1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (c) 2016-2018 Oracle. All rights reserved. 4 * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved. 5 * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the BSD-type 11 * license below: 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 17 * Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 20 * Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials provided 23 * with the distribution. 24 * 25 * Neither the name of the Network Appliance, Inc. nor the names of 26 * its contributors may be used to endorse or promote products 27 * derived from this software without specific prior written 28 * permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 41 * 42 * Author: Tom Tucker <tom@opengridcomputing.com> 43 */ 44 45 /* Operation 46 * 47 * The main entry point is svc_rdma_sendto. This is called by the 48 * RPC server when an RPC Reply is ready to be transmitted to a client. 49 * 50 * The passed-in svc_rqst contains a struct xdr_buf which holds an 51 * XDR-encoded RPC Reply message. sendto must construct the RPC-over-RDMA 52 * transport header, post all Write WRs needed for this Reply, then post 53 * a Send WR conveying the transport header and the RPC message itself to 54 * the client. 55 * 56 * svc_rdma_sendto must fully transmit the Reply before returning, as 57 * the svc_rqst will be recycled as soon as sendto returns. Remaining 58 * resources referred to by the svc_rqst are also recycled at that time. 59 * Therefore any resources that must remain longer must be detached 60 * from the svc_rqst and released later. 61 * 62 * Page Management 63 * 64 * The I/O that performs Reply transmission is asynchronous, and may 65 * complete well after sendto returns. Thus pages under I/O must be 66 * removed from the svc_rqst before sendto returns. 67 * 68 * The logic here depends on Send Queue and completion ordering. Since 69 * the Send WR is always posted last, it will always complete last. Thus 70 * when it completes, it is guaranteed that all previous Write WRs have 71 * also completed. 72 * 73 * Write WRs are constructed and posted. Each Write segment gets its own 74 * svc_rdma_rw_ctxt, allowing the Write completion handler to find and 75 * DMA-unmap the pages under I/O for that Write segment. The Write 76 * completion handler does not release any pages. 77 * 78 * When the Send WR is constructed, it also gets its own svc_rdma_send_ctxt. 79 * The ownership of all of the Reply's pages are transferred into that 80 * ctxt, the Send WR is posted, and sendto returns. 81 * 82 * The svc_rdma_send_ctxt is presented when the Send WR completes. The 83 * Send completion handler finally releases the Reply's pages. 84 * 85 * This mechanism also assumes that completions on the transport's Send 86 * Completion Queue do not run in parallel. Otherwise a Write completion 87 * and Send completion running at the same time could release pages that 88 * are still DMA-mapped. 89 * 90 * Error Handling 91 * 92 * - If the Send WR is posted successfully, it will either complete 93 * successfully, or get flushed. Either way, the Send completion 94 * handler releases the Reply's pages. 95 * - If the Send WR cannot be not posted, the forward path releases 96 * the Reply's pages. 97 * 98 * This handles the case, without the use of page reference counting, 99 * where two different Write segments send portions of the same page. 100 */ 101 102 #include <linux/spinlock.h> 103 #include <asm/unaligned.h> 104 105 #include <rdma/ib_verbs.h> 106 #include <rdma/rdma_cm.h> 107 108 #include <linux/sunrpc/debug.h> 109 #include <linux/sunrpc/svc_rdma.h> 110 111 #include "xprt_rdma.h" 112 #include <trace/events/rpcrdma.h> 113 114 static void svc_rdma_wc_send(struct ib_cq *cq, struct ib_wc *wc); 115 116 static void svc_rdma_send_cid_init(struct svcxprt_rdma *rdma, 117 struct rpc_rdma_cid *cid) 118 { 119 cid->ci_queue_id = rdma->sc_sq_cq->res.id; 120 cid->ci_completion_id = atomic_inc_return(&rdma->sc_completion_ids); 121 } 122 123 static struct svc_rdma_send_ctxt * 124 svc_rdma_send_ctxt_alloc(struct svcxprt_rdma *rdma) 125 { 126 struct svc_rdma_send_ctxt *ctxt; 127 dma_addr_t addr; 128 void *buffer; 129 size_t size; 130 int i; 131 132 size = sizeof(*ctxt); 133 size += rdma->sc_max_send_sges * sizeof(struct ib_sge); 134 ctxt = kmalloc(size, GFP_KERNEL); 135 if (!ctxt) 136 goto fail0; 137 buffer = kmalloc(rdma->sc_max_req_size, GFP_KERNEL); 138 if (!buffer) 139 goto fail1; 140 addr = ib_dma_map_single(rdma->sc_pd->device, buffer, 141 rdma->sc_max_req_size, DMA_TO_DEVICE); 142 if (ib_dma_mapping_error(rdma->sc_pd->device, addr)) 143 goto fail2; 144 145 svc_rdma_send_cid_init(rdma, &ctxt->sc_cid); 146 147 ctxt->sc_send_wr.next = NULL; 148 ctxt->sc_send_wr.wr_cqe = &ctxt->sc_cqe; 149 ctxt->sc_send_wr.sg_list = ctxt->sc_sges; 150 ctxt->sc_send_wr.send_flags = IB_SEND_SIGNALED; 151 init_completion(&ctxt->sc_done); 152 ctxt->sc_cqe.done = svc_rdma_wc_send; 153 ctxt->sc_xprt_buf = buffer; 154 xdr_buf_init(&ctxt->sc_hdrbuf, ctxt->sc_xprt_buf, 155 rdma->sc_max_req_size); 156 ctxt->sc_sges[0].addr = addr; 157 158 for (i = 0; i < rdma->sc_max_send_sges; i++) 159 ctxt->sc_sges[i].lkey = rdma->sc_pd->local_dma_lkey; 160 return ctxt; 161 162 fail2: 163 kfree(buffer); 164 fail1: 165 kfree(ctxt); 166 fail0: 167 return NULL; 168 } 169 170 /** 171 * svc_rdma_send_ctxts_destroy - Release all send_ctxt's for an xprt 172 * @rdma: svcxprt_rdma being torn down 173 * 174 */ 175 void svc_rdma_send_ctxts_destroy(struct svcxprt_rdma *rdma) 176 { 177 struct svc_rdma_send_ctxt *ctxt; 178 struct llist_node *node; 179 180 while ((node = llist_del_first(&rdma->sc_send_ctxts)) != NULL) { 181 ctxt = llist_entry(node, struct svc_rdma_send_ctxt, sc_node); 182 ib_dma_unmap_single(rdma->sc_pd->device, 183 ctxt->sc_sges[0].addr, 184 rdma->sc_max_req_size, 185 DMA_TO_DEVICE); 186 kfree(ctxt->sc_xprt_buf); 187 kfree(ctxt); 188 } 189 } 190 191 /** 192 * svc_rdma_send_ctxt_get - Get a free send_ctxt 193 * @rdma: controlling svcxprt_rdma 194 * 195 * Returns a ready-to-use send_ctxt, or NULL if none are 196 * available and a fresh one cannot be allocated. 197 */ 198 struct svc_rdma_send_ctxt *svc_rdma_send_ctxt_get(struct svcxprt_rdma *rdma) 199 { 200 struct svc_rdma_send_ctxt *ctxt; 201 struct llist_node *node; 202 203 spin_lock(&rdma->sc_send_lock); 204 node = llist_del_first(&rdma->sc_send_ctxts); 205 if (!node) 206 goto out_empty; 207 ctxt = llist_entry(node, struct svc_rdma_send_ctxt, sc_node); 208 spin_unlock(&rdma->sc_send_lock); 209 210 out: 211 rpcrdma_set_xdrlen(&ctxt->sc_hdrbuf, 0); 212 xdr_init_encode(&ctxt->sc_stream, &ctxt->sc_hdrbuf, 213 ctxt->sc_xprt_buf, NULL); 214 215 ctxt->sc_send_wr.num_sge = 0; 216 ctxt->sc_cur_sge_no = 0; 217 return ctxt; 218 219 out_empty: 220 spin_unlock(&rdma->sc_send_lock); 221 ctxt = svc_rdma_send_ctxt_alloc(rdma); 222 if (!ctxt) 223 return NULL; 224 goto out; 225 } 226 227 /** 228 * svc_rdma_send_ctxt_put - Return send_ctxt to free list 229 * @rdma: controlling svcxprt_rdma 230 * @ctxt: object to return to the free list 231 */ 232 void svc_rdma_send_ctxt_put(struct svcxprt_rdma *rdma, 233 struct svc_rdma_send_ctxt *ctxt) 234 { 235 struct ib_device *device = rdma->sc_cm_id->device; 236 unsigned int i; 237 238 /* The first SGE contains the transport header, which 239 * remains mapped until @ctxt is destroyed. 240 */ 241 for (i = 1; i < ctxt->sc_send_wr.num_sge; i++) { 242 ib_dma_unmap_page(device, 243 ctxt->sc_sges[i].addr, 244 ctxt->sc_sges[i].length, 245 DMA_TO_DEVICE); 246 trace_svcrdma_dma_unmap_page(rdma, 247 ctxt->sc_sges[i].addr, 248 ctxt->sc_sges[i].length); 249 } 250 251 llist_add(&ctxt->sc_node, &rdma->sc_send_ctxts); 252 } 253 254 /** 255 * svc_rdma_wake_send_waiters - manage Send Queue accounting 256 * @rdma: controlling transport 257 * @avail: Number of additional SQEs that are now available 258 * 259 */ 260 void svc_rdma_wake_send_waiters(struct svcxprt_rdma *rdma, int avail) 261 { 262 atomic_add(avail, &rdma->sc_sq_avail); 263 smp_mb__after_atomic(); 264 if (unlikely(waitqueue_active(&rdma->sc_send_wait))) 265 wake_up(&rdma->sc_send_wait); 266 } 267 268 /** 269 * svc_rdma_wc_send - Invoked by RDMA provider for each polled Send WC 270 * @cq: Completion Queue context 271 * @wc: Work Completion object 272 * 273 * NB: The svc_xprt/svcxprt_rdma is pinned whenever it's possible that 274 * the Send completion handler could be running. 275 */ 276 static void svc_rdma_wc_send(struct ib_cq *cq, struct ib_wc *wc) 277 { 278 struct svcxprt_rdma *rdma = cq->cq_context; 279 struct ib_cqe *cqe = wc->wr_cqe; 280 struct svc_rdma_send_ctxt *ctxt = 281 container_of(cqe, struct svc_rdma_send_ctxt, sc_cqe); 282 283 svc_rdma_wake_send_waiters(rdma, 1); 284 complete(&ctxt->sc_done); 285 286 if (unlikely(wc->status != IB_WC_SUCCESS)) 287 goto flushed; 288 289 trace_svcrdma_wc_send(wc, &ctxt->sc_cid); 290 return; 291 292 flushed: 293 if (wc->status != IB_WC_WR_FLUSH_ERR) 294 trace_svcrdma_wc_send_err(wc, &ctxt->sc_cid); 295 else 296 trace_svcrdma_wc_send_flush(wc, &ctxt->sc_cid); 297 svc_xprt_deferred_close(&rdma->sc_xprt); 298 } 299 300 /** 301 * svc_rdma_send - Post a single Send WR 302 * @rdma: transport on which to post the WR 303 * @ctxt: send ctxt with a Send WR ready to post 304 * 305 * Returns zero if the Send WR was posted successfully. Otherwise, a 306 * negative errno is returned. 307 */ 308 int svc_rdma_send(struct svcxprt_rdma *rdma, struct svc_rdma_send_ctxt *ctxt) 309 { 310 struct ib_send_wr *wr = &ctxt->sc_send_wr; 311 int ret; 312 313 reinit_completion(&ctxt->sc_done); 314 315 /* Sync the transport header buffer */ 316 ib_dma_sync_single_for_device(rdma->sc_pd->device, 317 wr->sg_list[0].addr, 318 wr->sg_list[0].length, 319 DMA_TO_DEVICE); 320 321 /* If the SQ is full, wait until an SQ entry is available */ 322 while (1) { 323 if ((atomic_dec_return(&rdma->sc_sq_avail) < 0)) { 324 percpu_counter_inc(&svcrdma_stat_sq_starve); 325 trace_svcrdma_sq_full(rdma); 326 atomic_inc(&rdma->sc_sq_avail); 327 wait_event(rdma->sc_send_wait, 328 atomic_read(&rdma->sc_sq_avail) > 1); 329 if (test_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags)) 330 return -ENOTCONN; 331 trace_svcrdma_sq_retry(rdma); 332 continue; 333 } 334 335 trace_svcrdma_post_send(ctxt); 336 ret = ib_post_send(rdma->sc_qp, wr, NULL); 337 if (ret) 338 break; 339 return 0; 340 } 341 342 trace_svcrdma_sq_post_err(rdma, ret); 343 svc_xprt_deferred_close(&rdma->sc_xprt); 344 wake_up(&rdma->sc_send_wait); 345 return ret; 346 } 347 348 /** 349 * svc_rdma_encode_read_list - Encode RPC Reply's Read chunk list 350 * @sctxt: Send context for the RPC Reply 351 * 352 * Return values: 353 * On success, returns length in bytes of the Reply XDR buffer 354 * that was consumed by the Reply Read list 355 * %-EMSGSIZE on XDR buffer overflow 356 */ 357 static ssize_t svc_rdma_encode_read_list(struct svc_rdma_send_ctxt *sctxt) 358 { 359 /* RPC-over-RDMA version 1 replies never have a Read list. */ 360 return xdr_stream_encode_item_absent(&sctxt->sc_stream); 361 } 362 363 /** 364 * svc_rdma_encode_write_segment - Encode one Write segment 365 * @sctxt: Send context for the RPC Reply 366 * @chunk: Write chunk to push 367 * @remaining: remaining bytes of the payload left in the Write chunk 368 * @segno: which segment in the chunk 369 * 370 * Return values: 371 * On success, returns length in bytes of the Reply XDR buffer 372 * that was consumed by the Write segment, and updates @remaining 373 * %-EMSGSIZE on XDR buffer overflow 374 */ 375 static ssize_t svc_rdma_encode_write_segment(struct svc_rdma_send_ctxt *sctxt, 376 const struct svc_rdma_chunk *chunk, 377 u32 *remaining, unsigned int segno) 378 { 379 const struct svc_rdma_segment *segment = &chunk->ch_segments[segno]; 380 const size_t len = rpcrdma_segment_maxsz * sizeof(__be32); 381 u32 length; 382 __be32 *p; 383 384 p = xdr_reserve_space(&sctxt->sc_stream, len); 385 if (!p) 386 return -EMSGSIZE; 387 388 length = min_t(u32, *remaining, segment->rs_length); 389 *remaining -= length; 390 xdr_encode_rdma_segment(p, segment->rs_handle, length, 391 segment->rs_offset); 392 trace_svcrdma_encode_wseg(sctxt, segno, segment->rs_handle, length, 393 segment->rs_offset); 394 return len; 395 } 396 397 /** 398 * svc_rdma_encode_write_chunk - Encode one Write chunk 399 * @sctxt: Send context for the RPC Reply 400 * @chunk: Write chunk to push 401 * 402 * Copy a Write chunk from the Call transport header to the 403 * Reply transport header. Update each segment's length field 404 * to reflect the number of bytes written in that segment. 405 * 406 * Return values: 407 * On success, returns length in bytes of the Reply XDR buffer 408 * that was consumed by the Write chunk 409 * %-EMSGSIZE on XDR buffer overflow 410 */ 411 static ssize_t svc_rdma_encode_write_chunk(struct svc_rdma_send_ctxt *sctxt, 412 const struct svc_rdma_chunk *chunk) 413 { 414 u32 remaining = chunk->ch_payload_length; 415 unsigned int segno; 416 ssize_t len, ret; 417 418 len = 0; 419 ret = xdr_stream_encode_item_present(&sctxt->sc_stream); 420 if (ret < 0) 421 return ret; 422 len += ret; 423 424 ret = xdr_stream_encode_u32(&sctxt->sc_stream, chunk->ch_segcount); 425 if (ret < 0) 426 return ret; 427 len += ret; 428 429 for (segno = 0; segno < chunk->ch_segcount; segno++) { 430 ret = svc_rdma_encode_write_segment(sctxt, chunk, &remaining, segno); 431 if (ret < 0) 432 return ret; 433 len += ret; 434 } 435 436 return len; 437 } 438 439 /** 440 * svc_rdma_encode_write_list - Encode RPC Reply's Write chunk list 441 * @rctxt: Reply context with information about the RPC Call 442 * @sctxt: Send context for the RPC Reply 443 * 444 * Return values: 445 * On success, returns length in bytes of the Reply XDR buffer 446 * that was consumed by the Reply's Write list 447 * %-EMSGSIZE on XDR buffer overflow 448 */ 449 static ssize_t svc_rdma_encode_write_list(struct svc_rdma_recv_ctxt *rctxt, 450 struct svc_rdma_send_ctxt *sctxt) 451 { 452 struct svc_rdma_chunk *chunk; 453 ssize_t len, ret; 454 455 len = 0; 456 pcl_for_each_chunk(chunk, &rctxt->rc_write_pcl) { 457 ret = svc_rdma_encode_write_chunk(sctxt, chunk); 458 if (ret < 0) 459 return ret; 460 len += ret; 461 } 462 463 /* Terminate the Write list */ 464 ret = xdr_stream_encode_item_absent(&sctxt->sc_stream); 465 if (ret < 0) 466 return ret; 467 468 return len + ret; 469 } 470 471 /** 472 * svc_rdma_encode_reply_chunk - Encode RPC Reply's Reply chunk 473 * @rctxt: Reply context with information about the RPC Call 474 * @sctxt: Send context for the RPC Reply 475 * @length: size in bytes of the payload in the Reply chunk 476 * 477 * Return values: 478 * On success, returns length in bytes of the Reply XDR buffer 479 * that was consumed by the Reply's Reply chunk 480 * %-EMSGSIZE on XDR buffer overflow 481 * %-E2BIG if the RPC message is larger than the Reply chunk 482 */ 483 static ssize_t 484 svc_rdma_encode_reply_chunk(struct svc_rdma_recv_ctxt *rctxt, 485 struct svc_rdma_send_ctxt *sctxt, 486 unsigned int length) 487 { 488 struct svc_rdma_chunk *chunk; 489 490 if (pcl_is_empty(&rctxt->rc_reply_pcl)) 491 return xdr_stream_encode_item_absent(&sctxt->sc_stream); 492 493 chunk = pcl_first_chunk(&rctxt->rc_reply_pcl); 494 if (length > chunk->ch_length) 495 return -E2BIG; 496 497 chunk->ch_payload_length = length; 498 return svc_rdma_encode_write_chunk(sctxt, chunk); 499 } 500 501 struct svc_rdma_map_data { 502 struct svcxprt_rdma *md_rdma; 503 struct svc_rdma_send_ctxt *md_ctxt; 504 }; 505 506 /** 507 * svc_rdma_page_dma_map - DMA map one page 508 * @data: pointer to arguments 509 * @page: struct page to DMA map 510 * @offset: offset into the page 511 * @len: number of bytes to map 512 * 513 * Returns: 514 * %0 if DMA mapping was successful 515 * %-EIO if the page cannot be DMA mapped 516 */ 517 static int svc_rdma_page_dma_map(void *data, struct page *page, 518 unsigned long offset, unsigned int len) 519 { 520 struct svc_rdma_map_data *args = data; 521 struct svcxprt_rdma *rdma = args->md_rdma; 522 struct svc_rdma_send_ctxt *ctxt = args->md_ctxt; 523 struct ib_device *dev = rdma->sc_cm_id->device; 524 dma_addr_t dma_addr; 525 526 ++ctxt->sc_cur_sge_no; 527 528 dma_addr = ib_dma_map_page(dev, page, offset, len, DMA_TO_DEVICE); 529 if (ib_dma_mapping_error(dev, dma_addr)) 530 goto out_maperr; 531 532 trace_svcrdma_dma_map_page(rdma, dma_addr, len); 533 ctxt->sc_sges[ctxt->sc_cur_sge_no].addr = dma_addr; 534 ctxt->sc_sges[ctxt->sc_cur_sge_no].length = len; 535 ctxt->sc_send_wr.num_sge++; 536 return 0; 537 538 out_maperr: 539 trace_svcrdma_dma_map_err(rdma, dma_addr, len); 540 return -EIO; 541 } 542 543 /** 544 * svc_rdma_iov_dma_map - DMA map an iovec 545 * @data: pointer to arguments 546 * @iov: kvec to DMA map 547 * 548 * ib_dma_map_page() is used here because svc_rdma_dma_unmap() 549 * handles DMA-unmap and it uses ib_dma_unmap_page() exclusively. 550 * 551 * Returns: 552 * %0 if DMA mapping was successful 553 * %-EIO if the iovec cannot be DMA mapped 554 */ 555 static int svc_rdma_iov_dma_map(void *data, const struct kvec *iov) 556 { 557 if (!iov->iov_len) 558 return 0; 559 return svc_rdma_page_dma_map(data, virt_to_page(iov->iov_base), 560 offset_in_page(iov->iov_base), 561 iov->iov_len); 562 } 563 564 /** 565 * svc_rdma_xb_dma_map - DMA map all segments of an xdr_buf 566 * @xdr: xdr_buf containing portion of an RPC message to transmit 567 * @data: pointer to arguments 568 * 569 * Returns: 570 * %0 if DMA mapping was successful 571 * %-EIO if DMA mapping failed 572 * 573 * On failure, any DMA mappings that have been already done must be 574 * unmapped by the caller. 575 */ 576 static int svc_rdma_xb_dma_map(const struct xdr_buf *xdr, void *data) 577 { 578 unsigned int len, remaining; 579 unsigned long pageoff; 580 struct page **ppages; 581 int ret; 582 583 ret = svc_rdma_iov_dma_map(data, &xdr->head[0]); 584 if (ret < 0) 585 return ret; 586 587 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT); 588 pageoff = offset_in_page(xdr->page_base); 589 remaining = xdr->page_len; 590 while (remaining) { 591 len = min_t(u32, PAGE_SIZE - pageoff, remaining); 592 593 ret = svc_rdma_page_dma_map(data, *ppages++, pageoff, len); 594 if (ret < 0) 595 return ret; 596 597 remaining -= len; 598 pageoff = 0; 599 } 600 601 ret = svc_rdma_iov_dma_map(data, &xdr->tail[0]); 602 if (ret < 0) 603 return ret; 604 605 return xdr->len; 606 } 607 608 struct svc_rdma_pullup_data { 609 u8 *pd_dest; 610 unsigned int pd_length; 611 unsigned int pd_num_sges; 612 }; 613 614 /** 615 * svc_rdma_xb_count_sges - Count how many SGEs will be needed 616 * @xdr: xdr_buf containing portion of an RPC message to transmit 617 * @data: pointer to arguments 618 * 619 * Returns: 620 * Number of SGEs needed to Send the contents of @xdr inline 621 */ 622 static int svc_rdma_xb_count_sges(const struct xdr_buf *xdr, 623 void *data) 624 { 625 struct svc_rdma_pullup_data *args = data; 626 unsigned int remaining; 627 unsigned long offset; 628 629 if (xdr->head[0].iov_len) 630 ++args->pd_num_sges; 631 632 offset = offset_in_page(xdr->page_base); 633 remaining = xdr->page_len; 634 while (remaining) { 635 ++args->pd_num_sges; 636 remaining -= min_t(u32, PAGE_SIZE - offset, remaining); 637 offset = 0; 638 } 639 640 if (xdr->tail[0].iov_len) 641 ++args->pd_num_sges; 642 643 args->pd_length += xdr->len; 644 return 0; 645 } 646 647 /** 648 * svc_rdma_pull_up_needed - Determine whether to use pull-up 649 * @rdma: controlling transport 650 * @sctxt: send_ctxt for the Send WR 651 * @rctxt: Write and Reply chunks provided by client 652 * @xdr: xdr_buf containing RPC message to transmit 653 * 654 * Returns: 655 * %true if pull-up must be used 656 * %false otherwise 657 */ 658 static bool svc_rdma_pull_up_needed(const struct svcxprt_rdma *rdma, 659 const struct svc_rdma_send_ctxt *sctxt, 660 const struct svc_rdma_recv_ctxt *rctxt, 661 const struct xdr_buf *xdr) 662 { 663 /* Resources needed for the transport header */ 664 struct svc_rdma_pullup_data args = { 665 .pd_length = sctxt->sc_hdrbuf.len, 666 .pd_num_sges = 1, 667 }; 668 int ret; 669 670 ret = pcl_process_nonpayloads(&rctxt->rc_write_pcl, xdr, 671 svc_rdma_xb_count_sges, &args); 672 if (ret < 0) 673 return false; 674 675 if (args.pd_length < RPCRDMA_PULLUP_THRESH) 676 return true; 677 return args.pd_num_sges >= rdma->sc_max_send_sges; 678 } 679 680 /** 681 * svc_rdma_xb_linearize - Copy region of xdr_buf to flat buffer 682 * @xdr: xdr_buf containing portion of an RPC message to copy 683 * @data: pointer to arguments 684 * 685 * Returns: 686 * Always zero. 687 */ 688 static int svc_rdma_xb_linearize(const struct xdr_buf *xdr, 689 void *data) 690 { 691 struct svc_rdma_pullup_data *args = data; 692 unsigned int len, remaining; 693 unsigned long pageoff; 694 struct page **ppages; 695 696 if (xdr->head[0].iov_len) { 697 memcpy(args->pd_dest, xdr->head[0].iov_base, xdr->head[0].iov_len); 698 args->pd_dest += xdr->head[0].iov_len; 699 } 700 701 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT); 702 pageoff = offset_in_page(xdr->page_base); 703 remaining = xdr->page_len; 704 while (remaining) { 705 len = min_t(u32, PAGE_SIZE - pageoff, remaining); 706 memcpy(args->pd_dest, page_address(*ppages) + pageoff, len); 707 remaining -= len; 708 args->pd_dest += len; 709 pageoff = 0; 710 ppages++; 711 } 712 713 if (xdr->tail[0].iov_len) { 714 memcpy(args->pd_dest, xdr->tail[0].iov_base, xdr->tail[0].iov_len); 715 args->pd_dest += xdr->tail[0].iov_len; 716 } 717 718 args->pd_length += xdr->len; 719 return 0; 720 } 721 722 /** 723 * svc_rdma_pull_up_reply_msg - Copy Reply into a single buffer 724 * @rdma: controlling transport 725 * @sctxt: send_ctxt for the Send WR; xprt hdr is already prepared 726 * @rctxt: Write and Reply chunks provided by client 727 * @xdr: prepared xdr_buf containing RPC message 728 * 729 * The device is not capable of sending the reply directly. 730 * Assemble the elements of @xdr into the transport header buffer. 731 * 732 * Assumptions: 733 * pull_up_needed has determined that @xdr will fit in the buffer. 734 * 735 * Returns: 736 * %0 if pull-up was successful 737 * %-EMSGSIZE if a buffer manipulation problem occurred 738 */ 739 static int svc_rdma_pull_up_reply_msg(const struct svcxprt_rdma *rdma, 740 struct svc_rdma_send_ctxt *sctxt, 741 const struct svc_rdma_recv_ctxt *rctxt, 742 const struct xdr_buf *xdr) 743 { 744 struct svc_rdma_pullup_data args = { 745 .pd_dest = sctxt->sc_xprt_buf + sctxt->sc_hdrbuf.len, 746 }; 747 int ret; 748 749 ret = pcl_process_nonpayloads(&rctxt->rc_write_pcl, xdr, 750 svc_rdma_xb_linearize, &args); 751 if (ret < 0) 752 return ret; 753 754 sctxt->sc_sges[0].length = sctxt->sc_hdrbuf.len + args.pd_length; 755 trace_svcrdma_send_pullup(sctxt, args.pd_length); 756 return 0; 757 } 758 759 /* svc_rdma_map_reply_msg - DMA map the buffer holding RPC message 760 * @rdma: controlling transport 761 * @sctxt: send_ctxt for the Send WR 762 * @rctxt: Write and Reply chunks provided by client 763 * @xdr: prepared xdr_buf containing RPC message 764 * 765 * Returns: 766 * %0 if DMA mapping was successful. 767 * %-EMSGSIZE if a buffer manipulation problem occurred 768 * %-EIO if DMA mapping failed 769 * 770 * The Send WR's num_sge field is set in all cases. 771 */ 772 int svc_rdma_map_reply_msg(struct svcxprt_rdma *rdma, 773 struct svc_rdma_send_ctxt *sctxt, 774 const struct svc_rdma_recv_ctxt *rctxt, 775 const struct xdr_buf *xdr) 776 { 777 struct svc_rdma_map_data args = { 778 .md_rdma = rdma, 779 .md_ctxt = sctxt, 780 }; 781 782 /* Set up the (persistently-mapped) transport header SGE. */ 783 sctxt->sc_send_wr.num_sge = 1; 784 sctxt->sc_sges[0].length = sctxt->sc_hdrbuf.len; 785 786 /* If there is a Reply chunk, nothing follows the transport 787 * header, and we're done here. 788 */ 789 if (!pcl_is_empty(&rctxt->rc_reply_pcl)) 790 return 0; 791 792 /* For pull-up, svc_rdma_send() will sync the transport header. 793 * No additional DMA mapping is necessary. 794 */ 795 if (svc_rdma_pull_up_needed(rdma, sctxt, rctxt, xdr)) 796 return svc_rdma_pull_up_reply_msg(rdma, sctxt, rctxt, xdr); 797 798 return pcl_process_nonpayloads(&rctxt->rc_write_pcl, xdr, 799 svc_rdma_xb_dma_map, &args); 800 } 801 802 /* Prepare the portion of the RPC Reply that will be transmitted 803 * via RDMA Send. The RPC-over-RDMA transport header is prepared 804 * in sc_sges[0], and the RPC xdr_buf is prepared in following sges. 805 * 806 * Depending on whether a Write list or Reply chunk is present, 807 * the server may send all, a portion of, or none of the xdr_buf. 808 * In the latter case, only the transport header (sc_sges[0]) is 809 * transmitted. 810 * 811 * RDMA Send is the last step of transmitting an RPC reply. Pages 812 * involved in the earlier RDMA Writes are here transferred out 813 * of the rqstp and into the sctxt's page array. These pages are 814 * DMA unmapped by each Write completion, but the subsequent Send 815 * completion finally releases these pages. 816 * 817 * Assumptions: 818 * - The Reply's transport header will never be larger than a page. 819 */ 820 static int svc_rdma_send_reply_msg(struct svcxprt_rdma *rdma, 821 struct svc_rdma_send_ctxt *sctxt, 822 const struct svc_rdma_recv_ctxt *rctxt, 823 struct svc_rqst *rqstp) 824 { 825 int ret; 826 827 ret = svc_rdma_map_reply_msg(rdma, sctxt, rctxt, &rqstp->rq_res); 828 if (ret < 0) 829 return ret; 830 831 if (rctxt->rc_inv_rkey) { 832 sctxt->sc_send_wr.opcode = IB_WR_SEND_WITH_INV; 833 sctxt->sc_send_wr.ex.invalidate_rkey = rctxt->rc_inv_rkey; 834 } else { 835 sctxt->sc_send_wr.opcode = IB_WR_SEND; 836 } 837 838 ret = svc_rdma_send(rdma, sctxt); 839 if (ret < 0) 840 return ret; 841 842 ret = wait_for_completion_killable(&sctxt->sc_done); 843 svc_rdma_send_ctxt_put(rdma, sctxt); 844 return ret; 845 } 846 847 /** 848 * svc_rdma_send_error_msg - Send an RPC/RDMA v1 error response 849 * @rdma: controlling transport context 850 * @sctxt: Send context for the response 851 * @rctxt: Receive context for incoming bad message 852 * @status: negative errno indicating error that occurred 853 * 854 * Given the client-provided Read, Write, and Reply chunks, the 855 * server was not able to parse the Call or form a complete Reply. 856 * Return an RDMA_ERROR message so the client can retire the RPC 857 * transaction. 858 * 859 * The caller does not have to release @sctxt. It is released by 860 * Send completion, or by this function on error. 861 */ 862 void svc_rdma_send_error_msg(struct svcxprt_rdma *rdma, 863 struct svc_rdma_send_ctxt *sctxt, 864 struct svc_rdma_recv_ctxt *rctxt, 865 int status) 866 { 867 __be32 *rdma_argp = rctxt->rc_recv_buf; 868 __be32 *p; 869 870 rpcrdma_set_xdrlen(&sctxt->sc_hdrbuf, 0); 871 xdr_init_encode(&sctxt->sc_stream, &sctxt->sc_hdrbuf, 872 sctxt->sc_xprt_buf, NULL); 873 874 p = xdr_reserve_space(&sctxt->sc_stream, 875 rpcrdma_fixed_maxsz * sizeof(*p)); 876 if (!p) 877 goto put_ctxt; 878 879 *p++ = *rdma_argp; 880 *p++ = *(rdma_argp + 1); 881 *p++ = rdma->sc_fc_credits; 882 *p = rdma_error; 883 884 switch (status) { 885 case -EPROTONOSUPPORT: 886 p = xdr_reserve_space(&sctxt->sc_stream, 3 * sizeof(*p)); 887 if (!p) 888 goto put_ctxt; 889 890 *p++ = err_vers; 891 *p++ = rpcrdma_version; 892 *p = rpcrdma_version; 893 trace_svcrdma_err_vers(*rdma_argp); 894 break; 895 default: 896 p = xdr_reserve_space(&sctxt->sc_stream, sizeof(*p)); 897 if (!p) 898 goto put_ctxt; 899 900 *p = err_chunk; 901 trace_svcrdma_err_chunk(*rdma_argp); 902 } 903 904 /* Remote Invalidation is skipped for simplicity. */ 905 sctxt->sc_send_wr.num_sge = 1; 906 sctxt->sc_send_wr.opcode = IB_WR_SEND; 907 sctxt->sc_sges[0].length = sctxt->sc_hdrbuf.len; 908 if (svc_rdma_send(rdma, sctxt)) 909 goto put_ctxt; 910 911 wait_for_completion_killable(&sctxt->sc_done); 912 913 put_ctxt: 914 svc_rdma_send_ctxt_put(rdma, sctxt); 915 } 916 917 /** 918 * svc_rdma_sendto - Transmit an RPC reply 919 * @rqstp: processed RPC request, reply XDR already in ::rq_res 920 * 921 * Any resources still associated with @rqstp are released upon return. 922 * If no reply message was possible, the connection is closed. 923 * 924 * Returns: 925 * %0 if an RPC reply has been successfully posted, 926 * %-ENOMEM if a resource shortage occurred (connection is lost), 927 * %-ENOTCONN if posting failed (connection is lost). 928 */ 929 int svc_rdma_sendto(struct svc_rqst *rqstp) 930 { 931 struct svc_xprt *xprt = rqstp->rq_xprt; 932 struct svcxprt_rdma *rdma = 933 container_of(xprt, struct svcxprt_rdma, sc_xprt); 934 struct svc_rdma_recv_ctxt *rctxt = rqstp->rq_xprt_ctxt; 935 __be32 *rdma_argp = rctxt->rc_recv_buf; 936 struct svc_rdma_send_ctxt *sctxt; 937 unsigned int rc_size; 938 __be32 *p; 939 int ret; 940 941 ret = -ENOTCONN; 942 if (svc_xprt_is_dead(xprt)) 943 goto drop_connection; 944 945 ret = -ENOMEM; 946 sctxt = svc_rdma_send_ctxt_get(rdma); 947 if (!sctxt) 948 goto drop_connection; 949 950 ret = -EMSGSIZE; 951 p = xdr_reserve_space(&sctxt->sc_stream, 952 rpcrdma_fixed_maxsz * sizeof(*p)); 953 if (!p) 954 goto put_ctxt; 955 956 ret = svc_rdma_send_reply_chunk(rdma, rctxt, &rqstp->rq_res); 957 if (ret < 0) 958 goto reply_chunk; 959 rc_size = ret; 960 961 *p++ = *rdma_argp; 962 *p++ = *(rdma_argp + 1); 963 *p++ = rdma->sc_fc_credits; 964 *p = pcl_is_empty(&rctxt->rc_reply_pcl) ? rdma_msg : rdma_nomsg; 965 966 ret = svc_rdma_encode_read_list(sctxt); 967 if (ret < 0) 968 goto put_ctxt; 969 ret = svc_rdma_encode_write_list(rctxt, sctxt); 970 if (ret < 0) 971 goto put_ctxt; 972 ret = svc_rdma_encode_reply_chunk(rctxt, sctxt, rc_size); 973 if (ret < 0) 974 goto put_ctxt; 975 976 ret = svc_rdma_send_reply_msg(rdma, sctxt, rctxt, rqstp); 977 if (ret < 0) 978 goto put_ctxt; 979 980 /* Prevent svc_xprt_release() from releasing the page backing 981 * rq_res.head[0].iov_base. It's no longer being accessed by 982 * the I/O device. */ 983 rqstp->rq_respages++; 984 return 0; 985 986 reply_chunk: 987 if (ret != -E2BIG && ret != -EINVAL) 988 goto put_ctxt; 989 990 svc_rdma_send_error_msg(rdma, sctxt, rctxt, ret); 991 return 0; 992 993 put_ctxt: 994 svc_rdma_send_ctxt_put(rdma, sctxt); 995 drop_connection: 996 trace_svcrdma_send_err(rqstp, ret); 997 svc_xprt_deferred_close(&rdma->sc_xprt); 998 return -ENOTCONN; 999 } 1000 1001 /** 1002 * svc_rdma_result_payload - special processing for a result payload 1003 * @rqstp: svc_rqst to operate on 1004 * @offset: payload's byte offset in @xdr 1005 * @length: size of payload, in bytes 1006 * 1007 * Return values: 1008 * %0 if successful or nothing needed to be done 1009 * %-EMSGSIZE on XDR buffer overflow 1010 * %-E2BIG if the payload was larger than the Write chunk 1011 * %-EINVAL if client provided too many segments 1012 * %-ENOMEM if rdma_rw context pool was exhausted 1013 * %-ENOTCONN if posting failed (connection is lost) 1014 * %-EIO if rdma_rw initialization failed (DMA mapping, etc) 1015 */ 1016 int svc_rdma_result_payload(struct svc_rqst *rqstp, unsigned int offset, 1017 unsigned int length) 1018 { 1019 struct svc_rdma_recv_ctxt *rctxt = rqstp->rq_xprt_ctxt; 1020 struct svc_rdma_chunk *chunk; 1021 struct svcxprt_rdma *rdma; 1022 struct xdr_buf subbuf; 1023 int ret; 1024 1025 chunk = rctxt->rc_cur_result_payload; 1026 if (!length || !chunk) 1027 return 0; 1028 rctxt->rc_cur_result_payload = 1029 pcl_next_chunk(&rctxt->rc_write_pcl, chunk); 1030 if (length > chunk->ch_length) 1031 return -E2BIG; 1032 1033 chunk->ch_position = offset; 1034 chunk->ch_payload_length = length; 1035 1036 if (xdr_buf_subsegment(&rqstp->rq_res, &subbuf, offset, length)) 1037 return -EMSGSIZE; 1038 1039 rdma = container_of(rqstp->rq_xprt, struct svcxprt_rdma, sc_xprt); 1040 ret = svc_rdma_send_write_chunk(rdma, chunk, &subbuf); 1041 if (ret < 0) 1042 return ret; 1043 return 0; 1044 } 1045