1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (c) 2016-2018 Oracle. All rights reserved.
4  * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved.
5  * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the BSD-type
11  * license below:
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  *
17  *      Redistributions of source code must retain the above copyright
18  *      notice, this list of conditions and the following disclaimer.
19  *
20  *      Redistributions in binary form must reproduce the above
21  *      copyright notice, this list of conditions and the following
22  *      disclaimer in the documentation and/or other materials provided
23  *      with the distribution.
24  *
25  *      Neither the name of the Network Appliance, Inc. nor the names of
26  *      its contributors may be used to endorse or promote products
27  *      derived from this software without specific prior written
28  *      permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41  *
42  * Author: Tom Tucker <tom@opengridcomputing.com>
43  */
44 
45 /* Operation
46  *
47  * The main entry point is svc_rdma_sendto. This is called by the
48  * RPC server when an RPC Reply is ready to be transmitted to a client.
49  *
50  * The passed-in svc_rqst contains a struct xdr_buf which holds an
51  * XDR-encoded RPC Reply message. sendto must construct the RPC-over-RDMA
52  * transport header, post all Write WRs needed for this Reply, then post
53  * a Send WR conveying the transport header and the RPC message itself to
54  * the client.
55  *
56  * svc_rdma_sendto must fully transmit the Reply before returning, as
57  * the svc_rqst will be recycled as soon as sendto returns. Remaining
58  * resources referred to by the svc_rqst are also recycled at that time.
59  * Therefore any resources that must remain longer must be detached
60  * from the svc_rqst and released later.
61  *
62  * Page Management
63  *
64  * The I/O that performs Reply transmission is asynchronous, and may
65  * complete well after sendto returns. Thus pages under I/O must be
66  * removed from the svc_rqst before sendto returns.
67  *
68  * The logic here depends on Send Queue and completion ordering. Since
69  * the Send WR is always posted last, it will always complete last. Thus
70  * when it completes, it is guaranteed that all previous Write WRs have
71  * also completed.
72  *
73  * Write WRs are constructed and posted. Each Write segment gets its own
74  * svc_rdma_rw_ctxt, allowing the Write completion handler to find and
75  * DMA-unmap the pages under I/O for that Write segment. The Write
76  * completion handler does not release any pages.
77  *
78  * When the Send WR is constructed, it also gets its own svc_rdma_send_ctxt.
79  * The ownership of all of the Reply's pages are transferred into that
80  * ctxt, the Send WR is posted, and sendto returns.
81  *
82  * The svc_rdma_send_ctxt is presented when the Send WR completes. The
83  * Send completion handler finally releases the Reply's pages.
84  *
85  * This mechanism also assumes that completions on the transport's Send
86  * Completion Queue do not run in parallel. Otherwise a Write completion
87  * and Send completion running at the same time could release pages that
88  * are still DMA-mapped.
89  *
90  * Error Handling
91  *
92  * - If the Send WR is posted successfully, it will either complete
93  *   successfully, or get flushed. Either way, the Send completion
94  *   handler releases the Reply's pages.
95  * - If the Send WR cannot be not posted, the forward path releases
96  *   the Reply's pages.
97  *
98  * This handles the case, without the use of page reference counting,
99  * where two different Write segments send portions of the same page.
100  */
101 
102 #include <linux/spinlock.h>
103 #include <asm/unaligned.h>
104 
105 #include <rdma/ib_verbs.h>
106 #include <rdma/rdma_cm.h>
107 
108 #include <linux/sunrpc/debug.h>
109 #include <linux/sunrpc/svc_rdma.h>
110 
111 #include "xprt_rdma.h"
112 #include <trace/events/rpcrdma.h>
113 
114 static void svc_rdma_wc_send(struct ib_cq *cq, struct ib_wc *wc);
115 
116 static void svc_rdma_send_cid_init(struct svcxprt_rdma *rdma,
117 				   struct rpc_rdma_cid *cid)
118 {
119 	cid->ci_queue_id = rdma->sc_sq_cq->res.id;
120 	cid->ci_completion_id = atomic_inc_return(&rdma->sc_completion_ids);
121 }
122 
123 static struct svc_rdma_send_ctxt *
124 svc_rdma_send_ctxt_alloc(struct svcxprt_rdma *rdma)
125 {
126 	struct svc_rdma_send_ctxt *ctxt;
127 	dma_addr_t addr;
128 	void *buffer;
129 	size_t size;
130 	int i;
131 
132 	size = sizeof(*ctxt);
133 	size += rdma->sc_max_send_sges * sizeof(struct ib_sge);
134 	ctxt = kmalloc(size, GFP_KERNEL);
135 	if (!ctxt)
136 		goto fail0;
137 	buffer = kmalloc(rdma->sc_max_req_size, GFP_KERNEL);
138 	if (!buffer)
139 		goto fail1;
140 	addr = ib_dma_map_single(rdma->sc_pd->device, buffer,
141 				 rdma->sc_max_req_size, DMA_TO_DEVICE);
142 	if (ib_dma_mapping_error(rdma->sc_pd->device, addr))
143 		goto fail2;
144 
145 	svc_rdma_send_cid_init(rdma, &ctxt->sc_cid);
146 
147 	ctxt->sc_send_wr.next = NULL;
148 	ctxt->sc_send_wr.wr_cqe = &ctxt->sc_cqe;
149 	ctxt->sc_send_wr.sg_list = ctxt->sc_sges;
150 	ctxt->sc_send_wr.send_flags = IB_SEND_SIGNALED;
151 	init_completion(&ctxt->sc_done);
152 	ctxt->sc_cqe.done = svc_rdma_wc_send;
153 	ctxt->sc_xprt_buf = buffer;
154 	xdr_buf_init(&ctxt->sc_hdrbuf, ctxt->sc_xprt_buf,
155 		     rdma->sc_max_req_size);
156 	ctxt->sc_sges[0].addr = addr;
157 
158 	for (i = 0; i < rdma->sc_max_send_sges; i++)
159 		ctxt->sc_sges[i].lkey = rdma->sc_pd->local_dma_lkey;
160 	return ctxt;
161 
162 fail2:
163 	kfree(buffer);
164 fail1:
165 	kfree(ctxt);
166 fail0:
167 	return NULL;
168 }
169 
170 /**
171  * svc_rdma_send_ctxts_destroy - Release all send_ctxt's for an xprt
172  * @rdma: svcxprt_rdma being torn down
173  *
174  */
175 void svc_rdma_send_ctxts_destroy(struct svcxprt_rdma *rdma)
176 {
177 	struct svc_rdma_send_ctxt *ctxt;
178 	struct llist_node *node;
179 
180 	while ((node = llist_del_first(&rdma->sc_send_ctxts)) != NULL) {
181 		ctxt = llist_entry(node, struct svc_rdma_send_ctxt, sc_node);
182 		ib_dma_unmap_single(rdma->sc_pd->device,
183 				    ctxt->sc_sges[0].addr,
184 				    rdma->sc_max_req_size,
185 				    DMA_TO_DEVICE);
186 		kfree(ctxt->sc_xprt_buf);
187 		kfree(ctxt);
188 	}
189 }
190 
191 /**
192  * svc_rdma_send_ctxt_get - Get a free send_ctxt
193  * @rdma: controlling svcxprt_rdma
194  *
195  * Returns a ready-to-use send_ctxt, or NULL if none are
196  * available and a fresh one cannot be allocated.
197  */
198 struct svc_rdma_send_ctxt *svc_rdma_send_ctxt_get(struct svcxprt_rdma *rdma)
199 {
200 	struct svc_rdma_send_ctxt *ctxt;
201 	struct llist_node *node;
202 
203 	spin_lock(&rdma->sc_send_lock);
204 	node = llist_del_first(&rdma->sc_send_ctxts);
205 	if (!node)
206 		goto out_empty;
207 	ctxt = llist_entry(node, struct svc_rdma_send_ctxt, sc_node);
208 	spin_unlock(&rdma->sc_send_lock);
209 
210 out:
211 	rpcrdma_set_xdrlen(&ctxt->sc_hdrbuf, 0);
212 	xdr_init_encode(&ctxt->sc_stream, &ctxt->sc_hdrbuf,
213 			ctxt->sc_xprt_buf, NULL);
214 
215 	ctxt->sc_send_wr.num_sge = 0;
216 	ctxt->sc_cur_sge_no = 0;
217 	return ctxt;
218 
219 out_empty:
220 	spin_unlock(&rdma->sc_send_lock);
221 	ctxt = svc_rdma_send_ctxt_alloc(rdma);
222 	if (!ctxt)
223 		return NULL;
224 	goto out;
225 }
226 
227 /**
228  * svc_rdma_send_ctxt_put - Return send_ctxt to free list
229  * @rdma: controlling svcxprt_rdma
230  * @ctxt: object to return to the free list
231  */
232 void svc_rdma_send_ctxt_put(struct svcxprt_rdma *rdma,
233 			    struct svc_rdma_send_ctxt *ctxt)
234 {
235 	struct ib_device *device = rdma->sc_cm_id->device;
236 	unsigned int i;
237 
238 	/* The first SGE contains the transport header, which
239 	 * remains mapped until @ctxt is destroyed.
240 	 */
241 	for (i = 1; i < ctxt->sc_send_wr.num_sge; i++) {
242 		ib_dma_unmap_page(device,
243 				  ctxt->sc_sges[i].addr,
244 				  ctxt->sc_sges[i].length,
245 				  DMA_TO_DEVICE);
246 		trace_svcrdma_dma_unmap_page(rdma,
247 					     ctxt->sc_sges[i].addr,
248 					     ctxt->sc_sges[i].length);
249 	}
250 
251 	llist_add(&ctxt->sc_node, &rdma->sc_send_ctxts);
252 }
253 
254 /**
255  * svc_rdma_wake_send_waiters - manage Send Queue accounting
256  * @rdma: controlling transport
257  * @avail: Number of additional SQEs that are now available
258  *
259  */
260 void svc_rdma_wake_send_waiters(struct svcxprt_rdma *rdma, int avail)
261 {
262 	atomic_add(avail, &rdma->sc_sq_avail);
263 	smp_mb__after_atomic();
264 	if (unlikely(waitqueue_active(&rdma->sc_send_wait)))
265 		wake_up(&rdma->sc_send_wait);
266 }
267 
268 /**
269  * svc_rdma_wc_send - Invoked by RDMA provider for each polled Send WC
270  * @cq: Completion Queue context
271  * @wc: Work Completion object
272  *
273  * NB: The svc_xprt/svcxprt_rdma is pinned whenever it's possible that
274  * the Send completion handler could be running.
275  */
276 static void svc_rdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
277 {
278 	struct svcxprt_rdma *rdma = cq->cq_context;
279 	struct ib_cqe *cqe = wc->wr_cqe;
280 	struct svc_rdma_send_ctxt *ctxt =
281 		container_of(cqe, struct svc_rdma_send_ctxt, sc_cqe);
282 
283 	svc_rdma_wake_send_waiters(rdma, 1);
284 	complete(&ctxt->sc_done);
285 
286 	if (unlikely(wc->status != IB_WC_SUCCESS))
287 		goto flushed;
288 
289 	trace_svcrdma_wc_send(wc, &ctxt->sc_cid);
290 	return;
291 
292 flushed:
293 	if (wc->status != IB_WC_WR_FLUSH_ERR)
294 		trace_svcrdma_wc_send_err(wc, &ctxt->sc_cid);
295 	else
296 		trace_svcrdma_wc_send_flush(wc, &ctxt->sc_cid);
297 	svc_xprt_deferred_close(&rdma->sc_xprt);
298 }
299 
300 /**
301  * svc_rdma_send - Post a single Send WR
302  * @rdma: transport on which to post the WR
303  * @ctxt: send ctxt with a Send WR ready to post
304  *
305  * Returns zero if the Send WR was posted successfully. Otherwise, a
306  * negative errno is returned.
307  */
308 int svc_rdma_send(struct svcxprt_rdma *rdma, struct svc_rdma_send_ctxt *ctxt)
309 {
310 	struct ib_send_wr *wr = &ctxt->sc_send_wr;
311 	int ret;
312 
313 	reinit_completion(&ctxt->sc_done);
314 
315 	/* Sync the transport header buffer */
316 	ib_dma_sync_single_for_device(rdma->sc_pd->device,
317 				      wr->sg_list[0].addr,
318 				      wr->sg_list[0].length,
319 				      DMA_TO_DEVICE);
320 
321 	/* If the SQ is full, wait until an SQ entry is available */
322 	while (1) {
323 		if ((atomic_dec_return(&rdma->sc_sq_avail) < 0)) {
324 			percpu_counter_inc(&svcrdma_stat_sq_starve);
325 			trace_svcrdma_sq_full(rdma);
326 			atomic_inc(&rdma->sc_sq_avail);
327 			wait_event(rdma->sc_send_wait,
328 				   atomic_read(&rdma->sc_sq_avail) > 1);
329 			if (test_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags))
330 				return -ENOTCONN;
331 			trace_svcrdma_sq_retry(rdma);
332 			continue;
333 		}
334 
335 		trace_svcrdma_post_send(ctxt);
336 		ret = ib_post_send(rdma->sc_qp, wr, NULL);
337 		if (ret)
338 			break;
339 		return 0;
340 	}
341 
342 	trace_svcrdma_sq_post_err(rdma, ret);
343 	svc_xprt_deferred_close(&rdma->sc_xprt);
344 	wake_up(&rdma->sc_send_wait);
345 	return ret;
346 }
347 
348 /**
349  * svc_rdma_encode_read_list - Encode RPC Reply's Read chunk list
350  * @sctxt: Send context for the RPC Reply
351  *
352  * Return values:
353  *   On success, returns length in bytes of the Reply XDR buffer
354  *   that was consumed by the Reply Read list
355  *   %-EMSGSIZE on XDR buffer overflow
356  */
357 static ssize_t svc_rdma_encode_read_list(struct svc_rdma_send_ctxt *sctxt)
358 {
359 	/* RPC-over-RDMA version 1 replies never have a Read list. */
360 	return xdr_stream_encode_item_absent(&sctxt->sc_stream);
361 }
362 
363 /**
364  * svc_rdma_encode_write_segment - Encode one Write segment
365  * @sctxt: Send context for the RPC Reply
366  * @chunk: Write chunk to push
367  * @remaining: remaining bytes of the payload left in the Write chunk
368  * @segno: which segment in the chunk
369  *
370  * Return values:
371  *   On success, returns length in bytes of the Reply XDR buffer
372  *   that was consumed by the Write segment, and updates @remaining
373  *   %-EMSGSIZE on XDR buffer overflow
374  */
375 static ssize_t svc_rdma_encode_write_segment(struct svc_rdma_send_ctxt *sctxt,
376 					     const struct svc_rdma_chunk *chunk,
377 					     u32 *remaining, unsigned int segno)
378 {
379 	const struct svc_rdma_segment *segment = &chunk->ch_segments[segno];
380 	const size_t len = rpcrdma_segment_maxsz * sizeof(__be32);
381 	u32 length;
382 	__be32 *p;
383 
384 	p = xdr_reserve_space(&sctxt->sc_stream, len);
385 	if (!p)
386 		return -EMSGSIZE;
387 
388 	length = min_t(u32, *remaining, segment->rs_length);
389 	*remaining -= length;
390 	xdr_encode_rdma_segment(p, segment->rs_handle, length,
391 				segment->rs_offset);
392 	trace_svcrdma_encode_wseg(sctxt, segno, segment->rs_handle, length,
393 				  segment->rs_offset);
394 	return len;
395 }
396 
397 /**
398  * svc_rdma_encode_write_chunk - Encode one Write chunk
399  * @sctxt: Send context for the RPC Reply
400  * @chunk: Write chunk to push
401  *
402  * Copy a Write chunk from the Call transport header to the
403  * Reply transport header. Update each segment's length field
404  * to reflect the number of bytes written in that segment.
405  *
406  * Return values:
407  *   On success, returns length in bytes of the Reply XDR buffer
408  *   that was consumed by the Write chunk
409  *   %-EMSGSIZE on XDR buffer overflow
410  */
411 static ssize_t svc_rdma_encode_write_chunk(struct svc_rdma_send_ctxt *sctxt,
412 					   const struct svc_rdma_chunk *chunk)
413 {
414 	u32 remaining = chunk->ch_payload_length;
415 	unsigned int segno;
416 	ssize_t len, ret;
417 
418 	len = 0;
419 	ret = xdr_stream_encode_item_present(&sctxt->sc_stream);
420 	if (ret < 0)
421 		return ret;
422 	len += ret;
423 
424 	ret = xdr_stream_encode_u32(&sctxt->sc_stream, chunk->ch_segcount);
425 	if (ret < 0)
426 		return ret;
427 	len += ret;
428 
429 	for (segno = 0; segno < chunk->ch_segcount; segno++) {
430 		ret = svc_rdma_encode_write_segment(sctxt, chunk, &remaining, segno);
431 		if (ret < 0)
432 			return ret;
433 		len += ret;
434 	}
435 
436 	return len;
437 }
438 
439 /**
440  * svc_rdma_encode_write_list - Encode RPC Reply's Write chunk list
441  * @rctxt: Reply context with information about the RPC Call
442  * @sctxt: Send context for the RPC Reply
443  *
444  * Return values:
445  *   On success, returns length in bytes of the Reply XDR buffer
446  *   that was consumed by the Reply's Write list
447  *   %-EMSGSIZE on XDR buffer overflow
448  */
449 static ssize_t svc_rdma_encode_write_list(struct svc_rdma_recv_ctxt *rctxt,
450 					  struct svc_rdma_send_ctxt *sctxt)
451 {
452 	struct svc_rdma_chunk *chunk;
453 	ssize_t len, ret;
454 
455 	len = 0;
456 	pcl_for_each_chunk(chunk, &rctxt->rc_write_pcl) {
457 		ret = svc_rdma_encode_write_chunk(sctxt, chunk);
458 		if (ret < 0)
459 			return ret;
460 		len += ret;
461 	}
462 
463 	/* Terminate the Write list */
464 	ret = xdr_stream_encode_item_absent(&sctxt->sc_stream);
465 	if (ret < 0)
466 		return ret;
467 
468 	return len + ret;
469 }
470 
471 /**
472  * svc_rdma_encode_reply_chunk - Encode RPC Reply's Reply chunk
473  * @rctxt: Reply context with information about the RPC Call
474  * @sctxt: Send context for the RPC Reply
475  * @length: size in bytes of the payload in the Reply chunk
476  *
477  * Return values:
478  *   On success, returns length in bytes of the Reply XDR buffer
479  *   that was consumed by the Reply's Reply chunk
480  *   %-EMSGSIZE on XDR buffer overflow
481  *   %-E2BIG if the RPC message is larger than the Reply chunk
482  */
483 static ssize_t
484 svc_rdma_encode_reply_chunk(struct svc_rdma_recv_ctxt *rctxt,
485 			    struct svc_rdma_send_ctxt *sctxt,
486 			    unsigned int length)
487 {
488 	struct svc_rdma_chunk *chunk;
489 
490 	if (pcl_is_empty(&rctxt->rc_reply_pcl))
491 		return xdr_stream_encode_item_absent(&sctxt->sc_stream);
492 
493 	chunk = pcl_first_chunk(&rctxt->rc_reply_pcl);
494 	if (length > chunk->ch_length)
495 		return -E2BIG;
496 
497 	chunk->ch_payload_length = length;
498 	return svc_rdma_encode_write_chunk(sctxt, chunk);
499 }
500 
501 struct svc_rdma_map_data {
502 	struct svcxprt_rdma		*md_rdma;
503 	struct svc_rdma_send_ctxt	*md_ctxt;
504 };
505 
506 /**
507  * svc_rdma_page_dma_map - DMA map one page
508  * @data: pointer to arguments
509  * @page: struct page to DMA map
510  * @offset: offset into the page
511  * @len: number of bytes to map
512  *
513  * Returns:
514  *   %0 if DMA mapping was successful
515  *   %-EIO if the page cannot be DMA mapped
516  */
517 static int svc_rdma_page_dma_map(void *data, struct page *page,
518 				 unsigned long offset, unsigned int len)
519 {
520 	struct svc_rdma_map_data *args = data;
521 	struct svcxprt_rdma *rdma = args->md_rdma;
522 	struct svc_rdma_send_ctxt *ctxt = args->md_ctxt;
523 	struct ib_device *dev = rdma->sc_cm_id->device;
524 	dma_addr_t dma_addr;
525 
526 	++ctxt->sc_cur_sge_no;
527 
528 	dma_addr = ib_dma_map_page(dev, page, offset, len, DMA_TO_DEVICE);
529 	if (ib_dma_mapping_error(dev, dma_addr))
530 		goto out_maperr;
531 
532 	trace_svcrdma_dma_map_page(rdma, dma_addr, len);
533 	ctxt->sc_sges[ctxt->sc_cur_sge_no].addr = dma_addr;
534 	ctxt->sc_sges[ctxt->sc_cur_sge_no].length = len;
535 	ctxt->sc_send_wr.num_sge++;
536 	return 0;
537 
538 out_maperr:
539 	trace_svcrdma_dma_map_err(rdma, dma_addr, len);
540 	return -EIO;
541 }
542 
543 /**
544  * svc_rdma_iov_dma_map - DMA map an iovec
545  * @data: pointer to arguments
546  * @iov: kvec to DMA map
547  *
548  * ib_dma_map_page() is used here because svc_rdma_dma_unmap()
549  * handles DMA-unmap and it uses ib_dma_unmap_page() exclusively.
550  *
551  * Returns:
552  *   %0 if DMA mapping was successful
553  *   %-EIO if the iovec cannot be DMA mapped
554  */
555 static int svc_rdma_iov_dma_map(void *data, const struct kvec *iov)
556 {
557 	if (!iov->iov_len)
558 		return 0;
559 	return svc_rdma_page_dma_map(data, virt_to_page(iov->iov_base),
560 				     offset_in_page(iov->iov_base),
561 				     iov->iov_len);
562 }
563 
564 /**
565  * svc_rdma_xb_dma_map - DMA map all segments of an xdr_buf
566  * @xdr: xdr_buf containing portion of an RPC message to transmit
567  * @data: pointer to arguments
568  *
569  * Returns:
570  *   %0 if DMA mapping was successful
571  *   %-EIO if DMA mapping failed
572  *
573  * On failure, any DMA mappings that have been already done must be
574  * unmapped by the caller.
575  */
576 static int svc_rdma_xb_dma_map(const struct xdr_buf *xdr, void *data)
577 {
578 	unsigned int len, remaining;
579 	unsigned long pageoff;
580 	struct page **ppages;
581 	int ret;
582 
583 	ret = svc_rdma_iov_dma_map(data, &xdr->head[0]);
584 	if (ret < 0)
585 		return ret;
586 
587 	ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
588 	pageoff = offset_in_page(xdr->page_base);
589 	remaining = xdr->page_len;
590 	while (remaining) {
591 		len = min_t(u32, PAGE_SIZE - pageoff, remaining);
592 
593 		ret = svc_rdma_page_dma_map(data, *ppages++, pageoff, len);
594 		if (ret < 0)
595 			return ret;
596 
597 		remaining -= len;
598 		pageoff = 0;
599 	}
600 
601 	ret = svc_rdma_iov_dma_map(data, &xdr->tail[0]);
602 	if (ret < 0)
603 		return ret;
604 
605 	return xdr->len;
606 }
607 
608 struct svc_rdma_pullup_data {
609 	u8		*pd_dest;
610 	unsigned int	pd_length;
611 	unsigned int	pd_num_sges;
612 };
613 
614 /**
615  * svc_rdma_xb_count_sges - Count how many SGEs will be needed
616  * @xdr: xdr_buf containing portion of an RPC message to transmit
617  * @data: pointer to arguments
618  *
619  * Returns:
620  *   Number of SGEs needed to Send the contents of @xdr inline
621  */
622 static int svc_rdma_xb_count_sges(const struct xdr_buf *xdr,
623 				  void *data)
624 {
625 	struct svc_rdma_pullup_data *args = data;
626 	unsigned int remaining;
627 	unsigned long offset;
628 
629 	if (xdr->head[0].iov_len)
630 		++args->pd_num_sges;
631 
632 	offset = offset_in_page(xdr->page_base);
633 	remaining = xdr->page_len;
634 	while (remaining) {
635 		++args->pd_num_sges;
636 		remaining -= min_t(u32, PAGE_SIZE - offset, remaining);
637 		offset = 0;
638 	}
639 
640 	if (xdr->tail[0].iov_len)
641 		++args->pd_num_sges;
642 
643 	args->pd_length += xdr->len;
644 	return 0;
645 }
646 
647 /**
648  * svc_rdma_pull_up_needed - Determine whether to use pull-up
649  * @rdma: controlling transport
650  * @sctxt: send_ctxt for the Send WR
651  * @rctxt: Write and Reply chunks provided by client
652  * @xdr: xdr_buf containing RPC message to transmit
653  *
654  * Returns:
655  *   %true if pull-up must be used
656  *   %false otherwise
657  */
658 static bool svc_rdma_pull_up_needed(const struct svcxprt_rdma *rdma,
659 				    const struct svc_rdma_send_ctxt *sctxt,
660 				    const struct svc_rdma_recv_ctxt *rctxt,
661 				    const struct xdr_buf *xdr)
662 {
663 	/* Resources needed for the transport header */
664 	struct svc_rdma_pullup_data args = {
665 		.pd_length	= sctxt->sc_hdrbuf.len,
666 		.pd_num_sges	= 1,
667 	};
668 	int ret;
669 
670 	ret = pcl_process_nonpayloads(&rctxt->rc_write_pcl, xdr,
671 				      svc_rdma_xb_count_sges, &args);
672 	if (ret < 0)
673 		return false;
674 
675 	if (args.pd_length < RPCRDMA_PULLUP_THRESH)
676 		return true;
677 	return args.pd_num_sges >= rdma->sc_max_send_sges;
678 }
679 
680 /**
681  * svc_rdma_xb_linearize - Copy region of xdr_buf to flat buffer
682  * @xdr: xdr_buf containing portion of an RPC message to copy
683  * @data: pointer to arguments
684  *
685  * Returns:
686  *   Always zero.
687  */
688 static int svc_rdma_xb_linearize(const struct xdr_buf *xdr,
689 				 void *data)
690 {
691 	struct svc_rdma_pullup_data *args = data;
692 	unsigned int len, remaining;
693 	unsigned long pageoff;
694 	struct page **ppages;
695 
696 	if (xdr->head[0].iov_len) {
697 		memcpy(args->pd_dest, xdr->head[0].iov_base, xdr->head[0].iov_len);
698 		args->pd_dest += xdr->head[0].iov_len;
699 	}
700 
701 	ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
702 	pageoff = offset_in_page(xdr->page_base);
703 	remaining = xdr->page_len;
704 	while (remaining) {
705 		len = min_t(u32, PAGE_SIZE - pageoff, remaining);
706 		memcpy(args->pd_dest, page_address(*ppages) + pageoff, len);
707 		remaining -= len;
708 		args->pd_dest += len;
709 		pageoff = 0;
710 		ppages++;
711 	}
712 
713 	if (xdr->tail[0].iov_len) {
714 		memcpy(args->pd_dest, xdr->tail[0].iov_base, xdr->tail[0].iov_len);
715 		args->pd_dest += xdr->tail[0].iov_len;
716 	}
717 
718 	args->pd_length += xdr->len;
719 	return 0;
720 }
721 
722 /**
723  * svc_rdma_pull_up_reply_msg - Copy Reply into a single buffer
724  * @rdma: controlling transport
725  * @sctxt: send_ctxt for the Send WR; xprt hdr is already prepared
726  * @rctxt: Write and Reply chunks provided by client
727  * @xdr: prepared xdr_buf containing RPC message
728  *
729  * The device is not capable of sending the reply directly.
730  * Assemble the elements of @xdr into the transport header buffer.
731  *
732  * Assumptions:
733  *  pull_up_needed has determined that @xdr will fit in the buffer.
734  *
735  * Returns:
736  *   %0 if pull-up was successful
737  *   %-EMSGSIZE if a buffer manipulation problem occurred
738  */
739 static int svc_rdma_pull_up_reply_msg(const struct svcxprt_rdma *rdma,
740 				      struct svc_rdma_send_ctxt *sctxt,
741 				      const struct svc_rdma_recv_ctxt *rctxt,
742 				      const struct xdr_buf *xdr)
743 {
744 	struct svc_rdma_pullup_data args = {
745 		.pd_dest	= sctxt->sc_xprt_buf + sctxt->sc_hdrbuf.len,
746 	};
747 	int ret;
748 
749 	ret = pcl_process_nonpayloads(&rctxt->rc_write_pcl, xdr,
750 				      svc_rdma_xb_linearize, &args);
751 	if (ret < 0)
752 		return ret;
753 
754 	sctxt->sc_sges[0].length = sctxt->sc_hdrbuf.len + args.pd_length;
755 	trace_svcrdma_send_pullup(sctxt, args.pd_length);
756 	return 0;
757 }
758 
759 /* svc_rdma_map_reply_msg - DMA map the buffer holding RPC message
760  * @rdma: controlling transport
761  * @sctxt: send_ctxt for the Send WR
762  * @rctxt: Write and Reply chunks provided by client
763  * @xdr: prepared xdr_buf containing RPC message
764  *
765  * Returns:
766  *   %0 if DMA mapping was successful.
767  *   %-EMSGSIZE if a buffer manipulation problem occurred
768  *   %-EIO if DMA mapping failed
769  *
770  * The Send WR's num_sge field is set in all cases.
771  */
772 int svc_rdma_map_reply_msg(struct svcxprt_rdma *rdma,
773 			   struct svc_rdma_send_ctxt *sctxt,
774 			   const struct svc_rdma_recv_ctxt *rctxt,
775 			   const struct xdr_buf *xdr)
776 {
777 	struct svc_rdma_map_data args = {
778 		.md_rdma	= rdma,
779 		.md_ctxt	= sctxt,
780 	};
781 
782 	/* Set up the (persistently-mapped) transport header SGE. */
783 	sctxt->sc_send_wr.num_sge = 1;
784 	sctxt->sc_sges[0].length = sctxt->sc_hdrbuf.len;
785 
786 	/* If there is a Reply chunk, nothing follows the transport
787 	 * header, and we're done here.
788 	 */
789 	if (!pcl_is_empty(&rctxt->rc_reply_pcl))
790 		return 0;
791 
792 	/* For pull-up, svc_rdma_send() will sync the transport header.
793 	 * No additional DMA mapping is necessary.
794 	 */
795 	if (svc_rdma_pull_up_needed(rdma, sctxt, rctxt, xdr))
796 		return svc_rdma_pull_up_reply_msg(rdma, sctxt, rctxt, xdr);
797 
798 	return pcl_process_nonpayloads(&rctxt->rc_write_pcl, xdr,
799 				       svc_rdma_xb_dma_map, &args);
800 }
801 
802 /* Prepare the portion of the RPC Reply that will be transmitted
803  * via RDMA Send. The RPC-over-RDMA transport header is prepared
804  * in sc_sges[0], and the RPC xdr_buf is prepared in following sges.
805  *
806  * Depending on whether a Write list or Reply chunk is present,
807  * the server may send all, a portion of, or none of the xdr_buf.
808  * In the latter case, only the transport header (sc_sges[0]) is
809  * transmitted.
810  *
811  * RDMA Send is the last step of transmitting an RPC reply. Pages
812  * involved in the earlier RDMA Writes are here transferred out
813  * of the rqstp and into the sctxt's page array. These pages are
814  * DMA unmapped by each Write completion, but the subsequent Send
815  * completion finally releases these pages.
816  *
817  * Assumptions:
818  * - The Reply's transport header will never be larger than a page.
819  */
820 static int svc_rdma_send_reply_msg(struct svcxprt_rdma *rdma,
821 				   struct svc_rdma_send_ctxt *sctxt,
822 				   const struct svc_rdma_recv_ctxt *rctxt,
823 				   struct svc_rqst *rqstp)
824 {
825 	int ret;
826 
827 	ret = svc_rdma_map_reply_msg(rdma, sctxt, rctxt, &rqstp->rq_res);
828 	if (ret < 0)
829 		return ret;
830 
831 	if (rctxt->rc_inv_rkey) {
832 		sctxt->sc_send_wr.opcode = IB_WR_SEND_WITH_INV;
833 		sctxt->sc_send_wr.ex.invalidate_rkey = rctxt->rc_inv_rkey;
834 	} else {
835 		sctxt->sc_send_wr.opcode = IB_WR_SEND;
836 	}
837 
838 	ret = svc_rdma_send(rdma, sctxt);
839 	if (ret < 0)
840 		return ret;
841 
842 	ret = wait_for_completion_killable(&sctxt->sc_done);
843 	svc_rdma_send_ctxt_put(rdma, sctxt);
844 	return ret;
845 }
846 
847 /**
848  * svc_rdma_send_error_msg - Send an RPC/RDMA v1 error response
849  * @rdma: controlling transport context
850  * @sctxt: Send context for the response
851  * @rctxt: Receive context for incoming bad message
852  * @status: negative errno indicating error that occurred
853  *
854  * Given the client-provided Read, Write, and Reply chunks, the
855  * server was not able to parse the Call or form a complete Reply.
856  * Return an RDMA_ERROR message so the client can retire the RPC
857  * transaction.
858  *
859  * The caller does not have to release @sctxt. It is released by
860  * Send completion, or by this function on error.
861  */
862 void svc_rdma_send_error_msg(struct svcxprt_rdma *rdma,
863 			     struct svc_rdma_send_ctxt *sctxt,
864 			     struct svc_rdma_recv_ctxt *rctxt,
865 			     int status)
866 {
867 	__be32 *rdma_argp = rctxt->rc_recv_buf;
868 	__be32 *p;
869 
870 	rpcrdma_set_xdrlen(&sctxt->sc_hdrbuf, 0);
871 	xdr_init_encode(&sctxt->sc_stream, &sctxt->sc_hdrbuf,
872 			sctxt->sc_xprt_buf, NULL);
873 
874 	p = xdr_reserve_space(&sctxt->sc_stream,
875 			      rpcrdma_fixed_maxsz * sizeof(*p));
876 	if (!p)
877 		goto put_ctxt;
878 
879 	*p++ = *rdma_argp;
880 	*p++ = *(rdma_argp + 1);
881 	*p++ = rdma->sc_fc_credits;
882 	*p = rdma_error;
883 
884 	switch (status) {
885 	case -EPROTONOSUPPORT:
886 		p = xdr_reserve_space(&sctxt->sc_stream, 3 * sizeof(*p));
887 		if (!p)
888 			goto put_ctxt;
889 
890 		*p++ = err_vers;
891 		*p++ = rpcrdma_version;
892 		*p = rpcrdma_version;
893 		trace_svcrdma_err_vers(*rdma_argp);
894 		break;
895 	default:
896 		p = xdr_reserve_space(&sctxt->sc_stream, sizeof(*p));
897 		if (!p)
898 			goto put_ctxt;
899 
900 		*p = err_chunk;
901 		trace_svcrdma_err_chunk(*rdma_argp);
902 	}
903 
904 	/* Remote Invalidation is skipped for simplicity. */
905 	sctxt->sc_send_wr.num_sge = 1;
906 	sctxt->sc_send_wr.opcode = IB_WR_SEND;
907 	sctxt->sc_sges[0].length = sctxt->sc_hdrbuf.len;
908 	if (svc_rdma_send(rdma, sctxt))
909 		goto put_ctxt;
910 
911 	wait_for_completion_killable(&sctxt->sc_done);
912 
913 put_ctxt:
914 	svc_rdma_send_ctxt_put(rdma, sctxt);
915 }
916 
917 /**
918  * svc_rdma_sendto - Transmit an RPC reply
919  * @rqstp: processed RPC request, reply XDR already in ::rq_res
920  *
921  * Any resources still associated with @rqstp are released upon return.
922  * If no reply message was possible, the connection is closed.
923  *
924  * Returns:
925  *	%0 if an RPC reply has been successfully posted,
926  *	%-ENOMEM if a resource shortage occurred (connection is lost),
927  *	%-ENOTCONN if posting failed (connection is lost).
928  */
929 int svc_rdma_sendto(struct svc_rqst *rqstp)
930 {
931 	struct svc_xprt *xprt = rqstp->rq_xprt;
932 	struct svcxprt_rdma *rdma =
933 		container_of(xprt, struct svcxprt_rdma, sc_xprt);
934 	struct svc_rdma_recv_ctxt *rctxt = rqstp->rq_xprt_ctxt;
935 	__be32 *rdma_argp = rctxt->rc_recv_buf;
936 	struct svc_rdma_send_ctxt *sctxt;
937 	unsigned int rc_size;
938 	__be32 *p;
939 	int ret;
940 
941 	ret = -ENOTCONN;
942 	if (svc_xprt_is_dead(xprt))
943 		goto drop_connection;
944 
945 	ret = -ENOMEM;
946 	sctxt = svc_rdma_send_ctxt_get(rdma);
947 	if (!sctxt)
948 		goto drop_connection;
949 
950 	ret = -EMSGSIZE;
951 	p = xdr_reserve_space(&sctxt->sc_stream,
952 			      rpcrdma_fixed_maxsz * sizeof(*p));
953 	if (!p)
954 		goto put_ctxt;
955 
956 	ret = svc_rdma_send_reply_chunk(rdma, rctxt, &rqstp->rq_res);
957 	if (ret < 0)
958 		goto reply_chunk;
959 	rc_size = ret;
960 
961 	*p++ = *rdma_argp;
962 	*p++ = *(rdma_argp + 1);
963 	*p++ = rdma->sc_fc_credits;
964 	*p = pcl_is_empty(&rctxt->rc_reply_pcl) ? rdma_msg : rdma_nomsg;
965 
966 	ret = svc_rdma_encode_read_list(sctxt);
967 	if (ret < 0)
968 		goto put_ctxt;
969 	ret = svc_rdma_encode_write_list(rctxt, sctxt);
970 	if (ret < 0)
971 		goto put_ctxt;
972 	ret = svc_rdma_encode_reply_chunk(rctxt, sctxt, rc_size);
973 	if (ret < 0)
974 		goto put_ctxt;
975 
976 	ret = svc_rdma_send_reply_msg(rdma, sctxt, rctxt, rqstp);
977 	if (ret < 0)
978 		goto put_ctxt;
979 
980 	/* Prevent svc_xprt_release() from releasing the page backing
981 	 * rq_res.head[0].iov_base. It's no longer being accessed by
982 	 * the I/O device. */
983 	rqstp->rq_respages++;
984 	return 0;
985 
986 reply_chunk:
987 	if (ret != -E2BIG && ret != -EINVAL)
988 		goto put_ctxt;
989 
990 	svc_rdma_send_error_msg(rdma, sctxt, rctxt, ret);
991 	return 0;
992 
993 put_ctxt:
994 	svc_rdma_send_ctxt_put(rdma, sctxt);
995 drop_connection:
996 	trace_svcrdma_send_err(rqstp, ret);
997 	svc_xprt_deferred_close(&rdma->sc_xprt);
998 	return -ENOTCONN;
999 }
1000 
1001 /**
1002  * svc_rdma_result_payload - special processing for a result payload
1003  * @rqstp: svc_rqst to operate on
1004  * @offset: payload's byte offset in @xdr
1005  * @length: size of payload, in bytes
1006  *
1007  * Return values:
1008  *   %0 if successful or nothing needed to be done
1009  *   %-EMSGSIZE on XDR buffer overflow
1010  *   %-E2BIG if the payload was larger than the Write chunk
1011  *   %-EINVAL if client provided too many segments
1012  *   %-ENOMEM if rdma_rw context pool was exhausted
1013  *   %-ENOTCONN if posting failed (connection is lost)
1014  *   %-EIO if rdma_rw initialization failed (DMA mapping, etc)
1015  */
1016 int svc_rdma_result_payload(struct svc_rqst *rqstp, unsigned int offset,
1017 			    unsigned int length)
1018 {
1019 	struct svc_rdma_recv_ctxt *rctxt = rqstp->rq_xprt_ctxt;
1020 	struct svc_rdma_chunk *chunk;
1021 	struct svcxprt_rdma *rdma;
1022 	struct xdr_buf subbuf;
1023 	int ret;
1024 
1025 	chunk = rctxt->rc_cur_result_payload;
1026 	if (!length || !chunk)
1027 		return 0;
1028 	rctxt->rc_cur_result_payload =
1029 		pcl_next_chunk(&rctxt->rc_write_pcl, chunk);
1030 	if (length > chunk->ch_length)
1031 		return -E2BIG;
1032 
1033 	chunk->ch_position = offset;
1034 	chunk->ch_payload_length = length;
1035 
1036 	if (xdr_buf_subsegment(&rqstp->rq_res, &subbuf, offset, length))
1037 		return -EMSGSIZE;
1038 
1039 	rdma = container_of(rqstp->rq_xprt, struct svcxprt_rdma, sc_xprt);
1040 	ret = svc_rdma_send_write_chunk(rdma, chunk, &subbuf);
1041 	if (ret < 0)
1042 		return ret;
1043 	return 0;
1044 }
1045