1 /* 2 * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved. 3 * Copyright (c) 2005-2007 Network Appliance, Inc. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the BSD-type 9 * license below: 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 15 * Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 18 * Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials provided 21 * with the distribution. 22 * 23 * Neither the name of the Network Appliance, Inc. nor the names of 24 * its contributors may be used to endorse or promote products 25 * derived from this software without specific prior written 26 * permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Author: Tom Tucker <tom@opengridcomputing.com> 41 */ 42 43 #include <linux/sunrpc/svc_xprt.h> 44 #include <linux/sunrpc/addr.h> 45 #include <linux/sunrpc/debug.h> 46 #include <linux/sunrpc/rpc_rdma.h> 47 #include <linux/interrupt.h> 48 #include <linux/sched.h> 49 #include <linux/slab.h> 50 #include <linux/spinlock.h> 51 #include <linux/workqueue.h> 52 #include <rdma/ib_verbs.h> 53 #include <rdma/rdma_cm.h> 54 #include <linux/sunrpc/svc_rdma.h> 55 #include <linux/export.h> 56 #include "xprt_rdma.h" 57 58 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 59 60 static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *, int); 61 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv, 62 struct net *net, 63 struct sockaddr *sa, int salen, 64 int flags); 65 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt); 66 static void svc_rdma_release_rqst(struct svc_rqst *); 67 static void svc_rdma_detach(struct svc_xprt *xprt); 68 static void svc_rdma_free(struct svc_xprt *xprt); 69 static int svc_rdma_has_wspace(struct svc_xprt *xprt); 70 static int svc_rdma_secure_port(struct svc_rqst *); 71 static void svc_rdma_kill_temp_xprt(struct svc_xprt *); 72 73 static struct svc_xprt_ops svc_rdma_ops = { 74 .xpo_create = svc_rdma_create, 75 .xpo_recvfrom = svc_rdma_recvfrom, 76 .xpo_sendto = svc_rdma_sendto, 77 .xpo_release_rqst = svc_rdma_release_rqst, 78 .xpo_detach = svc_rdma_detach, 79 .xpo_free = svc_rdma_free, 80 .xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr, 81 .xpo_has_wspace = svc_rdma_has_wspace, 82 .xpo_accept = svc_rdma_accept, 83 .xpo_secure_port = svc_rdma_secure_port, 84 .xpo_kill_temp_xprt = svc_rdma_kill_temp_xprt, 85 }; 86 87 struct svc_xprt_class svc_rdma_class = { 88 .xcl_name = "rdma", 89 .xcl_owner = THIS_MODULE, 90 .xcl_ops = &svc_rdma_ops, 91 .xcl_max_payload = RPCSVC_MAXPAYLOAD_RDMA, 92 .xcl_ident = XPRT_TRANSPORT_RDMA, 93 }; 94 95 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 96 static struct svc_xprt *svc_rdma_bc_create(struct svc_serv *, struct net *, 97 struct sockaddr *, int, int); 98 static void svc_rdma_bc_detach(struct svc_xprt *); 99 static void svc_rdma_bc_free(struct svc_xprt *); 100 101 static struct svc_xprt_ops svc_rdma_bc_ops = { 102 .xpo_create = svc_rdma_bc_create, 103 .xpo_detach = svc_rdma_bc_detach, 104 .xpo_free = svc_rdma_bc_free, 105 .xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr, 106 .xpo_secure_port = svc_rdma_secure_port, 107 }; 108 109 struct svc_xprt_class svc_rdma_bc_class = { 110 .xcl_name = "rdma-bc", 111 .xcl_owner = THIS_MODULE, 112 .xcl_ops = &svc_rdma_bc_ops, 113 .xcl_max_payload = (1024 - RPCRDMA_HDRLEN_MIN) 114 }; 115 116 static struct svc_xprt *svc_rdma_bc_create(struct svc_serv *serv, 117 struct net *net, 118 struct sockaddr *sa, int salen, 119 int flags) 120 { 121 struct svcxprt_rdma *cma_xprt; 122 struct svc_xprt *xprt; 123 124 cma_xprt = rdma_create_xprt(serv, 0); 125 if (!cma_xprt) 126 return ERR_PTR(-ENOMEM); 127 xprt = &cma_xprt->sc_xprt; 128 129 svc_xprt_init(net, &svc_rdma_bc_class, xprt, serv); 130 set_bit(XPT_CONG_CTRL, &xprt->xpt_flags); 131 serv->sv_bc_xprt = xprt; 132 133 dprintk("svcrdma: %s(%p)\n", __func__, xprt); 134 return xprt; 135 } 136 137 static void svc_rdma_bc_detach(struct svc_xprt *xprt) 138 { 139 dprintk("svcrdma: %s(%p)\n", __func__, xprt); 140 } 141 142 static void svc_rdma_bc_free(struct svc_xprt *xprt) 143 { 144 struct svcxprt_rdma *rdma = 145 container_of(xprt, struct svcxprt_rdma, sc_xprt); 146 147 dprintk("svcrdma: %s(%p)\n", __func__, xprt); 148 if (xprt) 149 kfree(rdma); 150 } 151 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 152 153 static struct svc_rdma_op_ctxt *alloc_ctxt(struct svcxprt_rdma *xprt, 154 gfp_t flags) 155 { 156 struct svc_rdma_op_ctxt *ctxt; 157 158 ctxt = kmalloc(sizeof(*ctxt), flags); 159 if (ctxt) { 160 ctxt->xprt = xprt; 161 INIT_LIST_HEAD(&ctxt->list); 162 } 163 return ctxt; 164 } 165 166 static bool svc_rdma_prealloc_ctxts(struct svcxprt_rdma *xprt) 167 { 168 unsigned int i; 169 170 /* Each RPC/RDMA credit can consume a number of send 171 * and receive WQEs. One ctxt is allocated for each. 172 */ 173 i = xprt->sc_sq_depth + xprt->sc_rq_depth; 174 175 while (i--) { 176 struct svc_rdma_op_ctxt *ctxt; 177 178 ctxt = alloc_ctxt(xprt, GFP_KERNEL); 179 if (!ctxt) { 180 dprintk("svcrdma: No memory for RDMA ctxt\n"); 181 return false; 182 } 183 list_add(&ctxt->list, &xprt->sc_ctxts); 184 } 185 return true; 186 } 187 188 struct svc_rdma_op_ctxt *svc_rdma_get_context(struct svcxprt_rdma *xprt) 189 { 190 struct svc_rdma_op_ctxt *ctxt = NULL; 191 192 spin_lock(&xprt->sc_ctxt_lock); 193 xprt->sc_ctxt_used++; 194 if (list_empty(&xprt->sc_ctxts)) 195 goto out_empty; 196 197 ctxt = list_first_entry(&xprt->sc_ctxts, 198 struct svc_rdma_op_ctxt, list); 199 list_del(&ctxt->list); 200 spin_unlock(&xprt->sc_ctxt_lock); 201 202 out: 203 ctxt->count = 0; 204 ctxt->mapped_sges = 0; 205 ctxt->frmr = NULL; 206 return ctxt; 207 208 out_empty: 209 /* Either pre-allocation missed the mark, or send 210 * queue accounting is broken. 211 */ 212 spin_unlock(&xprt->sc_ctxt_lock); 213 214 ctxt = alloc_ctxt(xprt, GFP_NOIO); 215 if (ctxt) 216 goto out; 217 218 spin_lock(&xprt->sc_ctxt_lock); 219 xprt->sc_ctxt_used--; 220 spin_unlock(&xprt->sc_ctxt_lock); 221 WARN_ONCE(1, "svcrdma: empty RDMA ctxt list?\n"); 222 return NULL; 223 } 224 225 void svc_rdma_unmap_dma(struct svc_rdma_op_ctxt *ctxt) 226 { 227 struct svcxprt_rdma *xprt = ctxt->xprt; 228 struct ib_device *device = xprt->sc_cm_id->device; 229 u32 lkey = xprt->sc_pd->local_dma_lkey; 230 unsigned int i; 231 232 for (i = 0; i < ctxt->mapped_sges; i++) { 233 /* 234 * Unmap the DMA addr in the SGE if the lkey matches 235 * the local_dma_lkey, otherwise, ignore it since it is 236 * an FRMR lkey and will be unmapped later when the 237 * last WR that uses it completes. 238 */ 239 if (ctxt->sge[i].lkey == lkey) 240 ib_dma_unmap_page(device, 241 ctxt->sge[i].addr, 242 ctxt->sge[i].length, 243 ctxt->direction); 244 } 245 ctxt->mapped_sges = 0; 246 } 247 248 void svc_rdma_put_context(struct svc_rdma_op_ctxt *ctxt, int free_pages) 249 { 250 struct svcxprt_rdma *xprt = ctxt->xprt; 251 int i; 252 253 if (free_pages) 254 for (i = 0; i < ctxt->count; i++) 255 put_page(ctxt->pages[i]); 256 257 spin_lock(&xprt->sc_ctxt_lock); 258 xprt->sc_ctxt_used--; 259 list_add(&ctxt->list, &xprt->sc_ctxts); 260 spin_unlock(&xprt->sc_ctxt_lock); 261 } 262 263 static void svc_rdma_destroy_ctxts(struct svcxprt_rdma *xprt) 264 { 265 while (!list_empty(&xprt->sc_ctxts)) { 266 struct svc_rdma_op_ctxt *ctxt; 267 268 ctxt = list_first_entry(&xprt->sc_ctxts, 269 struct svc_rdma_op_ctxt, list); 270 list_del(&ctxt->list); 271 kfree(ctxt); 272 } 273 } 274 275 static struct svc_rdma_req_map *alloc_req_map(gfp_t flags) 276 { 277 struct svc_rdma_req_map *map; 278 279 map = kmalloc(sizeof(*map), flags); 280 if (map) 281 INIT_LIST_HEAD(&map->free); 282 return map; 283 } 284 285 static bool svc_rdma_prealloc_maps(struct svcxprt_rdma *xprt) 286 { 287 unsigned int i; 288 289 /* One for each receive buffer on this connection. */ 290 i = xprt->sc_max_requests; 291 292 while (i--) { 293 struct svc_rdma_req_map *map; 294 295 map = alloc_req_map(GFP_KERNEL); 296 if (!map) { 297 dprintk("svcrdma: No memory for request map\n"); 298 return false; 299 } 300 list_add(&map->free, &xprt->sc_maps); 301 } 302 return true; 303 } 304 305 struct svc_rdma_req_map *svc_rdma_get_req_map(struct svcxprt_rdma *xprt) 306 { 307 struct svc_rdma_req_map *map = NULL; 308 309 spin_lock(&xprt->sc_map_lock); 310 if (list_empty(&xprt->sc_maps)) 311 goto out_empty; 312 313 map = list_first_entry(&xprt->sc_maps, 314 struct svc_rdma_req_map, free); 315 list_del_init(&map->free); 316 spin_unlock(&xprt->sc_map_lock); 317 318 out: 319 map->count = 0; 320 return map; 321 322 out_empty: 323 spin_unlock(&xprt->sc_map_lock); 324 325 /* Pre-allocation amount was incorrect */ 326 map = alloc_req_map(GFP_NOIO); 327 if (map) 328 goto out; 329 330 WARN_ONCE(1, "svcrdma: empty request map list?\n"); 331 return NULL; 332 } 333 334 void svc_rdma_put_req_map(struct svcxprt_rdma *xprt, 335 struct svc_rdma_req_map *map) 336 { 337 spin_lock(&xprt->sc_map_lock); 338 list_add(&map->free, &xprt->sc_maps); 339 spin_unlock(&xprt->sc_map_lock); 340 } 341 342 static void svc_rdma_destroy_maps(struct svcxprt_rdma *xprt) 343 { 344 while (!list_empty(&xprt->sc_maps)) { 345 struct svc_rdma_req_map *map; 346 347 map = list_first_entry(&xprt->sc_maps, 348 struct svc_rdma_req_map, free); 349 list_del(&map->free); 350 kfree(map); 351 } 352 } 353 354 /* QP event handler */ 355 static void qp_event_handler(struct ib_event *event, void *context) 356 { 357 struct svc_xprt *xprt = context; 358 359 switch (event->event) { 360 /* These are considered benign events */ 361 case IB_EVENT_PATH_MIG: 362 case IB_EVENT_COMM_EST: 363 case IB_EVENT_SQ_DRAINED: 364 case IB_EVENT_QP_LAST_WQE_REACHED: 365 dprintk("svcrdma: QP event %s (%d) received for QP=%p\n", 366 ib_event_msg(event->event), event->event, 367 event->element.qp); 368 break; 369 /* These are considered fatal events */ 370 case IB_EVENT_PATH_MIG_ERR: 371 case IB_EVENT_QP_FATAL: 372 case IB_EVENT_QP_REQ_ERR: 373 case IB_EVENT_QP_ACCESS_ERR: 374 case IB_EVENT_DEVICE_FATAL: 375 default: 376 dprintk("svcrdma: QP ERROR event %s (%d) received for QP=%p, " 377 "closing transport\n", 378 ib_event_msg(event->event), event->event, 379 event->element.qp); 380 set_bit(XPT_CLOSE, &xprt->xpt_flags); 381 break; 382 } 383 } 384 385 /** 386 * svc_rdma_wc_receive - Invoked by RDMA provider for each polled Receive WC 387 * @cq: completion queue 388 * @wc: completed WR 389 * 390 */ 391 static void svc_rdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc) 392 { 393 struct svcxprt_rdma *xprt = cq->cq_context; 394 struct ib_cqe *cqe = wc->wr_cqe; 395 struct svc_rdma_op_ctxt *ctxt; 396 397 /* WARNING: Only wc->wr_cqe and wc->status are reliable */ 398 ctxt = container_of(cqe, struct svc_rdma_op_ctxt, cqe); 399 svc_rdma_unmap_dma(ctxt); 400 401 if (wc->status != IB_WC_SUCCESS) 402 goto flushed; 403 404 /* All wc fields are now known to be valid */ 405 ctxt->byte_len = wc->byte_len; 406 spin_lock(&xprt->sc_rq_dto_lock); 407 list_add_tail(&ctxt->list, &xprt->sc_rq_dto_q); 408 spin_unlock(&xprt->sc_rq_dto_lock); 409 410 set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags); 411 if (test_bit(RDMAXPRT_CONN_PENDING, &xprt->sc_flags)) 412 goto out; 413 svc_xprt_enqueue(&xprt->sc_xprt); 414 goto out; 415 416 flushed: 417 if (wc->status != IB_WC_WR_FLUSH_ERR) 418 pr_warn("svcrdma: receive: %s (%u/0x%x)\n", 419 ib_wc_status_msg(wc->status), 420 wc->status, wc->vendor_err); 421 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); 422 svc_rdma_put_context(ctxt, 1); 423 424 out: 425 svc_xprt_put(&xprt->sc_xprt); 426 } 427 428 static void svc_rdma_send_wc_common(struct svcxprt_rdma *xprt, 429 struct ib_wc *wc, 430 const char *opname) 431 { 432 if (wc->status != IB_WC_SUCCESS) 433 goto err; 434 435 out: 436 atomic_inc(&xprt->sc_sq_avail); 437 wake_up(&xprt->sc_send_wait); 438 return; 439 440 err: 441 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); 442 if (wc->status != IB_WC_WR_FLUSH_ERR) 443 pr_err("svcrdma: %s: %s (%u/0x%x)\n", 444 opname, ib_wc_status_msg(wc->status), 445 wc->status, wc->vendor_err); 446 goto out; 447 } 448 449 static void svc_rdma_send_wc_common_put(struct ib_cq *cq, struct ib_wc *wc, 450 const char *opname) 451 { 452 struct svcxprt_rdma *xprt = cq->cq_context; 453 454 svc_rdma_send_wc_common(xprt, wc, opname); 455 svc_xprt_put(&xprt->sc_xprt); 456 } 457 458 /** 459 * svc_rdma_wc_send - Invoked by RDMA provider for each polled Send WC 460 * @cq: completion queue 461 * @wc: completed WR 462 * 463 */ 464 void svc_rdma_wc_send(struct ib_cq *cq, struct ib_wc *wc) 465 { 466 struct ib_cqe *cqe = wc->wr_cqe; 467 struct svc_rdma_op_ctxt *ctxt; 468 469 svc_rdma_send_wc_common_put(cq, wc, "send"); 470 471 ctxt = container_of(cqe, struct svc_rdma_op_ctxt, cqe); 472 svc_rdma_unmap_dma(ctxt); 473 svc_rdma_put_context(ctxt, 1); 474 } 475 476 /** 477 * svc_rdma_wc_write - Invoked by RDMA provider for each polled Write WC 478 * @cq: completion queue 479 * @wc: completed WR 480 * 481 */ 482 void svc_rdma_wc_write(struct ib_cq *cq, struct ib_wc *wc) 483 { 484 struct ib_cqe *cqe = wc->wr_cqe; 485 struct svc_rdma_op_ctxt *ctxt; 486 487 svc_rdma_send_wc_common_put(cq, wc, "write"); 488 489 ctxt = container_of(cqe, struct svc_rdma_op_ctxt, cqe); 490 svc_rdma_unmap_dma(ctxt); 491 svc_rdma_put_context(ctxt, 0); 492 } 493 494 /** 495 * svc_rdma_wc_reg - Invoked by RDMA provider for each polled FASTREG WC 496 * @cq: completion queue 497 * @wc: completed WR 498 * 499 */ 500 void svc_rdma_wc_reg(struct ib_cq *cq, struct ib_wc *wc) 501 { 502 svc_rdma_send_wc_common_put(cq, wc, "fastreg"); 503 } 504 505 /** 506 * svc_rdma_wc_read - Invoked by RDMA provider for each polled Read WC 507 * @cq: completion queue 508 * @wc: completed WR 509 * 510 */ 511 void svc_rdma_wc_read(struct ib_cq *cq, struct ib_wc *wc) 512 { 513 struct svcxprt_rdma *xprt = cq->cq_context; 514 struct ib_cqe *cqe = wc->wr_cqe; 515 struct svc_rdma_op_ctxt *ctxt; 516 517 svc_rdma_send_wc_common(xprt, wc, "read"); 518 519 ctxt = container_of(cqe, struct svc_rdma_op_ctxt, cqe); 520 svc_rdma_unmap_dma(ctxt); 521 svc_rdma_put_frmr(xprt, ctxt->frmr); 522 523 if (test_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags)) { 524 struct svc_rdma_op_ctxt *read_hdr; 525 526 read_hdr = ctxt->read_hdr; 527 spin_lock(&xprt->sc_rq_dto_lock); 528 list_add_tail(&read_hdr->list, 529 &xprt->sc_read_complete_q); 530 spin_unlock(&xprt->sc_rq_dto_lock); 531 532 set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags); 533 svc_xprt_enqueue(&xprt->sc_xprt); 534 } 535 536 svc_rdma_put_context(ctxt, 0); 537 svc_xprt_put(&xprt->sc_xprt); 538 } 539 540 /** 541 * svc_rdma_wc_inv - Invoked by RDMA provider for each polled LOCAL_INV WC 542 * @cq: completion queue 543 * @wc: completed WR 544 * 545 */ 546 void svc_rdma_wc_inv(struct ib_cq *cq, struct ib_wc *wc) 547 { 548 svc_rdma_send_wc_common_put(cq, wc, "localInv"); 549 } 550 551 static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *serv, 552 int listener) 553 { 554 struct svcxprt_rdma *cma_xprt = kzalloc(sizeof *cma_xprt, GFP_KERNEL); 555 556 if (!cma_xprt) 557 return NULL; 558 svc_xprt_init(&init_net, &svc_rdma_class, &cma_xprt->sc_xprt, serv); 559 INIT_LIST_HEAD(&cma_xprt->sc_accept_q); 560 INIT_LIST_HEAD(&cma_xprt->sc_rq_dto_q); 561 INIT_LIST_HEAD(&cma_xprt->sc_read_complete_q); 562 INIT_LIST_HEAD(&cma_xprt->sc_frmr_q); 563 INIT_LIST_HEAD(&cma_xprt->sc_ctxts); 564 INIT_LIST_HEAD(&cma_xprt->sc_maps); 565 init_waitqueue_head(&cma_xprt->sc_send_wait); 566 567 spin_lock_init(&cma_xprt->sc_lock); 568 spin_lock_init(&cma_xprt->sc_rq_dto_lock); 569 spin_lock_init(&cma_xprt->sc_frmr_q_lock); 570 spin_lock_init(&cma_xprt->sc_ctxt_lock); 571 spin_lock_init(&cma_xprt->sc_map_lock); 572 573 /* 574 * Note that this implies that the underlying transport support 575 * has some form of congestion control (see RFC 7530 section 3.1 576 * paragraph 2). For now, we assume that all supported RDMA 577 * transports are suitable here. 578 */ 579 set_bit(XPT_CONG_CTRL, &cma_xprt->sc_xprt.xpt_flags); 580 581 if (listener) 582 set_bit(XPT_LISTENER, &cma_xprt->sc_xprt.xpt_flags); 583 584 return cma_xprt; 585 } 586 587 int svc_rdma_post_recv(struct svcxprt_rdma *xprt, gfp_t flags) 588 { 589 struct ib_recv_wr recv_wr, *bad_recv_wr; 590 struct svc_rdma_op_ctxt *ctxt; 591 struct page *page; 592 dma_addr_t pa; 593 int sge_no; 594 int buflen; 595 int ret; 596 597 ctxt = svc_rdma_get_context(xprt); 598 buflen = 0; 599 ctxt->direction = DMA_FROM_DEVICE; 600 ctxt->cqe.done = svc_rdma_wc_receive; 601 for (sge_no = 0; buflen < xprt->sc_max_req_size; sge_no++) { 602 if (sge_no >= xprt->sc_max_sge) { 603 pr_err("svcrdma: Too many sges (%d)\n", sge_no); 604 goto err_put_ctxt; 605 } 606 page = alloc_page(flags); 607 if (!page) 608 goto err_put_ctxt; 609 ctxt->pages[sge_no] = page; 610 pa = ib_dma_map_page(xprt->sc_cm_id->device, 611 page, 0, PAGE_SIZE, 612 DMA_FROM_DEVICE); 613 if (ib_dma_mapping_error(xprt->sc_cm_id->device, pa)) 614 goto err_put_ctxt; 615 svc_rdma_count_mappings(xprt, ctxt); 616 ctxt->sge[sge_no].addr = pa; 617 ctxt->sge[sge_no].length = PAGE_SIZE; 618 ctxt->sge[sge_no].lkey = xprt->sc_pd->local_dma_lkey; 619 ctxt->count = sge_no + 1; 620 buflen += PAGE_SIZE; 621 } 622 recv_wr.next = NULL; 623 recv_wr.sg_list = &ctxt->sge[0]; 624 recv_wr.num_sge = ctxt->count; 625 recv_wr.wr_cqe = &ctxt->cqe; 626 627 svc_xprt_get(&xprt->sc_xprt); 628 ret = ib_post_recv(xprt->sc_qp, &recv_wr, &bad_recv_wr); 629 if (ret) { 630 svc_rdma_unmap_dma(ctxt); 631 svc_rdma_put_context(ctxt, 1); 632 svc_xprt_put(&xprt->sc_xprt); 633 } 634 return ret; 635 636 err_put_ctxt: 637 svc_rdma_unmap_dma(ctxt); 638 svc_rdma_put_context(ctxt, 1); 639 return -ENOMEM; 640 } 641 642 int svc_rdma_repost_recv(struct svcxprt_rdma *xprt, gfp_t flags) 643 { 644 int ret = 0; 645 646 ret = svc_rdma_post_recv(xprt, flags); 647 if (ret) { 648 pr_err("svcrdma: could not post a receive buffer, err=%d.\n", 649 ret); 650 pr_err("svcrdma: closing transport %p.\n", xprt); 651 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); 652 ret = -ENOTCONN; 653 } 654 return ret; 655 } 656 657 static void 658 svc_rdma_parse_connect_private(struct svcxprt_rdma *newxprt, 659 struct rdma_conn_param *param) 660 { 661 const struct rpcrdma_connect_private *pmsg = param->private_data; 662 663 if (pmsg && 664 pmsg->cp_magic == rpcrdma_cmp_magic && 665 pmsg->cp_version == RPCRDMA_CMP_VERSION) { 666 newxprt->sc_snd_w_inv = pmsg->cp_flags & 667 RPCRDMA_CMP_F_SND_W_INV_OK; 668 669 dprintk("svcrdma: client send_size %u, recv_size %u " 670 "remote inv %ssupported\n", 671 rpcrdma_decode_buffer_size(pmsg->cp_send_size), 672 rpcrdma_decode_buffer_size(pmsg->cp_recv_size), 673 newxprt->sc_snd_w_inv ? "" : "un"); 674 } 675 } 676 677 /* 678 * This function handles the CONNECT_REQUEST event on a listening 679 * endpoint. It is passed the cma_id for the _new_ connection. The context in 680 * this cma_id is inherited from the listening cma_id and is the svc_xprt 681 * structure for the listening endpoint. 682 * 683 * This function creates a new xprt for the new connection and enqueues it on 684 * the accept queue for the listent xprt. When the listen thread is kicked, it 685 * will call the recvfrom method on the listen xprt which will accept the new 686 * connection. 687 */ 688 static void handle_connect_req(struct rdma_cm_id *new_cma_id, 689 struct rdma_conn_param *param) 690 { 691 struct svcxprt_rdma *listen_xprt = new_cma_id->context; 692 struct svcxprt_rdma *newxprt; 693 struct sockaddr *sa; 694 695 /* Create a new transport */ 696 newxprt = rdma_create_xprt(listen_xprt->sc_xprt.xpt_server, 0); 697 if (!newxprt) { 698 dprintk("svcrdma: failed to create new transport\n"); 699 return; 700 } 701 newxprt->sc_cm_id = new_cma_id; 702 new_cma_id->context = newxprt; 703 dprintk("svcrdma: Creating newxprt=%p, cm_id=%p, listenxprt=%p\n", 704 newxprt, newxprt->sc_cm_id, listen_xprt); 705 svc_rdma_parse_connect_private(newxprt, param); 706 707 /* Save client advertised inbound read limit for use later in accept. */ 708 newxprt->sc_ord = param->initiator_depth; 709 710 /* Set the local and remote addresses in the transport */ 711 sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr; 712 svc_xprt_set_remote(&newxprt->sc_xprt, sa, svc_addr_len(sa)); 713 sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr; 714 svc_xprt_set_local(&newxprt->sc_xprt, sa, svc_addr_len(sa)); 715 716 /* 717 * Enqueue the new transport on the accept queue of the listening 718 * transport 719 */ 720 spin_lock_bh(&listen_xprt->sc_lock); 721 list_add_tail(&newxprt->sc_accept_q, &listen_xprt->sc_accept_q); 722 spin_unlock_bh(&listen_xprt->sc_lock); 723 724 set_bit(XPT_CONN, &listen_xprt->sc_xprt.xpt_flags); 725 svc_xprt_enqueue(&listen_xprt->sc_xprt); 726 } 727 728 /* 729 * Handles events generated on the listening endpoint. These events will be 730 * either be incoming connect requests or adapter removal events. 731 */ 732 static int rdma_listen_handler(struct rdma_cm_id *cma_id, 733 struct rdma_cm_event *event) 734 { 735 struct svcxprt_rdma *xprt = cma_id->context; 736 int ret = 0; 737 738 switch (event->event) { 739 case RDMA_CM_EVENT_CONNECT_REQUEST: 740 dprintk("svcrdma: Connect request on cma_id=%p, xprt = %p, " 741 "event = %s (%d)\n", cma_id, cma_id->context, 742 rdma_event_msg(event->event), event->event); 743 handle_connect_req(cma_id, &event->param.conn); 744 break; 745 746 case RDMA_CM_EVENT_ESTABLISHED: 747 /* Accept complete */ 748 dprintk("svcrdma: Connection completed on LISTEN xprt=%p, " 749 "cm_id=%p\n", xprt, cma_id); 750 break; 751 752 case RDMA_CM_EVENT_DEVICE_REMOVAL: 753 dprintk("svcrdma: Device removal xprt=%p, cm_id=%p\n", 754 xprt, cma_id); 755 if (xprt) 756 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); 757 break; 758 759 default: 760 dprintk("svcrdma: Unexpected event on listening endpoint %p, " 761 "event = %s (%d)\n", cma_id, 762 rdma_event_msg(event->event), event->event); 763 break; 764 } 765 766 return ret; 767 } 768 769 static int rdma_cma_handler(struct rdma_cm_id *cma_id, 770 struct rdma_cm_event *event) 771 { 772 struct svc_xprt *xprt = cma_id->context; 773 struct svcxprt_rdma *rdma = 774 container_of(xprt, struct svcxprt_rdma, sc_xprt); 775 switch (event->event) { 776 case RDMA_CM_EVENT_ESTABLISHED: 777 /* Accept complete */ 778 svc_xprt_get(xprt); 779 dprintk("svcrdma: Connection completed on DTO xprt=%p, " 780 "cm_id=%p\n", xprt, cma_id); 781 clear_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags); 782 svc_xprt_enqueue(xprt); 783 break; 784 case RDMA_CM_EVENT_DISCONNECTED: 785 dprintk("svcrdma: Disconnect on DTO xprt=%p, cm_id=%p\n", 786 xprt, cma_id); 787 if (xprt) { 788 set_bit(XPT_CLOSE, &xprt->xpt_flags); 789 svc_xprt_enqueue(xprt); 790 svc_xprt_put(xprt); 791 } 792 break; 793 case RDMA_CM_EVENT_DEVICE_REMOVAL: 794 dprintk("svcrdma: Device removal cma_id=%p, xprt = %p, " 795 "event = %s (%d)\n", cma_id, xprt, 796 rdma_event_msg(event->event), event->event); 797 if (xprt) { 798 set_bit(XPT_CLOSE, &xprt->xpt_flags); 799 svc_xprt_enqueue(xprt); 800 svc_xprt_put(xprt); 801 } 802 break; 803 default: 804 dprintk("svcrdma: Unexpected event on DTO endpoint %p, " 805 "event = %s (%d)\n", cma_id, 806 rdma_event_msg(event->event), event->event); 807 break; 808 } 809 return 0; 810 } 811 812 /* 813 * Create a listening RDMA service endpoint. 814 */ 815 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv, 816 struct net *net, 817 struct sockaddr *sa, int salen, 818 int flags) 819 { 820 struct rdma_cm_id *listen_id; 821 struct svcxprt_rdma *cma_xprt; 822 int ret; 823 824 dprintk("svcrdma: Creating RDMA socket\n"); 825 if ((sa->sa_family != AF_INET) && (sa->sa_family != AF_INET6)) { 826 dprintk("svcrdma: Address family %d is not supported.\n", sa->sa_family); 827 return ERR_PTR(-EAFNOSUPPORT); 828 } 829 cma_xprt = rdma_create_xprt(serv, 1); 830 if (!cma_xprt) 831 return ERR_PTR(-ENOMEM); 832 833 listen_id = rdma_create_id(&init_net, rdma_listen_handler, cma_xprt, 834 RDMA_PS_TCP, IB_QPT_RC); 835 if (IS_ERR(listen_id)) { 836 ret = PTR_ERR(listen_id); 837 dprintk("svcrdma: rdma_create_id failed = %d\n", ret); 838 goto err0; 839 } 840 841 /* Allow both IPv4 and IPv6 sockets to bind a single port 842 * at the same time. 843 */ 844 #if IS_ENABLED(CONFIG_IPV6) 845 ret = rdma_set_afonly(listen_id, 1); 846 if (ret) { 847 dprintk("svcrdma: rdma_set_afonly failed = %d\n", ret); 848 goto err1; 849 } 850 #endif 851 ret = rdma_bind_addr(listen_id, sa); 852 if (ret) { 853 dprintk("svcrdma: rdma_bind_addr failed = %d\n", ret); 854 goto err1; 855 } 856 cma_xprt->sc_cm_id = listen_id; 857 858 ret = rdma_listen(listen_id, RPCRDMA_LISTEN_BACKLOG); 859 if (ret) { 860 dprintk("svcrdma: rdma_listen failed = %d\n", ret); 861 goto err1; 862 } 863 864 /* 865 * We need to use the address from the cm_id in case the 866 * caller specified 0 for the port number. 867 */ 868 sa = (struct sockaddr *)&cma_xprt->sc_cm_id->route.addr.src_addr; 869 svc_xprt_set_local(&cma_xprt->sc_xprt, sa, salen); 870 871 return &cma_xprt->sc_xprt; 872 873 err1: 874 rdma_destroy_id(listen_id); 875 err0: 876 kfree(cma_xprt); 877 return ERR_PTR(ret); 878 } 879 880 static struct svc_rdma_fastreg_mr *rdma_alloc_frmr(struct svcxprt_rdma *xprt) 881 { 882 struct ib_mr *mr; 883 struct scatterlist *sg; 884 struct svc_rdma_fastreg_mr *frmr; 885 u32 num_sg; 886 887 frmr = kmalloc(sizeof(*frmr), GFP_KERNEL); 888 if (!frmr) 889 goto err; 890 891 num_sg = min_t(u32, RPCSVC_MAXPAGES, xprt->sc_frmr_pg_list_len); 892 mr = ib_alloc_mr(xprt->sc_pd, IB_MR_TYPE_MEM_REG, num_sg); 893 if (IS_ERR(mr)) 894 goto err_free_frmr; 895 896 sg = kcalloc(RPCSVC_MAXPAGES, sizeof(*sg), GFP_KERNEL); 897 if (!sg) 898 goto err_free_mr; 899 900 sg_init_table(sg, RPCSVC_MAXPAGES); 901 902 frmr->mr = mr; 903 frmr->sg = sg; 904 INIT_LIST_HEAD(&frmr->frmr_list); 905 return frmr; 906 907 err_free_mr: 908 ib_dereg_mr(mr); 909 err_free_frmr: 910 kfree(frmr); 911 err: 912 return ERR_PTR(-ENOMEM); 913 } 914 915 static void rdma_dealloc_frmr_q(struct svcxprt_rdma *xprt) 916 { 917 struct svc_rdma_fastreg_mr *frmr; 918 919 while (!list_empty(&xprt->sc_frmr_q)) { 920 frmr = list_entry(xprt->sc_frmr_q.next, 921 struct svc_rdma_fastreg_mr, frmr_list); 922 list_del_init(&frmr->frmr_list); 923 kfree(frmr->sg); 924 ib_dereg_mr(frmr->mr); 925 kfree(frmr); 926 } 927 } 928 929 struct svc_rdma_fastreg_mr *svc_rdma_get_frmr(struct svcxprt_rdma *rdma) 930 { 931 struct svc_rdma_fastreg_mr *frmr = NULL; 932 933 spin_lock(&rdma->sc_frmr_q_lock); 934 if (!list_empty(&rdma->sc_frmr_q)) { 935 frmr = list_entry(rdma->sc_frmr_q.next, 936 struct svc_rdma_fastreg_mr, frmr_list); 937 list_del_init(&frmr->frmr_list); 938 frmr->sg_nents = 0; 939 } 940 spin_unlock(&rdma->sc_frmr_q_lock); 941 if (frmr) 942 return frmr; 943 944 return rdma_alloc_frmr(rdma); 945 } 946 947 void svc_rdma_put_frmr(struct svcxprt_rdma *rdma, 948 struct svc_rdma_fastreg_mr *frmr) 949 { 950 if (frmr) { 951 ib_dma_unmap_sg(rdma->sc_cm_id->device, 952 frmr->sg, frmr->sg_nents, frmr->direction); 953 spin_lock(&rdma->sc_frmr_q_lock); 954 WARN_ON_ONCE(!list_empty(&frmr->frmr_list)); 955 list_add(&frmr->frmr_list, &rdma->sc_frmr_q); 956 spin_unlock(&rdma->sc_frmr_q_lock); 957 } 958 } 959 960 /* 961 * This is the xpo_recvfrom function for listening endpoints. Its 962 * purpose is to accept incoming connections. The CMA callback handler 963 * has already created a new transport and attached it to the new CMA 964 * ID. 965 * 966 * There is a queue of pending connections hung on the listening 967 * transport. This queue contains the new svc_xprt structure. This 968 * function takes svc_xprt structures off the accept_q and completes 969 * the connection. 970 */ 971 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt) 972 { 973 struct svcxprt_rdma *listen_rdma; 974 struct svcxprt_rdma *newxprt = NULL; 975 struct rdma_conn_param conn_param; 976 struct rpcrdma_connect_private pmsg; 977 struct ib_qp_init_attr qp_attr; 978 struct ib_device *dev; 979 struct sockaddr *sap; 980 unsigned int i; 981 int ret = 0; 982 983 listen_rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt); 984 clear_bit(XPT_CONN, &xprt->xpt_flags); 985 /* Get the next entry off the accept list */ 986 spin_lock_bh(&listen_rdma->sc_lock); 987 if (!list_empty(&listen_rdma->sc_accept_q)) { 988 newxprt = list_entry(listen_rdma->sc_accept_q.next, 989 struct svcxprt_rdma, sc_accept_q); 990 list_del_init(&newxprt->sc_accept_q); 991 } 992 if (!list_empty(&listen_rdma->sc_accept_q)) 993 set_bit(XPT_CONN, &listen_rdma->sc_xprt.xpt_flags); 994 spin_unlock_bh(&listen_rdma->sc_lock); 995 if (!newxprt) 996 return NULL; 997 998 dprintk("svcrdma: newxprt from accept queue = %p, cm_id=%p\n", 999 newxprt, newxprt->sc_cm_id); 1000 1001 dev = newxprt->sc_cm_id->device; 1002 1003 /* Qualify the transport resource defaults with the 1004 * capabilities of this particular device */ 1005 newxprt->sc_max_sge = min((size_t)dev->attrs.max_sge, 1006 (size_t)RPCSVC_MAXPAGES); 1007 newxprt->sc_max_sge_rd = min_t(size_t, dev->attrs.max_sge_rd, 1008 RPCSVC_MAXPAGES); 1009 newxprt->sc_max_req_size = svcrdma_max_req_size; 1010 newxprt->sc_max_requests = min_t(u32, dev->attrs.max_qp_wr, 1011 svcrdma_max_requests); 1012 newxprt->sc_fc_credits = cpu_to_be32(newxprt->sc_max_requests); 1013 newxprt->sc_max_bc_requests = min_t(u32, dev->attrs.max_qp_wr, 1014 svcrdma_max_bc_requests); 1015 newxprt->sc_rq_depth = newxprt->sc_max_requests + 1016 newxprt->sc_max_bc_requests; 1017 newxprt->sc_sq_depth = RPCRDMA_SQ_DEPTH_MULT * newxprt->sc_rq_depth; 1018 atomic_set(&newxprt->sc_sq_avail, newxprt->sc_sq_depth); 1019 1020 if (!svc_rdma_prealloc_ctxts(newxprt)) 1021 goto errout; 1022 if (!svc_rdma_prealloc_maps(newxprt)) 1023 goto errout; 1024 1025 /* 1026 * Limit ORD based on client limit, local device limit, and 1027 * configured svcrdma limit. 1028 */ 1029 newxprt->sc_ord = min_t(size_t, dev->attrs.max_qp_rd_atom, newxprt->sc_ord); 1030 newxprt->sc_ord = min_t(size_t, svcrdma_ord, newxprt->sc_ord); 1031 1032 newxprt->sc_pd = ib_alloc_pd(dev, 0); 1033 if (IS_ERR(newxprt->sc_pd)) { 1034 dprintk("svcrdma: error creating PD for connect request\n"); 1035 goto errout; 1036 } 1037 newxprt->sc_sq_cq = ib_alloc_cq(dev, newxprt, newxprt->sc_sq_depth, 1038 0, IB_POLL_WORKQUEUE); 1039 if (IS_ERR(newxprt->sc_sq_cq)) { 1040 dprintk("svcrdma: error creating SQ CQ for connect request\n"); 1041 goto errout; 1042 } 1043 newxprt->sc_rq_cq = ib_alloc_cq(dev, newxprt, newxprt->sc_rq_depth, 1044 0, IB_POLL_WORKQUEUE); 1045 if (IS_ERR(newxprt->sc_rq_cq)) { 1046 dprintk("svcrdma: error creating RQ CQ for connect request\n"); 1047 goto errout; 1048 } 1049 1050 memset(&qp_attr, 0, sizeof qp_attr); 1051 qp_attr.event_handler = qp_event_handler; 1052 qp_attr.qp_context = &newxprt->sc_xprt; 1053 qp_attr.cap.max_send_wr = newxprt->sc_sq_depth; 1054 qp_attr.cap.max_recv_wr = newxprt->sc_rq_depth; 1055 qp_attr.cap.max_send_sge = newxprt->sc_max_sge; 1056 qp_attr.cap.max_recv_sge = newxprt->sc_max_sge; 1057 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 1058 qp_attr.qp_type = IB_QPT_RC; 1059 qp_attr.send_cq = newxprt->sc_sq_cq; 1060 qp_attr.recv_cq = newxprt->sc_rq_cq; 1061 dprintk("svcrdma: newxprt->sc_cm_id=%p, newxprt->sc_pd=%p\n", 1062 newxprt->sc_cm_id, newxprt->sc_pd); 1063 dprintk(" cap.max_send_wr = %d, cap.max_recv_wr = %d\n", 1064 qp_attr.cap.max_send_wr, qp_attr.cap.max_recv_wr); 1065 dprintk(" cap.max_send_sge = %d, cap.max_recv_sge = %d\n", 1066 qp_attr.cap.max_send_sge, qp_attr.cap.max_recv_sge); 1067 1068 ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd, &qp_attr); 1069 if (ret) { 1070 dprintk("svcrdma: failed to create QP, ret=%d\n", ret); 1071 goto errout; 1072 } 1073 newxprt->sc_qp = newxprt->sc_cm_id->qp; 1074 1075 /* 1076 * Use the most secure set of MR resources based on the 1077 * transport type and available memory management features in 1078 * the device. Here's the table implemented below: 1079 * 1080 * Fast Global DMA Remote WR 1081 * Reg LKEY MR Access 1082 * Sup'd Sup'd Needed Needed 1083 * 1084 * IWARP N N Y Y 1085 * N Y Y Y 1086 * Y N Y N 1087 * Y Y N - 1088 * 1089 * IB N N Y N 1090 * N Y N - 1091 * Y N Y N 1092 * Y Y N - 1093 * 1094 * NB: iWARP requires remote write access for the data sink 1095 * of an RDMA_READ. IB does not. 1096 */ 1097 newxprt->sc_reader = rdma_read_chunk_lcl; 1098 if (dev->attrs.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) { 1099 newxprt->sc_frmr_pg_list_len = 1100 dev->attrs.max_fast_reg_page_list_len; 1101 newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_FAST_REG; 1102 newxprt->sc_reader = rdma_read_chunk_frmr; 1103 } else 1104 newxprt->sc_snd_w_inv = false; 1105 1106 /* 1107 * Determine if a DMA MR is required and if so, what privs are required 1108 */ 1109 if (!rdma_protocol_iwarp(dev, newxprt->sc_cm_id->port_num) && 1110 !rdma_ib_or_roce(dev, newxprt->sc_cm_id->port_num)) 1111 goto errout; 1112 1113 if (rdma_protocol_iwarp(dev, newxprt->sc_cm_id->port_num)) 1114 newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_READ_W_INV; 1115 1116 /* Post receive buffers */ 1117 for (i = 0; i < newxprt->sc_max_requests; i++) { 1118 ret = svc_rdma_post_recv(newxprt, GFP_KERNEL); 1119 if (ret) { 1120 dprintk("svcrdma: failure posting receive buffers\n"); 1121 goto errout; 1122 } 1123 } 1124 1125 /* Swap out the handler */ 1126 newxprt->sc_cm_id->event_handler = rdma_cma_handler; 1127 1128 /* Construct RDMA-CM private message */ 1129 pmsg.cp_magic = rpcrdma_cmp_magic; 1130 pmsg.cp_version = RPCRDMA_CMP_VERSION; 1131 pmsg.cp_flags = 0; 1132 pmsg.cp_send_size = pmsg.cp_recv_size = 1133 rpcrdma_encode_buffer_size(newxprt->sc_max_req_size); 1134 1135 /* Accept Connection */ 1136 set_bit(RDMAXPRT_CONN_PENDING, &newxprt->sc_flags); 1137 memset(&conn_param, 0, sizeof conn_param); 1138 conn_param.responder_resources = 0; 1139 conn_param.initiator_depth = newxprt->sc_ord; 1140 conn_param.private_data = &pmsg; 1141 conn_param.private_data_len = sizeof(pmsg); 1142 ret = rdma_accept(newxprt->sc_cm_id, &conn_param); 1143 if (ret) { 1144 dprintk("svcrdma: failed to accept new connection, ret=%d\n", 1145 ret); 1146 goto errout; 1147 } 1148 1149 dprintk("svcrdma: new connection %p accepted:\n", newxprt); 1150 sap = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr; 1151 dprintk(" local address : %pIS:%u\n", sap, rpc_get_port(sap)); 1152 sap = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr; 1153 dprintk(" remote address : %pIS:%u\n", sap, rpc_get_port(sap)); 1154 dprintk(" max_sge : %d\n", newxprt->sc_max_sge); 1155 dprintk(" max_sge_rd : %d\n", newxprt->sc_max_sge_rd); 1156 dprintk(" sq_depth : %d\n", newxprt->sc_sq_depth); 1157 dprintk(" max_requests : %d\n", newxprt->sc_max_requests); 1158 dprintk(" ord : %d\n", newxprt->sc_ord); 1159 1160 return &newxprt->sc_xprt; 1161 1162 errout: 1163 dprintk("svcrdma: failure accepting new connection rc=%d.\n", ret); 1164 /* Take a reference in case the DTO handler runs */ 1165 svc_xprt_get(&newxprt->sc_xprt); 1166 if (newxprt->sc_qp && !IS_ERR(newxprt->sc_qp)) 1167 ib_destroy_qp(newxprt->sc_qp); 1168 rdma_destroy_id(newxprt->sc_cm_id); 1169 /* This call to put will destroy the transport */ 1170 svc_xprt_put(&newxprt->sc_xprt); 1171 return NULL; 1172 } 1173 1174 static void svc_rdma_release_rqst(struct svc_rqst *rqstp) 1175 { 1176 } 1177 1178 /* 1179 * When connected, an svc_xprt has at least two references: 1180 * 1181 * - A reference held by the cm_id between the ESTABLISHED and 1182 * DISCONNECTED events. If the remote peer disconnected first, this 1183 * reference could be gone. 1184 * 1185 * - A reference held by the svc_recv code that called this function 1186 * as part of close processing. 1187 * 1188 * At a minimum one references should still be held. 1189 */ 1190 static void svc_rdma_detach(struct svc_xprt *xprt) 1191 { 1192 struct svcxprt_rdma *rdma = 1193 container_of(xprt, struct svcxprt_rdma, sc_xprt); 1194 dprintk("svc: svc_rdma_detach(%p)\n", xprt); 1195 1196 /* Disconnect and flush posted WQE */ 1197 rdma_disconnect(rdma->sc_cm_id); 1198 } 1199 1200 static void __svc_rdma_free(struct work_struct *work) 1201 { 1202 struct svcxprt_rdma *rdma = 1203 container_of(work, struct svcxprt_rdma, sc_work); 1204 struct svc_xprt *xprt = &rdma->sc_xprt; 1205 1206 dprintk("svcrdma: %s(%p)\n", __func__, rdma); 1207 1208 if (rdma->sc_qp && !IS_ERR(rdma->sc_qp)) 1209 ib_drain_qp(rdma->sc_qp); 1210 1211 /* We should only be called from kref_put */ 1212 if (kref_read(&xprt->xpt_ref) != 0) 1213 pr_err("svcrdma: sc_xprt still in use? (%d)\n", 1214 kref_read(&xprt->xpt_ref)); 1215 1216 /* 1217 * Destroy queued, but not processed read completions. Note 1218 * that this cleanup has to be done before destroying the 1219 * cm_id because the device ptr is needed to unmap the dma in 1220 * svc_rdma_put_context. 1221 */ 1222 while (!list_empty(&rdma->sc_read_complete_q)) { 1223 struct svc_rdma_op_ctxt *ctxt; 1224 ctxt = list_first_entry(&rdma->sc_read_complete_q, 1225 struct svc_rdma_op_ctxt, list); 1226 list_del(&ctxt->list); 1227 svc_rdma_put_context(ctxt, 1); 1228 } 1229 1230 /* Destroy queued, but not processed recv completions */ 1231 while (!list_empty(&rdma->sc_rq_dto_q)) { 1232 struct svc_rdma_op_ctxt *ctxt; 1233 ctxt = list_first_entry(&rdma->sc_rq_dto_q, 1234 struct svc_rdma_op_ctxt, list); 1235 list_del(&ctxt->list); 1236 svc_rdma_put_context(ctxt, 1); 1237 } 1238 1239 /* Warn if we leaked a resource or under-referenced */ 1240 if (rdma->sc_ctxt_used != 0) 1241 pr_err("svcrdma: ctxt still in use? (%d)\n", 1242 rdma->sc_ctxt_used); 1243 1244 /* Final put of backchannel client transport */ 1245 if (xprt->xpt_bc_xprt) { 1246 xprt_put(xprt->xpt_bc_xprt); 1247 xprt->xpt_bc_xprt = NULL; 1248 } 1249 1250 rdma_dealloc_frmr_q(rdma); 1251 svc_rdma_destroy_ctxts(rdma); 1252 svc_rdma_destroy_maps(rdma); 1253 1254 /* Destroy the QP if present (not a listener) */ 1255 if (rdma->sc_qp && !IS_ERR(rdma->sc_qp)) 1256 ib_destroy_qp(rdma->sc_qp); 1257 1258 if (rdma->sc_sq_cq && !IS_ERR(rdma->sc_sq_cq)) 1259 ib_free_cq(rdma->sc_sq_cq); 1260 1261 if (rdma->sc_rq_cq && !IS_ERR(rdma->sc_rq_cq)) 1262 ib_free_cq(rdma->sc_rq_cq); 1263 1264 if (rdma->sc_pd && !IS_ERR(rdma->sc_pd)) 1265 ib_dealloc_pd(rdma->sc_pd); 1266 1267 /* Destroy the CM ID */ 1268 rdma_destroy_id(rdma->sc_cm_id); 1269 1270 kfree(rdma); 1271 } 1272 1273 static void svc_rdma_free(struct svc_xprt *xprt) 1274 { 1275 struct svcxprt_rdma *rdma = 1276 container_of(xprt, struct svcxprt_rdma, sc_xprt); 1277 INIT_WORK(&rdma->sc_work, __svc_rdma_free); 1278 queue_work(svc_rdma_wq, &rdma->sc_work); 1279 } 1280 1281 static int svc_rdma_has_wspace(struct svc_xprt *xprt) 1282 { 1283 struct svcxprt_rdma *rdma = 1284 container_of(xprt, struct svcxprt_rdma, sc_xprt); 1285 1286 /* 1287 * If there are already waiters on the SQ, 1288 * return false. 1289 */ 1290 if (waitqueue_active(&rdma->sc_send_wait)) 1291 return 0; 1292 1293 /* Otherwise return true. */ 1294 return 1; 1295 } 1296 1297 static int svc_rdma_secure_port(struct svc_rqst *rqstp) 1298 { 1299 return 1; 1300 } 1301 1302 static void svc_rdma_kill_temp_xprt(struct svc_xprt *xprt) 1303 { 1304 } 1305 1306 int svc_rdma_send(struct svcxprt_rdma *xprt, struct ib_send_wr *wr) 1307 { 1308 struct ib_send_wr *bad_wr, *n_wr; 1309 int wr_count; 1310 int i; 1311 int ret; 1312 1313 if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags)) 1314 return -ENOTCONN; 1315 1316 wr_count = 1; 1317 for (n_wr = wr->next; n_wr; n_wr = n_wr->next) 1318 wr_count++; 1319 1320 /* If the SQ is full, wait until an SQ entry is available */ 1321 while (1) { 1322 if ((atomic_sub_return(wr_count, &xprt->sc_sq_avail) < 0)) { 1323 atomic_inc(&rdma_stat_sq_starve); 1324 1325 /* Wait until SQ WR available if SQ still full */ 1326 atomic_add(wr_count, &xprt->sc_sq_avail); 1327 wait_event(xprt->sc_send_wait, 1328 atomic_read(&xprt->sc_sq_avail) > wr_count); 1329 if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags)) 1330 return -ENOTCONN; 1331 continue; 1332 } 1333 /* Take a transport ref for each WR posted */ 1334 for (i = 0; i < wr_count; i++) 1335 svc_xprt_get(&xprt->sc_xprt); 1336 1337 /* Bump used SQ WR count and post */ 1338 ret = ib_post_send(xprt->sc_qp, wr, &bad_wr); 1339 if (ret) { 1340 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags); 1341 for (i = 0; i < wr_count; i ++) 1342 svc_xprt_put(&xprt->sc_xprt); 1343 dprintk("svcrdma: failed to post SQ WR rc=%d\n", ret); 1344 dprintk(" sc_sq_avail=%d, sc_sq_depth=%d\n", 1345 atomic_read(&xprt->sc_sq_avail), 1346 xprt->sc_sq_depth); 1347 wake_up(&xprt->sc_send_wait); 1348 } 1349 break; 1350 } 1351 return ret; 1352 } 1353