1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016-2018 Oracle.  All rights reserved.
4  *
5  * Use the core R/W API to move RPC-over-RDMA Read and Write chunks.
6  */
7 
8 #include <rdma/rw.h>
9 
10 #include <linux/sunrpc/rpc_rdma.h>
11 #include <linux/sunrpc/svc_rdma.h>
12 #include <linux/sunrpc/debug.h>
13 
14 #include "xprt_rdma.h"
15 #include <trace/events/rpcrdma.h>
16 
17 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
18 
19 static void svc_rdma_write_done(struct ib_cq *cq, struct ib_wc *wc);
20 static void svc_rdma_wc_read_done(struct ib_cq *cq, struct ib_wc *wc);
21 
22 /* Each R/W context contains state for one chain of RDMA Read or
23  * Write Work Requests.
24  *
25  * Each WR chain handles a single contiguous server-side buffer,
26  * because scatterlist entries after the first have to start on
27  * page alignment. xdr_buf iovecs cannot guarantee alignment.
28  *
29  * Each WR chain handles only one R_key. Each RPC-over-RDMA segment
30  * from a client may contain a unique R_key, so each WR chain moves
31  * up to one segment at a time.
32  *
33  * The scatterlist makes this data structure over 4KB in size. To
34  * make it less likely to fail, and to handle the allocation for
35  * smaller I/O requests without disabling bottom-halves, these
36  * contexts are created on demand, but cached and reused until the
37  * controlling svcxprt_rdma is destroyed.
38  */
39 struct svc_rdma_rw_ctxt {
40 	struct list_head	rw_list;
41 	struct rdma_rw_ctx	rw_ctx;
42 	int			rw_nents;
43 	struct sg_table		rw_sg_table;
44 	struct scatterlist	rw_first_sgl[0];
45 };
46 
47 static inline struct svc_rdma_rw_ctxt *
48 svc_rdma_next_ctxt(struct list_head *list)
49 {
50 	return list_first_entry_or_null(list, struct svc_rdma_rw_ctxt,
51 					rw_list);
52 }
53 
54 static struct svc_rdma_rw_ctxt *
55 svc_rdma_get_rw_ctxt(struct svcxprt_rdma *rdma, unsigned int sges)
56 {
57 	struct svc_rdma_rw_ctxt *ctxt;
58 
59 	spin_lock(&rdma->sc_rw_ctxt_lock);
60 
61 	ctxt = svc_rdma_next_ctxt(&rdma->sc_rw_ctxts);
62 	if (ctxt) {
63 		list_del(&ctxt->rw_list);
64 		spin_unlock(&rdma->sc_rw_ctxt_lock);
65 	} else {
66 		spin_unlock(&rdma->sc_rw_ctxt_lock);
67 		ctxt = kmalloc(struct_size(ctxt, rw_first_sgl, SG_CHUNK_SIZE),
68 			       GFP_KERNEL);
69 		if (!ctxt)
70 			goto out;
71 		INIT_LIST_HEAD(&ctxt->rw_list);
72 	}
73 
74 	ctxt->rw_sg_table.sgl = ctxt->rw_first_sgl;
75 	if (sg_alloc_table_chained(&ctxt->rw_sg_table, sges,
76 				   ctxt->rw_sg_table.sgl)) {
77 		kfree(ctxt);
78 		ctxt = NULL;
79 	}
80 out:
81 	return ctxt;
82 }
83 
84 static void svc_rdma_put_rw_ctxt(struct svcxprt_rdma *rdma,
85 				 struct svc_rdma_rw_ctxt *ctxt)
86 {
87 	sg_free_table_chained(&ctxt->rw_sg_table, true);
88 
89 	spin_lock(&rdma->sc_rw_ctxt_lock);
90 	list_add(&ctxt->rw_list, &rdma->sc_rw_ctxts);
91 	spin_unlock(&rdma->sc_rw_ctxt_lock);
92 }
93 
94 /**
95  * svc_rdma_destroy_rw_ctxts - Free accumulated R/W contexts
96  * @rdma: transport about to be destroyed
97  *
98  */
99 void svc_rdma_destroy_rw_ctxts(struct svcxprt_rdma *rdma)
100 {
101 	struct svc_rdma_rw_ctxt *ctxt;
102 
103 	while ((ctxt = svc_rdma_next_ctxt(&rdma->sc_rw_ctxts)) != NULL) {
104 		list_del(&ctxt->rw_list);
105 		kfree(ctxt);
106 	}
107 }
108 
109 /* A chunk context tracks all I/O for moving one Read or Write
110  * chunk. This is a a set of rdma_rw's that handle data movement
111  * for all segments of one chunk.
112  *
113  * These are small, acquired with a single allocator call, and
114  * no more than one is needed per chunk. They are allocated on
115  * demand, and not cached.
116  */
117 struct svc_rdma_chunk_ctxt {
118 	struct ib_cqe		cc_cqe;
119 	struct svcxprt_rdma	*cc_rdma;
120 	struct list_head	cc_rwctxts;
121 	int			cc_sqecount;
122 };
123 
124 static void svc_rdma_cc_init(struct svcxprt_rdma *rdma,
125 			     struct svc_rdma_chunk_ctxt *cc)
126 {
127 	cc->cc_rdma = rdma;
128 	svc_xprt_get(&rdma->sc_xprt);
129 
130 	INIT_LIST_HEAD(&cc->cc_rwctxts);
131 	cc->cc_sqecount = 0;
132 }
133 
134 static void svc_rdma_cc_release(struct svc_rdma_chunk_ctxt *cc,
135 				enum dma_data_direction dir)
136 {
137 	struct svcxprt_rdma *rdma = cc->cc_rdma;
138 	struct svc_rdma_rw_ctxt *ctxt;
139 
140 	while ((ctxt = svc_rdma_next_ctxt(&cc->cc_rwctxts)) != NULL) {
141 		list_del(&ctxt->rw_list);
142 
143 		rdma_rw_ctx_destroy(&ctxt->rw_ctx, rdma->sc_qp,
144 				    rdma->sc_port_num, ctxt->rw_sg_table.sgl,
145 				    ctxt->rw_nents, dir);
146 		svc_rdma_put_rw_ctxt(rdma, ctxt);
147 	}
148 	svc_xprt_put(&rdma->sc_xprt);
149 }
150 
151 /* State for sending a Write or Reply chunk.
152  *  - Tracks progress of writing one chunk over all its segments
153  *  - Stores arguments for the SGL constructor functions
154  */
155 struct svc_rdma_write_info {
156 	/* write state of this chunk */
157 	unsigned int		wi_seg_off;
158 	unsigned int		wi_seg_no;
159 	unsigned int		wi_nsegs;
160 	__be32			*wi_segs;
161 
162 	/* SGL constructor arguments */
163 	struct xdr_buf		*wi_xdr;
164 	unsigned char		*wi_base;
165 	unsigned int		wi_next_off;
166 
167 	struct svc_rdma_chunk_ctxt	wi_cc;
168 };
169 
170 static struct svc_rdma_write_info *
171 svc_rdma_write_info_alloc(struct svcxprt_rdma *rdma, __be32 *chunk)
172 {
173 	struct svc_rdma_write_info *info;
174 
175 	info = kmalloc(sizeof(*info), GFP_KERNEL);
176 	if (!info)
177 		return info;
178 
179 	info->wi_seg_off = 0;
180 	info->wi_seg_no = 0;
181 	info->wi_nsegs = be32_to_cpup(++chunk);
182 	info->wi_segs = ++chunk;
183 	svc_rdma_cc_init(rdma, &info->wi_cc);
184 	info->wi_cc.cc_cqe.done = svc_rdma_write_done;
185 	return info;
186 }
187 
188 static void svc_rdma_write_info_free(struct svc_rdma_write_info *info)
189 {
190 	svc_rdma_cc_release(&info->wi_cc, DMA_TO_DEVICE);
191 	kfree(info);
192 }
193 
194 /**
195  * svc_rdma_write_done - Write chunk completion
196  * @cq: controlling Completion Queue
197  * @wc: Work Completion
198  *
199  * Pages under I/O are freed by a subsequent Send completion.
200  */
201 static void svc_rdma_write_done(struct ib_cq *cq, struct ib_wc *wc)
202 {
203 	struct ib_cqe *cqe = wc->wr_cqe;
204 	struct svc_rdma_chunk_ctxt *cc =
205 			container_of(cqe, struct svc_rdma_chunk_ctxt, cc_cqe);
206 	struct svcxprt_rdma *rdma = cc->cc_rdma;
207 	struct svc_rdma_write_info *info =
208 			container_of(cc, struct svc_rdma_write_info, wi_cc);
209 
210 	trace_svcrdma_wc_write(wc);
211 
212 	atomic_add(cc->cc_sqecount, &rdma->sc_sq_avail);
213 	wake_up(&rdma->sc_send_wait);
214 
215 	if (unlikely(wc->status != IB_WC_SUCCESS))
216 		set_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags);
217 
218 	svc_rdma_write_info_free(info);
219 }
220 
221 /* State for pulling a Read chunk.
222  */
223 struct svc_rdma_read_info {
224 	struct svc_rdma_recv_ctxt	*ri_readctxt;
225 	unsigned int			ri_position;
226 	unsigned int			ri_pageno;
227 	unsigned int			ri_pageoff;
228 	unsigned int			ri_chunklen;
229 
230 	struct svc_rdma_chunk_ctxt	ri_cc;
231 };
232 
233 static struct svc_rdma_read_info *
234 svc_rdma_read_info_alloc(struct svcxprt_rdma *rdma)
235 {
236 	struct svc_rdma_read_info *info;
237 
238 	info = kmalloc(sizeof(*info), GFP_KERNEL);
239 	if (!info)
240 		return info;
241 
242 	svc_rdma_cc_init(rdma, &info->ri_cc);
243 	info->ri_cc.cc_cqe.done = svc_rdma_wc_read_done;
244 	return info;
245 }
246 
247 static void svc_rdma_read_info_free(struct svc_rdma_read_info *info)
248 {
249 	svc_rdma_cc_release(&info->ri_cc, DMA_FROM_DEVICE);
250 	kfree(info);
251 }
252 
253 /**
254  * svc_rdma_wc_read_done - Handle completion of an RDMA Read ctx
255  * @cq: controlling Completion Queue
256  * @wc: Work Completion
257  *
258  */
259 static void svc_rdma_wc_read_done(struct ib_cq *cq, struct ib_wc *wc)
260 {
261 	struct ib_cqe *cqe = wc->wr_cqe;
262 	struct svc_rdma_chunk_ctxt *cc =
263 			container_of(cqe, struct svc_rdma_chunk_ctxt, cc_cqe);
264 	struct svcxprt_rdma *rdma = cc->cc_rdma;
265 	struct svc_rdma_read_info *info =
266 			container_of(cc, struct svc_rdma_read_info, ri_cc);
267 
268 	trace_svcrdma_wc_read(wc);
269 
270 	atomic_add(cc->cc_sqecount, &rdma->sc_sq_avail);
271 	wake_up(&rdma->sc_send_wait);
272 
273 	if (unlikely(wc->status != IB_WC_SUCCESS)) {
274 		set_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags);
275 		svc_rdma_recv_ctxt_put(rdma, info->ri_readctxt);
276 	} else {
277 		spin_lock(&rdma->sc_rq_dto_lock);
278 		list_add_tail(&info->ri_readctxt->rc_list,
279 			      &rdma->sc_read_complete_q);
280 		/* Note the unlock pairs with the smp_rmb in svc_xprt_ready: */
281 		set_bit(XPT_DATA, &rdma->sc_xprt.xpt_flags);
282 		spin_unlock(&rdma->sc_rq_dto_lock);
283 
284 		svc_xprt_enqueue(&rdma->sc_xprt);
285 	}
286 
287 	svc_rdma_read_info_free(info);
288 }
289 
290 /* This function sleeps when the transport's Send Queue is congested.
291  *
292  * Assumptions:
293  * - If ib_post_send() succeeds, only one completion is expected,
294  *   even if one or more WRs are flushed. This is true when posting
295  *   an rdma_rw_ctx or when posting a single signaled WR.
296  */
297 static int svc_rdma_post_chunk_ctxt(struct svc_rdma_chunk_ctxt *cc)
298 {
299 	struct svcxprt_rdma *rdma = cc->cc_rdma;
300 	struct svc_xprt *xprt = &rdma->sc_xprt;
301 	struct ib_send_wr *first_wr;
302 	const struct ib_send_wr *bad_wr;
303 	struct list_head *tmp;
304 	struct ib_cqe *cqe;
305 	int ret;
306 
307 	if (cc->cc_sqecount > rdma->sc_sq_depth)
308 		return -EINVAL;
309 
310 	first_wr = NULL;
311 	cqe = &cc->cc_cqe;
312 	list_for_each(tmp, &cc->cc_rwctxts) {
313 		struct svc_rdma_rw_ctxt *ctxt;
314 
315 		ctxt = list_entry(tmp, struct svc_rdma_rw_ctxt, rw_list);
316 		first_wr = rdma_rw_ctx_wrs(&ctxt->rw_ctx, rdma->sc_qp,
317 					   rdma->sc_port_num, cqe, first_wr);
318 		cqe = NULL;
319 	}
320 
321 	do {
322 		if (atomic_sub_return(cc->cc_sqecount,
323 				      &rdma->sc_sq_avail) > 0) {
324 			ret = ib_post_send(rdma->sc_qp, first_wr, &bad_wr);
325 			trace_svcrdma_post_rw(&cc->cc_cqe,
326 					      cc->cc_sqecount, ret);
327 			if (ret)
328 				break;
329 			return 0;
330 		}
331 
332 		trace_svcrdma_sq_full(rdma);
333 		atomic_add(cc->cc_sqecount, &rdma->sc_sq_avail);
334 		wait_event(rdma->sc_send_wait,
335 			   atomic_read(&rdma->sc_sq_avail) > cc->cc_sqecount);
336 		trace_svcrdma_sq_retry(rdma);
337 	} while (1);
338 
339 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
340 
341 	/* If even one was posted, there will be a completion. */
342 	if (bad_wr != first_wr)
343 		return 0;
344 
345 	atomic_add(cc->cc_sqecount, &rdma->sc_sq_avail);
346 	wake_up(&rdma->sc_send_wait);
347 	return -ENOTCONN;
348 }
349 
350 /* Build and DMA-map an SGL that covers one kvec in an xdr_buf
351  */
352 static void svc_rdma_vec_to_sg(struct svc_rdma_write_info *info,
353 			       unsigned int len,
354 			       struct svc_rdma_rw_ctxt *ctxt)
355 {
356 	struct scatterlist *sg = ctxt->rw_sg_table.sgl;
357 
358 	sg_set_buf(&sg[0], info->wi_base, len);
359 	info->wi_base += len;
360 
361 	ctxt->rw_nents = 1;
362 }
363 
364 /* Build and DMA-map an SGL that covers part of an xdr_buf's pagelist.
365  */
366 static void svc_rdma_pagelist_to_sg(struct svc_rdma_write_info *info,
367 				    unsigned int remaining,
368 				    struct svc_rdma_rw_ctxt *ctxt)
369 {
370 	unsigned int sge_no, sge_bytes, page_off, page_no;
371 	struct xdr_buf *xdr = info->wi_xdr;
372 	struct scatterlist *sg;
373 	struct page **page;
374 
375 	page_off = info->wi_next_off + xdr->page_base;
376 	page_no = page_off >> PAGE_SHIFT;
377 	page_off = offset_in_page(page_off);
378 	page = xdr->pages + page_no;
379 	info->wi_next_off += remaining;
380 	sg = ctxt->rw_sg_table.sgl;
381 	sge_no = 0;
382 	do {
383 		sge_bytes = min_t(unsigned int, remaining,
384 				  PAGE_SIZE - page_off);
385 		sg_set_page(sg, *page, sge_bytes, page_off);
386 
387 		remaining -= sge_bytes;
388 		sg = sg_next(sg);
389 		page_off = 0;
390 		sge_no++;
391 		page++;
392 	} while (remaining);
393 
394 	ctxt->rw_nents = sge_no;
395 }
396 
397 /* Construct RDMA Write WRs to send a portion of an xdr_buf containing
398  * an RPC Reply.
399  */
400 static int
401 svc_rdma_build_writes(struct svc_rdma_write_info *info,
402 		      void (*constructor)(struct svc_rdma_write_info *info,
403 					  unsigned int len,
404 					  struct svc_rdma_rw_ctxt *ctxt),
405 		      unsigned int remaining)
406 {
407 	struct svc_rdma_chunk_ctxt *cc = &info->wi_cc;
408 	struct svcxprt_rdma *rdma = cc->cc_rdma;
409 	struct svc_rdma_rw_ctxt *ctxt;
410 	__be32 *seg;
411 	int ret;
412 
413 	seg = info->wi_segs + info->wi_seg_no * rpcrdma_segment_maxsz;
414 	do {
415 		unsigned int write_len;
416 		u32 seg_length, seg_handle;
417 		u64 seg_offset;
418 
419 		if (info->wi_seg_no >= info->wi_nsegs)
420 			goto out_overflow;
421 
422 		seg_handle = be32_to_cpup(seg);
423 		seg_length = be32_to_cpup(seg + 1);
424 		xdr_decode_hyper(seg + 2, &seg_offset);
425 		seg_offset += info->wi_seg_off;
426 
427 		write_len = min(remaining, seg_length - info->wi_seg_off);
428 		ctxt = svc_rdma_get_rw_ctxt(rdma,
429 					    (write_len >> PAGE_SHIFT) + 2);
430 		if (!ctxt)
431 			goto out_noctx;
432 
433 		constructor(info, write_len, ctxt);
434 		ret = rdma_rw_ctx_init(&ctxt->rw_ctx, rdma->sc_qp,
435 				       rdma->sc_port_num, ctxt->rw_sg_table.sgl,
436 				       ctxt->rw_nents, 0, seg_offset,
437 				       seg_handle, DMA_TO_DEVICE);
438 		if (ret < 0)
439 			goto out_initerr;
440 
441 		trace_svcrdma_encode_wseg(seg_handle, write_len, seg_offset);
442 		list_add(&ctxt->rw_list, &cc->cc_rwctxts);
443 		cc->cc_sqecount += ret;
444 		if (write_len == seg_length - info->wi_seg_off) {
445 			seg += 4;
446 			info->wi_seg_no++;
447 			info->wi_seg_off = 0;
448 		} else {
449 			info->wi_seg_off += write_len;
450 		}
451 		remaining -= write_len;
452 	} while (remaining);
453 
454 	return 0;
455 
456 out_overflow:
457 	dprintk("svcrdma: inadequate space in Write chunk (%u)\n",
458 		info->wi_nsegs);
459 	return -E2BIG;
460 
461 out_noctx:
462 	dprintk("svcrdma: no R/W ctxs available\n");
463 	return -ENOMEM;
464 
465 out_initerr:
466 	svc_rdma_put_rw_ctxt(rdma, ctxt);
467 	trace_svcrdma_dma_map_rwctx(rdma, ret);
468 	return -EIO;
469 }
470 
471 /* Send one of an xdr_buf's kvecs by itself. To send a Reply
472  * chunk, the whole RPC Reply is written back to the client.
473  * This function writes either the head or tail of the xdr_buf
474  * containing the Reply.
475  */
476 static int svc_rdma_send_xdr_kvec(struct svc_rdma_write_info *info,
477 				  struct kvec *vec)
478 {
479 	info->wi_base = vec->iov_base;
480 	return svc_rdma_build_writes(info, svc_rdma_vec_to_sg,
481 				     vec->iov_len);
482 }
483 
484 /* Send an xdr_buf's page list by itself. A Write chunk is
485  * just the page list. a Reply chunk is the head, page list,
486  * and tail. This function is shared between the two types
487  * of chunk.
488  */
489 static int svc_rdma_send_xdr_pagelist(struct svc_rdma_write_info *info,
490 				      struct xdr_buf *xdr)
491 {
492 	info->wi_xdr = xdr;
493 	info->wi_next_off = 0;
494 	return svc_rdma_build_writes(info, svc_rdma_pagelist_to_sg,
495 				     xdr->page_len);
496 }
497 
498 /**
499  * svc_rdma_send_write_chunk - Write all segments in a Write chunk
500  * @rdma: controlling RDMA transport
501  * @wr_ch: Write chunk provided by client
502  * @xdr: xdr_buf containing the data payload
503  *
504  * Returns a non-negative number of bytes the chunk consumed, or
505  *	%-E2BIG if the payload was larger than the Write chunk,
506  *	%-EINVAL if client provided too many segments,
507  *	%-ENOMEM if rdma_rw context pool was exhausted,
508  *	%-ENOTCONN if posting failed (connection is lost),
509  *	%-EIO if rdma_rw initialization failed (DMA mapping, etc).
510  */
511 int svc_rdma_send_write_chunk(struct svcxprt_rdma *rdma, __be32 *wr_ch,
512 			      struct xdr_buf *xdr)
513 {
514 	struct svc_rdma_write_info *info;
515 	int ret;
516 
517 	if (!xdr->page_len)
518 		return 0;
519 
520 	info = svc_rdma_write_info_alloc(rdma, wr_ch);
521 	if (!info)
522 		return -ENOMEM;
523 
524 	ret = svc_rdma_send_xdr_pagelist(info, xdr);
525 	if (ret < 0)
526 		goto out_err;
527 
528 	ret = svc_rdma_post_chunk_ctxt(&info->wi_cc);
529 	if (ret < 0)
530 		goto out_err;
531 
532 	trace_svcrdma_encode_write(xdr->page_len);
533 	return xdr->page_len;
534 
535 out_err:
536 	svc_rdma_write_info_free(info);
537 	return ret;
538 }
539 
540 /**
541  * svc_rdma_send_reply_chunk - Write all segments in the Reply chunk
542  * @rdma: controlling RDMA transport
543  * @rp_ch: Reply chunk provided by client
544  * @writelist: true if client provided a Write list
545  * @xdr: xdr_buf containing an RPC Reply
546  *
547  * Returns a non-negative number of bytes the chunk consumed, or
548  *	%-E2BIG if the payload was larger than the Reply chunk,
549  *	%-EINVAL if client provided too many segments,
550  *	%-ENOMEM if rdma_rw context pool was exhausted,
551  *	%-ENOTCONN if posting failed (connection is lost),
552  *	%-EIO if rdma_rw initialization failed (DMA mapping, etc).
553  */
554 int svc_rdma_send_reply_chunk(struct svcxprt_rdma *rdma, __be32 *rp_ch,
555 			      bool writelist, struct xdr_buf *xdr)
556 {
557 	struct svc_rdma_write_info *info;
558 	int consumed, ret;
559 
560 	info = svc_rdma_write_info_alloc(rdma, rp_ch);
561 	if (!info)
562 		return -ENOMEM;
563 
564 	ret = svc_rdma_send_xdr_kvec(info, &xdr->head[0]);
565 	if (ret < 0)
566 		goto out_err;
567 	consumed = xdr->head[0].iov_len;
568 
569 	/* Send the page list in the Reply chunk only if the
570 	 * client did not provide Write chunks.
571 	 */
572 	if (!writelist && xdr->page_len) {
573 		ret = svc_rdma_send_xdr_pagelist(info, xdr);
574 		if (ret < 0)
575 			goto out_err;
576 		consumed += xdr->page_len;
577 	}
578 
579 	if (xdr->tail[0].iov_len) {
580 		ret = svc_rdma_send_xdr_kvec(info, &xdr->tail[0]);
581 		if (ret < 0)
582 			goto out_err;
583 		consumed += xdr->tail[0].iov_len;
584 	}
585 
586 	ret = svc_rdma_post_chunk_ctxt(&info->wi_cc);
587 	if (ret < 0)
588 		goto out_err;
589 
590 	trace_svcrdma_encode_reply(consumed);
591 	return consumed;
592 
593 out_err:
594 	svc_rdma_write_info_free(info);
595 	return ret;
596 }
597 
598 static int svc_rdma_build_read_segment(struct svc_rdma_read_info *info,
599 				       struct svc_rqst *rqstp,
600 				       u32 rkey, u32 len, u64 offset)
601 {
602 	struct svc_rdma_recv_ctxt *head = info->ri_readctxt;
603 	struct svc_rdma_chunk_ctxt *cc = &info->ri_cc;
604 	struct svc_rdma_rw_ctxt *ctxt;
605 	unsigned int sge_no, seg_len;
606 	struct scatterlist *sg;
607 	int ret;
608 
609 	sge_no = PAGE_ALIGN(info->ri_pageoff + len) >> PAGE_SHIFT;
610 	ctxt = svc_rdma_get_rw_ctxt(cc->cc_rdma, sge_no);
611 	if (!ctxt)
612 		goto out_noctx;
613 	ctxt->rw_nents = sge_no;
614 
615 	sg = ctxt->rw_sg_table.sgl;
616 	for (sge_no = 0; sge_no < ctxt->rw_nents; sge_no++) {
617 		seg_len = min_t(unsigned int, len,
618 				PAGE_SIZE - info->ri_pageoff);
619 
620 		head->rc_arg.pages[info->ri_pageno] =
621 			rqstp->rq_pages[info->ri_pageno];
622 		if (!info->ri_pageoff)
623 			head->rc_page_count++;
624 
625 		sg_set_page(sg, rqstp->rq_pages[info->ri_pageno],
626 			    seg_len, info->ri_pageoff);
627 		sg = sg_next(sg);
628 
629 		info->ri_pageoff += seg_len;
630 		if (info->ri_pageoff == PAGE_SIZE) {
631 			info->ri_pageno++;
632 			info->ri_pageoff = 0;
633 		}
634 		len -= seg_len;
635 
636 		/* Safety check */
637 		if (len &&
638 		    &rqstp->rq_pages[info->ri_pageno + 1] > rqstp->rq_page_end)
639 			goto out_overrun;
640 	}
641 
642 	ret = rdma_rw_ctx_init(&ctxt->rw_ctx, cc->cc_rdma->sc_qp,
643 			       cc->cc_rdma->sc_port_num,
644 			       ctxt->rw_sg_table.sgl, ctxt->rw_nents,
645 			       0, offset, rkey, DMA_FROM_DEVICE);
646 	if (ret < 0)
647 		goto out_initerr;
648 
649 	list_add(&ctxt->rw_list, &cc->cc_rwctxts);
650 	cc->cc_sqecount += ret;
651 	return 0;
652 
653 out_noctx:
654 	dprintk("svcrdma: no R/W ctxs available\n");
655 	return -ENOMEM;
656 
657 out_overrun:
658 	dprintk("svcrdma: request overruns rq_pages\n");
659 	return -EINVAL;
660 
661 out_initerr:
662 	trace_svcrdma_dma_map_rwctx(cc->cc_rdma, ret);
663 	svc_rdma_put_rw_ctxt(cc->cc_rdma, ctxt);
664 	return -EIO;
665 }
666 
667 /* Walk the segments in the Read chunk starting at @p and construct
668  * RDMA Read operations to pull the chunk to the server.
669  */
670 static int svc_rdma_build_read_chunk(struct svc_rqst *rqstp,
671 				     struct svc_rdma_read_info *info,
672 				     __be32 *p)
673 {
674 	unsigned int i;
675 	int ret;
676 
677 	ret = -EINVAL;
678 	info->ri_chunklen = 0;
679 	while (*p++ != xdr_zero && be32_to_cpup(p++) == info->ri_position) {
680 		u32 rs_handle, rs_length;
681 		u64 rs_offset;
682 
683 		rs_handle = be32_to_cpup(p++);
684 		rs_length = be32_to_cpup(p++);
685 		p = xdr_decode_hyper(p, &rs_offset);
686 
687 		ret = svc_rdma_build_read_segment(info, rqstp,
688 						  rs_handle, rs_length,
689 						  rs_offset);
690 		if (ret < 0)
691 			break;
692 
693 		trace_svcrdma_encode_rseg(rs_handle, rs_length, rs_offset);
694 		info->ri_chunklen += rs_length;
695 	}
696 
697 	/* Pages under I/O have been copied to head->rc_pages.
698 	 * Prevent their premature release by svc_xprt_release() .
699 	 */
700 	for (i = 0; i < info->ri_readctxt->rc_page_count; i++)
701 		rqstp->rq_pages[i] = NULL;
702 
703 	return ret;
704 }
705 
706 /* Construct RDMA Reads to pull over a normal Read chunk. The chunk
707  * data lands in the page list of head->rc_arg.pages.
708  *
709  * Currently NFSD does not look at the head->rc_arg.tail[0] iovec.
710  * Therefore, XDR round-up of the Read chunk and trailing
711  * inline content must both be added at the end of the pagelist.
712  */
713 static int svc_rdma_build_normal_read_chunk(struct svc_rqst *rqstp,
714 					    struct svc_rdma_read_info *info,
715 					    __be32 *p)
716 {
717 	struct svc_rdma_recv_ctxt *head = info->ri_readctxt;
718 	int ret;
719 
720 	ret = svc_rdma_build_read_chunk(rqstp, info, p);
721 	if (ret < 0)
722 		goto out;
723 
724 	trace_svcrdma_encode_read(info->ri_chunklen, info->ri_position);
725 
726 	head->rc_hdr_count = 0;
727 
728 	/* Split the Receive buffer between the head and tail
729 	 * buffers at Read chunk's position. XDR roundup of the
730 	 * chunk is not included in either the pagelist or in
731 	 * the tail.
732 	 */
733 	head->rc_arg.tail[0].iov_base =
734 		head->rc_arg.head[0].iov_base + info->ri_position;
735 	head->rc_arg.tail[0].iov_len =
736 		head->rc_arg.head[0].iov_len - info->ri_position;
737 	head->rc_arg.head[0].iov_len = info->ri_position;
738 
739 	/* Read chunk may need XDR roundup (see RFC 8166, s. 3.4.5.2).
740 	 *
741 	 * If the client already rounded up the chunk length, the
742 	 * length does not change. Otherwise, the length of the page
743 	 * list is increased to include XDR round-up.
744 	 *
745 	 * Currently these chunks always start at page offset 0,
746 	 * thus the rounded-up length never crosses a page boundary.
747 	 */
748 	info->ri_chunklen = XDR_QUADLEN(info->ri_chunklen) << 2;
749 
750 	head->rc_arg.page_len = info->ri_chunklen;
751 	head->rc_arg.len += info->ri_chunklen;
752 	head->rc_arg.buflen += info->ri_chunklen;
753 
754 out:
755 	return ret;
756 }
757 
758 /* Construct RDMA Reads to pull over a Position Zero Read chunk.
759  * The start of the data lands in the first page just after
760  * the Transport header, and the rest lands in the page list of
761  * head->rc_arg.pages.
762  *
763  * Assumptions:
764  *	- A PZRC has an XDR-aligned length (no implicit round-up).
765  *	- There can be no trailing inline content (IOW, we assume
766  *	  a PZRC is never sent in an RDMA_MSG message, though it's
767  *	  allowed by spec).
768  */
769 static int svc_rdma_build_pz_read_chunk(struct svc_rqst *rqstp,
770 					struct svc_rdma_read_info *info,
771 					__be32 *p)
772 {
773 	struct svc_rdma_recv_ctxt *head = info->ri_readctxt;
774 	int ret;
775 
776 	ret = svc_rdma_build_read_chunk(rqstp, info, p);
777 	if (ret < 0)
778 		goto out;
779 
780 	trace_svcrdma_encode_pzr(info->ri_chunklen);
781 
782 	head->rc_arg.len += info->ri_chunklen;
783 	head->rc_arg.buflen += info->ri_chunklen;
784 
785 	head->rc_hdr_count = 1;
786 	head->rc_arg.head[0].iov_base = page_address(head->rc_pages[0]);
787 	head->rc_arg.head[0].iov_len = min_t(size_t, PAGE_SIZE,
788 					     info->ri_chunklen);
789 
790 	head->rc_arg.page_len = info->ri_chunklen -
791 				head->rc_arg.head[0].iov_len;
792 
793 out:
794 	return ret;
795 }
796 
797 /**
798  * svc_rdma_recv_read_chunk - Pull a Read chunk from the client
799  * @rdma: controlling RDMA transport
800  * @rqstp: set of pages to use as Read sink buffers
801  * @head: pages under I/O collect here
802  * @p: pointer to start of Read chunk
803  *
804  * Returns:
805  *	%0 if all needed RDMA Reads were posted successfully,
806  *	%-EINVAL if client provided too many segments,
807  *	%-ENOMEM if rdma_rw context pool was exhausted,
808  *	%-ENOTCONN if posting failed (connection is lost),
809  *	%-EIO if rdma_rw initialization failed (DMA mapping, etc).
810  *
811  * Assumptions:
812  * - All Read segments in @p have the same Position value.
813  */
814 int svc_rdma_recv_read_chunk(struct svcxprt_rdma *rdma, struct svc_rqst *rqstp,
815 			     struct svc_rdma_recv_ctxt *head, __be32 *p)
816 {
817 	struct svc_rdma_read_info *info;
818 	int ret;
819 
820 	/* The request (with page list) is constructed in
821 	 * head->rc_arg. Pages involved with RDMA Read I/O are
822 	 * transferred there.
823 	 */
824 	head->rc_arg.head[0] = rqstp->rq_arg.head[0];
825 	head->rc_arg.tail[0] = rqstp->rq_arg.tail[0];
826 	head->rc_arg.pages = head->rc_pages;
827 	head->rc_arg.page_base = 0;
828 	head->rc_arg.page_len = 0;
829 	head->rc_arg.len = rqstp->rq_arg.len;
830 	head->rc_arg.buflen = rqstp->rq_arg.buflen;
831 
832 	info = svc_rdma_read_info_alloc(rdma);
833 	if (!info)
834 		return -ENOMEM;
835 	info->ri_readctxt = head;
836 	info->ri_pageno = 0;
837 	info->ri_pageoff = 0;
838 
839 	info->ri_position = be32_to_cpup(p + 1);
840 	if (info->ri_position)
841 		ret = svc_rdma_build_normal_read_chunk(rqstp, info, p);
842 	else
843 		ret = svc_rdma_build_pz_read_chunk(rqstp, info, p);
844 	if (ret < 0)
845 		goto out_err;
846 
847 	ret = svc_rdma_post_chunk_ctxt(&info->ri_cc);
848 	if (ret < 0)
849 		goto out_err;
850 	return 0;
851 
852 out_err:
853 	svc_rdma_read_info_free(info);
854 	return ret;
855 }
856