_rdma_put_req_map(struct svc_rdma_req_map *map)
168 {
169 	kmem_cache_free(svc_rdma_map_cachep, map);
170 }
171 
172 /* ib_cq event handler */
173 static void cq_event_handler(struct ib_event *event, void *context)
174 {
175 	struct svc_xprt *xprt = context;
176 	dprintk("svcrdma: received CQ event id=%d, context=%p\n",
177 		event->event, context);
178 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
179 }
180 
181 /* QP event handler */
182 static void qp_event_handler(struct ib_event *event, void *context)
183 {
184 	struct svc_xprt *xprt = context;
185 
186 	switch (event->event) {
187 	/* These are considered benign events */
188 	case IB_EVENT_PATH_MIG:
189 	case IB_EVENT_COMM_EST:
190 	case IB_EVENT_SQ_DRAINED:
191 	case IB_EVENT_QP_LAST_WQE_REACHED:
192 		dprintk("svcrdma: QP event %d received for QP=%p\n",
193 			event->event, event->element.qp);
194 		break;
195 	/* These are considered fatal events */
196 	case IB_EVENT_PATH_MIG_ERR:
197 	case IB_EVENT_QP_FATAL:
198 	case IB_EVENT_QP_REQ_ERR:
199 	case IB_EVENT_QP_ACCESS_ERR:
200 	case IB_EVENT_DEVICE_FATAL:
201 	default:
202 		dprintk("svcrdma: QP ERROR event %d received for QP=%p, "
203 			"closing transport\n",
204 			event->event, event->element.qp);
205 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
206 		break;
207 	}
208 }
209 
210 /*
211  * Data Transfer Operation Tasklet
212  *
213  * Walks a list of transports with I/O pending, removing entries as
214  * they are added to the server's I/O pending list. Two bits indicate
215  * if SQ, RQ, or both have I/O pending. The dto_lock is an irqsave
216  * spinlock that serializes access to the transport list with the RQ
217  * and SQ interrupt handlers.
218  */
219 static void dto_tasklet_func(unsigned long data)
220 {
221 	struct svcxprt_rdma *xprt;
222 	unsigned long flags;
223 
224 	spin_lock_irqsave(&dto_lock, flags);
225 	while (!list_empty(&dto_xprt_q)) {
226 		xprt = list_entry(dto_xprt_q.next,
227 				  struct svcxprt_rdma, sc_dto_q);
228 		list_del_init(&xprt->sc_dto_q);
229 		spin_unlock_irqrestore(&dto_lock, flags);
230 
231 		rq_cq_reap(xprt);
232 		sq_cq_reap(xprt);
233 
234 		svc_xprt_put(&xprt->sc_xprt);
235 		spin_lock_irqsave(&dto_lock, flags);
236 	}
237 	spin_unlock_irqrestore(&dto_lock, flags);
238 }
239 
240 /*
241  * Receive Queue Completion Handler
242  *
243  * Since an RQ completion handler is called on interrupt context, we
244  * need to defer the handling of the I/O to a tasklet
245  */
246 static void rq_comp_handler(struct ib_cq *cq, void *cq_context)
247 {
248 	struct svcxprt_rdma *xprt = cq_context;
249 	unsigned long flags;
250 
251 	/* Guard against unconditional flush call for destroyed QP */
252 	if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0)
253 		return;
254 
255 	/*
256 	 * Set the bit regardless of whether or not it's on the list
257 	 * because it may be on the list already due to an SQ
258 	 * completion.
259 	 */
260 	set_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags);
261 
262 	/*
263 	 * If this transport is not already on the DTO transport queue,
264 	 * add it
265 	 */
266 	spin_lock_irqsave(&dto_lock, flags);
267 	if (list_empty(&xprt->sc_dto_q)) {
268 		svc_xprt_get(&xprt->sc_xprt);
269 		list_add_tail(&xprt->sc_dto_q, &dto_xprt_q);
270 	}
271 	spin_unlock_irqrestore(&dto_lock, flags);
272 
273 	/* Tasklet does all the work to avoid irqsave locks. */
274 	tasklet_schedule(&dto_tasklet);
275 }
276 
277 /*
278  * rq_cq_reap - Process the RQ CQ.
279  *
280  * Take all completing WC off the CQE and enqueue the associated DTO
281  * context on the dto_q for the transport.
282  *
283  * Note that caller must hold a transport reference.
284  */
285 static void rq_cq_reap(struct svcxprt_rdma *xprt)
286 {
287 	int ret;
288 	struct ib_wc wc;
289 	struct svc_rdma_op_ctxt *ctxt = NULL;
290 
291 	if (!test_and_clear_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags))
292 		return;
293 
294 	ib_req_notify_cq(xprt->sc_rq_cq, IB_CQ_NEXT_COMP);
295 	atomic_inc(&rdma_stat_rq_poll);
296 
297 	while ((ret = ib_poll_cq(xprt->sc_rq_cq, 1, &wc)) > 0) {
298 		ctxt = (struct svc_rdma_op_ctxt *)(unsigned long)wc.wr_id;
299 		ctxt->wc_status = wc.status;
300 		ctxt->byte_len = wc.byte_len;
301 		svc_rdma_unmap_dma(ctxt);
302 		if (wc.status != IB_WC_SUCCESS) {
303 			/* Close the transport */
304 			dprintk("svcrdma: transport closing putting ctxt %p\n", ctxt);
305 			set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
306 			svc_rdma_put_context(ctxt, 1);
307 			svc_xprt_put(&xprt->sc_xprt);
308 			continue;
309 		}
310 		spin_lock_bh(&xprt->sc_rq_dto_lock);
311 		list_add_tail(&ctxt->dto_q, &xprt->sc_rq_dto_q);
312 		spin_unlock_bh(&xprt->sc_rq_dto_lock);
313 		svc_xprt_put(&xprt->sc_xprt);
314 	}
315 
316 	if (ctxt)
317 		atomic_inc(&rdma_stat_rq_prod);
318 
319 	set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
320 	/*
321 	 * If data arrived before established event,
322 	 * don't enqueue. This defers RPC I/O until the
323 	 * RDMA connection is complete.
324 	 */
325 	if (!test_bit(RDMAXPRT_CONN_PENDING, &xprt->sc_flags))
326 		svc_xprt_enqueue(&xprt->sc_xprt);
327 }
328 
329 /*
330  * Processs a completion context
331  */
332 static void process_context(struct svcxprt_rdma *xprt,
333 			    struct svc_rdma_op_ctxt *ctxt)
334 {
335 	svc_rdma_unmap_dma(ctxt);
336 
337 	switch (ctxt->wr_op) {
338 	case IB_WR_SEND:
339 		if (test_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags))
340 			svc_rdma_put_frmr(xprt, ctxt->frmr);
341 		svc_rdma_put_context(ctxt, 1);
342 		break;
343 
344 	case IB_WR_RDMA_WRITE:
345 		svc_rdma_put_context(ctxt, 0);
346 		break;
347 
348 	case IB_WR_RDMA_READ:
349 	case IB_WR_RDMA_READ_WITH_INV:
350 		if (test_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags)) {
351 			struct svc_rdma_op_ctxt *read_hdr = ctxt->read_hdr;
352 			BUG_ON(!read_hdr);
353 			if (test_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags))
354 				svc_rdma_put_frmr(xprt, ctxt->frmr);
355 			spin_lock_bh(&xprt->sc_rq_dto_lock);
356 			set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
357 			list_add_tail(&read_hdr->dto_q,
358 				      &xprt->sc_read_complete_q);
359 			spin_unlock_bh(&xprt->sc_rq_dto_lock);
360 			svc_xprt_enqueue(&xprt->sc_xprt);
361 		}
362 		svc_rdma_put_context(ctxt, 0);
363 		break;
364 
365 	default:
366 		printk(KERN_ERR "svcrdma: unexpected completion type, "
367 		       "opcode=%d\n",
368 		       ctxt->wr_op);
369 		break;
370 	}
371 }
372 
373 /*
374  * Send Queue Completion Handler - potentially called on interrupt context.
375  *
376  * Note that caller must hold a transport reference.
377  */
378 static void sq_cq_reap(struct svcxprt_rdma *xprt)
379 {
380 	struct svc_rdma_op_ctxt *ctxt = NULL;
381 	struct ib_wc wc;
382 	struct ib_cq *cq = xprt->sc_sq_cq;
383 	int ret;
384 
385 	if (!test_and_clear_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags))
386 		return;
387 
388 	ib_req_notify_cq(xprt->sc_sq_cq, IB_CQ_NEXT_COMP);
389 	atomic_inc(&rdma_stat_sq_poll);
390 	while ((ret = ib_poll_cq(cq, 1, &wc)) > 0) {
391 		if (wc.status != IB_WC_SUCCESS)
392 			/* Close the transport */
393 			set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
394 
395 		/* Decrement used SQ WR count */
396 		atomic_dec(&xprt->sc_sq_count);
397 		wake_up(&xprt->sc_send_wait);
398 
399 		ctxt = (struct svc_rdma_op_ctxt *)(unsigned long)wc.wr_id;
400 		if (ctxt)
401 			process_context(xprt, ctxt);
402 
403 		svc_xprt_put(&xprt->sc_xprt);
404 	}
405 
406 	if (ctxt)
407 		atomic_inc(&rdma_stat_sq_prod);
408 }
409 
410 static void sq_comp_handler(struct ib_cq *cq, void *cq_context)
411 {
412 	struct svcxprt_rdma *xprt = cq_context;
413 	unsigned long flags;
414 
415 	/* Guard against unconditional flush call for destroyed QP */
416 	if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0)
417 		return;
418 
419 	/*
420 	 * Set the bit regardless of whether or not it's on the list
421 	 * because it may be on the list already due to an RQ
422 	 * completion.
423 	 */
424 	set_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags);
425 
426 	/*
427 	 * If this transport is not already on the DTO transport queue,
428 	 * add it
429 	 */
430 	spin_lock_irqsave(&dto_lock, flags);
431 	if (list_empty(&xprt->sc_dto_q)) {
432 		svc_xprt_get(&xprt->sc_xprt);
433 		list_add_tail(&xprt->sc_dto_q, &dto_xprt_q);
434 	}
435 	spin_unlock_irqrestore(&dto_lock, flags);
436 
437 	/* Tasklet does all the work to avoid irqsave locks. */
438 	tasklet_schedule(&dto_tasklet);
439 }
440 
441 static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *serv,
442 					     int listener)
443 {
444 	struct svcxprt_rdma *cma_xprt = kzalloc(sizeof *cma_xprt, GFP_KERNEL);
445 
446 	if (!cma_xprt)
447 		return NULL;
448 	svc_xprt_init(&svc_rdma_class, &cma_xprt->sc_xprt, serv);
449 	INIT_LIST_HEAD(&cma_xprt->sc_accept_q);
450 	INIT_LIST_HEAD(&cma_xprt->sc_dto_q);
451 	INIT_LIST_HEAD(&cma_xprt->sc_rq_dto_q);
452 	INIT_LIST_HEAD(&cma_xprt->sc_read_complete_q);
453 	INIT_LIST_HEAD(&cma_xprt->sc_frmr_q);
454 	init_waitqueue_head(&cma_xprt->sc_send_wait);
455 
456 	spin_lock_init(&cma_xprt->sc_lock);
457 	spin_lock_init(&cma_xprt->sc_rq_dto_lock);
458 	spin_lock_init(&cma_xprt->sc_frmr_q_lock);
459 
460 	cma_xprt->sc_ord = svcrdma_ord;
461 
462 	cma_xprt->sc_max_req_size = svcrdma_max_req_size;
463 	cma_xprt->sc_max_requests = svcrdma_max_requests;
464 	cma_xprt->sc_sq_depth = svcrdma_max_requests * RPCRDMA_SQ_DEPTH_MULT;
465 	atomic_set(&cma_xprt->sc_sq_count, 0);
466 	atomic_set(&cma_xprt->sc_ctxt_used, 0);
467 
468 	if (listener)
469 		set_bit(XPT_LISTENER, &cma_xprt->sc_xprt.xpt_flags);
470 
471 	return cma_xprt;
472 }
473 
474 struct page *svc_rdma_get_page(void)
475 {
476 	struct page *page;
477 
478 	while ((page = alloc_page(GFP_KERNEL)) == NULL) {
479 		/* If we can't get memory, wait a bit and try again */
480 		printk(KERN_INFO "svcrdma: out of memory...retrying in 1000 "
481 		       "jiffies.\n");
482 		schedule_timeout_uninterruptible(msecs_to_jiffies(1000));
483 	}
484 	return page;
485 }
486 
487 int svc_rdma_post_recv(struct svcxprt_rdma *xprt)
488 {
489 	struct ib_recv_wr recv_wr, *bad_recv_wr;
490 	struct svc_rdma_op_ctxt *ctxt;
491 	struct page *page;
492 	dma_addr_t pa;
493 	int sge_no;
494 	int buflen;
495 	int ret;
496 
497 	ctxt = svc_rdma_get_context(xprt);
498 	buflen = 0;
499 	ctxt->direction = DMA_FROM_DEVICE;
500 	for (sge_no = 0; buflen < xprt->sc_max_req_size; sge_no++) {
501 		BUG_ON(sge_no >= xprt->sc_max_sge);
502 		page = svc_rdma_get_page();
503 		ctxt->pages[sge_no] = page;
504 		pa = ib_dma_map_single(xprt->sc_cm_id->device,
505 				     page_address(page), PAGE_SIZE,
506 				     DMA_FROM_DEVICE);
507 		if (ib_dma_mapping_error(xprt->sc_cm_id->device, pa))
508 			goto err_put_ctxt;
509 		atomic_inc(&xprt->sc_dma_used);
510 		ctxt->sge[sge_no].addr = pa;
511 		ctxt->sge[sge_no].length = PAGE_SIZE;
512 		ctxt->sge[sge_no].lkey = xprt->sc_dma_lkey;
513 		buflen += PAGE_SIZE;
514 	}
515 	ctxt->count = sge_no;
516 	recv_wr.next = NULL;
517 	recv_wr.sg_list = &ctxt->sge[0];
518 	recv_wr.num_sge = ctxt->count;
519 	recv_wr.wr_id = (u64)(unsigned long)ctxt;
520 
521 	svc_xprt_get(&xprt->sc_xprt);
522 	ret = ib_post_recv(xprt->sc_qp, &recv_wr, &bad_recv_wr);
523 	if (ret) {
524 		svc_rdma_unmap_dma(ctxt);
525 		svc_rdma_put_context(ctxt, 1);
526 		svc_xprt_put(&xprt->sc_xprt);
527 	}
528 	return ret;
529 
530  err_put_ctxt:
531 	svc_rdma_put_context(ctxt, 1);
532 	return -ENOMEM;
533 }
534 
535 /*
536  * This function handles the CONNECT_REQUEST event on a listening
537  * endpoint. It is passed the cma_id for the _new_ connection. The context in
538  * this cma_id is inherited from the listening cma_id and is the svc_xprt
539  * structure for the listening endpoint.
540  *
541  * This function creates a new xprt for the new connection and enqueues it on
542  * the accept queue for the listent xprt. When the listen thread is kicked, it
543  * will call the recvfrom method on the listen xprt which will accept the new
544  * connection.
545  */
546 static void handle_connect_req(struct rdma_cm_id *new_cma_id, size_t client_ird)
547 {
548 	struct svcxprt_rdma *listen_xprt = new_cma_id->context;
549 	struct svcxprt_rdma *newxprt;
550 	struct sockaddr *sa;
551 
552 	/* Create a new transport */
553 	newxprt = rdma_create_xprt(listen_xprt->sc_xprt.xpt_server, 0);
554 	if (!newxprt) {
555 		dprintk("svcrdma: failed to create new transport\n");
556 		return;
557 	}
558 	newxprt->sc_cm_id = new_cma_id;
559 	new_cma_id->context = newxprt;
560 	dprintk("svcrdma: Creating newxprt=%p, cm_id=%p, listenxprt=%p\n",
561 		newxprt, newxprt->sc_cm_id, listen_xprt);
562 
563 	/* Save client advertised inbound read limit for use later in accept. */
564 	newxprt->sc_ord = client_ird;
565 
566 	/* Set the local and remote addresses in the transport */
567 	sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr;
568 	svc_xprt_set_remote(&newxprt->sc_xprt, sa, svc_addr_len(sa));
569 	sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr;
570 	svc_xprt_set_local(&newxprt->sc_xprt, sa, svc_addr_len(sa));
571 
572 	/*
573 	 * Enqueue the new transport on the accept queue of the listening
574 	 * transport
575 	 */
576 	spin_lock_bh(&listen_xprt->sc_lock);
577 	list_add_tail(&newxprt->sc_accept_q, &listen_xprt->sc_accept_q);
578 	spin_unlock_bh(&listen_xprt->sc_lock);
579 
580 	/*
581 	 * Can't use svc_xprt_received here because we are not on a
582 	 * rqstp thread
583 	*/
584 	set_bit(XPT_CONN, &listen_xprt->sc_xprt.xpt_flags);
585 	svc_xprt_enqueue(&listen_xprt->sc_xprt);
586 }
587 
588 /*
589  * Handles events generated on the listening endpoint. These events will be
590  * either be incoming connect requests or adapter removal  events.
591  */
592 static int rdma_listen_handler(struct rdma_cm_id *cma_id,
593 			       struct rdma_cm_event *event)
594 {
595 	struct svcxprt_rdma *xprt = cma_id->context;
596 	int ret = 0;
597 
598 	switch (event->event) {
599 	case RDMA_CM_EVENT_CONNECT_REQUEST:
600 		dprintk("svcrdma: Connect request on cma_id=%p, xprt = %p, "
601 			"event=%d\n", cma_id, cma_id->context, event->event);
602 		handle_connect_req(cma_id,
603 				   event->param.conn.initiator_depth);
604 		break;
605 
606 	case RDMA_CM_EVENT_ESTABLISHED:
607 		/* Accept complete */
608 		dprintk("svcrdma: Connection completed on LISTEN xprt=%p, "
609 			"cm_id=%p\n", xprt, cma_id);
610 		break;
611 
612 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
613 		dprintk("svcrdma: Device removal xprt=%p, cm_id=%p\n",
614 			xprt, cma_id);
615 		if (xprt)
616 			set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
617 		break;
618 
619 	default:
620 		dprintk("svcrdma: Unexpected event on listening endpoint %p, "
621 			"event=%d\n", cma_id, event->event);
622 		break;
623 	}
624 
625 	return ret;
626 }
627 
628 static int rdma_cma_handler(struct rdma_cm_id *cma_id,
629 			    struct rdma_cm_event *event)
630 {
631 	struct svc_xprt *xprt = cma_id->context;
632 	struct svcxprt_rdma *rdma =
633 		container_of(xprt, struct svcxprt_rdma, sc_xprt);
634 	switch (event->event) {
635 	case RDMA_CM_EVENT_ESTABLISHED:
636 		/* Accept complete */
637 		svc_xprt_get(xprt);
638 		dprintk("svcrdma: Connection completed on DTO xprt=%p, "
639 			"cm_id=%p\n", xprt, cma_id);
640 		clear_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags);
641 		svc_xprt_enqueue(xprt);
642 		break;
643 	case RDMA_CM_EVENT_DISCONNECTED:
644 		dprintk("svcrdma: Disconnect on DTO xprt=%p, cm_id=%p\n",
645 			xprt, cma_id);
646 		if (xprt) {
647 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
648 			svc_xprt_enqueue(xprt);
649 			svc_xprt_put(xprt);
650 		}
651 		break;
652 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
653 		dprintk("svcrdma: Device removal cma_id=%p, xprt = %p, "
654 			"event=%d\n", cma_id, xprt, event->event);
655 		if (xprt) {
656 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
657 			svc_xprt_enqueue(xprt);
658 		}
659 		break;
660 	default:
661 		dprintk("svcrdma: Unexpected event on DTO endpoint %p, "
662 			"event=%d\n", cma_id, event->event);
663 		break;
664 	}
665 	return 0;
666 }
667 
668 /*
669  * Create a listening RDMA service endpoint.
670  */
671 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
672 					struct sockaddr *sa, int salen,
673 					int flags)
674 {
675 	struct rdma_cm_id *listen_id;
676 	struct svcxprt_rdma *cma_xprt;
677 	struct svc_xprt *xprt;
678 	int ret;
679 
680 	dprintk("svcrdma: Creating RDMA socket\n");
681 
682 	cma_xprt = rdma_create_xprt(serv, 1);
683 	if (!cma_xprt)
684 		return ERR_PTR(-ENOMEM);
685 	xprt = &cma_xprt->sc_xprt;
686 
687 	listen_id = rdma_create_id(rdma_listen_handler, cma_xprt, RDMA_PS_TCP);
688 	if (IS_ERR(listen_id)) {
689 		ret = PTR_ERR(listen_id);
690 		dprintk("svcrdma: rdma_create_id failed = %d\n", ret);
691 		goto err0;
692 	}
693 
694 	ret = rdma_bind_addr(listen_id, sa);
695 	if (ret) {
696 		dprintk("svcrdma: rdma_bind_addr failed = %d\n", ret);
697 		goto err1;
698 	}
699 	cma_xprt->sc_cm_id = listen_id;
700 
701 	ret = rdma_listen(listen_id, RPCRDMA_LISTEN_BACKLOG);
702 	if (ret) {
703 		dprintk("svcrdma: rdma_listen failed = %d\n", ret);
704 		goto err1;
705 	}
706 
707 	/*
708 	 * We need to use the address from the cm_id in case the
709 	 * caller specified 0 for the port number.
710 	 */
711 	sa = (struct sockaddr *)&cma_xprt->sc_cm_id->route.addr.src_addr;
712 	svc_xprt_set_local(&cma_xprt->sc_xprt, sa, salen);
713 
714 	return &cma_xprt->sc_xprt;
715 
716  err1:
717 	rdma_destroy_id(listen_id);
718  err0:
719 	kfree(cma_xprt);
720 	return ERR_PTR(ret);
721 }
722 
723 static struct svc_rdma_fastreg_mr *rdma_alloc_frmr(struct svcxprt_rdma *xprt)
724 {
725 	struct ib_mr *mr;
726 	struct ib_fast_reg_page_list *pl;
727 	struct svc_rdma_fastreg_mr *frmr;
728 
729 	frmr = kmalloc(sizeof(*frmr), GFP_KERNEL);
730 	if (!frmr)
731 		goto err;
732 
733 	mr = ib_alloc_fast_reg_mr(xprt->sc_pd, RPCSVC_MAXPAGES);
734 	if (IS_ERR(mr))
735 		goto err_free_frmr;
736 
737 	pl = ib_alloc_fast_reg_page_list(xprt->sc_cm_id->device,
738 					 RPCSVC_MAXPAGES);
739 	if (IS_ERR(pl))
740 		goto err_free_mr;
741 
742 	frmr->mr = mr;
743 	frmr->page_list = pl;
744 	INIT_LIST_HEAD(&frmr->frmr_list);
745 	return frmr;
746 
747  err_free_mr:
748 	ib_dereg_mr(mr);
749  err_free_frmr:
750 	kfree(frmr);
751  err:
752 	return ERR_PTR(-ENOMEM);
753 }
754 
755 static void rdma_dealloc_frmr_q(struct svcxprt_rdma *xprt)
756 {
757 	struct svc_rdma_fastreg_mr *frmr;
758 
759 	while (!list_empty(&xprt->sc_frmr_q)) {
760 		frmr = list_entry(xprt->sc_frmr_q.next,
761 				  struct svc_rdma_fastreg_mr, frmr_list);
762 		list_del_init(&frmr->frmr_list);
763 		ib_dereg_mr(frmr->mr);
764 		ib_free_fast_reg_page_list(frmr->page_list);
765 		kfree(frmr);
766 	}
767 }
768 
769 struct svc_rdma_fastreg_mr *svc_rdma_get_frmr(struct svcxprt_rdma *rdma)
770 {
771 	struct svc_rdma_fastreg_mr *frmr = NULL;
772 
773 	spin_lock_bh(&rdma->sc_frmr_q_lock);
774 	if (!list_empty(&rdma->sc_frmr_q)) {
775 		frmr = list_entry(rdma->sc_frmr_q.next,
776 				  struct svc_rdma_fastreg_mr, frmr_list);
777 		list_del_init(&frmr->frmr_list);
778 		frmr->map_len = 0;
779 		frmr->page_list_len = 0;
780 	}
781 	spin_unlock_bh(&rdma->sc_frmr_q_lock);
782 	if (frmr)
783 		return frmr;
784 
785 	return rdma_alloc_frmr(rdma);
786 }
787 
788 static void frmr_unmap_dma(struct svcxprt_rdma *xprt,
789 			   struct svc_rdma_fastreg_mr *frmr)
790 {
791 	int page_no;
792 	for (page_no = 0; page_no < frmr->page_list_len; page_no++) {
793 		dma_addr_t addr = frmr->page_list->page_list[page_no];
794 		if (ib_dma_mapping_error(frmr->mr->device, addr))
795 			continue;
796 		atomic_dec(&xprt->sc_dma_used);
797 		ib_dma_unmap_single(frmr->mr->device, addr, PAGE_SIZE,
798 				    frmr->direction);
799 	}
800 }
801 
802 void svc_rdma_put_frmr(struct svcxprt_rdma *rdma,
803 		       struct svc_rdma_fastreg_mr *frmr)
804 {
805 	if (frmr) {
806 		frmr_unmap_dma(rdma, frmr);
807 		spin_lock_bh(&rdma->sc_frmr_q_lock);
808 		BUG_ON(!list_empty(&frmr->frmr_list));
809 		list_add(&frmr->frmr_list, &rdma->sc_frmr_q);
810 		spin_unlock_bh(&rdma->sc_frmr_q_lock);
811 	}
812 }
813 
814 /*
815  * This is the xpo_recvfrom function for listening endpoints. Its
816  * purpose is to accept incoming connections. The CMA callback handler
817  * has already created a new transport and attached it to the new CMA
818  * ID.
819  *
820  * There is a queue of pending connections hung on the listening
821  * transport. This queue contains the new svc_xprt structure. This
822  * function takes svc_xprt structures off the accept_q and completes
823  * the connection.
824  */
825 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt)
826 {
827 	struct svcxprt_rdma *listen_rdma;
828 	struct svcxprt_rdma *newxprt = NULL;
829 	struct rdma_conn_param conn_param;
830 	struct ib_qp_init_attr qp_attr;
831 	struct ib_device_attr devattr;
832 	int uninitialized_var(dma_mr_acc);
833 	int need_dma_mr;
834 	int ret;
835 	int i;
836 
837 	listen_rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt);
838 	clear_bit(XPT_CONN, &xprt->xpt_flags);
839 	/* Get the next entry off the accept list */
840 	spin_lock_bh(&listen_rdma->sc_lock);
841 	if (!list_empty(&listen_rdma->sc_accept_q)) {
842 		newxprt = list_entry(listen_rdma->sc_accept_q.next,
843 				     struct svcxprt_rdma, sc_accept_q);
844 		list_del_init(&newxprt->sc_accept_q);
845 	}
846 	if (!list_empty(&listen_rdma->sc_accept_q))
847 		set_bit(XPT_CONN, &listen_rdma->sc_xprt.xpt_flags);
848 	spin_unlock_bh(&listen_rdma->sc_lock);
849 	if (!newxprt)
850 		return NULL;
851 
852 	dprintk("svcrdma: newxprt from accept queue = %p, cm_id=%p\n",
853 		newxprt, newxprt->sc_cm_id);
854 
855 	ret = ib_query_device(newxprt->sc_cm_id->device, &devattr);
856 	if (ret) {
857 		dprintk("svcrdma: could not query device attributes on "
858 			"device %p, rc=%d\n", newxprt->sc_cm_id->device, ret);
859 		goto errout;
860 	}
861 
862 	/* Qualify the transport resource defaults with the
863 	 * capabilities of this particular device */
864 	newxprt->sc_max_sge = min((size_t)devattr.max_sge,
865 				  (size_t)RPCSVC_MAXPAGES);
866 	newxprt->sc_max_requests = min((size_t)devattr.max_qp_wr,
867 				   (size_t)svcrdma_max_requests);
868 	newxprt->sc_sq_depth = RPCRDMA_SQ_DEPTH_MULT * newxprt->sc_max_requests;
869 
870 	/*
871 	 * Limit ORD based on client limit, local device limit, and
872 	 * configured svcrdma limit.
873 	 */
874 	newxprt->sc_ord = min_t(size_t, devattr.max_qp_rd_atom, newxprt->sc_ord);
875 	newxprt->sc_ord = min_t(size_t,	svcrdma_ord, newxprt->sc_ord);
876 
877 	newxprt->sc_pd = ib_alloc_pd(newxprt->sc_cm_id->device);
878 	if (IS_ERR(newxprt->sc_pd)) {
879 		dprintk("svcrdma: error creating PD for connect request\n");
880 		goto errout;
881 	}
882 	newxprt->sc_sq_cq = ib_create_cq(newxprt->sc_cm_id->device,
883 					 sq_comp_handler,
884 					 cq_event_handler,
885 					 newxprt,
886 					 newxprt->sc_sq_depth,
887 					 0);
888 	if (IS_ERR(newxprt->sc_sq_cq)) {
889 		dprintk("svcrdma: error creating SQ CQ for connect request\n");
890 		goto errout;
891 	}
892 	newxprt->sc_rq_cq = ib_create_cq(newxprt->sc_cm_id->device,
893 					 rq_comp_handler,
894 					 cq_event_handler,
895 					 newxprt,
896 					 newxprt->sc_max_requests,
897 					 0);
898 	if (IS_ERR(newxprt->sc_rq_cq)) {
899 		dprintk("svcrdma: error creating RQ CQ for connect request\n");
900 		goto errout;
901 	}
902 
903 	memset(&qp_attr, 0, sizeof qp_attr);
904 	qp_attr.event_handler = qp_event_handler;
905 	qp_attr.qp_context = &newxprt->sc_xprt;
906 	qp_attr.cap.max_send_wr = newxprt->sc_sq_depth;
907 	qp_attr.cap.max_recv_wr = newxprt->sc_max_requests;
908 	qp_attr.cap.max_send_sge = newxprt->sc_max_sge;
909 	qp_attr.cap.max_recv_sge = newxprt->sc_max_sge;
910 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
911 	qp_attr.qp_type = IB_QPT_RC;
912 	qp_attr.send_cq = newxprt->sc_sq_cq;
913 	qp_attr.recv_cq = newxprt->sc_rq_cq;
914 	dprintk("svcrdma: newxprt->sc_cm_id=%p, newxprt->sc_pd=%p\n"
915 		"    cm_id->device=%p, sc_pd->device=%p\n"
916 		"    cap.max_send_wr = %d\n"
917 		"    cap.max_recv_wr = %d\n"
918 		"    cap.max_send_sge = %d\n"
919 		"    cap.max_recv_sge = %d\n",
920 		newxprt->sc_cm_id, newxprt->sc_pd,
921 		newxprt->sc_cm_id->device, newxprt->sc_pd->device,
922 		qp_attr.cap.max_send_wr,
923 		qp_attr.cap.max_recv_wr,
924 		qp_attr.cap.max_send_sge,
925 		qp_attr.cap.max_recv_sge);
926 
927 	ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd, &qp_attr);
928 	if (ret) {
929 		/*
930 		 * XXX: This is a hack. We need a xx_request_qp interface
931 		 * that will adjust the qp_attr's with a best-effort
932 		 * number
933 		 */
934 		qp_attr.cap.max_send_sge -= 2;
935 		qp_attr.cap.max_recv_sge -= 2;
936 		ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd,
937 				     &qp_attr);
938 		if (ret) {
939 			dprintk("svcrdma: failed to create QP, ret=%d\n", ret);
940 			goto errout;
941 		}
942 		newxprt->sc_max_sge = qp_attr.cap.max_send_sge;
943 		newxprt->sc_max_sge = qp_attr.cap.max_recv_sge;
944 		newxprt->sc_sq_depth = qp_attr.cap.max_send_wr;
945 		newxprt->sc_max_requests = qp_attr.cap.max_recv_wr;
946 	}
947 	newxprt->sc_qp = newxprt->sc_cm_id->qp;
948 
949 	/*
950 	 * Use the most secure set of MR resources based on the
951 	 * transport type and available memory management features in
952 	 * the device. Here's the table implemented below:
953 	 *
954 	 *		Fast	Global	DMA	Remote WR
955 	 *		Reg	LKEY	MR	Access
956 	 *		Sup'd	Sup'd	Needed	Needed
957 	 *
958 	 * IWARP	N	N	Y	Y
959 	 *		N	Y	Y	Y
960 	 *		Y	N	Y	N
961 	 *		Y	Y	N	-
962 	 *
963 	 * IB		N	N	Y	N
964 	 *		N	Y	N	-
965 	 *		Y	N	Y	N
966 	 *		Y	Y	N	-
967 	 *
968 	 * NB:	iWARP requires remote write access for the data sink
969 	 *	of an RDMA_READ. IB does not.
970 	 */
971 	if (devattr.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) {
972 		newxprt->sc_frmr_pg_list_len =
973 			devattr.max_fast_reg_page_list_len;
974 		newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_FAST_REG;
975 	}
976 
977 	/*
978 	 * Determine if a DMA MR is required and if so, what privs are required
979 	 */
980 	switch (rdma_node_get_transport(newxprt->sc_cm_id->device->node_type)) {
981 	case RDMA_TRANSPORT_IWARP:
982 		newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_READ_W_INV;
983 		if (!(newxprt->sc_dev_caps & SVCRDMA_DEVCAP_FAST_REG)) {
984 			need_dma_mr = 1;
985 			dma_mr_acc =
986 				(IB_ACCESS_LOCAL_WRITE |
987 				 IB_ACCESS_REMOTE_WRITE);
988 		} else if (!(devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) {
989 			need_dma_mr = 1;
990 			dma_mr_acc = IB_ACCESS_LOCAL_WRITE;
991 		} else
992 			need_dma_mr = 0;
993 		break;
994 	case RDMA_TRANSPORT_IB:
995 		if (!(devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) {
996 			need_dma_mr = 1;
997 			dma_mr_acc = IB_ACCESS_LOCAL_WRITE;
998 		} else
999 			need_dma_mr = 0;
1000 		break;
1001 	default:
1002 		goto errout;
1003 	}
1004 
1005 	/* Create the DMA MR if needed, otherwise, use the DMA LKEY */
1006 	if (need_dma_mr) {
1007 		/* Register all of physical memory */
1008 		newxprt->sc_phys_mr =
1009 			ib_get_dma_mr(newxprt->sc_pd, dma_mr_acc);
1010 		if (IS_ERR(newxprt->sc_phys_mr)) {
1011 			dprintk("svcrdma: Failed to create DMA MR ret=%d\n",
1012 				ret);
1013 			goto errout;
1014 		}
1015 		newxprt->sc_dma_lkey = newxprt->sc_phys_mr->lkey;
1016 	} else
1017 		newxprt->sc_dma_lkey =
1018 			newxprt->sc_cm_id->device->local_dma_lkey;
1019 
1020 	/* Post receive buffers */
1021 	for (i = 0; i < newxprt->sc_max_requests; i++) {
1022 		ret = svc_rdma_post_recv(newxprt);
1023 		if (ret) {
1024 			dprintk("svcrdma: failure posting receive buffers\n");
1025 			goto errout;
1026 		}
1027 	}
1028 
1029 	/* Swap out the handler */
1030 	newxprt->sc_cm_id->event_handler = rdma_cma_handler;
1031 
1032 	/*
1033 	 * Arm the CQs for the SQ and RQ before accepting so we can't
1034 	 * miss the first message
1035 	 */
1036 	ib_req_notify_cq(newxprt->sc_sq_cq, IB_CQ_NEXT_COMP);
1037 	ib_req_notify_cq(newxprt->sc_rq_cq, IB_CQ_NEXT_COMP);
1038 
1039 	/* Accept Connection */
1040 	set_bit(RDMAXPRT_CONN_PENDING, &newxprt->sc_flags);
1041 	memset(&conn_param, 0, sizeof conn_param);
1042 	conn_param.responder_resources = 0;
1043 	conn_param.initiator_depth = newxprt->sc_ord;
1044 	ret = rdma_accept(newxprt->sc_cm_id, &conn_param);
1045 	if (ret) {
1046 		dprintk("svcrdma: failed to accept new connection, ret=%d\n",
1047 		       ret);
1048 		goto errout;
1049 	}
1050 
1051 	dprintk("svcrdma: new connection %p accepted with the following "
1052 		"attributes:\n"
1053 		"    local_ip        : %pI4\n"
1054 		"    local_port	     : %d\n"
1055 		"    remote_ip       : %pI4\n"
1056 		"    remote_port     : %d\n"
1057 		"    max_sge         : %d\n"
1058 		"    sq_depth        : %d\n"
1059 		"    max_requests    : %d\n"
1060 		"    ord             : %d\n",
1061 		newxprt,
1062 		&((struct sockaddr_in *)&newxprt->sc_cm_id->
1063 			 route.addr.src_addr)->sin_addr.s_addr,
1064 		ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id->
1065 		       route.addr.src_addr)->sin_port),
1066 		&((struct sockaddr_in *)&newxprt->sc_cm_id->
1067 			 route.addr.dst_addr)->sin_addr.s_addr,
1068 		ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id->
1069 		       route.addr.dst_addr)->sin_port),
1070 		newxprt->sc_max_sge,
1071 		newxprt->sc_sq_depth,
1072 		newxprt->sc_max_requests,
1073 		newxprt->sc_ord);
1074 
1075 	return &newxprt->sc_xprt;
1076 
1077  errout:
1078 	dprintk("svcrdma: failure accepting new connection rc=%d.\n", ret);
1079 	/* Take a reference in case the DTO handler runs */
1080 	svc_xprt_get(&newxprt->sc_xprt);
1081 	if (newxprt->sc_qp && !IS_ERR(newxprt->sc_qp))
1082 		ib_destroy_qp(newxprt->sc_qp);
1083 	rdma_destroy_id(newxprt->sc_cm_id);
1084 	/* This call to put will destroy the transport */
1085 	svc_xprt_put(&newxprt->sc_xprt);
1086 	return NULL;
1087 }
1088 
1089 static void svc_rdma_release_rqst(struct svc_rqst *rqstp)
1090 {
1091 }
1092 
1093 /*
1094  * When connected, an svc_xprt has at least two references:
1095  *
1096  * - A reference held by the cm_id between the ESTABLISHED and
1097  *   DISCONNECTED events. If the remote peer disconnected first, this
1098  *   reference could be gone.
1099  *
1100  * - A reference held by the svc_recv code that called this function
1101  *   as part of close processing.
1102  *
1103  * At a minimum one references should still be held.
1104  */
1105 static void svc_rdma_detach(struct svc_xprt *xprt)
1106 {
1107 	struct svcxprt_rdma *rdma =
1108 		container_of(xprt, struct svcxprt_rdma, sc_xprt);
1109 	dprintk("svc: svc_rdma_detach(%p)\n", xprt);
1110 
1111 	/* Disconnect and flush posted WQE */
1112 	rdma_disconnect(rdma->sc_cm_id);
1113 }
1114 
1115 static void __svc_rdma_free(struct work_struct *work)
1116 {
1117 	struct svcxprt_rdma *rdma =
1118 		container_of(work, struct svcxprt_rdma, sc_work);
1119 	dprintk("svcrdma: svc_rdma_free(%p)\n", rdma);
1120 
1121 	/* We should only be called from kref_put */
1122 	BUG_ON(atomic_read(&rdma->sc_xprt.xpt_ref.refcount) != 0);
1123 
1124 	/*
1125 	 * Destroy queued, but not processed read completions. Note
1126 	 * that this cleanup has to be done before destroying the
1127 	 * cm_id because the device ptr is needed to unmap the dma in
1128 	 * svc_rdma_put_context.
1129 	 */
1130 	while (!list_empty(&rdma->sc_read_complete_q)) {
1131 		struct svc_rdma_op_ctxt *ctxt;
1132 		ctxt = list_entry(rdma->sc_read_complete_q.next,
1133 				  struct svc_rdma_op_ctxt,
1134 				  dto_q);
1135 		list_del_init(&ctxt->dto_q);
1136 		svc_rdma_put_context(ctxt, 1);
1137 	}
1138 
1139 	/* Destroy queued, but not processed recv completions */
1140 	while (!list_empty(&rdma->sc_rq_dto_q)) {
1141 		struct svc_rdma_op_ctxt *ctxt;
1142 		ctxt = list_entry(rdma->sc_rq_dto_q.next,
1143 				  struct svc_rdma_op_ctxt,
1144 				  dto_q);
1145 		list_del_init(&ctxt->dto_q);
1146 		svc_rdma_put_context(ctxt, 1);
1147 	}
1148 
1149 	/* Warn if we leaked a resource or under-referenced */
1150 	WARN_ON(atomic_read(&rdma->sc_ctxt_used) != 0);
1151 	WARN_ON(atomic_read(&rdma->sc_dma_used) != 0);
1152 
1153 	/* De-allocate fastreg mr */
1154 	rdma_dealloc_frmr_q(rdma);
1155 
1156 	/* Destroy the QP if present (not a listener) */
1157 	if (rdma->sc_qp && !IS_ERR(rdma->sc_qp))
1158 		ib_destroy_qp(rdma->sc_qp);
1159 
1160 	if (rdma->sc_sq_cq && !IS_ERR(rdma->sc_sq_cq))
1161 		ib_destroy_cq(rdma->sc_sq_cq);
1162 
1163 	if (rdma->sc_rq_cq && !IS_ERR(rdma->sc_rq_cq))
1164 		ib_destroy_cq(rdma->sc_rq_cq);
1165 
1166 	if (rdma->sc_phys_mr && !IS_ERR(rdma->sc_phys_mr))
1167 		ib_dereg_mr(rdma->sc_phys_mr);
1168 
1169 	if (rdma->sc_pd && !IS_ERR(rdma->sc_pd))
1170 		ib_dealloc_pd(rdma->sc_pd);
1171 
1172 	/* Destroy the CM ID */
1173 	rdma_destroy_id(rdma->sc_cm_id);
1174 
1175 	kfree(rdma);
1176 }
1177 
1178 static void svc_rdma_free(struct svc_xprt *xprt)
1179 {
1180 	struct svcxprt_rdma *rdma =
1181 		container_of(xprt, struct svcxprt_rdma, sc_xprt);
1182 	INIT_WORK(&rdma->sc_work, __svc_rdma_free);
1183 	schedule_work(&rdma->sc_work);
1184 }
1185 
1186 static int svc_rdma_has_wspace(struct svc_xprt *xprt)
1187 {
1188 	struct svcxprt_rdma *rdma =
1189 		container_of(xprt, struct svcxprt_rdma, sc_xprt);
1190 
1191 	/*
1192 	 * If there are fewer SQ WR available than required to send a
1193 	 * simple response, return false.
1194 	 */
1195 	if ((rdma->sc_sq_depth - atomic_read(&rdma->sc_sq_count) < 3))
1196 		return 0;
1197 
1198 	/*
1199 	 * ...or there are already waiters on the SQ,
1200 	 * return false.
1201 	 */
1202 	if (waitqueue_active(&rdma->sc_send_wait))
1203 		return 0;
1204 
1205 	/* Otherwise return true. */
1206 	return 1;
1207 }
1208 
1209 /*
1210  * Attempt to register the kvec representing the RPC memory with the
1211  * device.
1212  *
1213  * Returns:
1214  *  NULL : The device does not support fastreg or there were no more
1215  *         fastreg mr.
1216  *  frmr : The kvec register request was successfully posted.
1217  *    <0 : An error was encountered attempting to register the kvec.
1218  */
1219 int svc_rdma_fastreg(struct svcxprt_rdma *xprt,
1220 		     struct svc_rdma_fastreg_mr *frmr)
1221 {
1222 	struct ib_send_wr fastreg_wr;
1223 	u8 key;
1224 
1225 	/* Bump the key */
1226 	key = (u8)(frmr->mr->lkey & 0x000000FF);
1227 	ib_update_fast_reg_key(frmr->mr, ++key);
1228 
1229 	/* Prepare FASTREG WR */
1230 	memset(&fastreg_wr, 0, sizeof fastreg_wr);
1231 	fastreg_wr.opcode = IB_WR_FAST_REG_MR;
1232 	fastreg_wr.send_flags = IB_SEND_SIGNALED;
1233 	fastreg_wr.wr.fast_reg.iova_start = (unsigned long)frmr->kva;
1234 	fastreg_wr.wr.fast_reg.page_list = frmr->page_list;
1235 	fastreg_wr.wr.fast_reg.page_list_len = frmr->page_list_len;
1236 	fastreg_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
1237 	fastreg_wr.wr.fast_reg.length = frmr->map_len;
1238 	fastreg_wr.wr.fast_reg.access_flags = frmr->access_flags;
1239 	fastreg_wr.wr.fast_reg.rkey = frmr->mr->lkey;
1240 	return svc_rdma_send(xprt, &fastreg_wr);
1241 }
1242 
1243 int svc_rdma_send(struct svcxprt_rdma *xprt, struct ib_send_wr *wr)
1244 {
1245 	struct ib_send_wr *bad_wr, *n_wr;
1246 	int wr_count;
1247 	int i;
1248 	int ret;
1249 
1250 	if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
1251 		return -ENOTCONN;
1252 
1253 	BUG_ON(wr->send_flags != IB_SEND_SIGNALED);
1254 	wr_count = 1;
1255 	for (n_wr = wr->next; n_wr; n_wr = n_wr->next)
1256 		wr_count++;
1257 
1258 	/* If the SQ is full, wait until an SQ entry is available */
1259 	while (1) {
1260 		spin_lock_bh(&xprt->sc_lock);
1261 		if (xprt->sc_sq_depth < atomic_read(&xprt->sc_sq_count) + wr_count) {
1262 			spin_unlock_bh(&xprt->sc_lock);
1263 			atomic_inc(&rdma_stat_sq_starve);
1264 
1265 			/* See if we can opportunistically reap SQ WR to make room */
1266 			sq_cq_reap(xprt);
1267 
1268 			/* Wait until SQ WR available if SQ still full */
1269 			wait_event(xprt->sc_send_wait,
1270 				   atomic_read(&xprt->sc_sq_count) <
1271 				   xprt->sc_sq_depth);
1272 			if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
1273 				return 0;
1274 			continue;
1275 		}
1276 		/* Take a transport ref for each WR posted */
1277 		for (i = 0; i < wr_count; i++)
1278 			svc_xprt_get(&xprt->sc_xprt);
1279 
1280 		/* Bump used SQ WR count and post */
1281 		atomic_add(wr_count, &xprt->sc_sq_count);
1282 		ret = ib_post_send(xprt->sc_qp, wr, &bad_wr);
1283 		if (ret) {
1284 			set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
1285 			atomic_sub(wr_count, &xprt->sc_sq_count);
1286 			for (i = 0; i < wr_count; i ++)
1287 				svc_xprt_put(&xprt->sc_xprt);
1288 			dprintk("svcrdma: failed to post SQ WR rc=%d, "
1289 			       "sc_sq_count=%d, sc_sq_depth=%d\n",
1290 			       ret, atomic_read(&xprt->sc_sq_count),
1291 			       xprt->sc_sq_depth);
1292 		}
1293 		spin_unlock_bh(&xprt->sc_lock);
1294 		if (ret)
1295 			wake_up(&xprt->sc_send_wait);
1296 		break;
1297 	}
1298 	return ret;
1299 }
1300 
1301 void svc_rdma_send_error(struct svcxprt_rdma *xprt, struct rpcrdma_msg *rmsgp,
1302 			 enum rpcrdma_errcode err)
1303 {
1304 	struct ib_send_wr err_wr;
1305 	struct ib_sge sge;
1306 	struct page *p;
1307 	struct svc_rdma_op_ctxt *ctxt;
1308 	u32 *va;
1309 	int length;
1310 	int ret;
1311 
1312 	p = svc_rdma_get_page();
1313 	va = page_address(p);
1314 
1315 	/* XDR encode error */
1316 	length = svc_rdma_xdr_encode_error(xprt, rmsgp, err, va);
1317 
1318 	/* Prepare SGE for local address */
1319 	sge.addr = ib_dma_map_single(xprt->sc_cm_id->device,
1320 				   page_address(p), PAGE_SIZE, DMA_FROM_DEVICE);
1321 	if (ib_dma_mapping_error(xprt->sc_cm_id->device, sge.addr)) {
1322 		put_page(p);
1323 		return;
1324 	}
1325 	atomic_inc(&xprt->sc_dma_used);
1326 	sge.lkey = xprt->sc_dma_lkey;
1327 	sge.length = length;
1328 
1329 	ctxt = svc_rdma_get_context(xprt);
1330 	ctxt->count = 1;
1331 	ctxt->pages[0] = p;
1332 
1333 	/* Prepare SEND WR */
1334 	memset(&err_wr, 0, sizeof err_wr);
1335 	ctxt->wr_op = IB_WR_SEND;
1336 	err_wr.wr_id = (unsigned long)ctxt;
1337 	err_wr.sg_list = &sge;
1338 	err_wr.num_sge = 1;
1339 	err_wr.opcode = IB_WR_SEND;
1340 	err_wr.send_flags = IB_SEND_SIGNALED;
1341 
1342 	/* Post It */
1343 	ret = svc_rdma_send(xprt, &err_wr);
1344 	if (ret) {
1345 		dprintk("svcrdma: Error %d posting send for protocol error\n",
1346 			ret);
1347 		ib_dma_unmap_single(xprt->sc_cm_id->device,
1348 				  sge.addr, PAGE_SIZE,
1349 				  DMA_FROM_DEVICE);
1350 		svc_rdma_put_context(ctxt, 1);
1351 	}
1352 }
1353