1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016-2018 Oracle.  All rights reserved.
4  *
5  * Use the core R/W API to move RPC-over-RDMA Read and Write chunks.
6  */
7 
8 #include <rdma/rw.h>
9 
10 #include <linux/sunrpc/xdr.h>
11 #include <linux/sunrpc/rpc_rdma.h>
12 #include <linux/sunrpc/svc_rdma.h>
13 
14 #include "xprt_rdma.h"
15 #include <trace/events/rpcrdma.h>
16 
17 static void svc_rdma_write_done(struct ib_cq *cq, struct ib_wc *wc);
18 static void svc_rdma_wc_read_done(struct ib_cq *cq, struct ib_wc *wc);
19 
20 /* Each R/W context contains state for one chain of RDMA Read or
21  * Write Work Requests.
22  *
23  * Each WR chain handles a single contiguous server-side buffer,
24  * because scatterlist entries after the first have to start on
25  * page alignment. xdr_buf iovecs cannot guarantee alignment.
26  *
27  * Each WR chain handles only one R_key. Each RPC-over-RDMA segment
28  * from a client may contain a unique R_key, so each WR chain moves
29  * up to one segment at a time.
30  *
31  * The scatterlist makes this data structure over 4KB in size. To
32  * make it less likely to fail, and to handle the allocation for
33  * smaller I/O requests without disabling bottom-halves, these
34  * contexts are created on demand, but cached and reused until the
35  * controlling svcxprt_rdma is destroyed.
36  */
37 struct svc_rdma_rw_ctxt {
38 	struct list_head	rw_list;
39 	struct rdma_rw_ctx	rw_ctx;
40 	unsigned int		rw_nents;
41 	struct sg_table		rw_sg_table;
42 	struct scatterlist	rw_first_sgl[];
43 };
44 
45 static inline struct svc_rdma_rw_ctxt *
46 svc_rdma_next_ctxt(struct list_head *list)
47 {
48 	return list_first_entry_or_null(list, struct svc_rdma_rw_ctxt,
49 					rw_list);
50 }
51 
52 static struct svc_rdma_rw_ctxt *
53 svc_rdma_get_rw_ctxt(struct svcxprt_rdma *rdma, unsigned int sges)
54 {
55 	struct svc_rdma_rw_ctxt *ctxt;
56 
57 	spin_lock(&rdma->sc_rw_ctxt_lock);
58 
59 	ctxt = svc_rdma_next_ctxt(&rdma->sc_rw_ctxts);
60 	if (ctxt) {
61 		list_del(&ctxt->rw_list);
62 		spin_unlock(&rdma->sc_rw_ctxt_lock);
63 	} else {
64 		spin_unlock(&rdma->sc_rw_ctxt_lock);
65 		ctxt = kmalloc(struct_size(ctxt, rw_first_sgl, SG_CHUNK_SIZE),
66 			       GFP_KERNEL);
67 		if (!ctxt)
68 			goto out_noctx;
69 		INIT_LIST_HEAD(&ctxt->rw_list);
70 	}
71 
72 	ctxt->rw_sg_table.sgl = ctxt->rw_first_sgl;
73 	if (sg_alloc_table_chained(&ctxt->rw_sg_table, sges,
74 				   ctxt->rw_sg_table.sgl,
75 				   SG_CHUNK_SIZE))
76 		goto out_free;
77 	return ctxt;
78 
79 out_free:
80 	kfree(ctxt);
81 out_noctx:
82 	trace_svcrdma_no_rwctx_err(rdma, sges);
83 	return NULL;
84 }
85 
86 static void svc_rdma_put_rw_ctxt(struct svcxprt_rdma *rdma,
87 				 struct svc_rdma_rw_ctxt *ctxt)
88 {
89 	sg_free_table_chained(&ctxt->rw_sg_table, SG_CHUNK_SIZE);
90 
91 	spin_lock(&rdma->sc_rw_ctxt_lock);
92 	list_add(&ctxt->rw_list, &rdma->sc_rw_ctxts);
93 	spin_unlock(&rdma->sc_rw_ctxt_lock);
94 }
95 
96 /**
97  * svc_rdma_destroy_rw_ctxts - Free accumulated R/W contexts
98  * @rdma: transport about to be destroyed
99  *
100  */
101 void svc_rdma_destroy_rw_ctxts(struct svcxprt_rdma *rdma)
102 {
103 	struct svc_rdma_rw_ctxt *ctxt;
104 
105 	while ((ctxt = svc_rdma_next_ctxt(&rdma->sc_rw_ctxts)) != NULL) {
106 		list_del(&ctxt->rw_list);
107 		kfree(ctxt);
108 	}
109 }
110 
111 /**
112  * svc_rdma_rw_ctx_init - Prepare a R/W context for I/O
113  * @rdma: controlling transport instance
114  * @ctxt: R/W context to prepare
115  * @offset: RDMA offset
116  * @handle: RDMA tag/handle
117  * @direction: I/O direction
118  *
119  * Returns on success, the number of WQEs that will be needed
120  * on the workqueue, or a negative errno.
121  */
122 static int svc_rdma_rw_ctx_init(struct svcxprt_rdma *rdma,
123 				struct svc_rdma_rw_ctxt *ctxt,
124 				u64 offset, u32 handle,
125 				enum dma_data_direction direction)
126 {
127 	int ret;
128 
129 	ret = rdma_rw_ctx_init(&ctxt->rw_ctx, rdma->sc_qp, rdma->sc_port_num,
130 			       ctxt->rw_sg_table.sgl, ctxt->rw_nents,
131 			       0, offset, handle, direction);
132 	if (unlikely(ret < 0)) {
133 		svc_rdma_put_rw_ctxt(rdma, ctxt);
134 		trace_svcrdma_dma_map_rw_err(rdma, ctxt->rw_nents, ret);
135 	}
136 	return ret;
137 }
138 
139 /* A chunk context tracks all I/O for moving one Read or Write
140  * chunk. This is a set of rdma_rw's that handle data movement
141  * for all segments of one chunk.
142  *
143  * These are small, acquired with a single allocator call, and
144  * no more than one is needed per chunk. They are allocated on
145  * demand, and not cached.
146  */
147 struct svc_rdma_chunk_ctxt {
148 	struct rpc_rdma_cid	cc_cid;
149 	struct ib_cqe		cc_cqe;
150 	struct svcxprt_rdma	*cc_rdma;
151 	struct list_head	cc_rwctxts;
152 	int			cc_sqecount;
153 };
154 
155 static void svc_rdma_cc_cid_init(struct svcxprt_rdma *rdma,
156 				 struct rpc_rdma_cid *cid)
157 {
158 	cid->ci_queue_id = rdma->sc_sq_cq->res.id;
159 	cid->ci_completion_id = atomic_inc_return(&rdma->sc_completion_ids);
160 }
161 
162 static void svc_rdma_cc_init(struct svcxprt_rdma *rdma,
163 			     struct svc_rdma_chunk_ctxt *cc)
164 {
165 	svc_rdma_cc_cid_init(rdma, &cc->cc_cid);
166 	cc->cc_rdma = rdma;
167 
168 	INIT_LIST_HEAD(&cc->cc_rwctxts);
169 	cc->cc_sqecount = 0;
170 }
171 
172 static void svc_rdma_cc_release(struct svc_rdma_chunk_ctxt *cc,
173 				enum dma_data_direction dir)
174 {
175 	struct svcxprt_rdma *rdma = cc->cc_rdma;
176 	struct svc_rdma_rw_ctxt *ctxt;
177 
178 	while ((ctxt = svc_rdma_next_ctxt(&cc->cc_rwctxts)) != NULL) {
179 		list_del(&ctxt->rw_list);
180 
181 		rdma_rw_ctx_destroy(&ctxt->rw_ctx, rdma->sc_qp,
182 				    rdma->sc_port_num, ctxt->rw_sg_table.sgl,
183 				    ctxt->rw_nents, dir);
184 		svc_rdma_put_rw_ctxt(rdma, ctxt);
185 	}
186 }
187 
188 /* State for sending a Write or Reply chunk.
189  *  - Tracks progress of writing one chunk over all its segments
190  *  - Stores arguments for the SGL constructor functions
191  */
192 struct svc_rdma_write_info {
193 	/* write state of this chunk */
194 	unsigned int		wi_seg_off;
195 	unsigned int		wi_seg_no;
196 	unsigned int		wi_nsegs;
197 	__be32			*wi_segs;
198 
199 	/* SGL constructor arguments */
200 	struct xdr_buf		*wi_xdr;
201 	unsigned char		*wi_base;
202 	unsigned int		wi_next_off;
203 
204 	struct svc_rdma_chunk_ctxt	wi_cc;
205 };
206 
207 static struct svc_rdma_write_info *
208 svc_rdma_write_info_alloc(struct svcxprt_rdma *rdma, __be32 *chunk)
209 {
210 	struct svc_rdma_write_info *info;
211 
212 	info = kmalloc(sizeof(*info), GFP_KERNEL);
213 	if (!info)
214 		return info;
215 
216 	info->wi_seg_off = 0;
217 	info->wi_seg_no = 0;
218 	info->wi_nsegs = be32_to_cpup(++chunk);
219 	info->wi_segs = ++chunk;
220 	svc_rdma_cc_init(rdma, &info->wi_cc);
221 	info->wi_cc.cc_cqe.done = svc_rdma_write_done;
222 	return info;
223 }
224 
225 static void svc_rdma_write_info_free(struct svc_rdma_write_info *info)
226 {
227 	svc_rdma_cc_release(&info->wi_cc, DMA_TO_DEVICE);
228 	kfree(info);
229 }
230 
231 /**
232  * svc_rdma_write_done - Write chunk completion
233  * @cq: controlling Completion Queue
234  * @wc: Work Completion
235  *
236  * Pages under I/O are freed by a subsequent Send completion.
237  */
238 static void svc_rdma_write_done(struct ib_cq *cq, struct ib_wc *wc)
239 {
240 	struct ib_cqe *cqe = wc->wr_cqe;
241 	struct svc_rdma_chunk_ctxt *cc =
242 			container_of(cqe, struct svc_rdma_chunk_ctxt, cc_cqe);
243 	struct svcxprt_rdma *rdma = cc->cc_rdma;
244 	struct svc_rdma_write_info *info =
245 			container_of(cc, struct svc_rdma_write_info, wi_cc);
246 
247 	trace_svcrdma_wc_write(wc, &cc->cc_cid);
248 
249 	atomic_add(cc->cc_sqecount, &rdma->sc_sq_avail);
250 	wake_up(&rdma->sc_send_wait);
251 
252 	if (unlikely(wc->status != IB_WC_SUCCESS))
253 		set_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags);
254 
255 	svc_rdma_write_info_free(info);
256 }
257 
258 /* State for pulling a Read chunk.
259  */
260 struct svc_rdma_read_info {
261 	struct svc_rdma_recv_ctxt	*ri_readctxt;
262 	unsigned int			ri_position;
263 	unsigned int			ri_pageno;
264 	unsigned int			ri_pageoff;
265 	unsigned int			ri_chunklen;
266 
267 	struct svc_rdma_chunk_ctxt	ri_cc;
268 };
269 
270 static struct svc_rdma_read_info *
271 svc_rdma_read_info_alloc(struct svcxprt_rdma *rdma)
272 {
273 	struct svc_rdma_read_info *info;
274 
275 	info = kmalloc(sizeof(*info), GFP_KERNEL);
276 	if (!info)
277 		return info;
278 
279 	svc_rdma_cc_init(rdma, &info->ri_cc);
280 	info->ri_cc.cc_cqe.done = svc_rdma_wc_read_done;
281 	return info;
282 }
283 
284 static void svc_rdma_read_info_free(struct svc_rdma_read_info *info)
285 {
286 	svc_rdma_cc_release(&info->ri_cc, DMA_FROM_DEVICE);
287 	kfree(info);
288 }
289 
290 /**
291  * svc_rdma_wc_read_done - Handle completion of an RDMA Read ctx
292  * @cq: controlling Completion Queue
293  * @wc: Work Completion
294  *
295  */
296 static void svc_rdma_wc_read_done(struct ib_cq *cq, struct ib_wc *wc)
297 {
298 	struct ib_cqe *cqe = wc->wr_cqe;
299 	struct svc_rdma_chunk_ctxt *cc =
300 			container_of(cqe, struct svc_rdma_chunk_ctxt, cc_cqe);
301 	struct svcxprt_rdma *rdma = cc->cc_rdma;
302 	struct svc_rdma_read_info *info =
303 			container_of(cc, struct svc_rdma_read_info, ri_cc);
304 
305 	trace_svcrdma_wc_read(wc, &cc->cc_cid);
306 
307 	atomic_add(cc->cc_sqecount, &rdma->sc_sq_avail);
308 	wake_up(&rdma->sc_send_wait);
309 
310 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
311 		set_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags);
312 		svc_rdma_recv_ctxt_put(rdma, info->ri_readctxt);
313 	} else {
314 		spin_lock(&rdma->sc_rq_dto_lock);
315 		list_add_tail(&info->ri_readctxt->rc_list,
316 			      &rdma->sc_read_complete_q);
317 		/* Note the unlock pairs with the smp_rmb in svc_xprt_ready: */
318 		set_bit(XPT_DATA, &rdma->sc_xprt.xpt_flags);
319 		spin_unlock(&rdma->sc_rq_dto_lock);
320 
321 		svc_xprt_enqueue(&rdma->sc_xprt);
322 	}
323 
324 	svc_rdma_read_info_free(info);
325 }
326 
327 /* This function sleeps when the transport's Send Queue is congested.
328  *
329  * Assumptions:
330  * - If ib_post_send() succeeds, only one completion is expected,
331  *   even if one or more WRs are flushed. This is true when posting
332  *   an rdma_rw_ctx or when posting a single signaled WR.
333  */
334 static int svc_rdma_post_chunk_ctxt(struct svc_rdma_chunk_ctxt *cc)
335 {
336 	struct svcxprt_rdma *rdma = cc->cc_rdma;
337 	struct svc_xprt *xprt = &rdma->sc_xprt;
338 	struct ib_send_wr *first_wr;
339 	const struct ib_send_wr *bad_wr;
340 	struct list_head *tmp;
341 	struct ib_cqe *cqe;
342 	int ret;
343 
344 	if (cc->cc_sqecount > rdma->sc_sq_depth)
345 		return -EINVAL;
346 
347 	first_wr = NULL;
348 	cqe = &cc->cc_cqe;
349 	list_for_each(tmp, &cc->cc_rwctxts) {
350 		struct svc_rdma_rw_ctxt *ctxt;
351 
352 		ctxt = list_entry(tmp, struct svc_rdma_rw_ctxt, rw_list);
353 		first_wr = rdma_rw_ctx_wrs(&ctxt->rw_ctx, rdma->sc_qp,
354 					   rdma->sc_port_num, cqe, first_wr);
355 		cqe = NULL;
356 	}
357 
358 	do {
359 		if (atomic_sub_return(cc->cc_sqecount,
360 				      &rdma->sc_sq_avail) > 0) {
361 			trace_svcrdma_post_chunk(&cc->cc_cid, cc->cc_sqecount);
362 			ret = ib_post_send(rdma->sc_qp, first_wr, &bad_wr);
363 			if (ret)
364 				break;
365 			return 0;
366 		}
367 
368 		trace_svcrdma_sq_full(rdma);
369 		atomic_add(cc->cc_sqecount, &rdma->sc_sq_avail);
370 		wait_event(rdma->sc_send_wait,
371 			   atomic_read(&rdma->sc_sq_avail) > cc->cc_sqecount);
372 		trace_svcrdma_sq_retry(rdma);
373 	} while (1);
374 
375 	trace_svcrdma_sq_post_err(rdma, ret);
376 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
377 
378 	/* If even one was posted, there will be a completion. */
379 	if (bad_wr != first_wr)
380 		return 0;
381 
382 	atomic_add(cc->cc_sqecount, &rdma->sc_sq_avail);
383 	wake_up(&rdma->sc_send_wait);
384 	return -ENOTCONN;
385 }
386 
387 /* Build and DMA-map an SGL that covers one kvec in an xdr_buf
388  */
389 static void svc_rdma_vec_to_sg(struct svc_rdma_write_info *info,
390 			       unsigned int len,
391 			       struct svc_rdma_rw_ctxt *ctxt)
392 {
393 	struct scatterlist *sg = ctxt->rw_sg_table.sgl;
394 
395 	sg_set_buf(&sg[0], info->wi_base, len);
396 	info->wi_base += len;
397 
398 	ctxt->rw_nents = 1;
399 }
400 
401 /* Build and DMA-map an SGL that covers part of an xdr_buf's pagelist.
402  */
403 static void svc_rdma_pagelist_to_sg(struct svc_rdma_write_info *info,
404 				    unsigned int remaining,
405 				    struct svc_rdma_rw_ctxt *ctxt)
406 {
407 	unsigned int sge_no, sge_bytes, page_off, page_no;
408 	struct xdr_buf *xdr = info->wi_xdr;
409 	struct scatterlist *sg;
410 	struct page **page;
411 
412 	page_off = info->wi_next_off + xdr->page_base;
413 	page_no = page_off >> PAGE_SHIFT;
414 	page_off = offset_in_page(page_off);
415 	page = xdr->pages + page_no;
416 	info->wi_next_off += remaining;
417 	sg = ctxt->rw_sg_table.sgl;
418 	sge_no = 0;
419 	do {
420 		sge_bytes = min_t(unsigned int, remaining,
421 				  PAGE_SIZE - page_off);
422 		sg_set_page(sg, *page, sge_bytes, page_off);
423 
424 		remaining -= sge_bytes;
425 		sg = sg_next(sg);
426 		page_off = 0;
427 		sge_no++;
428 		page++;
429 	} while (remaining);
430 
431 	ctxt->rw_nents = sge_no;
432 }
433 
434 /* Construct RDMA Write WRs to send a portion of an xdr_buf containing
435  * an RPC Reply.
436  */
437 static int
438 svc_rdma_build_writes(struct svc_rdma_write_info *info,
439 		      void (*constructor)(struct svc_rdma_write_info *info,
440 					  unsigned int len,
441 					  struct svc_rdma_rw_ctxt *ctxt),
442 		      unsigned int remaining)
443 {
444 	struct svc_rdma_chunk_ctxt *cc = &info->wi_cc;
445 	struct svcxprt_rdma *rdma = cc->cc_rdma;
446 	struct svc_rdma_rw_ctxt *ctxt;
447 	__be32 *seg;
448 	int ret;
449 
450 	seg = info->wi_segs + info->wi_seg_no * rpcrdma_segment_maxsz;
451 	do {
452 		unsigned int write_len;
453 		u32 handle, length;
454 		u64 offset;
455 
456 		if (info->wi_seg_no >= info->wi_nsegs)
457 			goto out_overflow;
458 
459 		xdr_decode_rdma_segment(seg, &handle, &length, &offset);
460 		offset += info->wi_seg_off;
461 
462 		write_len = min(remaining, length - info->wi_seg_off);
463 		ctxt = svc_rdma_get_rw_ctxt(rdma,
464 					    (write_len >> PAGE_SHIFT) + 2);
465 		if (!ctxt)
466 			return -ENOMEM;
467 
468 		constructor(info, write_len, ctxt);
469 		ret = svc_rdma_rw_ctx_init(rdma, ctxt, offset, handle,
470 					   DMA_TO_DEVICE);
471 		if (ret < 0)
472 			return -EIO;
473 
474 		trace_svcrdma_send_wseg(handle, write_len, offset);
475 
476 		list_add(&ctxt->rw_list, &cc->cc_rwctxts);
477 		cc->cc_sqecount += ret;
478 		if (write_len == length - info->wi_seg_off) {
479 			seg += 4;
480 			info->wi_seg_no++;
481 			info->wi_seg_off = 0;
482 		} else {
483 			info->wi_seg_off += write_len;
484 		}
485 		remaining -= write_len;
486 	} while (remaining);
487 
488 	return 0;
489 
490 out_overflow:
491 	trace_svcrdma_small_wrch_err(rdma, remaining, info->wi_seg_no,
492 				     info->wi_nsegs);
493 	return -E2BIG;
494 }
495 
496 /* Send one of an xdr_buf's kvecs by itself. To send a Reply
497  * chunk, the whole RPC Reply is written back to the client.
498  * This function writes either the head or tail of the xdr_buf
499  * containing the Reply.
500  */
501 static int svc_rdma_send_xdr_kvec(struct svc_rdma_write_info *info,
502 				  struct kvec *vec)
503 {
504 	info->wi_base = vec->iov_base;
505 	return svc_rdma_build_writes(info, svc_rdma_vec_to_sg,
506 				     vec->iov_len);
507 }
508 
509 /* Send an xdr_buf's page list by itself. A Write chunk is just
510  * the page list. A Reply chunk is @xdr's head, page list, and
511  * tail. This function is shared between the two types of chunk.
512  */
513 static int svc_rdma_send_xdr_pagelist(struct svc_rdma_write_info *info,
514 				      struct xdr_buf *xdr,
515 				      unsigned int offset,
516 				      unsigned long length)
517 {
518 	info->wi_xdr = xdr;
519 	info->wi_next_off = offset - xdr->head[0].iov_len;
520 	return svc_rdma_build_writes(info, svc_rdma_pagelist_to_sg,
521 				     length);
522 }
523 
524 /**
525  * svc_rdma_send_write_chunk - Write all segments in a Write chunk
526  * @rdma: controlling RDMA transport
527  * @wr_ch: Write chunk provided by client
528  * @xdr: xdr_buf containing the data payload
529  * @offset: payload's byte offset in @xdr
530  * @length: size of payload, in bytes
531  *
532  * Returns a non-negative number of bytes the chunk consumed, or
533  *	%-E2BIG if the payload was larger than the Write chunk,
534  *	%-EINVAL if client provided too many segments,
535  *	%-ENOMEM if rdma_rw context pool was exhausted,
536  *	%-ENOTCONN if posting failed (connection is lost),
537  *	%-EIO if rdma_rw initialization failed (DMA mapping, etc).
538  */
539 int svc_rdma_send_write_chunk(struct svcxprt_rdma *rdma, __be32 *wr_ch,
540 			      struct xdr_buf *xdr,
541 			      unsigned int offset, unsigned long length)
542 {
543 	struct svc_rdma_write_info *info;
544 	int ret;
545 
546 	if (!length)
547 		return 0;
548 
549 	info = svc_rdma_write_info_alloc(rdma, wr_ch);
550 	if (!info)
551 		return -ENOMEM;
552 
553 	ret = svc_rdma_send_xdr_pagelist(info, xdr, offset, length);
554 	if (ret < 0)
555 		goto out_err;
556 
557 	ret = svc_rdma_post_chunk_ctxt(&info->wi_cc);
558 	if (ret < 0)
559 		goto out_err;
560 
561 	trace_svcrdma_send_write_chunk(xdr->page_len);
562 	return length;
563 
564 out_err:
565 	svc_rdma_write_info_free(info);
566 	return ret;
567 }
568 
569 /**
570  * svc_rdma_send_reply_chunk - Write all segments in the Reply chunk
571  * @rdma: controlling RDMA transport
572  * @rctxt: Write and Reply chunks from client
573  * @xdr: xdr_buf containing an RPC Reply
574  *
575  * Returns a non-negative number of bytes the chunk consumed, or
576  *	%-E2BIG if the payload was larger than the Reply chunk,
577  *	%-EINVAL if client provided too many segments,
578  *	%-ENOMEM if rdma_rw context pool was exhausted,
579  *	%-ENOTCONN if posting failed (connection is lost),
580  *	%-EIO if rdma_rw initialization failed (DMA mapping, etc).
581  */
582 int svc_rdma_send_reply_chunk(struct svcxprt_rdma *rdma,
583 			      const struct svc_rdma_recv_ctxt *rctxt,
584 			      struct xdr_buf *xdr)
585 {
586 	struct svc_rdma_write_info *info;
587 	int consumed, ret;
588 
589 	info = svc_rdma_write_info_alloc(rdma, rctxt->rc_reply_chunk);
590 	if (!info)
591 		return -ENOMEM;
592 
593 	ret = svc_rdma_send_xdr_kvec(info, &xdr->head[0]);
594 	if (ret < 0)
595 		goto out_err;
596 	consumed = xdr->head[0].iov_len;
597 
598 	/* Send the page list in the Reply chunk only if the
599 	 * client did not provide Write chunks.
600 	 */
601 	if (!rctxt->rc_write_list && xdr->page_len) {
602 		ret = svc_rdma_send_xdr_pagelist(info, xdr,
603 						 xdr->head[0].iov_len,
604 						 xdr->page_len);
605 		if (ret < 0)
606 			goto out_err;
607 		consumed += xdr->page_len;
608 	}
609 
610 	if (xdr->tail[0].iov_len) {
611 		ret = svc_rdma_send_xdr_kvec(info, &xdr->tail[0]);
612 		if (ret < 0)
613 			goto out_err;
614 		consumed += xdr->tail[0].iov_len;
615 	}
616 
617 	ret = svc_rdma_post_chunk_ctxt(&info->wi_cc);
618 	if (ret < 0)
619 		goto out_err;
620 
621 	trace_svcrdma_send_reply_chunk(consumed);
622 	return consumed;
623 
624 out_err:
625 	svc_rdma_write_info_free(info);
626 	return ret;
627 }
628 
629 static int svc_rdma_build_read_segment(struct svc_rdma_read_info *info,
630 				       struct svc_rqst *rqstp,
631 				       u32 rkey, u32 len, u64 offset)
632 {
633 	struct svc_rdma_recv_ctxt *head = info->ri_readctxt;
634 	struct svc_rdma_chunk_ctxt *cc = &info->ri_cc;
635 	struct svc_rdma_rw_ctxt *ctxt;
636 	unsigned int sge_no, seg_len;
637 	struct scatterlist *sg;
638 	int ret;
639 
640 	sge_no = PAGE_ALIGN(info->ri_pageoff + len) >> PAGE_SHIFT;
641 	ctxt = svc_rdma_get_rw_ctxt(cc->cc_rdma, sge_no);
642 	if (!ctxt)
643 		return -ENOMEM;
644 	ctxt->rw_nents = sge_no;
645 
646 	sg = ctxt->rw_sg_table.sgl;
647 	for (sge_no = 0; sge_no < ctxt->rw_nents; sge_no++) {
648 		seg_len = min_t(unsigned int, len,
649 				PAGE_SIZE - info->ri_pageoff);
650 
651 		head->rc_arg.pages[info->ri_pageno] =
652 			rqstp->rq_pages[info->ri_pageno];
653 		if (!info->ri_pageoff)
654 			head->rc_page_count++;
655 
656 		sg_set_page(sg, rqstp->rq_pages[info->ri_pageno],
657 			    seg_len, info->ri_pageoff);
658 		sg = sg_next(sg);
659 
660 		info->ri_pageoff += seg_len;
661 		if (info->ri_pageoff == PAGE_SIZE) {
662 			info->ri_pageno++;
663 			info->ri_pageoff = 0;
664 		}
665 		len -= seg_len;
666 
667 		/* Safety check */
668 		if (len &&
669 		    &rqstp->rq_pages[info->ri_pageno + 1] > rqstp->rq_page_end)
670 			goto out_overrun;
671 	}
672 
673 	ret = svc_rdma_rw_ctx_init(cc->cc_rdma, ctxt, offset, rkey,
674 				   DMA_FROM_DEVICE);
675 	if (ret < 0)
676 		return -EIO;
677 
678 	list_add(&ctxt->rw_list, &cc->cc_rwctxts);
679 	cc->cc_sqecount += ret;
680 	return 0;
681 
682 out_overrun:
683 	trace_svcrdma_page_overrun_err(cc->cc_rdma, rqstp, info->ri_pageno);
684 	return -EINVAL;
685 }
686 
687 /* Walk the segments in the Read chunk starting at @p and construct
688  * RDMA Read operations to pull the chunk to the server.
689  */
690 static int svc_rdma_build_read_chunk(struct svc_rqst *rqstp,
691 				     struct svc_rdma_read_info *info,
692 				     __be32 *p)
693 {
694 	int ret;
695 
696 	ret = -EINVAL;
697 	info->ri_chunklen = 0;
698 	while (*p++ != xdr_zero && be32_to_cpup(p++) == info->ri_position) {
699 		u32 handle, length;
700 		u64 offset;
701 
702 		p = xdr_decode_rdma_segment(p, &handle, &length, &offset);
703 		ret = svc_rdma_build_read_segment(info, rqstp, handle, length,
704 						  offset);
705 		if (ret < 0)
706 			break;
707 
708 		trace_svcrdma_send_rseg(handle, length, offset);
709 		info->ri_chunklen += length;
710 	}
711 
712 	return ret;
713 }
714 
715 /* Construct RDMA Reads to pull over a normal Read chunk. The chunk
716  * data lands in the page list of head->rc_arg.pages.
717  *
718  * Currently NFSD does not look at the head->rc_arg.tail[0] iovec.
719  * Therefore, XDR round-up of the Read chunk and trailing
720  * inline content must both be added at the end of the pagelist.
721  */
722 static int svc_rdma_build_normal_read_chunk(struct svc_rqst *rqstp,
723 					    struct svc_rdma_read_info *info,
724 					    __be32 *p)
725 {
726 	struct svc_rdma_recv_ctxt *head = info->ri_readctxt;
727 	int ret;
728 
729 	ret = svc_rdma_build_read_chunk(rqstp, info, p);
730 	if (ret < 0)
731 		goto out;
732 
733 	trace_svcrdma_send_read_chunk(info->ri_chunklen, info->ri_position);
734 
735 	head->rc_hdr_count = 0;
736 
737 	/* Split the Receive buffer between the head and tail
738 	 * buffers at Read chunk's position. XDR roundup of the
739 	 * chunk is not included in either the pagelist or in
740 	 * the tail.
741 	 */
742 	head->rc_arg.tail[0].iov_base =
743 		head->rc_arg.head[0].iov_base + info->ri_position;
744 	head->rc_arg.tail[0].iov_len =
745 		head->rc_arg.head[0].iov_len - info->ri_position;
746 	head->rc_arg.head[0].iov_len = info->ri_position;
747 
748 	/* Read chunk may need XDR roundup (see RFC 8166, s. 3.4.5.2).
749 	 *
750 	 * If the client already rounded up the chunk length, the
751 	 * length does not change. Otherwise, the length of the page
752 	 * list is increased to include XDR round-up.
753 	 *
754 	 * Currently these chunks always start at page offset 0,
755 	 * thus the rounded-up length never crosses a page boundary.
756 	 */
757 	info->ri_chunklen = XDR_QUADLEN(info->ri_chunklen) << 2;
758 
759 	head->rc_arg.page_len = info->ri_chunklen;
760 	head->rc_arg.len += info->ri_chunklen;
761 	head->rc_arg.buflen += info->ri_chunklen;
762 
763 out:
764 	return ret;
765 }
766 
767 /* Construct RDMA Reads to pull over a Position Zero Read chunk.
768  * The start of the data lands in the first page just after
769  * the Transport header, and the rest lands in the page list of
770  * head->rc_arg.pages.
771  *
772  * Assumptions:
773  *	- A PZRC has an XDR-aligned length (no implicit round-up).
774  *	- There can be no trailing inline content (IOW, we assume
775  *	  a PZRC is never sent in an RDMA_MSG message, though it's
776  *	  allowed by spec).
777  */
778 static int svc_rdma_build_pz_read_chunk(struct svc_rqst *rqstp,
779 					struct svc_rdma_read_info *info,
780 					__be32 *p)
781 {
782 	struct svc_rdma_recv_ctxt *head = info->ri_readctxt;
783 	int ret;
784 
785 	ret = svc_rdma_build_read_chunk(rqstp, info, p);
786 	if (ret < 0)
787 		goto out;
788 
789 	trace_svcrdma_send_pzr(info->ri_chunklen);
790 
791 	head->rc_arg.len += info->ri_chunklen;
792 	head->rc_arg.buflen += info->ri_chunklen;
793 
794 	head->rc_hdr_count = 1;
795 	head->rc_arg.head[0].iov_base = page_address(head->rc_pages[0]);
796 	head->rc_arg.head[0].iov_len = min_t(size_t, PAGE_SIZE,
797 					     info->ri_chunklen);
798 
799 	head->rc_arg.page_len = info->ri_chunklen -
800 				head->rc_arg.head[0].iov_len;
801 
802 out:
803 	return ret;
804 }
805 
806 /* Pages under I/O have been copied to head->rc_pages. Ensure they
807  * are not released by svc_xprt_release() until the I/O is complete.
808  *
809  * This has to be done after all Read WRs are constructed to properly
810  * handle a page that is part of I/O on behalf of two different RDMA
811  * segments.
812  *
813  * Do this only if I/O has been posted. Otherwise, we do indeed want
814  * svc_xprt_release() to clean things up properly.
815  */
816 static void svc_rdma_save_io_pages(struct svc_rqst *rqstp,
817 				   const unsigned int start,
818 				   const unsigned int num_pages)
819 {
820 	unsigned int i;
821 
822 	for (i = start; i < num_pages + start; i++)
823 		rqstp->rq_pages[i] = NULL;
824 }
825 
826 /**
827  * svc_rdma_recv_read_chunk - Pull a Read chunk from the client
828  * @rdma: controlling RDMA transport
829  * @rqstp: set of pages to use as Read sink buffers
830  * @head: pages under I/O collect here
831  * @p: pointer to start of Read chunk
832  *
833  * Returns:
834  *	%0 if all needed RDMA Reads were posted successfully,
835  *	%-EINVAL if client provided too many segments,
836  *	%-ENOMEM if rdma_rw context pool was exhausted,
837  *	%-ENOTCONN if posting failed (connection is lost),
838  *	%-EIO if rdma_rw initialization failed (DMA mapping, etc).
839  *
840  * Assumptions:
841  * - All Read segments in @p have the same Position value.
842  */
843 int svc_rdma_recv_read_chunk(struct svcxprt_rdma *rdma, struct svc_rqst *rqstp,
844 			     struct svc_rdma_recv_ctxt *head, __be32 *p)
845 {
846 	struct svc_rdma_read_info *info;
847 	int ret;
848 
849 	/* The request (with page list) is constructed in
850 	 * head->rc_arg. Pages involved with RDMA Read I/O are
851 	 * transferred there.
852 	 */
853 	head->rc_arg.head[0] = rqstp->rq_arg.head[0];
854 	head->rc_arg.tail[0] = rqstp->rq_arg.tail[0];
855 	head->rc_arg.pages = head->rc_pages;
856 	head->rc_arg.page_base = 0;
857 	head->rc_arg.page_len = 0;
858 	head->rc_arg.len = rqstp->rq_arg.len;
859 	head->rc_arg.buflen = rqstp->rq_arg.buflen;
860 
861 	info = svc_rdma_read_info_alloc(rdma);
862 	if (!info)
863 		return -ENOMEM;
864 	info->ri_readctxt = head;
865 	info->ri_pageno = 0;
866 	info->ri_pageoff = 0;
867 
868 	info->ri_position = be32_to_cpup(p + 1);
869 	if (info->ri_position)
870 		ret = svc_rdma_build_normal_read_chunk(rqstp, info, p);
871 	else
872 		ret = svc_rdma_build_pz_read_chunk(rqstp, info, p);
873 	if (ret < 0)
874 		goto out_err;
875 
876 	ret = svc_rdma_post_chunk_ctxt(&info->ri_cc);
877 	if (ret < 0)
878 		goto out_err;
879 	svc_rdma_save_io_pages(rqstp, 0, head->rc_page_count);
880 	return 0;
881 
882 out_err:
883 	svc_rdma_read_info_free(info);
884 	return ret;
885 }
886