xref: /openbmc/linux/net/sunrpc/xprtrdma/svc_rdma_recvfrom.c (revision f5fb5ac7cee29cea9156e734fd652a66417d32fc)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (c) 2016-2018 Oracle. All rights reserved.
4  * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved.
5  * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the BSD-type
11  * license below:
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  *
17  *      Redistributions of source code must retain the above copyright
18  *      notice, this list of conditions and the following disclaimer.
19  *
20  *      Redistributions in binary form must reproduce the above
21  *      copyright notice, this list of conditions and the following
22  *      disclaimer in the documentation and/or other materials provided
23  *      with the distribution.
24  *
25  *      Neither the name of the Network Appliance, Inc. nor the names of
26  *      its contributors may be used to endorse or promote products
27  *      derived from this software without specific prior written
28  *      permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41  *
42  * Author: Tom Tucker <tom@opengridcomputing.com>
43  */
44 
45 /* Operation
46  *
47  * The main entry point is svc_rdma_recvfrom. This is called from
48  * svc_recv when the transport indicates there is incoming data to
49  * be read. "Data Ready" is signaled when an RDMA Receive completes,
50  * or when a set of RDMA Reads complete.
51  *
52  * An svc_rqst is passed in. This structure contains an array of
53  * free pages (rq_pages) that will contain the incoming RPC message.
54  *
55  * Short messages are moved directly into svc_rqst::rq_arg, and
56  * the RPC Call is ready to be processed by the Upper Layer.
57  * svc_rdma_recvfrom returns the length of the RPC Call message,
58  * completing the reception of the RPC Call.
59  *
60  * However, when an incoming message has Read chunks,
61  * svc_rdma_recvfrom must post RDMA Reads to pull the RPC Call's
62  * data payload from the client. svc_rdma_recvfrom sets up the
63  * RDMA Reads using pages in svc_rqst::rq_pages, which are
64  * transferred to an svc_rdma_recv_ctxt for the duration of the
65  * I/O. svc_rdma_recvfrom then returns zero, since the RPC message
66  * is still not yet ready.
67  *
68  * When the Read chunk payloads have become available on the
69  * server, "Data Ready" is raised again, and svc_recv calls
70  * svc_rdma_recvfrom again. This second call may use a different
71  * svc_rqst than the first one, thus any information that needs
72  * to be preserved across these two calls is kept in an
73  * svc_rdma_recv_ctxt.
74  *
75  * The second call to svc_rdma_recvfrom performs final assembly
76  * of the RPC Call message, using the RDMA Read sink pages kept in
77  * the svc_rdma_recv_ctxt. The xdr_buf is copied from the
78  * svc_rdma_recv_ctxt to the second svc_rqst. The second call returns
79  * the length of the completed RPC Call message.
80  *
81  * Page Management
82  *
83  * Pages under I/O must be transferred from the first svc_rqst to an
84  * svc_rdma_recv_ctxt before the first svc_rdma_recvfrom call returns.
85  *
86  * The first svc_rqst supplies pages for RDMA Reads. These are moved
87  * from rqstp::rq_pages into ctxt::pages. The consumed elements of
88  * the rq_pages array are set to NULL and refilled with the first
89  * svc_rdma_recvfrom call returns.
90  *
91  * During the second svc_rdma_recvfrom call, RDMA Read sink pages
92  * are transferred from the svc_rdma_recv_ctxt to the second svc_rqst.
93  */
94 
95 #include <linux/slab.h>
96 #include <linux/spinlock.h>
97 #include <asm/unaligned.h>
98 #include <rdma/ib_verbs.h>
99 #include <rdma/rdma_cm.h>
100 
101 #include <linux/sunrpc/xdr.h>
102 #include <linux/sunrpc/debug.h>
103 #include <linux/sunrpc/rpc_rdma.h>
104 #include <linux/sunrpc/svc_rdma.h>
105 
106 #include "xprt_rdma.h"
107 #include <trace/events/rpcrdma.h>
108 
109 static void svc_rdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc);
110 
111 static inline struct svc_rdma_recv_ctxt *
112 svc_rdma_next_recv_ctxt(struct list_head *list)
113 {
114 	return list_first_entry_or_null(list, struct svc_rdma_recv_ctxt,
115 					rc_list);
116 }
117 
118 static void svc_rdma_recv_cid_init(struct svcxprt_rdma *rdma,
119 				   struct rpc_rdma_cid *cid)
120 {
121 	cid->ci_queue_id = rdma->sc_rq_cq->res.id;
122 	cid->ci_completion_id = atomic_inc_return(&rdma->sc_completion_ids);
123 }
124 
125 static struct svc_rdma_recv_ctxt *
126 svc_rdma_recv_ctxt_alloc(struct svcxprt_rdma *rdma)
127 {
128 	int node = ibdev_to_node(rdma->sc_cm_id->device);
129 	struct svc_rdma_recv_ctxt *ctxt;
130 	dma_addr_t addr;
131 	void *buffer;
132 
133 	ctxt = kmalloc_node(sizeof(*ctxt), GFP_KERNEL, node);
134 	if (!ctxt)
135 		goto fail0;
136 	buffer = kmalloc_node(rdma->sc_max_req_size, GFP_KERNEL, node);
137 	if (!buffer)
138 		goto fail1;
139 	addr = ib_dma_map_single(rdma->sc_pd->device, buffer,
140 				 rdma->sc_max_req_size, DMA_FROM_DEVICE);
141 	if (ib_dma_mapping_error(rdma->sc_pd->device, addr))
142 		goto fail2;
143 
144 	svc_rdma_recv_cid_init(rdma, &ctxt->rc_cid);
145 	pcl_init(&ctxt->rc_call_pcl);
146 	pcl_init(&ctxt->rc_read_pcl);
147 	pcl_init(&ctxt->rc_write_pcl);
148 	pcl_init(&ctxt->rc_reply_pcl);
149 
150 	ctxt->rc_recv_wr.next = NULL;
151 	ctxt->rc_recv_wr.wr_cqe = &ctxt->rc_cqe;
152 	ctxt->rc_recv_wr.sg_list = &ctxt->rc_recv_sge;
153 	ctxt->rc_recv_wr.num_sge = 1;
154 	ctxt->rc_cqe.done = svc_rdma_wc_receive;
155 	ctxt->rc_recv_sge.addr = addr;
156 	ctxt->rc_recv_sge.length = rdma->sc_max_req_size;
157 	ctxt->rc_recv_sge.lkey = rdma->sc_pd->local_dma_lkey;
158 	ctxt->rc_recv_buf = buffer;
159 	return ctxt;
160 
161 fail2:
162 	kfree(buffer);
163 fail1:
164 	kfree(ctxt);
165 fail0:
166 	return NULL;
167 }
168 
169 static void svc_rdma_recv_ctxt_destroy(struct svcxprt_rdma *rdma,
170 				       struct svc_rdma_recv_ctxt *ctxt)
171 {
172 	ib_dma_unmap_single(rdma->sc_pd->device, ctxt->rc_recv_sge.addr,
173 			    ctxt->rc_recv_sge.length, DMA_FROM_DEVICE);
174 	kfree(ctxt->rc_recv_buf);
175 	kfree(ctxt);
176 }
177 
178 /**
179  * svc_rdma_recv_ctxts_destroy - Release all recv_ctxt's for an xprt
180  * @rdma: svcxprt_rdma being torn down
181  *
182  */
183 void svc_rdma_recv_ctxts_destroy(struct svcxprt_rdma *rdma)
184 {
185 	struct svc_rdma_recv_ctxt *ctxt;
186 	struct llist_node *node;
187 
188 	while ((node = llist_del_first(&rdma->sc_recv_ctxts))) {
189 		ctxt = llist_entry(node, struct svc_rdma_recv_ctxt, rc_node);
190 		svc_rdma_recv_ctxt_destroy(rdma, ctxt);
191 	}
192 }
193 
194 /**
195  * svc_rdma_recv_ctxt_get - Allocate a recv_ctxt
196  * @rdma: controlling svcxprt_rdma
197  *
198  * Returns a recv_ctxt or (rarely) NULL if none are available.
199  */
200 struct svc_rdma_recv_ctxt *svc_rdma_recv_ctxt_get(struct svcxprt_rdma *rdma)
201 {
202 	struct svc_rdma_recv_ctxt *ctxt;
203 	struct llist_node *node;
204 
205 	node = llist_del_first(&rdma->sc_recv_ctxts);
206 	if (!node)
207 		goto out_empty;
208 	ctxt = llist_entry(node, struct svc_rdma_recv_ctxt, rc_node);
209 
210 out:
211 	ctxt->rc_page_count = 0;
212 	return ctxt;
213 
214 out_empty:
215 	ctxt = svc_rdma_recv_ctxt_alloc(rdma);
216 	if (!ctxt)
217 		return NULL;
218 	goto out;
219 }
220 
221 /**
222  * svc_rdma_recv_ctxt_put - Return recv_ctxt to free list
223  * @rdma: controlling svcxprt_rdma
224  * @ctxt: object to return to the free list
225  *
226  */
227 void svc_rdma_recv_ctxt_put(struct svcxprt_rdma *rdma,
228 			    struct svc_rdma_recv_ctxt *ctxt)
229 {
230 	pcl_free(&ctxt->rc_call_pcl);
231 	pcl_free(&ctxt->rc_read_pcl);
232 	pcl_free(&ctxt->rc_write_pcl);
233 	pcl_free(&ctxt->rc_reply_pcl);
234 
235 	llist_add(&ctxt->rc_node, &rdma->sc_recv_ctxts);
236 }
237 
238 /**
239  * svc_rdma_release_ctxt - Release transport-specific per-rqst resources
240  * @xprt: the transport which owned the context
241  * @vctxt: the context from rqstp->rq_xprt_ctxt or dr->xprt_ctxt
242  *
243  * Ensure that the recv_ctxt is released whether or not a Reply
244  * was sent. For example, the client could close the connection,
245  * or svc_process could drop an RPC, before the Reply is sent.
246  */
247 void svc_rdma_release_ctxt(struct svc_xprt *xprt, void *vctxt)
248 {
249 	struct svc_rdma_recv_ctxt *ctxt = vctxt;
250 	struct svcxprt_rdma *rdma =
251 		container_of(xprt, struct svcxprt_rdma, sc_xprt);
252 
253 	if (ctxt)
254 		svc_rdma_recv_ctxt_put(rdma, ctxt);
255 }
256 
257 static bool svc_rdma_refresh_recvs(struct svcxprt_rdma *rdma,
258 				   unsigned int wanted)
259 {
260 	const struct ib_recv_wr *bad_wr = NULL;
261 	struct svc_rdma_recv_ctxt *ctxt;
262 	struct ib_recv_wr *recv_chain;
263 	int ret;
264 
265 	if (test_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags))
266 		return false;
267 
268 	recv_chain = NULL;
269 	while (wanted--) {
270 		ctxt = svc_rdma_recv_ctxt_get(rdma);
271 		if (!ctxt)
272 			break;
273 
274 		trace_svcrdma_post_recv(ctxt);
275 		ctxt->rc_recv_wr.next = recv_chain;
276 		recv_chain = &ctxt->rc_recv_wr;
277 		rdma->sc_pending_recvs++;
278 	}
279 	if (!recv_chain)
280 		return false;
281 
282 	ret = ib_post_recv(rdma->sc_qp, recv_chain, &bad_wr);
283 	if (ret)
284 		goto err_free;
285 	return true;
286 
287 err_free:
288 	trace_svcrdma_rq_post_err(rdma, ret);
289 	while (bad_wr) {
290 		ctxt = container_of(bad_wr, struct svc_rdma_recv_ctxt,
291 				    rc_recv_wr);
292 		bad_wr = bad_wr->next;
293 		svc_rdma_recv_ctxt_put(rdma, ctxt);
294 	}
295 	/* Since we're destroying the xprt, no need to reset
296 	 * sc_pending_recvs. */
297 	return false;
298 }
299 
300 /**
301  * svc_rdma_post_recvs - Post initial set of Recv WRs
302  * @rdma: fresh svcxprt_rdma
303  *
304  * Returns true if successful, otherwise false.
305  */
306 bool svc_rdma_post_recvs(struct svcxprt_rdma *rdma)
307 {
308 	return svc_rdma_refresh_recvs(rdma, rdma->sc_max_requests);
309 }
310 
311 /**
312  * svc_rdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
313  * @cq: Completion Queue context
314  * @wc: Work Completion object
315  *
316  */
317 static void svc_rdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
318 {
319 	struct svcxprt_rdma *rdma = cq->cq_context;
320 	struct ib_cqe *cqe = wc->wr_cqe;
321 	struct svc_rdma_recv_ctxt *ctxt;
322 
323 	rdma->sc_pending_recvs--;
324 
325 	/* WARNING: Only wc->wr_cqe and wc->status are reliable */
326 	ctxt = container_of(cqe, struct svc_rdma_recv_ctxt, rc_cqe);
327 
328 	if (wc->status != IB_WC_SUCCESS)
329 		goto flushed;
330 	trace_svcrdma_wc_recv(wc, &ctxt->rc_cid);
331 
332 	/* If receive posting fails, the connection is about to be
333 	 * lost anyway. The server will not be able to send a reply
334 	 * for this RPC, and the client will retransmit this RPC
335 	 * anyway when it reconnects.
336 	 *
337 	 * Therefore we drop the Receive, even if status was SUCCESS
338 	 * to reduce the likelihood of replayed requests once the
339 	 * client reconnects.
340 	 */
341 	if (rdma->sc_pending_recvs < rdma->sc_max_requests)
342 		if (!svc_rdma_refresh_recvs(rdma, rdma->sc_recv_batch))
343 			goto dropped;
344 
345 	/* All wc fields are now known to be valid */
346 	ctxt->rc_byte_len = wc->byte_len;
347 
348 	spin_lock(&rdma->sc_rq_dto_lock);
349 	list_add_tail(&ctxt->rc_list, &rdma->sc_rq_dto_q);
350 	/* Note the unlock pairs with the smp_rmb in svc_xprt_ready: */
351 	set_bit(XPT_DATA, &rdma->sc_xprt.xpt_flags);
352 	spin_unlock(&rdma->sc_rq_dto_lock);
353 	if (!test_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags))
354 		svc_xprt_enqueue(&rdma->sc_xprt);
355 	return;
356 
357 flushed:
358 	if (wc->status == IB_WC_WR_FLUSH_ERR)
359 		trace_svcrdma_wc_recv_flush(wc, &ctxt->rc_cid);
360 	else
361 		trace_svcrdma_wc_recv_err(wc, &ctxt->rc_cid);
362 dropped:
363 	svc_rdma_recv_ctxt_put(rdma, ctxt);
364 	svc_xprt_deferred_close(&rdma->sc_xprt);
365 }
366 
367 /**
368  * svc_rdma_flush_recv_queues - Drain pending Receive work
369  * @rdma: svcxprt_rdma being shut down
370  *
371  */
372 void svc_rdma_flush_recv_queues(struct svcxprt_rdma *rdma)
373 {
374 	struct svc_rdma_recv_ctxt *ctxt;
375 
376 	while ((ctxt = svc_rdma_next_recv_ctxt(&rdma->sc_rq_dto_q))) {
377 		list_del(&ctxt->rc_list);
378 		svc_rdma_recv_ctxt_put(rdma, ctxt);
379 	}
380 }
381 
382 static void svc_rdma_build_arg_xdr(struct svc_rqst *rqstp,
383 				   struct svc_rdma_recv_ctxt *ctxt)
384 {
385 	struct xdr_buf *arg = &rqstp->rq_arg;
386 
387 	arg->head[0].iov_base = ctxt->rc_recv_buf;
388 	arg->head[0].iov_len = ctxt->rc_byte_len;
389 	arg->tail[0].iov_base = NULL;
390 	arg->tail[0].iov_len = 0;
391 	arg->page_len = 0;
392 	arg->page_base = 0;
393 	arg->buflen = ctxt->rc_byte_len;
394 	arg->len = ctxt->rc_byte_len;
395 }
396 
397 /**
398  * xdr_count_read_segments - Count number of Read segments in Read list
399  * @rctxt: Ingress receive context
400  * @p: Start of an un-decoded Read list
401  *
402  * Before allocating anything, ensure the ingress Read list is safe
403  * to use.
404  *
405  * The segment count is limited to how many segments can fit in the
406  * transport header without overflowing the buffer. That's about 40
407  * Read segments for a 1KB inline threshold.
408  *
409  * Return values:
410  *   %true: Read list is valid. @rctxt's xdr_stream is updated to point
411  *	    to the first byte past the Read list. rc_read_pcl and
412  *	    rc_call_pcl cl_count fields are set to the number of
413  *	    Read segments in the list.
414  *  %false: Read list is corrupt. @rctxt's xdr_stream is left in an
415  *	    unknown state.
416  */
417 static bool xdr_count_read_segments(struct svc_rdma_recv_ctxt *rctxt, __be32 *p)
418 {
419 	rctxt->rc_call_pcl.cl_count = 0;
420 	rctxt->rc_read_pcl.cl_count = 0;
421 	while (xdr_item_is_present(p)) {
422 		u32 position, handle, length;
423 		u64 offset;
424 
425 		p = xdr_inline_decode(&rctxt->rc_stream,
426 				      rpcrdma_readseg_maxsz * sizeof(*p));
427 		if (!p)
428 			return false;
429 
430 		xdr_decode_read_segment(p, &position, &handle,
431 					    &length, &offset);
432 		if (position) {
433 			if (position & 3)
434 				return false;
435 			++rctxt->rc_read_pcl.cl_count;
436 		} else {
437 			++rctxt->rc_call_pcl.cl_count;
438 		}
439 
440 		p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p));
441 		if (!p)
442 			return false;
443 	}
444 	return true;
445 }
446 
447 /* Sanity check the Read list.
448  *
449  * Sanity checks:
450  * - Read list does not overflow Receive buffer.
451  * - Chunk size limited by largest NFS data payload.
452  *
453  * Return values:
454  *   %true: Read list is valid. @rctxt's xdr_stream is updated
455  *	    to point to the first byte past the Read list.
456  *  %false: Read list is corrupt. @rctxt's xdr_stream is left
457  *	    in an unknown state.
458  */
459 static bool xdr_check_read_list(struct svc_rdma_recv_ctxt *rctxt)
460 {
461 	__be32 *p;
462 
463 	p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p));
464 	if (!p)
465 		return false;
466 	if (!xdr_count_read_segments(rctxt, p))
467 		return false;
468 	if (!pcl_alloc_call(rctxt, p))
469 		return false;
470 	return pcl_alloc_read(rctxt, p);
471 }
472 
473 static bool xdr_check_write_chunk(struct svc_rdma_recv_ctxt *rctxt)
474 {
475 	u32 segcount;
476 	__be32 *p;
477 
478 	if (xdr_stream_decode_u32(&rctxt->rc_stream, &segcount))
479 		return false;
480 
481 	/* A bogus segcount causes this buffer overflow check to fail. */
482 	p = xdr_inline_decode(&rctxt->rc_stream,
483 			      segcount * rpcrdma_segment_maxsz * sizeof(*p));
484 	return p != NULL;
485 }
486 
487 /**
488  * xdr_count_write_chunks - Count number of Write chunks in Write list
489  * @rctxt: Received header and decoding state
490  * @p: start of an un-decoded Write list
491  *
492  * Before allocating anything, ensure the ingress Write list is
493  * safe to use.
494  *
495  * Return values:
496  *       %true: Write list is valid. @rctxt's xdr_stream is updated
497  *		to point to the first byte past the Write list, and
498  *		the number of Write chunks is in rc_write_pcl.cl_count.
499  *      %false: Write list is corrupt. @rctxt's xdr_stream is left
500  *		in an indeterminate state.
501  */
502 static bool xdr_count_write_chunks(struct svc_rdma_recv_ctxt *rctxt, __be32 *p)
503 {
504 	rctxt->rc_write_pcl.cl_count = 0;
505 	while (xdr_item_is_present(p)) {
506 		if (!xdr_check_write_chunk(rctxt))
507 			return false;
508 		++rctxt->rc_write_pcl.cl_count;
509 		p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p));
510 		if (!p)
511 			return false;
512 	}
513 	return true;
514 }
515 
516 /* Sanity check the Write list.
517  *
518  * Implementation limits:
519  * - This implementation currently supports only one Write chunk.
520  *
521  * Sanity checks:
522  * - Write list does not overflow Receive buffer.
523  * - Chunk size limited by largest NFS data payload.
524  *
525  * Return values:
526  *       %true: Write list is valid. @rctxt's xdr_stream is updated
527  *		to point to the first byte past the Write list.
528  *      %false: Write list is corrupt. @rctxt's xdr_stream is left
529  *		in an unknown state.
530  */
531 static bool xdr_check_write_list(struct svc_rdma_recv_ctxt *rctxt)
532 {
533 	__be32 *p;
534 
535 	p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p));
536 	if (!p)
537 		return false;
538 	if (!xdr_count_write_chunks(rctxt, p))
539 		return false;
540 	if (!pcl_alloc_write(rctxt, &rctxt->rc_write_pcl, p))
541 		return false;
542 
543 	rctxt->rc_cur_result_payload = pcl_first_chunk(&rctxt->rc_write_pcl);
544 	return true;
545 }
546 
547 /* Sanity check the Reply chunk.
548  *
549  * Sanity checks:
550  * - Reply chunk does not overflow Receive buffer.
551  * - Chunk size limited by largest NFS data payload.
552  *
553  * Return values:
554  *       %true: Reply chunk is valid. @rctxt's xdr_stream is updated
555  *		to point to the first byte past the Reply chunk.
556  *      %false: Reply chunk is corrupt. @rctxt's xdr_stream is left
557  *		in an unknown state.
558  */
559 static bool xdr_check_reply_chunk(struct svc_rdma_recv_ctxt *rctxt)
560 {
561 	__be32 *p;
562 
563 	p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p));
564 	if (!p)
565 		return false;
566 
567 	if (!xdr_item_is_present(p))
568 		return true;
569 	if (!xdr_check_write_chunk(rctxt))
570 		return false;
571 
572 	rctxt->rc_reply_pcl.cl_count = 1;
573 	return pcl_alloc_write(rctxt, &rctxt->rc_reply_pcl, p);
574 }
575 
576 /* RPC-over-RDMA Version One private extension: Remote Invalidation.
577  * Responder's choice: requester signals it can handle Send With
578  * Invalidate, and responder chooses one R_key to invalidate.
579  *
580  * If there is exactly one distinct R_key in the received transport
581  * header, set rc_inv_rkey to that R_key. Otherwise, set it to zero.
582  */
583 static void svc_rdma_get_inv_rkey(struct svcxprt_rdma *rdma,
584 				  struct svc_rdma_recv_ctxt *ctxt)
585 {
586 	struct svc_rdma_segment *segment;
587 	struct svc_rdma_chunk *chunk;
588 	u32 inv_rkey;
589 
590 	ctxt->rc_inv_rkey = 0;
591 
592 	if (!rdma->sc_snd_w_inv)
593 		return;
594 
595 	inv_rkey = 0;
596 	pcl_for_each_chunk(chunk, &ctxt->rc_call_pcl) {
597 		pcl_for_each_segment(segment, chunk) {
598 			if (inv_rkey == 0)
599 				inv_rkey = segment->rs_handle;
600 			else if (inv_rkey != segment->rs_handle)
601 				return;
602 		}
603 	}
604 	pcl_for_each_chunk(chunk, &ctxt->rc_read_pcl) {
605 		pcl_for_each_segment(segment, chunk) {
606 			if (inv_rkey == 0)
607 				inv_rkey = segment->rs_handle;
608 			else if (inv_rkey != segment->rs_handle)
609 				return;
610 		}
611 	}
612 	pcl_for_each_chunk(chunk, &ctxt->rc_write_pcl) {
613 		pcl_for_each_segment(segment, chunk) {
614 			if (inv_rkey == 0)
615 				inv_rkey = segment->rs_handle;
616 			else if (inv_rkey != segment->rs_handle)
617 				return;
618 		}
619 	}
620 	pcl_for_each_chunk(chunk, &ctxt->rc_reply_pcl) {
621 		pcl_for_each_segment(segment, chunk) {
622 			if (inv_rkey == 0)
623 				inv_rkey = segment->rs_handle;
624 			else if (inv_rkey != segment->rs_handle)
625 				return;
626 		}
627 	}
628 	ctxt->rc_inv_rkey = inv_rkey;
629 }
630 
631 /**
632  * svc_rdma_xdr_decode_req - Decode the transport header
633  * @rq_arg: xdr_buf containing ingress RPC/RDMA message
634  * @rctxt: state of decoding
635  *
636  * On entry, xdr->head[0].iov_base points to first byte of the
637  * RPC-over-RDMA transport header.
638  *
639  * On successful exit, head[0] points to first byte past the
640  * RPC-over-RDMA header. For RDMA_MSG, this is the RPC message.
641  *
642  * The length of the RPC-over-RDMA header is returned.
643  *
644  * Assumptions:
645  * - The transport header is entirely contained in the head iovec.
646  */
647 static int svc_rdma_xdr_decode_req(struct xdr_buf *rq_arg,
648 				   struct svc_rdma_recv_ctxt *rctxt)
649 {
650 	__be32 *p, *rdma_argp;
651 	unsigned int hdr_len;
652 
653 	rdma_argp = rq_arg->head[0].iov_base;
654 	xdr_init_decode(&rctxt->rc_stream, rq_arg, rdma_argp, NULL);
655 
656 	p = xdr_inline_decode(&rctxt->rc_stream,
657 			      rpcrdma_fixed_maxsz * sizeof(*p));
658 	if (unlikely(!p))
659 		goto out_short;
660 	p++;
661 	if (*p != rpcrdma_version)
662 		goto out_version;
663 	p += 2;
664 	rctxt->rc_msgtype = *p;
665 	switch (rctxt->rc_msgtype) {
666 	case rdma_msg:
667 		break;
668 	case rdma_nomsg:
669 		break;
670 	case rdma_done:
671 		goto out_drop;
672 	case rdma_error:
673 		goto out_drop;
674 	default:
675 		goto out_proc;
676 	}
677 
678 	if (!xdr_check_read_list(rctxt))
679 		goto out_inval;
680 	if (!xdr_check_write_list(rctxt))
681 		goto out_inval;
682 	if (!xdr_check_reply_chunk(rctxt))
683 		goto out_inval;
684 
685 	rq_arg->head[0].iov_base = rctxt->rc_stream.p;
686 	hdr_len = xdr_stream_pos(&rctxt->rc_stream);
687 	rq_arg->head[0].iov_len -= hdr_len;
688 	rq_arg->len -= hdr_len;
689 	trace_svcrdma_decode_rqst(rctxt, rdma_argp, hdr_len);
690 	return hdr_len;
691 
692 out_short:
693 	trace_svcrdma_decode_short_err(rctxt, rq_arg->len);
694 	return -EINVAL;
695 
696 out_version:
697 	trace_svcrdma_decode_badvers_err(rctxt, rdma_argp);
698 	return -EPROTONOSUPPORT;
699 
700 out_drop:
701 	trace_svcrdma_decode_drop_err(rctxt, rdma_argp);
702 	return 0;
703 
704 out_proc:
705 	trace_svcrdma_decode_badproc_err(rctxt, rdma_argp);
706 	return -EINVAL;
707 
708 out_inval:
709 	trace_svcrdma_decode_parse_err(rctxt, rdma_argp);
710 	return -EINVAL;
711 }
712 
713 static void svc_rdma_send_error(struct svcxprt_rdma *rdma,
714 				struct svc_rdma_recv_ctxt *rctxt,
715 				int status)
716 {
717 	struct svc_rdma_send_ctxt *sctxt;
718 
719 	sctxt = svc_rdma_send_ctxt_get(rdma);
720 	if (!sctxt)
721 		return;
722 	svc_rdma_send_error_msg(rdma, sctxt, rctxt, status);
723 }
724 
725 /* By convention, backchannel calls arrive via rdma_msg type
726  * messages, and never populate the chunk lists. This makes
727  * the RPC/RDMA header small and fixed in size, so it is
728  * straightforward to check the RPC header's direction field.
729  */
730 static bool svc_rdma_is_reverse_direction_reply(struct svc_xprt *xprt,
731 						struct svc_rdma_recv_ctxt *rctxt)
732 {
733 	__be32 *p = rctxt->rc_recv_buf;
734 
735 	if (!xprt->xpt_bc_xprt)
736 		return false;
737 
738 	if (rctxt->rc_msgtype != rdma_msg)
739 		return false;
740 
741 	if (!pcl_is_empty(&rctxt->rc_call_pcl))
742 		return false;
743 	if (!pcl_is_empty(&rctxt->rc_read_pcl))
744 		return false;
745 	if (!pcl_is_empty(&rctxt->rc_write_pcl))
746 		return false;
747 	if (!pcl_is_empty(&rctxt->rc_reply_pcl))
748 		return false;
749 
750 	/* RPC call direction */
751 	if (*(p + 8) == cpu_to_be32(RPC_CALL))
752 		return false;
753 
754 	return true;
755 }
756 
757 /**
758  * svc_rdma_recvfrom - Receive an RPC call
759  * @rqstp: request structure into which to receive an RPC Call
760  *
761  * Returns:
762  *	The positive number of bytes in the RPC Call message,
763  *	%0 if there were no Calls ready to return,
764  *	%-EINVAL if the Read chunk data is too large,
765  *	%-ENOMEM if rdma_rw context pool was exhausted,
766  *	%-ENOTCONN if posting failed (connection is lost),
767  *	%-EIO if rdma_rw initialization failed (DMA mapping, etc).
768  *
769  * Called in a loop when XPT_DATA is set. XPT_DATA is cleared only
770  * when there are no remaining ctxt's to process.
771  *
772  * The next ctxt is removed from the "receive" lists.
773  *
774  * - If the ctxt completes a Receive, then construct the Call
775  *   message from the contents of the Receive buffer.
776  *
777  *   - If there are no Read chunks in this message, then finish
778  *     assembling the Call message and return the number of bytes
779  *     in the message.
780  *
781  *   - If there are Read chunks in this message, post Read WRs to
782  *     pull that payload. When the Read WRs complete, build the
783  *     full message and return the number of bytes in it.
784  */
785 int svc_rdma_recvfrom(struct svc_rqst *rqstp)
786 {
787 	struct svc_xprt *xprt = rqstp->rq_xprt;
788 	struct svcxprt_rdma *rdma_xprt =
789 		container_of(xprt, struct svcxprt_rdma, sc_xprt);
790 	struct svc_rdma_recv_ctxt *ctxt;
791 	int ret;
792 
793 	/* Prevent svc_xprt_release() from releasing pages in rq_pages
794 	 * when returning 0 or an error.
795 	 */
796 	rqstp->rq_respages = rqstp->rq_pages;
797 	rqstp->rq_next_page = rqstp->rq_respages;
798 
799 	rqstp->rq_xprt_ctxt = NULL;
800 
801 	ctxt = NULL;
802 	spin_lock(&rdma_xprt->sc_rq_dto_lock);
803 	ctxt = svc_rdma_next_recv_ctxt(&rdma_xprt->sc_rq_dto_q);
804 	if (ctxt)
805 		list_del(&ctxt->rc_list);
806 	else
807 		/* No new incoming requests, terminate the loop */
808 		clear_bit(XPT_DATA, &xprt->xpt_flags);
809 	spin_unlock(&rdma_xprt->sc_rq_dto_lock);
810 
811 	/* Unblock the transport for the next receive */
812 	svc_xprt_received(xprt);
813 	if (!ctxt)
814 		return 0;
815 
816 	percpu_counter_inc(&svcrdma_stat_recv);
817 	ib_dma_sync_single_for_cpu(rdma_xprt->sc_pd->device,
818 				   ctxt->rc_recv_sge.addr, ctxt->rc_byte_len,
819 				   DMA_FROM_DEVICE);
820 	svc_rdma_build_arg_xdr(rqstp, ctxt);
821 
822 	ret = svc_rdma_xdr_decode_req(&rqstp->rq_arg, ctxt);
823 	if (ret < 0)
824 		goto out_err;
825 	if (ret == 0)
826 		goto out_drop;
827 
828 	if (svc_rdma_is_reverse_direction_reply(xprt, ctxt))
829 		goto out_backchannel;
830 
831 	svc_rdma_get_inv_rkey(rdma_xprt, ctxt);
832 
833 	if (!pcl_is_empty(&ctxt->rc_read_pcl) ||
834 	    !pcl_is_empty(&ctxt->rc_call_pcl)) {
835 		ret = svc_rdma_process_read_list(rdma_xprt, rqstp, ctxt);
836 		if (ret < 0)
837 			goto out_readfail;
838 	}
839 
840 	rqstp->rq_xprt_ctxt = ctxt;
841 	rqstp->rq_prot = IPPROTO_MAX;
842 	svc_xprt_copy_addrs(rqstp, xprt);
843 	set_bit(RQ_SECURE, &rqstp->rq_flags);
844 	return rqstp->rq_arg.len;
845 
846 out_err:
847 	svc_rdma_send_error(rdma_xprt, ctxt, ret);
848 	svc_rdma_recv_ctxt_put(rdma_xprt, ctxt);
849 	return 0;
850 
851 out_readfail:
852 	if (ret == -EINVAL)
853 		svc_rdma_send_error(rdma_xprt, ctxt, ret);
854 	svc_rdma_recv_ctxt_put(rdma_xprt, ctxt);
855 	svc_xprt_deferred_close(xprt);
856 	return -ENOTCONN;
857 
858 out_backchannel:
859 	svc_rdma_handle_bc_reply(rqstp, ctxt);
860 out_drop:
861 	svc_rdma_recv_ctxt_put(rdma_xprt, ctxt);
862 	return 0;
863 }
864