1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (c) 2016-2018 Oracle. All rights reserved. 4 * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved. 5 * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the BSD-type 11 * license below: 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 17 * Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 20 * Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials provided 23 * with the distribution. 24 * 25 * Neither the name of the Network Appliance, Inc. nor the names of 26 * its contributors may be used to endorse or promote products 27 * derived from this software without specific prior written 28 * permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 41 * 42 * Author: Tom Tucker <tom@opengridcomputing.com> 43 */ 44 45 /* Operation 46 * 47 * The main entry point is svc_rdma_sendto. This is called by the 48 * RPC server when an RPC Reply is ready to be transmitted to a client. 49 * 50 * The passed-in svc_rqst contains a struct xdr_buf which holds an 51 * XDR-encoded RPC Reply message. sendto must construct the RPC-over-RDMA 52 * transport header, post all Write WRs needed for this Reply, then post 53 * a Send WR conveying the transport header and the RPC message itself to 54 * the client. 55 * 56 * svc_rdma_sendto must fully transmit the Reply before returning, as 57 * the svc_rqst will be recycled as soon as sendto returns. Remaining 58 * resources referred to by the svc_rqst are also recycled at that time. 59 * Therefore any resources that must remain longer must be detached 60 * from the svc_rqst and released later. 61 * 62 * Page Management 63 * 64 * The I/O that performs Reply transmission is asynchronous, and may 65 * complete well after sendto returns. Thus pages under I/O must be 66 * removed from the svc_rqst before sendto returns. 67 * 68 * The logic here depends on Send Queue and completion ordering. Since 69 * the Send WR is always posted last, it will always complete last. Thus 70 * when it completes, it is guaranteed that all previous Write WRs have 71 * also completed. 72 * 73 * Write WRs are constructed and posted. Each Write segment gets its own 74 * svc_rdma_rw_ctxt, allowing the Write completion handler to find and 75 * DMA-unmap the pages under I/O for that Write segment. The Write 76 * completion handler does not release any pages. 77 * 78 * When the Send WR is constructed, it also gets its own svc_rdma_send_ctxt. 79 * The ownership of all of the Reply's pages are transferred into that 80 * ctxt, the Send WR is posted, and sendto returns. 81 * 82 * The svc_rdma_send_ctxt is presented when the Send WR completes. The 83 * Send completion handler finally releases the Reply's pages. 84 * 85 * This mechanism also assumes that completions on the transport's Send 86 * Completion Queue do not run in parallel. Otherwise a Write completion 87 * and Send completion running at the same time could release pages that 88 * are still DMA-mapped. 89 * 90 * Error Handling 91 * 92 * - If the Send WR is posted successfully, it will either complete 93 * successfully, or get flushed. Either way, the Send completion 94 * handler releases the Reply's pages. 95 * - If the Send WR cannot be not posted, the forward path releases 96 * the Reply's pages. 97 * 98 * This handles the case, without the use of page reference counting, 99 * where two different Write segments send portions of the same page. 100 */ 101 102 #include <linux/spinlock.h> 103 #include <asm/unaligned.h> 104 105 #include <rdma/ib_verbs.h> 106 #include <rdma/rdma_cm.h> 107 108 #include <linux/sunrpc/debug.h> 109 #include <linux/sunrpc/svc_rdma.h> 110 111 #include "xprt_rdma.h" 112 #include <trace/events/rpcrdma.h> 113 114 static void svc_rdma_wc_send(struct ib_cq *cq, struct ib_wc *wc); 115 116 static inline struct svc_rdma_send_ctxt * 117 svc_rdma_next_send_ctxt(struct list_head *list) 118 { 119 return list_first_entry_or_null(list, struct svc_rdma_send_ctxt, 120 sc_list); 121 } 122 123 static void svc_rdma_send_cid_init(struct svcxprt_rdma *rdma, 124 struct rpc_rdma_cid *cid) 125 { 126 cid->ci_queue_id = rdma->sc_sq_cq->res.id; 127 cid->ci_completion_id = atomic_inc_return(&rdma->sc_completion_ids); 128 } 129 130 static struct svc_rdma_send_ctxt * 131 svc_rdma_send_ctxt_alloc(struct svcxprt_rdma *rdma) 132 { 133 struct svc_rdma_send_ctxt *ctxt; 134 dma_addr_t addr; 135 void *buffer; 136 size_t size; 137 int i; 138 139 size = sizeof(*ctxt); 140 size += rdma->sc_max_send_sges * sizeof(struct ib_sge); 141 ctxt = kmalloc(size, GFP_KERNEL); 142 if (!ctxt) 143 goto fail0; 144 buffer = kmalloc(rdma->sc_max_req_size, GFP_KERNEL); 145 if (!buffer) 146 goto fail1; 147 addr = ib_dma_map_single(rdma->sc_pd->device, buffer, 148 rdma->sc_max_req_size, DMA_TO_DEVICE); 149 if (ib_dma_mapping_error(rdma->sc_pd->device, addr)) 150 goto fail2; 151 152 svc_rdma_send_cid_init(rdma, &ctxt->sc_cid); 153 154 ctxt->sc_send_wr.next = NULL; 155 ctxt->sc_send_wr.wr_cqe = &ctxt->sc_cqe; 156 ctxt->sc_send_wr.sg_list = ctxt->sc_sges; 157 ctxt->sc_send_wr.send_flags = IB_SEND_SIGNALED; 158 init_completion(&ctxt->sc_done); 159 ctxt->sc_cqe.done = svc_rdma_wc_send; 160 ctxt->sc_xprt_buf = buffer; 161 xdr_buf_init(&ctxt->sc_hdrbuf, ctxt->sc_xprt_buf, 162 rdma->sc_max_req_size); 163 ctxt->sc_sges[0].addr = addr; 164 165 for (i = 0; i < rdma->sc_max_send_sges; i++) 166 ctxt->sc_sges[i].lkey = rdma->sc_pd->local_dma_lkey; 167 return ctxt; 168 169 fail2: 170 kfree(buffer); 171 fail1: 172 kfree(ctxt); 173 fail0: 174 return NULL; 175 } 176 177 /** 178 * svc_rdma_send_ctxts_destroy - Release all send_ctxt's for an xprt 179 * @rdma: svcxprt_rdma being torn down 180 * 181 */ 182 void svc_rdma_send_ctxts_destroy(struct svcxprt_rdma *rdma) 183 { 184 struct svc_rdma_send_ctxt *ctxt; 185 186 while ((ctxt = svc_rdma_next_send_ctxt(&rdma->sc_send_ctxts))) { 187 list_del(&ctxt->sc_list); 188 ib_dma_unmap_single(rdma->sc_pd->device, 189 ctxt->sc_sges[0].addr, 190 rdma->sc_max_req_size, 191 DMA_TO_DEVICE); 192 kfree(ctxt->sc_xprt_buf); 193 kfree(ctxt); 194 } 195 } 196 197 /** 198 * svc_rdma_send_ctxt_get - Get a free send_ctxt 199 * @rdma: controlling svcxprt_rdma 200 * 201 * Returns a ready-to-use send_ctxt, or NULL if none are 202 * available and a fresh one cannot be allocated. 203 */ 204 struct svc_rdma_send_ctxt *svc_rdma_send_ctxt_get(struct svcxprt_rdma *rdma) 205 { 206 struct svc_rdma_send_ctxt *ctxt; 207 208 spin_lock(&rdma->sc_send_lock); 209 ctxt = svc_rdma_next_send_ctxt(&rdma->sc_send_ctxts); 210 if (!ctxt) 211 goto out_empty; 212 list_del(&ctxt->sc_list); 213 spin_unlock(&rdma->sc_send_lock); 214 215 out: 216 rpcrdma_set_xdrlen(&ctxt->sc_hdrbuf, 0); 217 xdr_init_encode(&ctxt->sc_stream, &ctxt->sc_hdrbuf, 218 ctxt->sc_xprt_buf, NULL); 219 220 ctxt->sc_send_wr.num_sge = 0; 221 ctxt->sc_cur_sge_no = 0; 222 return ctxt; 223 224 out_empty: 225 spin_unlock(&rdma->sc_send_lock); 226 ctxt = svc_rdma_send_ctxt_alloc(rdma); 227 if (!ctxt) 228 return NULL; 229 goto out; 230 } 231 232 /** 233 * svc_rdma_send_ctxt_put - Return send_ctxt to free list 234 * @rdma: controlling svcxprt_rdma 235 * @ctxt: object to return to the free list 236 */ 237 void svc_rdma_send_ctxt_put(struct svcxprt_rdma *rdma, 238 struct svc_rdma_send_ctxt *ctxt) 239 { 240 struct ib_device *device = rdma->sc_cm_id->device; 241 unsigned int i; 242 243 /* The first SGE contains the transport header, which 244 * remains mapped until @ctxt is destroyed. 245 */ 246 for (i = 1; i < ctxt->sc_send_wr.num_sge; i++) { 247 ib_dma_unmap_page(device, 248 ctxt->sc_sges[i].addr, 249 ctxt->sc_sges[i].length, 250 DMA_TO_DEVICE); 251 trace_svcrdma_dma_unmap_page(rdma, 252 ctxt->sc_sges[i].addr, 253 ctxt->sc_sges[i].length); 254 } 255 256 spin_lock(&rdma->sc_send_lock); 257 list_add(&ctxt->sc_list, &rdma->sc_send_ctxts); 258 spin_unlock(&rdma->sc_send_lock); 259 } 260 261 /** 262 * svc_rdma_wc_send - Invoked by RDMA provider for each polled Send WC 263 * @cq: Completion Queue context 264 * @wc: Work Completion object 265 * 266 * NB: The svc_xprt/svcxprt_rdma is pinned whenever it's possible that 267 * the Send completion handler could be running. 268 */ 269 static void svc_rdma_wc_send(struct ib_cq *cq, struct ib_wc *wc) 270 { 271 struct svcxprt_rdma *rdma = cq->cq_context; 272 struct ib_cqe *cqe = wc->wr_cqe; 273 struct svc_rdma_send_ctxt *ctxt = 274 container_of(cqe, struct svc_rdma_send_ctxt, sc_cqe); 275 276 trace_svcrdma_wc_send(wc, &ctxt->sc_cid); 277 278 complete(&ctxt->sc_done); 279 280 atomic_inc(&rdma->sc_sq_avail); 281 wake_up(&rdma->sc_send_wait); 282 283 if (unlikely(wc->status != IB_WC_SUCCESS)) 284 svc_xprt_deferred_close(&rdma->sc_xprt); 285 } 286 287 /** 288 * svc_rdma_send - Post a single Send WR 289 * @rdma: transport on which to post the WR 290 * @ctxt: send ctxt with a Send WR ready to post 291 * 292 * Returns zero if the Send WR was posted successfully. Otherwise, a 293 * negative errno is returned. 294 */ 295 int svc_rdma_send(struct svcxprt_rdma *rdma, struct svc_rdma_send_ctxt *ctxt) 296 { 297 struct ib_send_wr *wr = &ctxt->sc_send_wr; 298 int ret; 299 300 reinit_completion(&ctxt->sc_done); 301 302 /* Sync the transport header buffer */ 303 ib_dma_sync_single_for_device(rdma->sc_pd->device, 304 wr->sg_list[0].addr, 305 wr->sg_list[0].length, 306 DMA_TO_DEVICE); 307 308 /* If the SQ is full, wait until an SQ entry is available */ 309 while (1) { 310 if ((atomic_dec_return(&rdma->sc_sq_avail) < 0)) { 311 percpu_counter_inc(&svcrdma_stat_sq_starve); 312 trace_svcrdma_sq_full(rdma); 313 atomic_inc(&rdma->sc_sq_avail); 314 wait_event(rdma->sc_send_wait, 315 atomic_read(&rdma->sc_sq_avail) > 1); 316 if (test_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags)) 317 return -ENOTCONN; 318 trace_svcrdma_sq_retry(rdma); 319 continue; 320 } 321 322 trace_svcrdma_post_send(ctxt); 323 ret = ib_post_send(rdma->sc_qp, wr, NULL); 324 if (ret) 325 break; 326 return 0; 327 } 328 329 trace_svcrdma_sq_post_err(rdma, ret); 330 svc_xprt_deferred_close(&rdma->sc_xprt); 331 wake_up(&rdma->sc_send_wait); 332 return ret; 333 } 334 335 /** 336 * svc_rdma_encode_read_list - Encode RPC Reply's Read chunk list 337 * @sctxt: Send context for the RPC Reply 338 * 339 * Return values: 340 * On success, returns length in bytes of the Reply XDR buffer 341 * that was consumed by the Reply Read list 342 * %-EMSGSIZE on XDR buffer overflow 343 */ 344 static ssize_t svc_rdma_encode_read_list(struct svc_rdma_send_ctxt *sctxt) 345 { 346 /* RPC-over-RDMA version 1 replies never have a Read list. */ 347 return xdr_stream_encode_item_absent(&sctxt->sc_stream); 348 } 349 350 /** 351 * svc_rdma_encode_write_segment - Encode one Write segment 352 * @sctxt: Send context for the RPC Reply 353 * @chunk: Write chunk to push 354 * @remaining: remaining bytes of the payload left in the Write chunk 355 * @segno: which segment in the chunk 356 * 357 * Return values: 358 * On success, returns length in bytes of the Reply XDR buffer 359 * that was consumed by the Write segment, and updates @remaining 360 * %-EMSGSIZE on XDR buffer overflow 361 */ 362 static ssize_t svc_rdma_encode_write_segment(struct svc_rdma_send_ctxt *sctxt, 363 const struct svc_rdma_chunk *chunk, 364 u32 *remaining, unsigned int segno) 365 { 366 const struct svc_rdma_segment *segment = &chunk->ch_segments[segno]; 367 const size_t len = rpcrdma_segment_maxsz * sizeof(__be32); 368 u32 length; 369 __be32 *p; 370 371 p = xdr_reserve_space(&sctxt->sc_stream, len); 372 if (!p) 373 return -EMSGSIZE; 374 375 length = min_t(u32, *remaining, segment->rs_length); 376 *remaining -= length; 377 xdr_encode_rdma_segment(p, segment->rs_handle, length, 378 segment->rs_offset); 379 trace_svcrdma_encode_wseg(sctxt, segno, segment->rs_handle, length, 380 segment->rs_offset); 381 return len; 382 } 383 384 /** 385 * svc_rdma_encode_write_chunk - Encode one Write chunk 386 * @sctxt: Send context for the RPC Reply 387 * @chunk: Write chunk to push 388 * 389 * Copy a Write chunk from the Call transport header to the 390 * Reply transport header. Update each segment's length field 391 * to reflect the number of bytes written in that segment. 392 * 393 * Return values: 394 * On success, returns length in bytes of the Reply XDR buffer 395 * that was consumed by the Write chunk 396 * %-EMSGSIZE on XDR buffer overflow 397 */ 398 static ssize_t svc_rdma_encode_write_chunk(struct svc_rdma_send_ctxt *sctxt, 399 const struct svc_rdma_chunk *chunk) 400 { 401 u32 remaining = chunk->ch_payload_length; 402 unsigned int segno; 403 ssize_t len, ret; 404 405 len = 0; 406 ret = xdr_stream_encode_item_present(&sctxt->sc_stream); 407 if (ret < 0) 408 return ret; 409 len += ret; 410 411 ret = xdr_stream_encode_u32(&sctxt->sc_stream, chunk->ch_segcount); 412 if (ret < 0) 413 return ret; 414 len += ret; 415 416 for (segno = 0; segno < chunk->ch_segcount; segno++) { 417 ret = svc_rdma_encode_write_segment(sctxt, chunk, &remaining, segno); 418 if (ret < 0) 419 return ret; 420 len += ret; 421 } 422 423 return len; 424 } 425 426 /** 427 * svc_rdma_encode_write_list - Encode RPC Reply's Write chunk list 428 * @rctxt: Reply context with information about the RPC Call 429 * @sctxt: Send context for the RPC Reply 430 * 431 * Return values: 432 * On success, returns length in bytes of the Reply XDR buffer 433 * that was consumed by the Reply's Write list 434 * %-EMSGSIZE on XDR buffer overflow 435 */ 436 static ssize_t svc_rdma_encode_write_list(struct svc_rdma_recv_ctxt *rctxt, 437 struct svc_rdma_send_ctxt *sctxt) 438 { 439 struct svc_rdma_chunk *chunk; 440 ssize_t len, ret; 441 442 len = 0; 443 pcl_for_each_chunk(chunk, &rctxt->rc_write_pcl) { 444 ret = svc_rdma_encode_write_chunk(sctxt, chunk); 445 if (ret < 0) 446 return ret; 447 len += ret; 448 } 449 450 /* Terminate the Write list */ 451 ret = xdr_stream_encode_item_absent(&sctxt->sc_stream); 452 if (ret < 0) 453 return ret; 454 455 return len + ret; 456 } 457 458 /** 459 * svc_rdma_encode_reply_chunk - Encode RPC Reply's Reply chunk 460 * @rctxt: Reply context with information about the RPC Call 461 * @sctxt: Send context for the RPC Reply 462 * @length: size in bytes of the payload in the Reply chunk 463 * 464 * Return values: 465 * On success, returns length in bytes of the Reply XDR buffer 466 * that was consumed by the Reply's Reply chunk 467 * %-EMSGSIZE on XDR buffer overflow 468 * %-E2BIG if the RPC message is larger than the Reply chunk 469 */ 470 static ssize_t 471 svc_rdma_encode_reply_chunk(struct svc_rdma_recv_ctxt *rctxt, 472 struct svc_rdma_send_ctxt *sctxt, 473 unsigned int length) 474 { 475 struct svc_rdma_chunk *chunk; 476 477 if (pcl_is_empty(&rctxt->rc_reply_pcl)) 478 return xdr_stream_encode_item_absent(&sctxt->sc_stream); 479 480 chunk = pcl_first_chunk(&rctxt->rc_reply_pcl); 481 if (length > chunk->ch_length) 482 return -E2BIG; 483 484 chunk->ch_payload_length = length; 485 return svc_rdma_encode_write_chunk(sctxt, chunk); 486 } 487 488 struct svc_rdma_map_data { 489 struct svcxprt_rdma *md_rdma; 490 struct svc_rdma_send_ctxt *md_ctxt; 491 }; 492 493 /** 494 * svc_rdma_page_dma_map - DMA map one page 495 * @data: pointer to arguments 496 * @page: struct page to DMA map 497 * @offset: offset into the page 498 * @len: number of bytes to map 499 * 500 * Returns: 501 * %0 if DMA mapping was successful 502 * %-EIO if the page cannot be DMA mapped 503 */ 504 static int svc_rdma_page_dma_map(void *data, struct page *page, 505 unsigned long offset, unsigned int len) 506 { 507 struct svc_rdma_map_data *args = data; 508 struct svcxprt_rdma *rdma = args->md_rdma; 509 struct svc_rdma_send_ctxt *ctxt = args->md_ctxt; 510 struct ib_device *dev = rdma->sc_cm_id->device; 511 dma_addr_t dma_addr; 512 513 ++ctxt->sc_cur_sge_no; 514 515 dma_addr = ib_dma_map_page(dev, page, offset, len, DMA_TO_DEVICE); 516 if (ib_dma_mapping_error(dev, dma_addr)) 517 goto out_maperr; 518 519 trace_svcrdma_dma_map_page(rdma, dma_addr, len); 520 ctxt->sc_sges[ctxt->sc_cur_sge_no].addr = dma_addr; 521 ctxt->sc_sges[ctxt->sc_cur_sge_no].length = len; 522 ctxt->sc_send_wr.num_sge++; 523 return 0; 524 525 out_maperr: 526 trace_svcrdma_dma_map_err(rdma, dma_addr, len); 527 return -EIO; 528 } 529 530 /** 531 * svc_rdma_iov_dma_map - DMA map an iovec 532 * @data: pointer to arguments 533 * @iov: kvec to DMA map 534 * 535 * ib_dma_map_page() is used here because svc_rdma_dma_unmap() 536 * handles DMA-unmap and it uses ib_dma_unmap_page() exclusively. 537 * 538 * Returns: 539 * %0 if DMA mapping was successful 540 * %-EIO if the iovec cannot be DMA mapped 541 */ 542 static int svc_rdma_iov_dma_map(void *data, const struct kvec *iov) 543 { 544 if (!iov->iov_len) 545 return 0; 546 return svc_rdma_page_dma_map(data, virt_to_page(iov->iov_base), 547 offset_in_page(iov->iov_base), 548 iov->iov_len); 549 } 550 551 /** 552 * svc_rdma_xb_dma_map - DMA map all segments of an xdr_buf 553 * @xdr: xdr_buf containing portion of an RPC message to transmit 554 * @data: pointer to arguments 555 * 556 * Returns: 557 * %0 if DMA mapping was successful 558 * %-EIO if DMA mapping failed 559 * 560 * On failure, any DMA mappings that have been already done must be 561 * unmapped by the caller. 562 */ 563 static int svc_rdma_xb_dma_map(const struct xdr_buf *xdr, void *data) 564 { 565 unsigned int len, remaining; 566 unsigned long pageoff; 567 struct page **ppages; 568 int ret; 569 570 ret = svc_rdma_iov_dma_map(data, &xdr->head[0]); 571 if (ret < 0) 572 return ret; 573 574 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT); 575 pageoff = offset_in_page(xdr->page_base); 576 remaining = xdr->page_len; 577 while (remaining) { 578 len = min_t(u32, PAGE_SIZE - pageoff, remaining); 579 580 ret = svc_rdma_page_dma_map(data, *ppages++, pageoff, len); 581 if (ret < 0) 582 return ret; 583 584 remaining -= len; 585 pageoff = 0; 586 } 587 588 ret = svc_rdma_iov_dma_map(data, &xdr->tail[0]); 589 if (ret < 0) 590 return ret; 591 592 return xdr->len; 593 } 594 595 struct svc_rdma_pullup_data { 596 u8 *pd_dest; 597 unsigned int pd_length; 598 unsigned int pd_num_sges; 599 }; 600 601 /** 602 * svc_rdma_xb_count_sges - Count how many SGEs will be needed 603 * @xdr: xdr_buf containing portion of an RPC message to transmit 604 * @data: pointer to arguments 605 * 606 * Returns: 607 * Number of SGEs needed to Send the contents of @xdr inline 608 */ 609 static int svc_rdma_xb_count_sges(const struct xdr_buf *xdr, 610 void *data) 611 { 612 struct svc_rdma_pullup_data *args = data; 613 unsigned int remaining; 614 unsigned long offset; 615 616 if (xdr->head[0].iov_len) 617 ++args->pd_num_sges; 618 619 offset = offset_in_page(xdr->page_base); 620 remaining = xdr->page_len; 621 while (remaining) { 622 ++args->pd_num_sges; 623 remaining -= min_t(u32, PAGE_SIZE - offset, remaining); 624 offset = 0; 625 } 626 627 if (xdr->tail[0].iov_len) 628 ++args->pd_num_sges; 629 630 args->pd_length += xdr->len; 631 return 0; 632 } 633 634 /** 635 * svc_rdma_pull_up_needed - Determine whether to use pull-up 636 * @rdma: controlling transport 637 * @sctxt: send_ctxt for the Send WR 638 * @rctxt: Write and Reply chunks provided by client 639 * @xdr: xdr_buf containing RPC message to transmit 640 * 641 * Returns: 642 * %true if pull-up must be used 643 * %false otherwise 644 */ 645 static bool svc_rdma_pull_up_needed(const struct svcxprt_rdma *rdma, 646 const struct svc_rdma_send_ctxt *sctxt, 647 const struct svc_rdma_recv_ctxt *rctxt, 648 const struct xdr_buf *xdr) 649 { 650 /* Resources needed for the transport header */ 651 struct svc_rdma_pullup_data args = { 652 .pd_length = sctxt->sc_hdrbuf.len, 653 .pd_num_sges = 1, 654 }; 655 int ret; 656 657 ret = pcl_process_nonpayloads(&rctxt->rc_write_pcl, xdr, 658 svc_rdma_xb_count_sges, &args); 659 if (ret < 0) 660 return false; 661 662 if (args.pd_length < RPCRDMA_PULLUP_THRESH) 663 return true; 664 return args.pd_num_sges >= rdma->sc_max_send_sges; 665 } 666 667 /** 668 * svc_rdma_xb_linearize - Copy region of xdr_buf to flat buffer 669 * @xdr: xdr_buf containing portion of an RPC message to copy 670 * @data: pointer to arguments 671 * 672 * Returns: 673 * Always zero. 674 */ 675 static int svc_rdma_xb_linearize(const struct xdr_buf *xdr, 676 void *data) 677 { 678 struct svc_rdma_pullup_data *args = data; 679 unsigned int len, remaining; 680 unsigned long pageoff; 681 struct page **ppages; 682 683 if (xdr->head[0].iov_len) { 684 memcpy(args->pd_dest, xdr->head[0].iov_base, xdr->head[0].iov_len); 685 args->pd_dest += xdr->head[0].iov_len; 686 } 687 688 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT); 689 pageoff = offset_in_page(xdr->page_base); 690 remaining = xdr->page_len; 691 while (remaining) { 692 len = min_t(u32, PAGE_SIZE - pageoff, remaining); 693 memcpy(args->pd_dest, page_address(*ppages) + pageoff, len); 694 remaining -= len; 695 args->pd_dest += len; 696 pageoff = 0; 697 ppages++; 698 } 699 700 if (xdr->tail[0].iov_len) { 701 memcpy(args->pd_dest, xdr->tail[0].iov_base, xdr->tail[0].iov_len); 702 args->pd_dest += xdr->tail[0].iov_len; 703 } 704 705 args->pd_length += xdr->len; 706 return 0; 707 } 708 709 /** 710 * svc_rdma_pull_up_reply_msg - Copy Reply into a single buffer 711 * @rdma: controlling transport 712 * @sctxt: send_ctxt for the Send WR; xprt hdr is already prepared 713 * @rctxt: Write and Reply chunks provided by client 714 * @xdr: prepared xdr_buf containing RPC message 715 * 716 * The device is not capable of sending the reply directly. 717 * Assemble the elements of @xdr into the transport header buffer. 718 * 719 * Assumptions: 720 * pull_up_needed has determined that @xdr will fit in the buffer. 721 * 722 * Returns: 723 * %0 if pull-up was successful 724 * %-EMSGSIZE if a buffer manipulation problem occurred 725 */ 726 static int svc_rdma_pull_up_reply_msg(const struct svcxprt_rdma *rdma, 727 struct svc_rdma_send_ctxt *sctxt, 728 const struct svc_rdma_recv_ctxt *rctxt, 729 const struct xdr_buf *xdr) 730 { 731 struct svc_rdma_pullup_data args = { 732 .pd_dest = sctxt->sc_xprt_buf + sctxt->sc_hdrbuf.len, 733 }; 734 int ret; 735 736 ret = pcl_process_nonpayloads(&rctxt->rc_write_pcl, xdr, 737 svc_rdma_xb_linearize, &args); 738 if (ret < 0) 739 return ret; 740 741 sctxt->sc_sges[0].length = sctxt->sc_hdrbuf.len + args.pd_length; 742 trace_svcrdma_send_pullup(sctxt, args.pd_length); 743 return 0; 744 } 745 746 /* svc_rdma_map_reply_msg - DMA map the buffer holding RPC message 747 * @rdma: controlling transport 748 * @sctxt: send_ctxt for the Send WR 749 * @rctxt: Write and Reply chunks provided by client 750 * @xdr: prepared xdr_buf containing RPC message 751 * 752 * Returns: 753 * %0 if DMA mapping was successful. 754 * %-EMSGSIZE if a buffer manipulation problem occurred 755 * %-EIO if DMA mapping failed 756 * 757 * The Send WR's num_sge field is set in all cases. 758 */ 759 int svc_rdma_map_reply_msg(struct svcxprt_rdma *rdma, 760 struct svc_rdma_send_ctxt *sctxt, 761 const struct svc_rdma_recv_ctxt *rctxt, 762 const struct xdr_buf *xdr) 763 { 764 struct svc_rdma_map_data args = { 765 .md_rdma = rdma, 766 .md_ctxt = sctxt, 767 }; 768 769 /* Set up the (persistently-mapped) transport header SGE. */ 770 sctxt->sc_send_wr.num_sge = 1; 771 sctxt->sc_sges[0].length = sctxt->sc_hdrbuf.len; 772 773 /* If there is a Reply chunk, nothing follows the transport 774 * header, and we're done here. 775 */ 776 if (!pcl_is_empty(&rctxt->rc_reply_pcl)) 777 return 0; 778 779 /* For pull-up, svc_rdma_send() will sync the transport header. 780 * No additional DMA mapping is necessary. 781 */ 782 if (svc_rdma_pull_up_needed(rdma, sctxt, rctxt, xdr)) 783 return svc_rdma_pull_up_reply_msg(rdma, sctxt, rctxt, xdr); 784 785 return pcl_process_nonpayloads(&rctxt->rc_write_pcl, xdr, 786 svc_rdma_xb_dma_map, &args); 787 } 788 789 /* Prepare the portion of the RPC Reply that will be transmitted 790 * via RDMA Send. The RPC-over-RDMA transport header is prepared 791 * in sc_sges[0], and the RPC xdr_buf is prepared in following sges. 792 * 793 * Depending on whether a Write list or Reply chunk is present, 794 * the server may send all, a portion of, or none of the xdr_buf. 795 * In the latter case, only the transport header (sc_sges[0]) is 796 * transmitted. 797 * 798 * RDMA Send is the last step of transmitting an RPC reply. Pages 799 * involved in the earlier RDMA Writes are here transferred out 800 * of the rqstp and into the sctxt's page array. These pages are 801 * DMA unmapped by each Write completion, but the subsequent Send 802 * completion finally releases these pages. 803 * 804 * Assumptions: 805 * - The Reply's transport header will never be larger than a page. 806 */ 807 static int svc_rdma_send_reply_msg(struct svcxprt_rdma *rdma, 808 struct svc_rdma_send_ctxt *sctxt, 809 const struct svc_rdma_recv_ctxt *rctxt, 810 struct svc_rqst *rqstp) 811 { 812 int ret; 813 814 ret = svc_rdma_map_reply_msg(rdma, sctxt, rctxt, &rqstp->rq_res); 815 if (ret < 0) 816 return ret; 817 818 if (rctxt->rc_inv_rkey) { 819 sctxt->sc_send_wr.opcode = IB_WR_SEND_WITH_INV; 820 sctxt->sc_send_wr.ex.invalidate_rkey = rctxt->rc_inv_rkey; 821 } else { 822 sctxt->sc_send_wr.opcode = IB_WR_SEND; 823 } 824 825 ret = svc_rdma_send(rdma, sctxt); 826 if (ret < 0) 827 return ret; 828 829 ret = wait_for_completion_killable(&sctxt->sc_done); 830 svc_rdma_send_ctxt_put(rdma, sctxt); 831 return ret; 832 } 833 834 /** 835 * svc_rdma_send_error_msg - Send an RPC/RDMA v1 error response 836 * @rdma: controlling transport context 837 * @sctxt: Send context for the response 838 * @rctxt: Receive context for incoming bad message 839 * @status: negative errno indicating error that occurred 840 * 841 * Given the client-provided Read, Write, and Reply chunks, the 842 * server was not able to parse the Call or form a complete Reply. 843 * Return an RDMA_ERROR message so the client can retire the RPC 844 * transaction. 845 * 846 * The caller does not have to release @sctxt. It is released by 847 * Send completion, or by this function on error. 848 */ 849 void svc_rdma_send_error_msg(struct svcxprt_rdma *rdma, 850 struct svc_rdma_send_ctxt *sctxt, 851 struct svc_rdma_recv_ctxt *rctxt, 852 int status) 853 { 854 __be32 *rdma_argp = rctxt->rc_recv_buf; 855 __be32 *p; 856 857 rpcrdma_set_xdrlen(&sctxt->sc_hdrbuf, 0); 858 xdr_init_encode(&sctxt->sc_stream, &sctxt->sc_hdrbuf, 859 sctxt->sc_xprt_buf, NULL); 860 861 p = xdr_reserve_space(&sctxt->sc_stream, 862 rpcrdma_fixed_maxsz * sizeof(*p)); 863 if (!p) 864 goto put_ctxt; 865 866 *p++ = *rdma_argp; 867 *p++ = *(rdma_argp + 1); 868 *p++ = rdma->sc_fc_credits; 869 *p = rdma_error; 870 871 switch (status) { 872 case -EPROTONOSUPPORT: 873 p = xdr_reserve_space(&sctxt->sc_stream, 3 * sizeof(*p)); 874 if (!p) 875 goto put_ctxt; 876 877 *p++ = err_vers; 878 *p++ = rpcrdma_version; 879 *p = rpcrdma_version; 880 trace_svcrdma_err_vers(*rdma_argp); 881 break; 882 default: 883 p = xdr_reserve_space(&sctxt->sc_stream, sizeof(*p)); 884 if (!p) 885 goto put_ctxt; 886 887 *p = err_chunk; 888 trace_svcrdma_err_chunk(*rdma_argp); 889 } 890 891 /* Remote Invalidation is skipped for simplicity. */ 892 sctxt->sc_send_wr.num_sge = 1; 893 sctxt->sc_send_wr.opcode = IB_WR_SEND; 894 sctxt->sc_sges[0].length = sctxt->sc_hdrbuf.len; 895 if (svc_rdma_send(rdma, sctxt)) 896 goto put_ctxt; 897 898 wait_for_completion_killable(&sctxt->sc_done); 899 900 put_ctxt: 901 svc_rdma_send_ctxt_put(rdma, sctxt); 902 } 903 904 /** 905 * svc_rdma_sendto - Transmit an RPC reply 906 * @rqstp: processed RPC request, reply XDR already in ::rq_res 907 * 908 * Any resources still associated with @rqstp are released upon return. 909 * If no reply message was possible, the connection is closed. 910 * 911 * Returns: 912 * %0 if an RPC reply has been successfully posted, 913 * %-ENOMEM if a resource shortage occurred (connection is lost), 914 * %-ENOTCONN if posting failed (connection is lost). 915 */ 916 int svc_rdma_sendto(struct svc_rqst *rqstp) 917 { 918 struct svc_xprt *xprt = rqstp->rq_xprt; 919 struct svcxprt_rdma *rdma = 920 container_of(xprt, struct svcxprt_rdma, sc_xprt); 921 struct svc_rdma_recv_ctxt *rctxt = rqstp->rq_xprt_ctxt; 922 __be32 *rdma_argp = rctxt->rc_recv_buf; 923 struct svc_rdma_send_ctxt *sctxt; 924 unsigned int rc_size; 925 __be32 *p; 926 int ret; 927 928 ret = -ENOTCONN; 929 if (svc_xprt_is_dead(xprt)) 930 goto drop_connection; 931 932 ret = -ENOMEM; 933 sctxt = svc_rdma_send_ctxt_get(rdma); 934 if (!sctxt) 935 goto drop_connection; 936 937 ret = -EMSGSIZE; 938 p = xdr_reserve_space(&sctxt->sc_stream, 939 rpcrdma_fixed_maxsz * sizeof(*p)); 940 if (!p) 941 goto put_ctxt; 942 943 ret = svc_rdma_send_reply_chunk(rdma, rctxt, &rqstp->rq_res); 944 if (ret < 0) 945 goto reply_chunk; 946 rc_size = ret; 947 948 *p++ = *rdma_argp; 949 *p++ = *(rdma_argp + 1); 950 *p++ = rdma->sc_fc_credits; 951 *p = pcl_is_empty(&rctxt->rc_reply_pcl) ? rdma_msg : rdma_nomsg; 952 953 ret = svc_rdma_encode_read_list(sctxt); 954 if (ret < 0) 955 goto put_ctxt; 956 ret = svc_rdma_encode_write_list(rctxt, sctxt); 957 if (ret < 0) 958 goto put_ctxt; 959 ret = svc_rdma_encode_reply_chunk(rctxt, sctxt, rc_size); 960 if (ret < 0) 961 goto put_ctxt; 962 963 ret = svc_rdma_send_reply_msg(rdma, sctxt, rctxt, rqstp); 964 if (ret < 0) 965 goto put_ctxt; 966 967 /* Prevent svc_xprt_release() from releasing the page backing 968 * rq_res.head[0].iov_base. It's no longer being accessed by 969 * the I/O device. */ 970 rqstp->rq_respages++; 971 return 0; 972 973 reply_chunk: 974 if (ret != -E2BIG && ret != -EINVAL) 975 goto put_ctxt; 976 977 svc_rdma_send_error_msg(rdma, sctxt, rctxt, ret); 978 return 0; 979 980 put_ctxt: 981 svc_rdma_send_ctxt_put(rdma, sctxt); 982 drop_connection: 983 trace_svcrdma_send_err(rqstp, ret); 984 svc_xprt_deferred_close(&rdma->sc_xprt); 985 return -ENOTCONN; 986 } 987 988 /** 989 * svc_rdma_result_payload - special processing for a result payload 990 * @rqstp: svc_rqst to operate on 991 * @offset: payload's byte offset in @xdr 992 * @length: size of payload, in bytes 993 * 994 * Return values: 995 * %0 if successful or nothing needed to be done 996 * %-EMSGSIZE on XDR buffer overflow 997 * %-E2BIG if the payload was larger than the Write chunk 998 * %-EINVAL if client provided too many segments 999 * %-ENOMEM if rdma_rw context pool was exhausted 1000 * %-ENOTCONN if posting failed (connection is lost) 1001 * %-EIO if rdma_rw initialization failed (DMA mapping, etc) 1002 */ 1003 int svc_rdma_result_payload(struct svc_rqst *rqstp, unsigned int offset, 1004 unsigned int length) 1005 { 1006 struct svc_rdma_recv_ctxt *rctxt = rqstp->rq_xprt_ctxt; 1007 struct svc_rdma_chunk *chunk; 1008 struct svcxprt_rdma *rdma; 1009 struct xdr_buf subbuf; 1010 int ret; 1011 1012 chunk = rctxt->rc_cur_result_payload; 1013 if (!length || !chunk) 1014 return 0; 1015 rctxt->rc_cur_result_payload = 1016 pcl_next_chunk(&rctxt->rc_write_pcl, chunk); 1017 if (length > chunk->ch_length) 1018 return -E2BIG; 1019 1020 chunk->ch_position = offset; 1021 chunk->ch_payload_length = length; 1022 1023 if (xdr_buf_subsegment(&rqstp->rq_res, &subbuf, offset, length)) 1024 return -EMSGSIZE; 1025 1026 rdma = container_of(rqstp->rq_xprt, struct svcxprt_rdma, sc_xprt); 1027 ret = svc_rdma_send_write_chunk(rdma, chunk, &subbuf); 1028 if (ret < 0) 1029 return ret; 1030 return 0; 1031 } 1032