1 /* 2 * Copyright (c) 2014-2017 Oracle. All rights reserved. 3 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the BSD-type 9 * license below: 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 15 * Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 18 * Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials provided 21 * with the distribution. 22 * 23 * Neither the name of the Network Appliance, Inc. nor the names of 24 * its contributors may be used to endorse or promote products 25 * derived from this software without specific prior written 26 * permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 */ 40 41 /* 42 * rpc_rdma.c 43 * 44 * This file contains the guts of the RPC RDMA protocol, and 45 * does marshaling/unmarshaling, etc. It is also where interfacing 46 * to the Linux RPC framework lives. 47 */ 48 49 #include "xprt_rdma.h" 50 51 #include <linux/highmem.h> 52 53 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 54 # define RPCDBG_FACILITY RPCDBG_TRANS 55 #endif 56 57 static const char transfertypes[][12] = { 58 "inline", /* no chunks */ 59 "read list", /* some argument via rdma read */ 60 "*read list", /* entire request via rdma read */ 61 "write list", /* some result via rdma write */ 62 "reply chunk" /* entire reply via rdma write */ 63 }; 64 65 /* Returns size of largest RPC-over-RDMA header in a Call message 66 * 67 * The largest Call header contains a full-size Read list and a 68 * minimal Reply chunk. 69 */ 70 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs) 71 { 72 unsigned int size; 73 74 /* Fixed header fields and list discriminators */ 75 size = RPCRDMA_HDRLEN_MIN; 76 77 /* Maximum Read list size */ 78 maxsegs += 2; /* segment for head and tail buffers */ 79 size = maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32); 80 81 /* Minimal Read chunk size */ 82 size += sizeof(__be32); /* segment count */ 83 size += rpcrdma_segment_maxsz * sizeof(__be32); 84 size += sizeof(__be32); /* list discriminator */ 85 86 dprintk("RPC: %s: max call header size = %u\n", 87 __func__, size); 88 return size; 89 } 90 91 /* Returns size of largest RPC-over-RDMA header in a Reply message 92 * 93 * There is only one Write list or one Reply chunk per Reply 94 * message. The larger list is the Write list. 95 */ 96 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs) 97 { 98 unsigned int size; 99 100 /* Fixed header fields and list discriminators */ 101 size = RPCRDMA_HDRLEN_MIN; 102 103 /* Maximum Write list size */ 104 maxsegs += 2; /* segment for head and tail buffers */ 105 size = sizeof(__be32); /* segment count */ 106 size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32); 107 size += sizeof(__be32); /* list discriminator */ 108 109 dprintk("RPC: %s: max reply header size = %u\n", 110 __func__, size); 111 return size; 112 } 113 114 void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt) 115 { 116 struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; 117 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 118 unsigned int maxsegs = ia->ri_max_segs; 119 120 ia->ri_max_inline_write = cdata->inline_wsize - 121 rpcrdma_max_call_header_size(maxsegs); 122 ia->ri_max_inline_read = cdata->inline_rsize - 123 rpcrdma_max_reply_header_size(maxsegs); 124 } 125 126 /* The client can send a request inline as long as the RPCRDMA header 127 * plus the RPC call fit under the transport's inline limit. If the 128 * combined call message size exceeds that limit, the client must use 129 * a Read chunk for this operation. 130 * 131 * A Read chunk is also required if sending the RPC call inline would 132 * exceed this device's max_sge limit. 133 */ 134 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt, 135 struct rpc_rqst *rqst) 136 { 137 struct xdr_buf *xdr = &rqst->rq_snd_buf; 138 unsigned int count, remaining, offset; 139 140 if (xdr->len > r_xprt->rx_ia.ri_max_inline_write) 141 return false; 142 143 if (xdr->page_len) { 144 remaining = xdr->page_len; 145 offset = offset_in_page(xdr->page_base); 146 count = RPCRDMA_MIN_SEND_SGES; 147 while (remaining) { 148 remaining -= min_t(unsigned int, 149 PAGE_SIZE - offset, remaining); 150 offset = 0; 151 if (++count > r_xprt->rx_ia.ri_max_send_sges) 152 return false; 153 } 154 } 155 156 return true; 157 } 158 159 /* The client can't know how large the actual reply will be. Thus it 160 * plans for the largest possible reply for that particular ULP 161 * operation. If the maximum combined reply message size exceeds that 162 * limit, the client must provide a write list or a reply chunk for 163 * this request. 164 */ 165 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt, 166 struct rpc_rqst *rqst) 167 { 168 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 169 170 return rqst->rq_rcv_buf.buflen <= ia->ri_max_inline_read; 171 } 172 173 /* Split @vec on page boundaries into SGEs. FMR registers pages, not 174 * a byte range. Other modes coalesce these SGEs into a single MR 175 * when they can. 176 * 177 * Returns pointer to next available SGE, and bumps the total number 178 * of SGEs consumed. 179 */ 180 static struct rpcrdma_mr_seg * 181 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg, 182 unsigned int *n) 183 { 184 u32 remaining, page_offset; 185 char *base; 186 187 base = vec->iov_base; 188 page_offset = offset_in_page(base); 189 remaining = vec->iov_len; 190 while (remaining) { 191 seg->mr_page = NULL; 192 seg->mr_offset = base; 193 seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining); 194 remaining -= seg->mr_len; 195 base += seg->mr_len; 196 ++seg; 197 ++(*n); 198 page_offset = 0; 199 } 200 return seg; 201 } 202 203 /* Convert @xdrbuf into SGEs no larger than a page each. As they 204 * are registered, these SGEs are then coalesced into RDMA segments 205 * when the selected memreg mode supports it. 206 * 207 * Returns positive number of SGEs consumed, or a negative errno. 208 */ 209 210 static int 211 rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf, 212 unsigned int pos, enum rpcrdma_chunktype type, 213 struct rpcrdma_mr_seg *seg) 214 { 215 unsigned long page_base; 216 unsigned int len, n; 217 struct page **ppages; 218 219 n = 0; 220 if (pos == 0) 221 seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n); 222 223 len = xdrbuf->page_len; 224 ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT); 225 page_base = offset_in_page(xdrbuf->page_base); 226 while (len) { 227 if (unlikely(!*ppages)) { 228 /* XXX: Certain upper layer operations do 229 * not provide receive buffer pages. 230 */ 231 *ppages = alloc_page(GFP_ATOMIC); 232 if (!*ppages) 233 return -EAGAIN; 234 } 235 seg->mr_page = *ppages; 236 seg->mr_offset = (char *)page_base; 237 seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len); 238 len -= seg->mr_len; 239 ++ppages; 240 ++seg; 241 ++n; 242 page_base = 0; 243 } 244 245 /* When encoding a Read chunk, the tail iovec contains an 246 * XDR pad and may be omitted. 247 */ 248 if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup) 249 goto out; 250 251 /* When encoding a Write chunk, some servers need to see an 252 * extra segment for non-XDR-aligned Write chunks. The upper 253 * layer provides space in the tail iovec that may be used 254 * for this purpose. 255 */ 256 if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup) 257 goto out; 258 259 if (xdrbuf->tail[0].iov_len) 260 seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n); 261 262 out: 263 if (unlikely(n > RPCRDMA_MAX_SEGS)) 264 return -EIO; 265 return n; 266 } 267 268 static inline int 269 encode_item_present(struct xdr_stream *xdr) 270 { 271 __be32 *p; 272 273 p = xdr_reserve_space(xdr, sizeof(*p)); 274 if (unlikely(!p)) 275 return -EMSGSIZE; 276 277 *p = xdr_one; 278 return 0; 279 } 280 281 static inline int 282 encode_item_not_present(struct xdr_stream *xdr) 283 { 284 __be32 *p; 285 286 p = xdr_reserve_space(xdr, sizeof(*p)); 287 if (unlikely(!p)) 288 return -EMSGSIZE; 289 290 *p = xdr_zero; 291 return 0; 292 } 293 294 static void 295 xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mr *mr) 296 { 297 *iptr++ = cpu_to_be32(mr->mr_handle); 298 *iptr++ = cpu_to_be32(mr->mr_length); 299 xdr_encode_hyper(iptr, mr->mr_offset); 300 } 301 302 static int 303 encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr) 304 { 305 __be32 *p; 306 307 p = xdr_reserve_space(xdr, 4 * sizeof(*p)); 308 if (unlikely(!p)) 309 return -EMSGSIZE; 310 311 xdr_encode_rdma_segment(p, mr); 312 return 0; 313 } 314 315 static int 316 encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr, 317 u32 position) 318 { 319 __be32 *p; 320 321 p = xdr_reserve_space(xdr, 6 * sizeof(*p)); 322 if (unlikely(!p)) 323 return -EMSGSIZE; 324 325 *p++ = xdr_one; /* Item present */ 326 *p++ = cpu_to_be32(position); 327 xdr_encode_rdma_segment(p, mr); 328 return 0; 329 } 330 331 /* Register and XDR encode the Read list. Supports encoding a list of read 332 * segments that belong to a single read chunk. 333 * 334 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): 335 * 336 * Read chunklist (a linked list): 337 * N elements, position P (same P for all chunks of same arg!): 338 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0 339 * 340 * Returns zero on success, or a negative errno if a failure occurred. 341 * @xdr is advanced to the next position in the stream. 342 * 343 * Only a single @pos value is currently supported. 344 */ 345 static noinline int 346 rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, 347 struct rpc_rqst *rqst, enum rpcrdma_chunktype rtype) 348 { 349 struct xdr_stream *xdr = &req->rl_stream; 350 struct rpcrdma_mr_seg *seg; 351 struct rpcrdma_mr *mr; 352 unsigned int pos; 353 int nsegs; 354 355 pos = rqst->rq_snd_buf.head[0].iov_len; 356 if (rtype == rpcrdma_areadch) 357 pos = 0; 358 seg = req->rl_segments; 359 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos, 360 rtype, seg); 361 if (nsegs < 0) 362 return nsegs; 363 364 do { 365 seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs, 366 false, &mr); 367 if (IS_ERR(seg)) 368 return PTR_ERR(seg); 369 rpcrdma_mr_push(mr, &req->rl_registered); 370 371 if (encode_read_segment(xdr, mr, pos) < 0) 372 return -EMSGSIZE; 373 374 trace_xprtrdma_read_chunk(rqst->rq_task, pos, mr, nsegs); 375 r_xprt->rx_stats.read_chunk_count++; 376 nsegs -= mr->mr_nents; 377 } while (nsegs); 378 379 return 0; 380 } 381 382 /* Register and XDR encode the Write list. Supports encoding a list 383 * containing one array of plain segments that belong to a single 384 * write chunk. 385 * 386 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): 387 * 388 * Write chunklist (a list of (one) counted array): 389 * N elements: 390 * 1 - N - HLOO - HLOO - ... - HLOO - 0 391 * 392 * Returns zero on success, or a negative errno if a failure occurred. 393 * @xdr is advanced to the next position in the stream. 394 * 395 * Only a single Write chunk is currently supported. 396 */ 397 static noinline int 398 rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, 399 struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype) 400 { 401 struct xdr_stream *xdr = &req->rl_stream; 402 struct rpcrdma_mr_seg *seg; 403 struct rpcrdma_mr *mr; 404 int nsegs, nchunks; 405 __be32 *segcount; 406 407 seg = req->rl_segments; 408 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 409 rqst->rq_rcv_buf.head[0].iov_len, 410 wtype, seg); 411 if (nsegs < 0) 412 return nsegs; 413 414 if (encode_item_present(xdr) < 0) 415 return -EMSGSIZE; 416 segcount = xdr_reserve_space(xdr, sizeof(*segcount)); 417 if (unlikely(!segcount)) 418 return -EMSGSIZE; 419 /* Actual value encoded below */ 420 421 nchunks = 0; 422 do { 423 seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs, 424 true, &mr); 425 if (IS_ERR(seg)) 426 return PTR_ERR(seg); 427 rpcrdma_mr_push(mr, &req->rl_registered); 428 429 if (encode_rdma_segment(xdr, mr) < 0) 430 return -EMSGSIZE; 431 432 trace_xprtrdma_write_chunk(rqst->rq_task, mr, nsegs); 433 r_xprt->rx_stats.write_chunk_count++; 434 r_xprt->rx_stats.total_rdma_request += mr->mr_length; 435 nchunks++; 436 nsegs -= mr->mr_nents; 437 } while (nsegs); 438 439 /* Update count of segments in this Write chunk */ 440 *segcount = cpu_to_be32(nchunks); 441 442 return 0; 443 } 444 445 /* Register and XDR encode the Reply chunk. Supports encoding an array 446 * of plain segments that belong to a single write (reply) chunk. 447 * 448 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): 449 * 450 * Reply chunk (a counted array): 451 * N elements: 452 * 1 - N - HLOO - HLOO - ... - HLOO 453 * 454 * Returns zero on success, or a negative errno if a failure occurred. 455 * @xdr is advanced to the next position in the stream. 456 */ 457 static noinline int 458 rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, 459 struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype) 460 { 461 struct xdr_stream *xdr = &req->rl_stream; 462 struct rpcrdma_mr_seg *seg; 463 struct rpcrdma_mr *mr; 464 int nsegs, nchunks; 465 __be32 *segcount; 466 467 seg = req->rl_segments; 468 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg); 469 if (nsegs < 0) 470 return nsegs; 471 472 if (encode_item_present(xdr) < 0) 473 return -EMSGSIZE; 474 segcount = xdr_reserve_space(xdr, sizeof(*segcount)); 475 if (unlikely(!segcount)) 476 return -EMSGSIZE; 477 /* Actual value encoded below */ 478 479 nchunks = 0; 480 do { 481 seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs, 482 true, &mr); 483 if (IS_ERR(seg)) 484 return PTR_ERR(seg); 485 rpcrdma_mr_push(mr, &req->rl_registered); 486 487 if (encode_rdma_segment(xdr, mr) < 0) 488 return -EMSGSIZE; 489 490 trace_xprtrdma_reply_chunk(rqst->rq_task, mr, nsegs); 491 r_xprt->rx_stats.reply_chunk_count++; 492 r_xprt->rx_stats.total_rdma_request += mr->mr_length; 493 nchunks++; 494 nsegs -= mr->mr_nents; 495 } while (nsegs); 496 497 /* Update count of segments in the Reply chunk */ 498 *segcount = cpu_to_be32(nchunks); 499 500 return 0; 501 } 502 503 /** 504 * rpcrdma_unmap_sendctx - DMA-unmap Send buffers 505 * @sc: sendctx containing SGEs to unmap 506 * 507 */ 508 void 509 rpcrdma_unmap_sendctx(struct rpcrdma_sendctx *sc) 510 { 511 struct rpcrdma_ia *ia = &sc->sc_xprt->rx_ia; 512 struct ib_sge *sge; 513 unsigned int count; 514 515 /* The first two SGEs contain the transport header and 516 * the inline buffer. These are always left mapped so 517 * they can be cheaply re-used. 518 */ 519 sge = &sc->sc_sges[2]; 520 for (count = sc->sc_unmap_count; count; ++sge, --count) 521 ib_dma_unmap_page(ia->ri_device, 522 sge->addr, sge->length, DMA_TO_DEVICE); 523 524 if (test_and_clear_bit(RPCRDMA_REQ_F_TX_RESOURCES, &sc->sc_req->rl_flags)) { 525 smp_mb__after_atomic(); 526 wake_up_bit(&sc->sc_req->rl_flags, RPCRDMA_REQ_F_TX_RESOURCES); 527 } 528 } 529 530 /* Prepare an SGE for the RPC-over-RDMA transport header. 531 */ 532 static bool 533 rpcrdma_prepare_hdr_sge(struct rpcrdma_ia *ia, struct rpcrdma_req *req, 534 u32 len) 535 { 536 struct rpcrdma_sendctx *sc = req->rl_sendctx; 537 struct rpcrdma_regbuf *rb = req->rl_rdmabuf; 538 struct ib_sge *sge = sc->sc_sges; 539 540 if (!rpcrdma_dma_map_regbuf(ia, rb)) 541 goto out_regbuf; 542 sge->addr = rdmab_addr(rb); 543 sge->length = len; 544 sge->lkey = rdmab_lkey(rb); 545 546 ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, 547 sge->length, DMA_TO_DEVICE); 548 sc->sc_wr.num_sge++; 549 return true; 550 551 out_regbuf: 552 pr_err("rpcrdma: failed to DMA map a Send buffer\n"); 553 return false; 554 } 555 556 /* Prepare the Send SGEs. The head and tail iovec, and each entry 557 * in the page list, gets its own SGE. 558 */ 559 static bool 560 rpcrdma_prepare_msg_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req, 561 struct xdr_buf *xdr, enum rpcrdma_chunktype rtype) 562 { 563 struct rpcrdma_sendctx *sc = req->rl_sendctx; 564 unsigned int sge_no, page_base, len, remaining; 565 struct rpcrdma_regbuf *rb = req->rl_sendbuf; 566 struct ib_device *device = ia->ri_device; 567 struct ib_sge *sge = sc->sc_sges; 568 u32 lkey = ia->ri_pd->local_dma_lkey; 569 struct page *page, **ppages; 570 571 /* The head iovec is straightforward, as it is already 572 * DMA-mapped. Sync the content that has changed. 573 */ 574 if (!rpcrdma_dma_map_regbuf(ia, rb)) 575 goto out_regbuf; 576 sge_no = 1; 577 sge[sge_no].addr = rdmab_addr(rb); 578 sge[sge_no].length = xdr->head[0].iov_len; 579 sge[sge_no].lkey = rdmab_lkey(rb); 580 ib_dma_sync_single_for_device(rdmab_device(rb), sge[sge_no].addr, 581 sge[sge_no].length, DMA_TO_DEVICE); 582 583 /* If there is a Read chunk, the page list is being handled 584 * via explicit RDMA, and thus is skipped here. However, the 585 * tail iovec may include an XDR pad for the page list, as 586 * well as additional content, and may not reside in the 587 * same page as the head iovec. 588 */ 589 if (rtype == rpcrdma_readch) { 590 len = xdr->tail[0].iov_len; 591 592 /* Do not include the tail if it is only an XDR pad */ 593 if (len < 4) 594 goto out; 595 596 page = virt_to_page(xdr->tail[0].iov_base); 597 page_base = offset_in_page(xdr->tail[0].iov_base); 598 599 /* If the content in the page list is an odd length, 600 * xdr_write_pages() has added a pad at the beginning 601 * of the tail iovec. Force the tail's non-pad content 602 * to land at the next XDR position in the Send message. 603 */ 604 page_base += len & 3; 605 len -= len & 3; 606 goto map_tail; 607 } 608 609 /* If there is a page list present, temporarily DMA map 610 * and prepare an SGE for each page to be sent. 611 */ 612 if (xdr->page_len) { 613 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT); 614 page_base = offset_in_page(xdr->page_base); 615 remaining = xdr->page_len; 616 while (remaining) { 617 sge_no++; 618 if (sge_no > RPCRDMA_MAX_SEND_SGES - 2) 619 goto out_mapping_overflow; 620 621 len = min_t(u32, PAGE_SIZE - page_base, remaining); 622 sge[sge_no].addr = ib_dma_map_page(device, *ppages, 623 page_base, len, 624 DMA_TO_DEVICE); 625 if (ib_dma_mapping_error(device, sge[sge_no].addr)) 626 goto out_mapping_err; 627 sge[sge_no].length = len; 628 sge[sge_no].lkey = lkey; 629 630 sc->sc_unmap_count++; 631 ppages++; 632 remaining -= len; 633 page_base = 0; 634 } 635 } 636 637 /* The tail iovec is not always constructed in the same 638 * page where the head iovec resides (see, for example, 639 * gss_wrap_req_priv). To neatly accommodate that case, 640 * DMA map it separately. 641 */ 642 if (xdr->tail[0].iov_len) { 643 page = virt_to_page(xdr->tail[0].iov_base); 644 page_base = offset_in_page(xdr->tail[0].iov_base); 645 len = xdr->tail[0].iov_len; 646 647 map_tail: 648 sge_no++; 649 sge[sge_no].addr = ib_dma_map_page(device, page, 650 page_base, len, 651 DMA_TO_DEVICE); 652 if (ib_dma_mapping_error(device, sge[sge_no].addr)) 653 goto out_mapping_err; 654 sge[sge_no].length = len; 655 sge[sge_no].lkey = lkey; 656 sc->sc_unmap_count++; 657 } 658 659 out: 660 sc->sc_wr.num_sge += sge_no; 661 if (sc->sc_unmap_count) 662 __set_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags); 663 return true; 664 665 out_regbuf: 666 pr_err("rpcrdma: failed to DMA map a Send buffer\n"); 667 return false; 668 669 out_mapping_overflow: 670 rpcrdma_unmap_sendctx(sc); 671 pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no); 672 return false; 673 674 out_mapping_err: 675 rpcrdma_unmap_sendctx(sc); 676 pr_err("rpcrdma: Send mapping error\n"); 677 return false; 678 } 679 680 /** 681 * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR 682 * @r_xprt: controlling transport 683 * @req: context of RPC Call being marshalled 684 * @hdrlen: size of transport header, in bytes 685 * @xdr: xdr_buf containing RPC Call 686 * @rtype: chunk type being encoded 687 * 688 * Returns 0 on success; otherwise a negative errno is returned. 689 */ 690 int 691 rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt, 692 struct rpcrdma_req *req, u32 hdrlen, 693 struct xdr_buf *xdr, enum rpcrdma_chunktype rtype) 694 { 695 req->rl_sendctx = rpcrdma_sendctx_get_locked(&r_xprt->rx_buf); 696 if (!req->rl_sendctx) 697 return -ENOBUFS; 698 req->rl_sendctx->sc_wr.num_sge = 0; 699 req->rl_sendctx->sc_unmap_count = 0; 700 req->rl_sendctx->sc_req = req; 701 __clear_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags); 702 703 if (!rpcrdma_prepare_hdr_sge(&r_xprt->rx_ia, req, hdrlen)) 704 return -EIO; 705 706 if (rtype != rpcrdma_areadch) 707 if (!rpcrdma_prepare_msg_sges(&r_xprt->rx_ia, req, xdr, rtype)) 708 return -EIO; 709 710 return 0; 711 } 712 713 /** 714 * rpcrdma_marshal_req - Marshal and send one RPC request 715 * @r_xprt: controlling transport 716 * @rqst: RPC request to be marshaled 717 * 718 * For the RPC in "rqst", this function: 719 * - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG) 720 * - Registers Read, Write, and Reply chunks 721 * - Constructs the transport header 722 * - Posts a Send WR to send the transport header and request 723 * 724 * Returns: 725 * %0 if the RPC was sent successfully, 726 * %-ENOTCONN if the connection was lost, 727 * %-EAGAIN if not enough pages are available for on-demand reply buffer, 728 * %-ENOBUFS if no MRs are available to register chunks, 729 * %-EMSGSIZE if the transport header is too small, 730 * %-EIO if a permanent problem occurred while marshaling. 731 */ 732 int 733 rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst) 734 { 735 struct rpcrdma_req *req = rpcr_to_rdmar(rqst); 736 struct xdr_stream *xdr = &req->rl_stream; 737 enum rpcrdma_chunktype rtype, wtype; 738 bool ddp_allowed; 739 __be32 *p; 740 int ret; 741 742 rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0); 743 xdr_init_encode(xdr, &req->rl_hdrbuf, 744 req->rl_rdmabuf->rg_base); 745 746 /* Fixed header fields */ 747 ret = -EMSGSIZE; 748 p = xdr_reserve_space(xdr, 4 * sizeof(*p)); 749 if (!p) 750 goto out_err; 751 *p++ = rqst->rq_xid; 752 *p++ = rpcrdma_version; 753 *p++ = cpu_to_be32(r_xprt->rx_buf.rb_max_requests); 754 755 /* When the ULP employs a GSS flavor that guarantees integrity 756 * or privacy, direct data placement of individual data items 757 * is not allowed. 758 */ 759 ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags & 760 RPCAUTH_AUTH_DATATOUCH); 761 762 /* 763 * Chunks needed for results? 764 * 765 * o If the expected result is under the inline threshold, all ops 766 * return as inline. 767 * o Large read ops return data as write chunk(s), header as 768 * inline. 769 * o Large non-read ops return as a single reply chunk. 770 */ 771 if (rpcrdma_results_inline(r_xprt, rqst)) 772 wtype = rpcrdma_noch; 773 else if (ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) 774 wtype = rpcrdma_writech; 775 else 776 wtype = rpcrdma_replych; 777 778 /* 779 * Chunks needed for arguments? 780 * 781 * o If the total request is under the inline threshold, all ops 782 * are sent as inline. 783 * o Large write ops transmit data as read chunk(s), header as 784 * inline. 785 * o Large non-write ops are sent with the entire message as a 786 * single read chunk (protocol 0-position special case). 787 * 788 * This assumes that the upper layer does not present a request 789 * that both has a data payload, and whose non-data arguments 790 * by themselves are larger than the inline threshold. 791 */ 792 if (rpcrdma_args_inline(r_xprt, rqst)) { 793 *p++ = rdma_msg; 794 rtype = rpcrdma_noch; 795 } else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) { 796 *p++ = rdma_msg; 797 rtype = rpcrdma_readch; 798 } else { 799 r_xprt->rx_stats.nomsg_call_count++; 800 *p++ = rdma_nomsg; 801 rtype = rpcrdma_areadch; 802 } 803 804 /* If this is a retransmit, discard previously registered 805 * chunks. Very likely the connection has been replaced, 806 * so these registrations are invalid and unusable. 807 */ 808 while (unlikely(!list_empty(&req->rl_registered))) { 809 struct rpcrdma_mr *mr; 810 811 mr = rpcrdma_mr_pop(&req->rl_registered); 812 rpcrdma_mr_defer_recovery(mr); 813 } 814 815 /* This implementation supports the following combinations 816 * of chunk lists in one RPC-over-RDMA Call message: 817 * 818 * - Read list 819 * - Write list 820 * - Reply chunk 821 * - Read list + Reply chunk 822 * 823 * It might not yet support the following combinations: 824 * 825 * - Read list + Write list 826 * 827 * It does not support the following combinations: 828 * 829 * - Write list + Reply chunk 830 * - Read list + Write list + Reply chunk 831 * 832 * This implementation supports only a single chunk in each 833 * Read or Write list. Thus for example the client cannot 834 * send a Call message with a Position Zero Read chunk and a 835 * regular Read chunk at the same time. 836 */ 837 if (rtype != rpcrdma_noch) { 838 ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype); 839 if (ret) 840 goto out_err; 841 } 842 ret = encode_item_not_present(xdr); 843 if (ret) 844 goto out_err; 845 846 if (wtype == rpcrdma_writech) { 847 ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype); 848 if (ret) 849 goto out_err; 850 } 851 ret = encode_item_not_present(xdr); 852 if (ret) 853 goto out_err; 854 855 if (wtype != rpcrdma_replych) 856 ret = encode_item_not_present(xdr); 857 else 858 ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype); 859 if (ret) 860 goto out_err; 861 862 trace_xprtrdma_marshal(rqst, xdr_stream_pos(xdr), rtype, wtype); 863 864 ret = rpcrdma_prepare_send_sges(r_xprt, req, xdr_stream_pos(xdr), 865 &rqst->rq_snd_buf, rtype); 866 if (ret) 867 goto out_err; 868 return 0; 869 870 out_err: 871 if (ret != -ENOBUFS) { 872 pr_err("rpcrdma: header marshaling failed (%d)\n", ret); 873 r_xprt->rx_stats.failed_marshal_count++; 874 } 875 return ret; 876 } 877 878 /** 879 * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs 880 * @rqst: controlling RPC request 881 * @srcp: points to RPC message payload in receive buffer 882 * @copy_len: remaining length of receive buffer content 883 * @pad: Write chunk pad bytes needed (zero for pure inline) 884 * 885 * The upper layer has set the maximum number of bytes it can 886 * receive in each component of rq_rcv_buf. These values are set in 887 * the head.iov_len, page_len, tail.iov_len, and buflen fields. 888 * 889 * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in 890 * many cases this function simply updates iov_base pointers in 891 * rq_rcv_buf to point directly to the received reply data, to 892 * avoid copying reply data. 893 * 894 * Returns the count of bytes which had to be memcopied. 895 */ 896 static unsigned long 897 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad) 898 { 899 unsigned long fixup_copy_count; 900 int i, npages, curlen; 901 char *destp; 902 struct page **ppages; 903 int page_base; 904 905 /* The head iovec is redirected to the RPC reply message 906 * in the receive buffer, to avoid a memcopy. 907 */ 908 rqst->rq_rcv_buf.head[0].iov_base = srcp; 909 rqst->rq_private_buf.head[0].iov_base = srcp; 910 911 /* The contents of the receive buffer that follow 912 * head.iov_len bytes are copied into the page list. 913 */ 914 curlen = rqst->rq_rcv_buf.head[0].iov_len; 915 if (curlen > copy_len) 916 curlen = copy_len; 917 trace_xprtrdma_fixup(rqst, copy_len, curlen); 918 srcp += curlen; 919 copy_len -= curlen; 920 921 ppages = rqst->rq_rcv_buf.pages + 922 (rqst->rq_rcv_buf.page_base >> PAGE_SHIFT); 923 page_base = offset_in_page(rqst->rq_rcv_buf.page_base); 924 fixup_copy_count = 0; 925 if (copy_len && rqst->rq_rcv_buf.page_len) { 926 int pagelist_len; 927 928 pagelist_len = rqst->rq_rcv_buf.page_len; 929 if (pagelist_len > copy_len) 930 pagelist_len = copy_len; 931 npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT; 932 for (i = 0; i < npages; i++) { 933 curlen = PAGE_SIZE - page_base; 934 if (curlen > pagelist_len) 935 curlen = pagelist_len; 936 937 trace_xprtrdma_fixup_pg(rqst, i, srcp, 938 copy_len, curlen); 939 destp = kmap_atomic(ppages[i]); 940 memcpy(destp + page_base, srcp, curlen); 941 flush_dcache_page(ppages[i]); 942 kunmap_atomic(destp); 943 srcp += curlen; 944 copy_len -= curlen; 945 fixup_copy_count += curlen; 946 pagelist_len -= curlen; 947 if (!pagelist_len) 948 break; 949 page_base = 0; 950 } 951 952 /* Implicit padding for the last segment in a Write 953 * chunk is inserted inline at the front of the tail 954 * iovec. The upper layer ignores the content of 955 * the pad. Simply ensure inline content in the tail 956 * that follows the Write chunk is properly aligned. 957 */ 958 if (pad) 959 srcp -= pad; 960 } 961 962 /* The tail iovec is redirected to the remaining data 963 * in the receive buffer, to avoid a memcopy. 964 */ 965 if (copy_len || pad) { 966 rqst->rq_rcv_buf.tail[0].iov_base = srcp; 967 rqst->rq_private_buf.tail[0].iov_base = srcp; 968 } 969 970 return fixup_copy_count; 971 } 972 973 /* By convention, backchannel calls arrive via rdma_msg type 974 * messages, and never populate the chunk lists. This makes 975 * the RPC/RDMA header small and fixed in size, so it is 976 * straightforward to check the RPC header's direction field. 977 */ 978 static bool 979 rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep) 980 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 981 { 982 struct xdr_stream *xdr = &rep->rr_stream; 983 __be32 *p; 984 985 if (rep->rr_proc != rdma_msg) 986 return false; 987 988 /* Peek at stream contents without advancing. */ 989 p = xdr_inline_decode(xdr, 0); 990 991 /* Chunk lists */ 992 if (*p++ != xdr_zero) 993 return false; 994 if (*p++ != xdr_zero) 995 return false; 996 if (*p++ != xdr_zero) 997 return false; 998 999 /* RPC header */ 1000 if (*p++ != rep->rr_xid) 1001 return false; 1002 if (*p != cpu_to_be32(RPC_CALL)) 1003 return false; 1004 1005 /* Now that we are sure this is a backchannel call, 1006 * advance to the RPC header. 1007 */ 1008 p = xdr_inline_decode(xdr, 3 * sizeof(*p)); 1009 if (unlikely(!p)) 1010 goto out_short; 1011 1012 rpcrdma_bc_receive_call(r_xprt, rep); 1013 return true; 1014 1015 out_short: 1016 pr_warn("RPC/RDMA short backward direction call\n"); 1017 if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, rep)) 1018 xprt_disconnect_done(&r_xprt->rx_xprt); 1019 return true; 1020 } 1021 #else /* CONFIG_SUNRPC_BACKCHANNEL */ 1022 { 1023 return false; 1024 } 1025 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1026 1027 static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length) 1028 { 1029 u32 handle; 1030 u64 offset; 1031 __be32 *p; 1032 1033 p = xdr_inline_decode(xdr, 4 * sizeof(*p)); 1034 if (unlikely(!p)) 1035 return -EIO; 1036 1037 handle = be32_to_cpup(p++); 1038 *length = be32_to_cpup(p++); 1039 xdr_decode_hyper(p, &offset); 1040 1041 trace_xprtrdma_decode_seg(handle, *length, offset); 1042 return 0; 1043 } 1044 1045 static int decode_write_chunk(struct xdr_stream *xdr, u32 *length) 1046 { 1047 u32 segcount, seglength; 1048 __be32 *p; 1049 1050 p = xdr_inline_decode(xdr, sizeof(*p)); 1051 if (unlikely(!p)) 1052 return -EIO; 1053 1054 *length = 0; 1055 segcount = be32_to_cpup(p); 1056 while (segcount--) { 1057 if (decode_rdma_segment(xdr, &seglength)) 1058 return -EIO; 1059 *length += seglength; 1060 } 1061 1062 return 0; 1063 } 1064 1065 /* In RPC-over-RDMA Version One replies, a Read list is never 1066 * expected. This decoder is a stub that returns an error if 1067 * a Read list is present. 1068 */ 1069 static int decode_read_list(struct xdr_stream *xdr) 1070 { 1071 __be32 *p; 1072 1073 p = xdr_inline_decode(xdr, sizeof(*p)); 1074 if (unlikely(!p)) 1075 return -EIO; 1076 if (unlikely(*p != xdr_zero)) 1077 return -EIO; 1078 return 0; 1079 } 1080 1081 /* Supports only one Write chunk in the Write list 1082 */ 1083 static int decode_write_list(struct xdr_stream *xdr, u32 *length) 1084 { 1085 u32 chunklen; 1086 bool first; 1087 __be32 *p; 1088 1089 *length = 0; 1090 first = true; 1091 do { 1092 p = xdr_inline_decode(xdr, sizeof(*p)); 1093 if (unlikely(!p)) 1094 return -EIO; 1095 if (*p == xdr_zero) 1096 break; 1097 if (!first) 1098 return -EIO; 1099 1100 if (decode_write_chunk(xdr, &chunklen)) 1101 return -EIO; 1102 *length += chunklen; 1103 first = false; 1104 } while (true); 1105 return 0; 1106 } 1107 1108 static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length) 1109 { 1110 __be32 *p; 1111 1112 p = xdr_inline_decode(xdr, sizeof(*p)); 1113 if (unlikely(!p)) 1114 return -EIO; 1115 1116 *length = 0; 1117 if (*p != xdr_zero) 1118 if (decode_write_chunk(xdr, length)) 1119 return -EIO; 1120 return 0; 1121 } 1122 1123 static int 1124 rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep, 1125 struct rpc_rqst *rqst) 1126 { 1127 struct xdr_stream *xdr = &rep->rr_stream; 1128 u32 writelist, replychunk, rpclen; 1129 char *base; 1130 1131 /* Decode the chunk lists */ 1132 if (decode_read_list(xdr)) 1133 return -EIO; 1134 if (decode_write_list(xdr, &writelist)) 1135 return -EIO; 1136 if (decode_reply_chunk(xdr, &replychunk)) 1137 return -EIO; 1138 1139 /* RDMA_MSG sanity checks */ 1140 if (unlikely(replychunk)) 1141 return -EIO; 1142 1143 /* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */ 1144 base = (char *)xdr_inline_decode(xdr, 0); 1145 rpclen = xdr_stream_remaining(xdr); 1146 r_xprt->rx_stats.fixup_copy_count += 1147 rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3); 1148 1149 r_xprt->rx_stats.total_rdma_reply += writelist; 1150 return rpclen + xdr_align_size(writelist); 1151 } 1152 1153 static noinline int 1154 rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep) 1155 { 1156 struct xdr_stream *xdr = &rep->rr_stream; 1157 u32 writelist, replychunk; 1158 1159 /* Decode the chunk lists */ 1160 if (decode_read_list(xdr)) 1161 return -EIO; 1162 if (decode_write_list(xdr, &writelist)) 1163 return -EIO; 1164 if (decode_reply_chunk(xdr, &replychunk)) 1165 return -EIO; 1166 1167 /* RDMA_NOMSG sanity checks */ 1168 if (unlikely(writelist)) 1169 return -EIO; 1170 if (unlikely(!replychunk)) 1171 return -EIO; 1172 1173 /* Reply chunk buffer already is the reply vector */ 1174 r_xprt->rx_stats.total_rdma_reply += replychunk; 1175 return replychunk; 1176 } 1177 1178 static noinline int 1179 rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep, 1180 struct rpc_rqst *rqst) 1181 { 1182 struct xdr_stream *xdr = &rep->rr_stream; 1183 __be32 *p; 1184 1185 p = xdr_inline_decode(xdr, sizeof(*p)); 1186 if (unlikely(!p)) 1187 return -EIO; 1188 1189 switch (*p) { 1190 case err_vers: 1191 p = xdr_inline_decode(xdr, 2 * sizeof(*p)); 1192 if (!p) 1193 break; 1194 dprintk("RPC: %5u: %s: server reports version error (%u-%u)\n", 1195 rqst->rq_task->tk_pid, __func__, 1196 be32_to_cpup(p), be32_to_cpu(*(p + 1))); 1197 break; 1198 case err_chunk: 1199 dprintk("RPC: %5u: %s: server reports header decoding error\n", 1200 rqst->rq_task->tk_pid, __func__); 1201 break; 1202 default: 1203 dprintk("RPC: %5u: %s: server reports unrecognized error %d\n", 1204 rqst->rq_task->tk_pid, __func__, be32_to_cpup(p)); 1205 } 1206 1207 r_xprt->rx_stats.bad_reply_count++; 1208 return -EREMOTEIO; 1209 } 1210 1211 /* Perform XID lookup, reconstruction of the RPC reply, and 1212 * RPC completion while holding the transport lock to ensure 1213 * the rep, rqst, and rq_task pointers remain stable. 1214 */ 1215 void rpcrdma_complete_rqst(struct rpcrdma_rep *rep) 1216 { 1217 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; 1218 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 1219 struct rpc_rqst *rqst = rep->rr_rqst; 1220 unsigned long cwnd; 1221 int status; 1222 1223 xprt->reestablish_timeout = 0; 1224 1225 switch (rep->rr_proc) { 1226 case rdma_msg: 1227 status = rpcrdma_decode_msg(r_xprt, rep, rqst); 1228 break; 1229 case rdma_nomsg: 1230 status = rpcrdma_decode_nomsg(r_xprt, rep); 1231 break; 1232 case rdma_error: 1233 status = rpcrdma_decode_error(r_xprt, rep, rqst); 1234 break; 1235 default: 1236 status = -EIO; 1237 } 1238 if (status < 0) 1239 goto out_badheader; 1240 1241 out: 1242 spin_lock(&xprt->recv_lock); 1243 cwnd = xprt->cwnd; 1244 xprt->cwnd = r_xprt->rx_buf.rb_credits << RPC_CWNDSHIFT; 1245 if (xprt->cwnd > cwnd) 1246 xprt_release_rqst_cong(rqst->rq_task); 1247 1248 xprt_complete_rqst(rqst->rq_task, status); 1249 xprt_unpin_rqst(rqst); 1250 spin_unlock(&xprt->recv_lock); 1251 return; 1252 1253 /* If the incoming reply terminated a pending RPC, the next 1254 * RPC call will post a replacement receive buffer as it is 1255 * being marshaled. 1256 */ 1257 out_badheader: 1258 trace_xprtrdma_reply_hdr(rep); 1259 r_xprt->rx_stats.bad_reply_count++; 1260 status = -EIO; 1261 goto out; 1262 } 1263 1264 void rpcrdma_release_rqst(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 1265 { 1266 /* Invalidate and unmap the data payloads before waking 1267 * the waiting application. This guarantees the memory 1268 * regions are properly fenced from the server before the 1269 * application accesses the data. It also ensures proper 1270 * send flow control: waking the next RPC waits until this 1271 * RPC has relinquished all its Send Queue entries. 1272 */ 1273 if (!list_empty(&req->rl_registered)) 1274 r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt, 1275 &req->rl_registered); 1276 1277 /* Ensure that any DMA mapped pages associated with 1278 * the Send of the RPC Call have been unmapped before 1279 * allowing the RPC to complete. This protects argument 1280 * memory not controlled by the RPC client from being 1281 * re-used before we're done with it. 1282 */ 1283 if (test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) { 1284 r_xprt->rx_stats.reply_waits_for_send++; 1285 out_of_line_wait_on_bit(&req->rl_flags, 1286 RPCRDMA_REQ_F_TX_RESOURCES, 1287 bit_wait, 1288 TASK_UNINTERRUPTIBLE); 1289 } 1290 } 1291 1292 /* Reply handling runs in the poll worker thread. Anything that 1293 * might wait is deferred to a separate workqueue. 1294 */ 1295 void rpcrdma_deferred_completion(struct work_struct *work) 1296 { 1297 struct rpcrdma_rep *rep = 1298 container_of(work, struct rpcrdma_rep, rr_work); 1299 struct rpcrdma_req *req = rpcr_to_rdmar(rep->rr_rqst); 1300 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; 1301 1302 trace_xprtrdma_defer_cmp(rep); 1303 if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE) 1304 r_xprt->rx_ia.ri_ops->ro_reminv(rep, &req->rl_registered); 1305 rpcrdma_release_rqst(r_xprt, req); 1306 rpcrdma_complete_rqst(rep); 1307 } 1308 1309 /* Process received RPC/RDMA messages. 1310 * 1311 * Errors must result in the RPC task either being awakened, or 1312 * allowed to timeout, to discover the errors at that time. 1313 */ 1314 void rpcrdma_reply_handler(struct rpcrdma_rep *rep) 1315 { 1316 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; 1317 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 1318 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1319 struct rpcrdma_req *req; 1320 struct rpc_rqst *rqst; 1321 u32 credits; 1322 __be32 *p; 1323 1324 if (rep->rr_hdrbuf.head[0].iov_len == 0) 1325 goto out_badstatus; 1326 1327 xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf, 1328 rep->rr_hdrbuf.head[0].iov_base); 1329 1330 /* Fixed transport header fields */ 1331 p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p)); 1332 if (unlikely(!p)) 1333 goto out_shortreply; 1334 rep->rr_xid = *p++; 1335 rep->rr_vers = *p++; 1336 credits = be32_to_cpu(*p++); 1337 rep->rr_proc = *p++; 1338 1339 if (rep->rr_vers != rpcrdma_version) 1340 goto out_badversion; 1341 1342 if (rpcrdma_is_bcall(r_xprt, rep)) 1343 return; 1344 1345 /* Match incoming rpcrdma_rep to an rpcrdma_req to 1346 * get context for handling any incoming chunks. 1347 */ 1348 spin_lock(&xprt->recv_lock); 1349 rqst = xprt_lookup_rqst(xprt, rep->rr_xid); 1350 if (!rqst) 1351 goto out_norqst; 1352 xprt_pin_rqst(rqst); 1353 1354 if (credits == 0) 1355 credits = 1; /* don't deadlock */ 1356 else if (credits > buf->rb_max_requests) 1357 credits = buf->rb_max_requests; 1358 buf->rb_credits = credits; 1359 1360 spin_unlock(&xprt->recv_lock); 1361 1362 req = rpcr_to_rdmar(rqst); 1363 req->rl_reply = rep; 1364 rep->rr_rqst = rqst; 1365 clear_bit(RPCRDMA_REQ_F_PENDING, &req->rl_flags); 1366 1367 trace_xprtrdma_reply(rqst->rq_task, rep, req, credits); 1368 1369 queue_work_on(req->rl_cpu, rpcrdma_receive_wq, &rep->rr_work); 1370 return; 1371 1372 out_badstatus: 1373 rpcrdma_recv_buffer_put(rep); 1374 if (r_xprt->rx_ep.rep_connected == 1) { 1375 r_xprt->rx_ep.rep_connected = -EIO; 1376 rpcrdma_conn_func(&r_xprt->rx_ep); 1377 } 1378 return; 1379 1380 out_badversion: 1381 trace_xprtrdma_reply_vers(rep); 1382 goto repost; 1383 1384 /* The RPC transaction has already been terminated, or the header 1385 * is corrupt. 1386 */ 1387 out_norqst: 1388 spin_unlock(&xprt->recv_lock); 1389 trace_xprtrdma_reply_rqst(rep); 1390 goto repost; 1391 1392 out_shortreply: 1393 trace_xprtrdma_reply_short(rep); 1394 1395 /* If no pending RPC transaction was matched, post a replacement 1396 * receive buffer before returning. 1397 */ 1398 repost: 1399 r_xprt->rx_stats.bad_reply_count++; 1400 if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, rep)) 1401 rpcrdma_recv_buffer_put(rep); 1402 } 1403