1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (c) 2016-2018 Oracle. All rights reserved. 4 * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved. 5 * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the BSD-type 11 * license below: 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 17 * Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 20 * Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials provided 23 * with the distribution. 24 * 25 * Neither the name of the Network Appliance, Inc. nor the names of 26 * its contributors may be used to endorse or promote products 27 * derived from this software without specific prior written 28 * permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 41 * 42 * Author: Tom Tucker <tom@opengridcomputing.com> 43 */ 44 45 /* Operation 46 * 47 * The main entry point is svc_rdma_recvfrom. This is called from 48 * svc_recv when the transport indicates there is incoming data to 49 * be read. "Data Ready" is signaled when an RDMA Receive completes, 50 * or when a set of RDMA Reads complete. 51 * 52 * An svc_rqst is passed in. This structure contains an array of 53 * free pages (rq_pages) that will contain the incoming RPC message. 54 * 55 * Short messages are moved directly into svc_rqst::rq_arg, and 56 * the RPC Call is ready to be processed by the Upper Layer. 57 * svc_rdma_recvfrom returns the length of the RPC Call message, 58 * completing the reception of the RPC Call. 59 * 60 * However, when an incoming message has Read chunks, 61 * svc_rdma_recvfrom must post RDMA Reads to pull the RPC Call's 62 * data payload from the client. svc_rdma_recvfrom sets up the 63 * RDMA Reads using pages in svc_rqst::rq_pages, which are 64 * transferred to an svc_rdma_recv_ctxt for the duration of the 65 * I/O. svc_rdma_recvfrom then returns zero, since the RPC message 66 * is still not yet ready. 67 * 68 * When the Read chunk payloads have become available on the 69 * server, "Data Ready" is raised again, and svc_recv calls 70 * svc_rdma_recvfrom again. This second call may use a different 71 * svc_rqst than the first one, thus any information that needs 72 * to be preserved across these two calls is kept in an 73 * svc_rdma_recv_ctxt. 74 * 75 * The second call to svc_rdma_recvfrom performs final assembly 76 * of the RPC Call message, using the RDMA Read sink pages kept in 77 * the svc_rdma_recv_ctxt. The xdr_buf is copied from the 78 * svc_rdma_recv_ctxt to the second svc_rqst. The second call returns 79 * the length of the completed RPC Call message. 80 * 81 * Page Management 82 * 83 * Pages under I/O must be transferred from the first svc_rqst to an 84 * svc_rdma_recv_ctxt before the first svc_rdma_recvfrom call returns. 85 * 86 * The first svc_rqst supplies pages for RDMA Reads. These are moved 87 * from rqstp::rq_pages into ctxt::pages. The consumed elements of 88 * the rq_pages array are set to NULL and refilled with the first 89 * svc_rdma_recvfrom call returns. 90 * 91 * During the second svc_rdma_recvfrom call, RDMA Read sink pages 92 * are transferred from the svc_rdma_recv_ctxt to the second svc_rqst 93 * (see rdma_read_complete() below). 94 */ 95 96 #include <linux/slab.h> 97 #include <linux/spinlock.h> 98 #include <asm/unaligned.h> 99 #include <rdma/ib_verbs.h> 100 #include <rdma/rdma_cm.h> 101 102 #include <linux/sunrpc/xdr.h> 103 #include <linux/sunrpc/debug.h> 104 #include <linux/sunrpc/rpc_rdma.h> 105 #include <linux/sunrpc/svc_rdma.h> 106 107 #include "xprt_rdma.h" 108 #include <trace/events/rpcrdma.h> 109 110 #define RPCDBG_FACILITY RPCDBG_SVCXPRT 111 112 static void svc_rdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc); 113 114 static inline struct svc_rdma_recv_ctxt * 115 svc_rdma_next_recv_ctxt(struct list_head *list) 116 { 117 return list_first_entry_or_null(list, struct svc_rdma_recv_ctxt, 118 rc_list); 119 } 120 121 static void svc_rdma_recv_cid_init(struct svcxprt_rdma *rdma, 122 struct rpc_rdma_cid *cid) 123 { 124 cid->ci_queue_id = rdma->sc_rq_cq->res.id; 125 cid->ci_completion_id = atomic_inc_return(&rdma->sc_completion_ids); 126 } 127 128 static struct svc_rdma_recv_ctxt * 129 svc_rdma_recv_ctxt_alloc(struct svcxprt_rdma *rdma) 130 { 131 struct svc_rdma_recv_ctxt *ctxt; 132 dma_addr_t addr; 133 void *buffer; 134 135 ctxt = kmalloc(sizeof(*ctxt), GFP_KERNEL); 136 if (!ctxt) 137 goto fail0; 138 buffer = kmalloc(rdma->sc_max_req_size, GFP_KERNEL); 139 if (!buffer) 140 goto fail1; 141 addr = ib_dma_map_single(rdma->sc_pd->device, buffer, 142 rdma->sc_max_req_size, DMA_FROM_DEVICE); 143 if (ib_dma_mapping_error(rdma->sc_pd->device, addr)) 144 goto fail2; 145 146 svc_rdma_recv_cid_init(rdma, &ctxt->rc_cid); 147 pcl_init(&ctxt->rc_call_pcl); 148 pcl_init(&ctxt->rc_read_pcl); 149 pcl_init(&ctxt->rc_write_pcl); 150 pcl_init(&ctxt->rc_reply_pcl); 151 152 ctxt->rc_recv_wr.next = NULL; 153 ctxt->rc_recv_wr.wr_cqe = &ctxt->rc_cqe; 154 ctxt->rc_recv_wr.sg_list = &ctxt->rc_recv_sge; 155 ctxt->rc_recv_wr.num_sge = 1; 156 ctxt->rc_cqe.done = svc_rdma_wc_receive; 157 ctxt->rc_recv_sge.addr = addr; 158 ctxt->rc_recv_sge.length = rdma->sc_max_req_size; 159 ctxt->rc_recv_sge.lkey = rdma->sc_pd->local_dma_lkey; 160 ctxt->rc_recv_buf = buffer; 161 ctxt->rc_temp = false; 162 return ctxt; 163 164 fail2: 165 kfree(buffer); 166 fail1: 167 kfree(ctxt); 168 fail0: 169 return NULL; 170 } 171 172 static void svc_rdma_recv_ctxt_destroy(struct svcxprt_rdma *rdma, 173 struct svc_rdma_recv_ctxt *ctxt) 174 { 175 ib_dma_unmap_single(rdma->sc_pd->device, ctxt->rc_recv_sge.addr, 176 ctxt->rc_recv_sge.length, DMA_FROM_DEVICE); 177 kfree(ctxt->rc_recv_buf); 178 kfree(ctxt); 179 } 180 181 /** 182 * svc_rdma_recv_ctxts_destroy - Release all recv_ctxt's for an xprt 183 * @rdma: svcxprt_rdma being torn down 184 * 185 */ 186 void svc_rdma_recv_ctxts_destroy(struct svcxprt_rdma *rdma) 187 { 188 struct svc_rdma_recv_ctxt *ctxt; 189 struct llist_node *node; 190 191 while ((node = llist_del_first(&rdma->sc_recv_ctxts))) { 192 ctxt = llist_entry(node, struct svc_rdma_recv_ctxt, rc_node); 193 svc_rdma_recv_ctxt_destroy(rdma, ctxt); 194 } 195 } 196 197 /** 198 * svc_rdma_recv_ctxt_get - Allocate a recv_ctxt 199 * @rdma: controlling svcxprt_rdma 200 * 201 * Returns a recv_ctxt or (rarely) NULL if none are available. 202 */ 203 struct svc_rdma_recv_ctxt *svc_rdma_recv_ctxt_get(struct svcxprt_rdma *rdma) 204 { 205 struct svc_rdma_recv_ctxt *ctxt; 206 struct llist_node *node; 207 208 node = llist_del_first(&rdma->sc_recv_ctxts); 209 if (!node) 210 goto out_empty; 211 ctxt = llist_entry(node, struct svc_rdma_recv_ctxt, rc_node); 212 213 out: 214 ctxt->rc_page_count = 0; 215 return ctxt; 216 217 out_empty: 218 ctxt = svc_rdma_recv_ctxt_alloc(rdma); 219 if (!ctxt) 220 return NULL; 221 goto out; 222 } 223 224 /** 225 * svc_rdma_recv_ctxt_put - Return recv_ctxt to free list 226 * @rdma: controlling svcxprt_rdma 227 * @ctxt: object to return to the free list 228 * 229 */ 230 void svc_rdma_recv_ctxt_put(struct svcxprt_rdma *rdma, 231 struct svc_rdma_recv_ctxt *ctxt) 232 { 233 unsigned int i; 234 235 for (i = 0; i < ctxt->rc_page_count; i++) 236 put_page(ctxt->rc_pages[i]); 237 238 pcl_free(&ctxt->rc_call_pcl); 239 pcl_free(&ctxt->rc_read_pcl); 240 pcl_free(&ctxt->rc_write_pcl); 241 pcl_free(&ctxt->rc_reply_pcl); 242 243 if (!ctxt->rc_temp) 244 llist_add(&ctxt->rc_node, &rdma->sc_recv_ctxts); 245 else 246 svc_rdma_recv_ctxt_destroy(rdma, ctxt); 247 } 248 249 /** 250 * svc_rdma_release_rqst - Release transport-specific per-rqst resources 251 * @rqstp: svc_rqst being released 252 * 253 * Ensure that the recv_ctxt is released whether or not a Reply 254 * was sent. For example, the client could close the connection, 255 * or svc_process could drop an RPC, before the Reply is sent. 256 */ 257 void svc_rdma_release_rqst(struct svc_rqst *rqstp) 258 { 259 struct svc_rdma_recv_ctxt *ctxt = rqstp->rq_xprt_ctxt; 260 struct svc_xprt *xprt = rqstp->rq_xprt; 261 struct svcxprt_rdma *rdma = 262 container_of(xprt, struct svcxprt_rdma, sc_xprt); 263 264 rqstp->rq_xprt_ctxt = NULL; 265 if (ctxt) 266 svc_rdma_recv_ctxt_put(rdma, ctxt); 267 } 268 269 static bool svc_rdma_refresh_recvs(struct svcxprt_rdma *rdma, 270 unsigned int wanted, bool temp) 271 { 272 const struct ib_recv_wr *bad_wr = NULL; 273 struct svc_rdma_recv_ctxt *ctxt; 274 struct ib_recv_wr *recv_chain; 275 int ret; 276 277 recv_chain = NULL; 278 while (wanted--) { 279 ctxt = svc_rdma_recv_ctxt_get(rdma); 280 if (!ctxt) 281 break; 282 283 trace_svcrdma_post_recv(ctxt); 284 ctxt->rc_temp = temp; 285 ctxt->rc_recv_wr.next = recv_chain; 286 recv_chain = &ctxt->rc_recv_wr; 287 rdma->sc_pending_recvs++; 288 } 289 if (!recv_chain) 290 return false; 291 292 ret = ib_post_recv(rdma->sc_qp, recv_chain, &bad_wr); 293 if (ret) 294 goto err_post; 295 return true; 296 297 err_post: 298 while (bad_wr) { 299 ctxt = container_of(bad_wr, struct svc_rdma_recv_ctxt, 300 rc_recv_wr); 301 bad_wr = bad_wr->next; 302 svc_rdma_recv_ctxt_put(rdma, ctxt); 303 } 304 305 trace_svcrdma_rq_post_err(rdma, ret); 306 /* Since we're destroying the xprt, no need to reset 307 * sc_pending_recvs. */ 308 return false; 309 } 310 311 /** 312 * svc_rdma_post_recvs - Post initial set of Recv WRs 313 * @rdma: fresh svcxprt_rdma 314 * 315 * Returns true if successful, otherwise false. 316 */ 317 bool svc_rdma_post_recvs(struct svcxprt_rdma *rdma) 318 { 319 return svc_rdma_refresh_recvs(rdma, rdma->sc_max_requests, true); 320 } 321 322 /** 323 * svc_rdma_wc_receive - Invoked by RDMA provider for each polled Receive WC 324 * @cq: Completion Queue context 325 * @wc: Work Completion object 326 * 327 */ 328 static void svc_rdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc) 329 { 330 struct svcxprt_rdma *rdma = cq->cq_context; 331 struct ib_cqe *cqe = wc->wr_cqe; 332 struct svc_rdma_recv_ctxt *ctxt; 333 334 rdma->sc_pending_recvs--; 335 336 /* WARNING: Only wc->wr_cqe and wc->status are reliable */ 337 ctxt = container_of(cqe, struct svc_rdma_recv_ctxt, rc_cqe); 338 339 trace_svcrdma_wc_receive(wc, &ctxt->rc_cid); 340 if (wc->status != IB_WC_SUCCESS) 341 goto flushed; 342 343 /* All wc fields are now known to be valid */ 344 ctxt->rc_byte_len = wc->byte_len; 345 346 spin_lock(&rdma->sc_rq_dto_lock); 347 list_add_tail(&ctxt->rc_list, &rdma->sc_rq_dto_q); 348 /* Note the unlock pairs with the smp_rmb in svc_xprt_ready: */ 349 set_bit(XPT_DATA, &rdma->sc_xprt.xpt_flags); 350 spin_unlock(&rdma->sc_rq_dto_lock); 351 if (!test_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags)) 352 svc_xprt_enqueue(&rdma->sc_xprt); 353 354 if (!test_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags) && 355 rdma->sc_pending_recvs < rdma->sc_max_requests) 356 if (!svc_rdma_refresh_recvs(rdma, RPCRDMA_MAX_RECV_BATCH, 357 false)) 358 goto post_err; 359 360 return; 361 362 flushed: 363 svc_rdma_recv_ctxt_put(rdma, ctxt); 364 post_err: 365 set_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags); 366 svc_xprt_enqueue(&rdma->sc_xprt); 367 } 368 369 /** 370 * svc_rdma_flush_recv_queues - Drain pending Receive work 371 * @rdma: svcxprt_rdma being shut down 372 * 373 */ 374 void svc_rdma_flush_recv_queues(struct svcxprt_rdma *rdma) 375 { 376 struct svc_rdma_recv_ctxt *ctxt; 377 378 while ((ctxt = svc_rdma_next_recv_ctxt(&rdma->sc_read_complete_q))) { 379 list_del(&ctxt->rc_list); 380 svc_rdma_recv_ctxt_put(rdma, ctxt); 381 } 382 while ((ctxt = svc_rdma_next_recv_ctxt(&rdma->sc_rq_dto_q))) { 383 list_del(&ctxt->rc_list); 384 svc_rdma_recv_ctxt_put(rdma, ctxt); 385 } 386 } 387 388 static void svc_rdma_build_arg_xdr(struct svc_rqst *rqstp, 389 struct svc_rdma_recv_ctxt *ctxt) 390 { 391 struct xdr_buf *arg = &rqstp->rq_arg; 392 393 arg->head[0].iov_base = ctxt->rc_recv_buf; 394 arg->head[0].iov_len = ctxt->rc_byte_len; 395 arg->tail[0].iov_base = NULL; 396 arg->tail[0].iov_len = 0; 397 arg->page_len = 0; 398 arg->page_base = 0; 399 arg->buflen = ctxt->rc_byte_len; 400 arg->len = ctxt->rc_byte_len; 401 } 402 403 /** 404 * xdr_count_read_segments - Count number of Read segments in Read list 405 * @rctxt: Ingress receive context 406 * @p: Start of an un-decoded Read list 407 * 408 * Before allocating anything, ensure the ingress Read list is safe 409 * to use. 410 * 411 * The segment count is limited to how many segments can fit in the 412 * transport header without overflowing the buffer. That's about 40 413 * Read segments for a 1KB inline threshold. 414 * 415 * Return values: 416 * %true: Read list is valid. @rctxt's xdr_stream is updated to point 417 * to the first byte past the Read list. rc_read_pcl and 418 * rc_call_pcl cl_count fields are set to the number of 419 * Read segments in the list. 420 * %false: Read list is corrupt. @rctxt's xdr_stream is left in an 421 * unknown state. 422 */ 423 static bool xdr_count_read_segments(struct svc_rdma_recv_ctxt *rctxt, __be32 *p) 424 { 425 rctxt->rc_call_pcl.cl_count = 0; 426 rctxt->rc_read_pcl.cl_count = 0; 427 while (xdr_item_is_present(p)) { 428 u32 position, handle, length; 429 u64 offset; 430 431 p = xdr_inline_decode(&rctxt->rc_stream, 432 rpcrdma_readseg_maxsz * sizeof(*p)); 433 if (!p) 434 return false; 435 436 xdr_decode_read_segment(p, &position, &handle, 437 &length, &offset); 438 if (position) { 439 if (position & 3) 440 return false; 441 ++rctxt->rc_read_pcl.cl_count; 442 } else { 443 ++rctxt->rc_call_pcl.cl_count; 444 } 445 446 p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p)); 447 if (!p) 448 return false; 449 } 450 return true; 451 } 452 453 /* Sanity check the Read list. 454 * 455 * Sanity checks: 456 * - Read list does not overflow Receive buffer. 457 * - Chunk size limited by largest NFS data payload. 458 * 459 * Return values: 460 * %true: Read list is valid. @rctxt's xdr_stream is updated 461 * to point to the first byte past the Read list. 462 * %false: Read list is corrupt. @rctxt's xdr_stream is left 463 * in an unknown state. 464 */ 465 static bool xdr_check_read_list(struct svc_rdma_recv_ctxt *rctxt) 466 { 467 __be32 *p; 468 469 p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p)); 470 if (!p) 471 return false; 472 if (!xdr_count_read_segments(rctxt, p)) 473 return false; 474 if (!pcl_alloc_call(rctxt, p)) 475 return false; 476 return pcl_alloc_read(rctxt, p); 477 } 478 479 static bool xdr_check_write_chunk(struct svc_rdma_recv_ctxt *rctxt) 480 { 481 u32 segcount; 482 __be32 *p; 483 484 if (xdr_stream_decode_u32(&rctxt->rc_stream, &segcount)) 485 return false; 486 487 /* A bogus segcount causes this buffer overflow check to fail. */ 488 p = xdr_inline_decode(&rctxt->rc_stream, 489 segcount * rpcrdma_segment_maxsz * sizeof(*p)); 490 return p != NULL; 491 } 492 493 /** 494 * xdr_count_write_chunks - Count number of Write chunks in Write list 495 * @rctxt: Received header and decoding state 496 * @p: start of an un-decoded Write list 497 * 498 * Before allocating anything, ensure the ingress Write list is 499 * safe to use. 500 * 501 * Return values: 502 * %true: Write list is valid. @rctxt's xdr_stream is updated 503 * to point to the first byte past the Write list, and 504 * the number of Write chunks is in rc_write_pcl.cl_count. 505 * %false: Write list is corrupt. @rctxt's xdr_stream is left 506 * in an indeterminate state. 507 */ 508 static bool xdr_count_write_chunks(struct svc_rdma_recv_ctxt *rctxt, __be32 *p) 509 { 510 rctxt->rc_write_pcl.cl_count = 0; 511 while (xdr_item_is_present(p)) { 512 if (!xdr_check_write_chunk(rctxt)) 513 return false; 514 ++rctxt->rc_write_pcl.cl_count; 515 p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p)); 516 if (!p) 517 return false; 518 } 519 return true; 520 } 521 522 /* Sanity check the Write list. 523 * 524 * Implementation limits: 525 * - This implementation currently supports only one Write chunk. 526 * 527 * Sanity checks: 528 * - Write list does not overflow Receive buffer. 529 * - Chunk size limited by largest NFS data payload. 530 * 531 * Return values: 532 * %true: Write list is valid. @rctxt's xdr_stream is updated 533 * to point to the first byte past the Write list. 534 * %false: Write list is corrupt. @rctxt's xdr_stream is left 535 * in an unknown state. 536 */ 537 static bool xdr_check_write_list(struct svc_rdma_recv_ctxt *rctxt) 538 { 539 __be32 *p; 540 541 p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p)); 542 if (!p) 543 return false; 544 if (!xdr_count_write_chunks(rctxt, p)) 545 return false; 546 if (!pcl_alloc_write(rctxt, &rctxt->rc_write_pcl, p)) 547 return false; 548 549 rctxt->rc_cur_result_payload = pcl_first_chunk(&rctxt->rc_write_pcl); 550 return true; 551 } 552 553 /* Sanity check the Reply chunk. 554 * 555 * Sanity checks: 556 * - Reply chunk does not overflow Receive buffer. 557 * - Chunk size limited by largest NFS data payload. 558 * 559 * Return values: 560 * %true: Reply chunk is valid. @rctxt's xdr_stream is updated 561 * to point to the first byte past the Reply chunk. 562 * %false: Reply chunk is corrupt. @rctxt's xdr_stream is left 563 * in an unknown state. 564 */ 565 static bool xdr_check_reply_chunk(struct svc_rdma_recv_ctxt *rctxt) 566 { 567 __be32 *p; 568 569 p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p)); 570 if (!p) 571 return false; 572 573 if (!xdr_item_is_present(p)) 574 return true; 575 if (!xdr_check_write_chunk(rctxt)) 576 return false; 577 578 rctxt->rc_reply_pcl.cl_count = 1; 579 return pcl_alloc_write(rctxt, &rctxt->rc_reply_pcl, p); 580 } 581 582 /* RPC-over-RDMA Version One private extension: Remote Invalidation. 583 * Responder's choice: requester signals it can handle Send With 584 * Invalidate, and responder chooses one R_key to invalidate. 585 * 586 * If there is exactly one distinct R_key in the received transport 587 * header, set rc_inv_rkey to that R_key. Otherwise, set it to zero. 588 */ 589 static void svc_rdma_get_inv_rkey(struct svcxprt_rdma *rdma, 590 struct svc_rdma_recv_ctxt *ctxt) 591 { 592 struct svc_rdma_segment *segment; 593 struct svc_rdma_chunk *chunk; 594 u32 inv_rkey; 595 596 ctxt->rc_inv_rkey = 0; 597 598 if (!rdma->sc_snd_w_inv) 599 return; 600 601 inv_rkey = 0; 602 pcl_for_each_chunk(chunk, &ctxt->rc_call_pcl) { 603 pcl_for_each_segment(segment, chunk) { 604 if (inv_rkey == 0) 605 inv_rkey = segment->rs_handle; 606 else if (inv_rkey != segment->rs_handle) 607 return; 608 } 609 } 610 pcl_for_each_chunk(chunk, &ctxt->rc_read_pcl) { 611 pcl_for_each_segment(segment, chunk) { 612 if (inv_rkey == 0) 613 inv_rkey = segment->rs_handle; 614 else if (inv_rkey != segment->rs_handle) 615 return; 616 } 617 } 618 pcl_for_each_chunk(chunk, &ctxt->rc_write_pcl) { 619 pcl_for_each_segment(segment, chunk) { 620 if (inv_rkey == 0) 621 inv_rkey = segment->rs_handle; 622 else if (inv_rkey != segment->rs_handle) 623 return; 624 } 625 } 626 pcl_for_each_chunk(chunk, &ctxt->rc_reply_pcl) { 627 pcl_for_each_segment(segment, chunk) { 628 if (inv_rkey == 0) 629 inv_rkey = segment->rs_handle; 630 else if (inv_rkey != segment->rs_handle) 631 return; 632 } 633 } 634 ctxt->rc_inv_rkey = inv_rkey; 635 } 636 637 /** 638 * svc_rdma_xdr_decode_req - Decode the transport header 639 * @rq_arg: xdr_buf containing ingress RPC/RDMA message 640 * @rctxt: state of decoding 641 * 642 * On entry, xdr->head[0].iov_base points to first byte of the 643 * RPC-over-RDMA transport header. 644 * 645 * On successful exit, head[0] points to first byte past the 646 * RPC-over-RDMA header. For RDMA_MSG, this is the RPC message. 647 * 648 * The length of the RPC-over-RDMA header is returned. 649 * 650 * Assumptions: 651 * - The transport header is entirely contained in the head iovec. 652 */ 653 static int svc_rdma_xdr_decode_req(struct xdr_buf *rq_arg, 654 struct svc_rdma_recv_ctxt *rctxt) 655 { 656 __be32 *p, *rdma_argp; 657 unsigned int hdr_len; 658 659 rdma_argp = rq_arg->head[0].iov_base; 660 xdr_init_decode(&rctxt->rc_stream, rq_arg, rdma_argp, NULL); 661 662 p = xdr_inline_decode(&rctxt->rc_stream, 663 rpcrdma_fixed_maxsz * sizeof(*p)); 664 if (unlikely(!p)) 665 goto out_short; 666 p++; 667 if (*p != rpcrdma_version) 668 goto out_version; 669 p += 2; 670 rctxt->rc_msgtype = *p; 671 switch (rctxt->rc_msgtype) { 672 case rdma_msg: 673 break; 674 case rdma_nomsg: 675 break; 676 case rdma_done: 677 goto out_drop; 678 case rdma_error: 679 goto out_drop; 680 default: 681 goto out_proc; 682 } 683 684 if (!xdr_check_read_list(rctxt)) 685 goto out_inval; 686 if (!xdr_check_write_list(rctxt)) 687 goto out_inval; 688 if (!xdr_check_reply_chunk(rctxt)) 689 goto out_inval; 690 691 rq_arg->head[0].iov_base = rctxt->rc_stream.p; 692 hdr_len = xdr_stream_pos(&rctxt->rc_stream); 693 rq_arg->head[0].iov_len -= hdr_len; 694 rq_arg->len -= hdr_len; 695 trace_svcrdma_decode_rqst(rctxt, rdma_argp, hdr_len); 696 return hdr_len; 697 698 out_short: 699 trace_svcrdma_decode_short_err(rctxt, rq_arg->len); 700 return -EINVAL; 701 702 out_version: 703 trace_svcrdma_decode_badvers_err(rctxt, rdma_argp); 704 return -EPROTONOSUPPORT; 705 706 out_drop: 707 trace_svcrdma_decode_drop_err(rctxt, rdma_argp); 708 return 0; 709 710 out_proc: 711 trace_svcrdma_decode_badproc_err(rctxt, rdma_argp); 712 return -EINVAL; 713 714 out_inval: 715 trace_svcrdma_decode_parse_err(rctxt, rdma_argp); 716 return -EINVAL; 717 } 718 719 static void rdma_read_complete(struct svc_rqst *rqstp, 720 struct svc_rdma_recv_ctxt *head) 721 { 722 int page_no; 723 724 /* Move Read chunk pages to rqstp so that they will be released 725 * when svc_process is done with them. 726 */ 727 for (page_no = 0; page_no < head->rc_page_count; page_no++) { 728 put_page(rqstp->rq_pages[page_no]); 729 rqstp->rq_pages[page_no] = head->rc_pages[page_no]; 730 } 731 head->rc_page_count = 0; 732 733 /* Point rq_arg.pages past header */ 734 rqstp->rq_arg.pages = &rqstp->rq_pages[head->rc_hdr_count]; 735 rqstp->rq_arg.page_len = head->rc_arg.page_len; 736 737 /* rq_respages starts after the last arg page */ 738 rqstp->rq_respages = &rqstp->rq_pages[page_no]; 739 rqstp->rq_next_page = rqstp->rq_respages + 1; 740 741 /* Rebuild rq_arg head and tail. */ 742 rqstp->rq_arg.head[0] = head->rc_arg.head[0]; 743 rqstp->rq_arg.tail[0] = head->rc_arg.tail[0]; 744 rqstp->rq_arg.len = head->rc_arg.len; 745 rqstp->rq_arg.buflen = head->rc_arg.buflen; 746 } 747 748 static void svc_rdma_send_error(struct svcxprt_rdma *rdma, 749 struct svc_rdma_recv_ctxt *rctxt, 750 int status) 751 { 752 struct svc_rdma_send_ctxt *sctxt; 753 754 sctxt = svc_rdma_send_ctxt_get(rdma); 755 if (!sctxt) 756 return; 757 svc_rdma_send_error_msg(rdma, sctxt, rctxt, status); 758 } 759 760 /* By convention, backchannel calls arrive via rdma_msg type 761 * messages, and never populate the chunk lists. This makes 762 * the RPC/RDMA header small and fixed in size, so it is 763 * straightforward to check the RPC header's direction field. 764 */ 765 static bool svc_rdma_is_reverse_direction_reply(struct svc_xprt *xprt, 766 struct svc_rdma_recv_ctxt *rctxt) 767 { 768 __be32 *p = rctxt->rc_recv_buf; 769 770 if (!xprt->xpt_bc_xprt) 771 return false; 772 773 if (rctxt->rc_msgtype != rdma_msg) 774 return false; 775 776 if (!pcl_is_empty(&rctxt->rc_call_pcl)) 777 return false; 778 if (!pcl_is_empty(&rctxt->rc_read_pcl)) 779 return false; 780 if (!pcl_is_empty(&rctxt->rc_write_pcl)) 781 return false; 782 if (!pcl_is_empty(&rctxt->rc_reply_pcl)) 783 return false; 784 785 /* RPC call direction */ 786 if (*(p + 8) == cpu_to_be32(RPC_CALL)) 787 return false; 788 789 return true; 790 } 791 792 /** 793 * svc_rdma_recvfrom - Receive an RPC call 794 * @rqstp: request structure into which to receive an RPC Call 795 * 796 * Returns: 797 * The positive number of bytes in the RPC Call message, 798 * %0 if there were no Calls ready to return, 799 * %-EINVAL if the Read chunk data is too large, 800 * %-ENOMEM if rdma_rw context pool was exhausted, 801 * %-ENOTCONN if posting failed (connection is lost), 802 * %-EIO if rdma_rw initialization failed (DMA mapping, etc). 803 * 804 * Called in a loop when XPT_DATA is set. XPT_DATA is cleared only 805 * when there are no remaining ctxt's to process. 806 * 807 * The next ctxt is removed from the "receive" lists. 808 * 809 * - If the ctxt completes a Read, then finish assembling the Call 810 * message and return the number of bytes in the message. 811 * 812 * - If the ctxt completes a Receive, then construct the Call 813 * message from the contents of the Receive buffer. 814 * 815 * - If there are no Read chunks in this message, then finish 816 * assembling the Call message and return the number of bytes 817 * in the message. 818 * 819 * - If there are Read chunks in this message, post Read WRs to 820 * pull that payload and return 0. 821 */ 822 int svc_rdma_recvfrom(struct svc_rqst *rqstp) 823 { 824 struct svc_xprt *xprt = rqstp->rq_xprt; 825 struct svcxprt_rdma *rdma_xprt = 826 container_of(xprt, struct svcxprt_rdma, sc_xprt); 827 struct svc_rdma_recv_ctxt *ctxt; 828 int ret; 829 830 rqstp->rq_xprt_ctxt = NULL; 831 832 spin_lock(&rdma_xprt->sc_rq_dto_lock); 833 ctxt = svc_rdma_next_recv_ctxt(&rdma_xprt->sc_read_complete_q); 834 if (ctxt) { 835 list_del(&ctxt->rc_list); 836 spin_unlock(&rdma_xprt->sc_rq_dto_lock); 837 rdma_read_complete(rqstp, ctxt); 838 goto complete; 839 } 840 ctxt = svc_rdma_next_recv_ctxt(&rdma_xprt->sc_rq_dto_q); 841 if (!ctxt) { 842 /* No new incoming requests, terminate the loop */ 843 clear_bit(XPT_DATA, &xprt->xpt_flags); 844 spin_unlock(&rdma_xprt->sc_rq_dto_lock); 845 return 0; 846 } 847 list_del(&ctxt->rc_list); 848 spin_unlock(&rdma_xprt->sc_rq_dto_lock); 849 percpu_counter_inc(&svcrdma_stat_recv); 850 851 ib_dma_sync_single_for_cpu(rdma_xprt->sc_pd->device, 852 ctxt->rc_recv_sge.addr, ctxt->rc_byte_len, 853 DMA_FROM_DEVICE); 854 svc_rdma_build_arg_xdr(rqstp, ctxt); 855 856 /* Prevent svc_xprt_release from releasing pages in rq_pages 857 * if we return 0 or an error. 858 */ 859 rqstp->rq_respages = rqstp->rq_pages; 860 rqstp->rq_next_page = rqstp->rq_respages; 861 862 ret = svc_rdma_xdr_decode_req(&rqstp->rq_arg, ctxt); 863 if (ret < 0) 864 goto out_err; 865 if (ret == 0) 866 goto out_drop; 867 rqstp->rq_xprt_hlen = ret; 868 869 if (svc_rdma_is_reverse_direction_reply(xprt, ctxt)) 870 goto out_backchannel; 871 872 svc_rdma_get_inv_rkey(rdma_xprt, ctxt); 873 874 if (!pcl_is_empty(&ctxt->rc_read_pcl) || 875 !pcl_is_empty(&ctxt->rc_call_pcl)) 876 goto out_readlist; 877 878 complete: 879 rqstp->rq_xprt_ctxt = ctxt; 880 rqstp->rq_prot = IPPROTO_MAX; 881 svc_xprt_copy_addrs(rqstp, xprt); 882 return rqstp->rq_arg.len; 883 884 out_readlist: 885 ret = svc_rdma_process_read_list(rdma_xprt, rqstp, ctxt); 886 if (ret < 0) 887 goto out_readfail; 888 return 0; 889 890 out_err: 891 svc_rdma_send_error(rdma_xprt, ctxt, ret); 892 svc_rdma_recv_ctxt_put(rdma_xprt, ctxt); 893 return 0; 894 895 out_readfail: 896 if (ret == -EINVAL) 897 svc_rdma_send_error(rdma_xprt, ctxt, ret); 898 svc_rdma_recv_ctxt_put(rdma_xprt, ctxt); 899 return ret; 900 901 out_backchannel: 902 svc_rdma_handle_bc_reply(rqstp, ctxt); 903 out_drop: 904 svc_rdma_recv_ctxt_put(rdma_xprt, ctxt); 905 return 0; 906 } 907