xref: /openbmc/linux/net/sunrpc/xprtrdma/rpc_rdma.c (revision f87deada)
1 /*
2  * Copyright (c) 2014-2017 Oracle.  All rights reserved.
3  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the BSD-type
9  * license below:
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  *      Redistributions of source code must retain the above copyright
16  *      notice, this list of conditions and the following disclaimer.
17  *
18  *      Redistributions in binary form must reproduce the above
19  *      copyright notice, this list of conditions and the following
20  *      disclaimer in the documentation and/or other materials provided
21  *      with the distribution.
22  *
23  *      Neither the name of the Network Appliance, Inc. nor the names of
24  *      its contributors may be used to endorse or promote products
25  *      derived from this software without specific prior written
26  *      permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39  */
40 
41 /*
42  * rpc_rdma.c
43  *
44  * This file contains the guts of the RPC RDMA protocol, and
45  * does marshaling/unmarshaling, etc. It is also where interfacing
46  * to the Linux RPC framework lives.
47  */
48 
49 #include "xprt_rdma.h"
50 
51 #include <linux/highmem.h>
52 
53 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
54 # define RPCDBG_FACILITY	RPCDBG_TRANS
55 #endif
56 
57 static const char transfertypes[][12] = {
58 	"inline",	/* no chunks */
59 	"read list",	/* some argument via rdma read */
60 	"*read list",	/* entire request via rdma read */
61 	"write list",	/* some result via rdma write */
62 	"reply chunk"	/* entire reply via rdma write */
63 };
64 
65 /* Returns size of largest RPC-over-RDMA header in a Call message
66  *
67  * The largest Call header contains a full-size Read list and a
68  * minimal Reply chunk.
69  */
70 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
71 {
72 	unsigned int size;
73 
74 	/* Fixed header fields and list discriminators */
75 	size = RPCRDMA_HDRLEN_MIN;
76 
77 	/* Maximum Read list size */
78 	maxsegs += 2;	/* segment for head and tail buffers */
79 	size = maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32);
80 
81 	/* Minimal Read chunk size */
82 	size += sizeof(__be32);	/* segment count */
83 	size += rpcrdma_segment_maxsz * sizeof(__be32);
84 	size += sizeof(__be32);	/* list discriminator */
85 
86 	dprintk("RPC:       %s: max call header size = %u\n",
87 		__func__, size);
88 	return size;
89 }
90 
91 /* Returns size of largest RPC-over-RDMA header in a Reply message
92  *
93  * There is only one Write list or one Reply chunk per Reply
94  * message.  The larger list is the Write list.
95  */
96 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
97 {
98 	unsigned int size;
99 
100 	/* Fixed header fields and list discriminators */
101 	size = RPCRDMA_HDRLEN_MIN;
102 
103 	/* Maximum Write list size */
104 	maxsegs += 2;	/* segment for head and tail buffers */
105 	size = sizeof(__be32);		/* segment count */
106 	size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32);
107 	size += sizeof(__be32);	/* list discriminator */
108 
109 	dprintk("RPC:       %s: max reply header size = %u\n",
110 		__func__, size);
111 	return size;
112 }
113 
114 void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt)
115 {
116 	struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data;
117 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
118 	unsigned int maxsegs = ia->ri_max_segs;
119 
120 	ia->ri_max_inline_write = cdata->inline_wsize -
121 				  rpcrdma_max_call_header_size(maxsegs);
122 	ia->ri_max_inline_read = cdata->inline_rsize -
123 				 rpcrdma_max_reply_header_size(maxsegs);
124 }
125 
126 /* The client can send a request inline as long as the RPCRDMA header
127  * plus the RPC call fit under the transport's inline limit. If the
128  * combined call message size exceeds that limit, the client must use
129  * a Read chunk for this operation.
130  *
131  * A Read chunk is also required if sending the RPC call inline would
132  * exceed this device's max_sge limit.
133  */
134 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
135 				struct rpc_rqst *rqst)
136 {
137 	struct xdr_buf *xdr = &rqst->rq_snd_buf;
138 	unsigned int count, remaining, offset;
139 
140 	if (xdr->len > r_xprt->rx_ia.ri_max_inline_write)
141 		return false;
142 
143 	if (xdr->page_len) {
144 		remaining = xdr->page_len;
145 		offset = offset_in_page(xdr->page_base);
146 		count = RPCRDMA_MIN_SEND_SGES;
147 		while (remaining) {
148 			remaining -= min_t(unsigned int,
149 					   PAGE_SIZE - offset, remaining);
150 			offset = 0;
151 			if (++count > r_xprt->rx_ia.ri_max_send_sges)
152 				return false;
153 		}
154 	}
155 
156 	return true;
157 }
158 
159 /* The client can't know how large the actual reply will be. Thus it
160  * plans for the largest possible reply for that particular ULP
161  * operation. If the maximum combined reply message size exceeds that
162  * limit, the client must provide a write list or a reply chunk for
163  * this request.
164  */
165 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
166 				   struct rpc_rqst *rqst)
167 {
168 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
169 
170 	return rqst->rq_rcv_buf.buflen <= ia->ri_max_inline_read;
171 }
172 
173 /* Split @vec on page boundaries into SGEs. FMR registers pages, not
174  * a byte range. Other modes coalesce these SGEs into a single MR
175  * when they can.
176  *
177  * Returns pointer to next available SGE, and bumps the total number
178  * of SGEs consumed.
179  */
180 static struct rpcrdma_mr_seg *
181 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
182 		     unsigned int *n)
183 {
184 	u32 remaining, page_offset;
185 	char *base;
186 
187 	base = vec->iov_base;
188 	page_offset = offset_in_page(base);
189 	remaining = vec->iov_len;
190 	while (remaining) {
191 		seg->mr_page = NULL;
192 		seg->mr_offset = base;
193 		seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
194 		remaining -= seg->mr_len;
195 		base += seg->mr_len;
196 		++seg;
197 		++(*n);
198 		page_offset = 0;
199 	}
200 	return seg;
201 }
202 
203 /* Convert @xdrbuf into SGEs no larger than a page each. As they
204  * are registered, these SGEs are then coalesced into RDMA segments
205  * when the selected memreg mode supports it.
206  *
207  * Returns positive number of SGEs consumed, or a negative errno.
208  */
209 
210 static int
211 rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
212 		     unsigned int pos, enum rpcrdma_chunktype type,
213 		     struct rpcrdma_mr_seg *seg)
214 {
215 	unsigned long page_base;
216 	unsigned int len, n;
217 	struct page **ppages;
218 
219 	n = 0;
220 	if (pos == 0)
221 		seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n);
222 
223 	len = xdrbuf->page_len;
224 	ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
225 	page_base = offset_in_page(xdrbuf->page_base);
226 	while (len) {
227 		if (unlikely(!*ppages)) {
228 			/* XXX: Certain upper layer operations do
229 			 *	not provide receive buffer pages.
230 			 */
231 			*ppages = alloc_page(GFP_ATOMIC);
232 			if (!*ppages)
233 				return -EAGAIN;
234 		}
235 		seg->mr_page = *ppages;
236 		seg->mr_offset = (char *)page_base;
237 		seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len);
238 		len -= seg->mr_len;
239 		++ppages;
240 		++seg;
241 		++n;
242 		page_base = 0;
243 	}
244 
245 	/* When encoding a Read chunk, the tail iovec contains an
246 	 * XDR pad and may be omitted.
247 	 */
248 	if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup)
249 		goto out;
250 
251 	/* When encoding a Write chunk, some servers need to see an
252 	 * extra segment for non-XDR-aligned Write chunks. The upper
253 	 * layer provides space in the tail iovec that may be used
254 	 * for this purpose.
255 	 */
256 	if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup)
257 		goto out;
258 
259 	if (xdrbuf->tail[0].iov_len)
260 		seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n);
261 
262 out:
263 	if (unlikely(n > RPCRDMA_MAX_SEGS))
264 		return -EIO;
265 	return n;
266 }
267 
268 static inline int
269 encode_item_present(struct xdr_stream *xdr)
270 {
271 	__be32 *p;
272 
273 	p = xdr_reserve_space(xdr, sizeof(*p));
274 	if (unlikely(!p))
275 		return -EMSGSIZE;
276 
277 	*p = xdr_one;
278 	return 0;
279 }
280 
281 static inline int
282 encode_item_not_present(struct xdr_stream *xdr)
283 {
284 	__be32 *p;
285 
286 	p = xdr_reserve_space(xdr, sizeof(*p));
287 	if (unlikely(!p))
288 		return -EMSGSIZE;
289 
290 	*p = xdr_zero;
291 	return 0;
292 }
293 
294 static void
295 xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mr *mr)
296 {
297 	*iptr++ = cpu_to_be32(mr->mr_handle);
298 	*iptr++ = cpu_to_be32(mr->mr_length);
299 	xdr_encode_hyper(iptr, mr->mr_offset);
300 }
301 
302 static int
303 encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr)
304 {
305 	__be32 *p;
306 
307 	p = xdr_reserve_space(xdr, 4 * sizeof(*p));
308 	if (unlikely(!p))
309 		return -EMSGSIZE;
310 
311 	xdr_encode_rdma_segment(p, mr);
312 	return 0;
313 }
314 
315 static int
316 encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr,
317 		    u32 position)
318 {
319 	__be32 *p;
320 
321 	p = xdr_reserve_space(xdr, 6 * sizeof(*p));
322 	if (unlikely(!p))
323 		return -EMSGSIZE;
324 
325 	*p++ = xdr_one;			/* Item present */
326 	*p++ = cpu_to_be32(position);
327 	xdr_encode_rdma_segment(p, mr);
328 	return 0;
329 }
330 
331 /* Register and XDR encode the Read list. Supports encoding a list of read
332  * segments that belong to a single read chunk.
333  *
334  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
335  *
336  *  Read chunklist (a linked list):
337  *   N elements, position P (same P for all chunks of same arg!):
338  *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
339  *
340  * Returns zero on success, or a negative errno if a failure occurred.
341  * @xdr is advanced to the next position in the stream.
342  *
343  * Only a single @pos value is currently supported.
344  */
345 static noinline int
346 rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
347 			 struct rpc_rqst *rqst, enum rpcrdma_chunktype rtype)
348 {
349 	struct xdr_stream *xdr = &req->rl_stream;
350 	struct rpcrdma_mr_seg *seg;
351 	struct rpcrdma_mr *mr;
352 	unsigned int pos;
353 	int nsegs;
354 
355 	pos = rqst->rq_snd_buf.head[0].iov_len;
356 	if (rtype == rpcrdma_areadch)
357 		pos = 0;
358 	seg = req->rl_segments;
359 	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
360 				     rtype, seg);
361 	if (nsegs < 0)
362 		return nsegs;
363 
364 	do {
365 		seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
366 						   false, &mr);
367 		if (IS_ERR(seg))
368 			return PTR_ERR(seg);
369 		rpcrdma_mr_push(mr, &req->rl_registered);
370 
371 		if (encode_read_segment(xdr, mr, pos) < 0)
372 			return -EMSGSIZE;
373 
374 		trace_xprtrdma_read_chunk(rqst->rq_task, pos, mr, nsegs);
375 		r_xprt->rx_stats.read_chunk_count++;
376 		nsegs -= mr->mr_nents;
377 	} while (nsegs);
378 
379 	return 0;
380 }
381 
382 /* Register and XDR encode the Write list. Supports encoding a list
383  * containing one array of plain segments that belong to a single
384  * write chunk.
385  *
386  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
387  *
388  *  Write chunklist (a list of (one) counted array):
389  *   N elements:
390  *    1 - N - HLOO - HLOO - ... - HLOO - 0
391  *
392  * Returns zero on success, or a negative errno if a failure occurred.
393  * @xdr is advanced to the next position in the stream.
394  *
395  * Only a single Write chunk is currently supported.
396  */
397 static noinline int
398 rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
399 			  struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype)
400 {
401 	struct xdr_stream *xdr = &req->rl_stream;
402 	struct rpcrdma_mr_seg *seg;
403 	struct rpcrdma_mr *mr;
404 	int nsegs, nchunks;
405 	__be32 *segcount;
406 
407 	seg = req->rl_segments;
408 	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
409 				     rqst->rq_rcv_buf.head[0].iov_len,
410 				     wtype, seg);
411 	if (nsegs < 0)
412 		return nsegs;
413 
414 	if (encode_item_present(xdr) < 0)
415 		return -EMSGSIZE;
416 	segcount = xdr_reserve_space(xdr, sizeof(*segcount));
417 	if (unlikely(!segcount))
418 		return -EMSGSIZE;
419 	/* Actual value encoded below */
420 
421 	nchunks = 0;
422 	do {
423 		seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
424 						   true, &mr);
425 		if (IS_ERR(seg))
426 			return PTR_ERR(seg);
427 		rpcrdma_mr_push(mr, &req->rl_registered);
428 
429 		if (encode_rdma_segment(xdr, mr) < 0)
430 			return -EMSGSIZE;
431 
432 		trace_xprtrdma_write_chunk(rqst->rq_task, mr, nsegs);
433 		r_xprt->rx_stats.write_chunk_count++;
434 		r_xprt->rx_stats.total_rdma_request += mr->mr_length;
435 		nchunks++;
436 		nsegs -= mr->mr_nents;
437 	} while (nsegs);
438 
439 	/* Update count of segments in this Write chunk */
440 	*segcount = cpu_to_be32(nchunks);
441 
442 	return 0;
443 }
444 
445 /* Register and XDR encode the Reply chunk. Supports encoding an array
446  * of plain segments that belong to a single write (reply) chunk.
447  *
448  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
449  *
450  *  Reply chunk (a counted array):
451  *   N elements:
452  *    1 - N - HLOO - HLOO - ... - HLOO
453  *
454  * Returns zero on success, or a negative errno if a failure occurred.
455  * @xdr is advanced to the next position in the stream.
456  */
457 static noinline int
458 rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
459 			   struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype)
460 {
461 	struct xdr_stream *xdr = &req->rl_stream;
462 	struct rpcrdma_mr_seg *seg;
463 	struct rpcrdma_mr *mr;
464 	int nsegs, nchunks;
465 	__be32 *segcount;
466 
467 	seg = req->rl_segments;
468 	nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
469 	if (nsegs < 0)
470 		return nsegs;
471 
472 	if (encode_item_present(xdr) < 0)
473 		return -EMSGSIZE;
474 	segcount = xdr_reserve_space(xdr, sizeof(*segcount));
475 	if (unlikely(!segcount))
476 		return -EMSGSIZE;
477 	/* Actual value encoded below */
478 
479 	nchunks = 0;
480 	do {
481 		seg = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
482 						   true, &mr);
483 		if (IS_ERR(seg))
484 			return PTR_ERR(seg);
485 		rpcrdma_mr_push(mr, &req->rl_registered);
486 
487 		if (encode_rdma_segment(xdr, mr) < 0)
488 			return -EMSGSIZE;
489 
490 		trace_xprtrdma_reply_chunk(rqst->rq_task, mr, nsegs);
491 		r_xprt->rx_stats.reply_chunk_count++;
492 		r_xprt->rx_stats.total_rdma_request += mr->mr_length;
493 		nchunks++;
494 		nsegs -= mr->mr_nents;
495 	} while (nsegs);
496 
497 	/* Update count of segments in the Reply chunk */
498 	*segcount = cpu_to_be32(nchunks);
499 
500 	return 0;
501 }
502 
503 /**
504  * rpcrdma_unmap_sendctx - DMA-unmap Send buffers
505  * @sc: sendctx containing SGEs to unmap
506  *
507  */
508 void
509 rpcrdma_unmap_sendctx(struct rpcrdma_sendctx *sc)
510 {
511 	struct rpcrdma_ia *ia = &sc->sc_xprt->rx_ia;
512 	struct ib_sge *sge;
513 	unsigned int count;
514 
515 	/* The first two SGEs contain the transport header and
516 	 * the inline buffer. These are always left mapped so
517 	 * they can be cheaply re-used.
518 	 */
519 	sge = &sc->sc_sges[2];
520 	for (count = sc->sc_unmap_count; count; ++sge, --count)
521 		ib_dma_unmap_page(ia->ri_device,
522 				  sge->addr, sge->length, DMA_TO_DEVICE);
523 
524 	if (test_and_clear_bit(RPCRDMA_REQ_F_TX_RESOURCES, &sc->sc_req->rl_flags)) {
525 		smp_mb__after_atomic();
526 		wake_up_bit(&sc->sc_req->rl_flags, RPCRDMA_REQ_F_TX_RESOURCES);
527 	}
528 }
529 
530 /* Prepare an SGE for the RPC-over-RDMA transport header.
531  */
532 static bool
533 rpcrdma_prepare_hdr_sge(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
534 			u32 len)
535 {
536 	struct rpcrdma_sendctx *sc = req->rl_sendctx;
537 	struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
538 	struct ib_sge *sge = sc->sc_sges;
539 
540 	if (!rpcrdma_dma_map_regbuf(ia, rb))
541 		goto out_regbuf;
542 	sge->addr = rdmab_addr(rb);
543 	sge->length = len;
544 	sge->lkey = rdmab_lkey(rb);
545 
546 	ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr,
547 				      sge->length, DMA_TO_DEVICE);
548 	sc->sc_wr.num_sge++;
549 	return true;
550 
551 out_regbuf:
552 	pr_err("rpcrdma: failed to DMA map a Send buffer\n");
553 	return false;
554 }
555 
556 /* Prepare the Send SGEs. The head and tail iovec, and each entry
557  * in the page list, gets its own SGE.
558  */
559 static bool
560 rpcrdma_prepare_msg_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req,
561 			 struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
562 {
563 	struct rpcrdma_sendctx *sc = req->rl_sendctx;
564 	unsigned int sge_no, page_base, len, remaining;
565 	struct rpcrdma_regbuf *rb = req->rl_sendbuf;
566 	struct ib_device *device = ia->ri_device;
567 	struct ib_sge *sge = sc->sc_sges;
568 	u32 lkey = ia->ri_pd->local_dma_lkey;
569 	struct page *page, **ppages;
570 
571 	/* The head iovec is straightforward, as it is already
572 	 * DMA-mapped. Sync the content that has changed.
573 	 */
574 	if (!rpcrdma_dma_map_regbuf(ia, rb))
575 		goto out_regbuf;
576 	sge_no = 1;
577 	sge[sge_no].addr = rdmab_addr(rb);
578 	sge[sge_no].length = xdr->head[0].iov_len;
579 	sge[sge_no].lkey = rdmab_lkey(rb);
580 	ib_dma_sync_single_for_device(rdmab_device(rb), sge[sge_no].addr,
581 				      sge[sge_no].length, DMA_TO_DEVICE);
582 
583 	/* If there is a Read chunk, the page list is being handled
584 	 * via explicit RDMA, and thus is skipped here. However, the
585 	 * tail iovec may include an XDR pad for the page list, as
586 	 * well as additional content, and may not reside in the
587 	 * same page as the head iovec.
588 	 */
589 	if (rtype == rpcrdma_readch) {
590 		len = xdr->tail[0].iov_len;
591 
592 		/* Do not include the tail if it is only an XDR pad */
593 		if (len < 4)
594 			goto out;
595 
596 		page = virt_to_page(xdr->tail[0].iov_base);
597 		page_base = offset_in_page(xdr->tail[0].iov_base);
598 
599 		/* If the content in the page list is an odd length,
600 		 * xdr_write_pages() has added a pad at the beginning
601 		 * of the tail iovec. Force the tail's non-pad content
602 		 * to land at the next XDR position in the Send message.
603 		 */
604 		page_base += len & 3;
605 		len -= len & 3;
606 		goto map_tail;
607 	}
608 
609 	/* If there is a page list present, temporarily DMA map
610 	 * and prepare an SGE for each page to be sent.
611 	 */
612 	if (xdr->page_len) {
613 		ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
614 		page_base = offset_in_page(xdr->page_base);
615 		remaining = xdr->page_len;
616 		while (remaining) {
617 			sge_no++;
618 			if (sge_no > RPCRDMA_MAX_SEND_SGES - 2)
619 				goto out_mapping_overflow;
620 
621 			len = min_t(u32, PAGE_SIZE - page_base, remaining);
622 			sge[sge_no].addr = ib_dma_map_page(device, *ppages,
623 							   page_base, len,
624 							   DMA_TO_DEVICE);
625 			if (ib_dma_mapping_error(device, sge[sge_no].addr))
626 				goto out_mapping_err;
627 			sge[sge_no].length = len;
628 			sge[sge_no].lkey = lkey;
629 
630 			sc->sc_unmap_count++;
631 			ppages++;
632 			remaining -= len;
633 			page_base = 0;
634 		}
635 	}
636 
637 	/* The tail iovec is not always constructed in the same
638 	 * page where the head iovec resides (see, for example,
639 	 * gss_wrap_req_priv). To neatly accommodate that case,
640 	 * DMA map it separately.
641 	 */
642 	if (xdr->tail[0].iov_len) {
643 		page = virt_to_page(xdr->tail[0].iov_base);
644 		page_base = offset_in_page(xdr->tail[0].iov_base);
645 		len = xdr->tail[0].iov_len;
646 
647 map_tail:
648 		sge_no++;
649 		sge[sge_no].addr = ib_dma_map_page(device, page,
650 						   page_base, len,
651 						   DMA_TO_DEVICE);
652 		if (ib_dma_mapping_error(device, sge[sge_no].addr))
653 			goto out_mapping_err;
654 		sge[sge_no].length = len;
655 		sge[sge_no].lkey = lkey;
656 		sc->sc_unmap_count++;
657 	}
658 
659 out:
660 	sc->sc_wr.num_sge += sge_no;
661 	if (sc->sc_unmap_count)
662 		__set_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags);
663 	return true;
664 
665 out_regbuf:
666 	pr_err("rpcrdma: failed to DMA map a Send buffer\n");
667 	return false;
668 
669 out_mapping_overflow:
670 	rpcrdma_unmap_sendctx(sc);
671 	pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no);
672 	return false;
673 
674 out_mapping_err:
675 	rpcrdma_unmap_sendctx(sc);
676 	pr_err("rpcrdma: Send mapping error\n");
677 	return false;
678 }
679 
680 /**
681  * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR
682  * @r_xprt: controlling transport
683  * @req: context of RPC Call being marshalled
684  * @hdrlen: size of transport header, in bytes
685  * @xdr: xdr_buf containing RPC Call
686  * @rtype: chunk type being encoded
687  *
688  * Returns 0 on success; otherwise a negative errno is returned.
689  */
690 int
691 rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt,
692 			  struct rpcrdma_req *req, u32 hdrlen,
693 			  struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
694 {
695 	req->rl_sendctx = rpcrdma_sendctx_get_locked(&r_xprt->rx_buf);
696 	if (!req->rl_sendctx)
697 		return -ENOBUFS;
698 	req->rl_sendctx->sc_wr.num_sge = 0;
699 	req->rl_sendctx->sc_unmap_count = 0;
700 	req->rl_sendctx->sc_req = req;
701 	__clear_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags);
702 
703 	if (!rpcrdma_prepare_hdr_sge(&r_xprt->rx_ia, req, hdrlen))
704 		return -EIO;
705 
706 	if (rtype != rpcrdma_areadch)
707 		if (!rpcrdma_prepare_msg_sges(&r_xprt->rx_ia, req, xdr, rtype))
708 			return -EIO;
709 
710 	return 0;
711 }
712 
713 /**
714  * rpcrdma_marshal_req - Marshal and send one RPC request
715  * @r_xprt: controlling transport
716  * @rqst: RPC request to be marshaled
717  *
718  * For the RPC in "rqst", this function:
719  *  - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG)
720  *  - Registers Read, Write, and Reply chunks
721  *  - Constructs the transport header
722  *  - Posts a Send WR to send the transport header and request
723  *
724  * Returns:
725  *	%0 if the RPC was sent successfully,
726  *	%-ENOTCONN if the connection was lost,
727  *	%-EAGAIN if not enough pages are available for on-demand reply buffer,
728  *	%-ENOBUFS if no MRs are available to register chunks,
729  *	%-EMSGSIZE if the transport header is too small,
730  *	%-EIO if a permanent problem occurred while marshaling.
731  */
732 int
733 rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst)
734 {
735 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
736 	struct xdr_stream *xdr = &req->rl_stream;
737 	enum rpcrdma_chunktype rtype, wtype;
738 	bool ddp_allowed;
739 	__be32 *p;
740 	int ret;
741 
742 	rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0);
743 	xdr_init_encode(xdr, &req->rl_hdrbuf,
744 			req->rl_rdmabuf->rg_base);
745 
746 	/* Fixed header fields */
747 	ret = -EMSGSIZE;
748 	p = xdr_reserve_space(xdr, 4 * sizeof(*p));
749 	if (!p)
750 		goto out_err;
751 	*p++ = rqst->rq_xid;
752 	*p++ = rpcrdma_version;
753 	*p++ = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
754 
755 	/* When the ULP employs a GSS flavor that guarantees integrity
756 	 * or privacy, direct data placement of individual data items
757 	 * is not allowed.
758 	 */
759 	ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags &
760 						RPCAUTH_AUTH_DATATOUCH);
761 
762 	/*
763 	 * Chunks needed for results?
764 	 *
765 	 * o If the expected result is under the inline threshold, all ops
766 	 *   return as inline.
767 	 * o Large read ops return data as write chunk(s), header as
768 	 *   inline.
769 	 * o Large non-read ops return as a single reply chunk.
770 	 */
771 	if (rpcrdma_results_inline(r_xprt, rqst))
772 		wtype = rpcrdma_noch;
773 	else if (ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ)
774 		wtype = rpcrdma_writech;
775 	else
776 		wtype = rpcrdma_replych;
777 
778 	/*
779 	 * Chunks needed for arguments?
780 	 *
781 	 * o If the total request is under the inline threshold, all ops
782 	 *   are sent as inline.
783 	 * o Large write ops transmit data as read chunk(s), header as
784 	 *   inline.
785 	 * o Large non-write ops are sent with the entire message as a
786 	 *   single read chunk (protocol 0-position special case).
787 	 *
788 	 * This assumes that the upper layer does not present a request
789 	 * that both has a data payload, and whose non-data arguments
790 	 * by themselves are larger than the inline threshold.
791 	 */
792 	if (rpcrdma_args_inline(r_xprt, rqst)) {
793 		*p++ = rdma_msg;
794 		rtype = rpcrdma_noch;
795 	} else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
796 		*p++ = rdma_msg;
797 		rtype = rpcrdma_readch;
798 	} else {
799 		r_xprt->rx_stats.nomsg_call_count++;
800 		*p++ = rdma_nomsg;
801 		rtype = rpcrdma_areadch;
802 	}
803 
804 	/* If this is a retransmit, discard previously registered
805 	 * chunks. Very likely the connection has been replaced,
806 	 * so these registrations are invalid and unusable.
807 	 */
808 	while (unlikely(!list_empty(&req->rl_registered))) {
809 		struct rpcrdma_mr *mr;
810 
811 		mr = rpcrdma_mr_pop(&req->rl_registered);
812 		rpcrdma_mr_defer_recovery(mr);
813 	}
814 
815 	/* This implementation supports the following combinations
816 	 * of chunk lists in one RPC-over-RDMA Call message:
817 	 *
818 	 *   - Read list
819 	 *   - Write list
820 	 *   - Reply chunk
821 	 *   - Read list + Reply chunk
822 	 *
823 	 * It might not yet support the following combinations:
824 	 *
825 	 *   - Read list + Write list
826 	 *
827 	 * It does not support the following combinations:
828 	 *
829 	 *   - Write list + Reply chunk
830 	 *   - Read list + Write list + Reply chunk
831 	 *
832 	 * This implementation supports only a single chunk in each
833 	 * Read or Write list. Thus for example the client cannot
834 	 * send a Call message with a Position Zero Read chunk and a
835 	 * regular Read chunk at the same time.
836 	 */
837 	if (rtype != rpcrdma_noch) {
838 		ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype);
839 		if (ret)
840 			goto out_err;
841 	}
842 	ret = encode_item_not_present(xdr);
843 	if (ret)
844 		goto out_err;
845 
846 	if (wtype == rpcrdma_writech) {
847 		ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype);
848 		if (ret)
849 			goto out_err;
850 	}
851 	ret = encode_item_not_present(xdr);
852 	if (ret)
853 		goto out_err;
854 
855 	if (wtype != rpcrdma_replych)
856 		ret = encode_item_not_present(xdr);
857 	else
858 		ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype);
859 	if (ret)
860 		goto out_err;
861 
862 	trace_xprtrdma_marshal(rqst, xdr_stream_pos(xdr), rtype, wtype);
863 
864 	ret = rpcrdma_prepare_send_sges(r_xprt, req, xdr_stream_pos(xdr),
865 					&rqst->rq_snd_buf, rtype);
866 	if (ret)
867 		goto out_err;
868 	return 0;
869 
870 out_err:
871 	if (ret != -ENOBUFS) {
872 		pr_err("rpcrdma: header marshaling failed (%d)\n", ret);
873 		r_xprt->rx_stats.failed_marshal_count++;
874 	}
875 	return ret;
876 }
877 
878 /**
879  * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
880  * @rqst: controlling RPC request
881  * @srcp: points to RPC message payload in receive buffer
882  * @copy_len: remaining length of receive buffer content
883  * @pad: Write chunk pad bytes needed (zero for pure inline)
884  *
885  * The upper layer has set the maximum number of bytes it can
886  * receive in each component of rq_rcv_buf. These values are set in
887  * the head.iov_len, page_len, tail.iov_len, and buflen fields.
888  *
889  * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
890  * many cases this function simply updates iov_base pointers in
891  * rq_rcv_buf to point directly to the received reply data, to
892  * avoid copying reply data.
893  *
894  * Returns the count of bytes which had to be memcopied.
895  */
896 static unsigned long
897 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
898 {
899 	unsigned long fixup_copy_count;
900 	int i, npages, curlen;
901 	char *destp;
902 	struct page **ppages;
903 	int page_base;
904 
905 	/* The head iovec is redirected to the RPC reply message
906 	 * in the receive buffer, to avoid a memcopy.
907 	 */
908 	rqst->rq_rcv_buf.head[0].iov_base = srcp;
909 	rqst->rq_private_buf.head[0].iov_base = srcp;
910 
911 	/* The contents of the receive buffer that follow
912 	 * head.iov_len bytes are copied into the page list.
913 	 */
914 	curlen = rqst->rq_rcv_buf.head[0].iov_len;
915 	if (curlen > copy_len)
916 		curlen = copy_len;
917 	trace_xprtrdma_fixup(rqst, copy_len, curlen);
918 	srcp += curlen;
919 	copy_len -= curlen;
920 
921 	ppages = rqst->rq_rcv_buf.pages +
922 		(rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
923 	page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
924 	fixup_copy_count = 0;
925 	if (copy_len && rqst->rq_rcv_buf.page_len) {
926 		int pagelist_len;
927 
928 		pagelist_len = rqst->rq_rcv_buf.page_len;
929 		if (pagelist_len > copy_len)
930 			pagelist_len = copy_len;
931 		npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
932 		for (i = 0; i < npages; i++) {
933 			curlen = PAGE_SIZE - page_base;
934 			if (curlen > pagelist_len)
935 				curlen = pagelist_len;
936 
937 			trace_xprtrdma_fixup_pg(rqst, i, srcp,
938 						copy_len, curlen);
939 			destp = kmap_atomic(ppages[i]);
940 			memcpy(destp + page_base, srcp, curlen);
941 			flush_dcache_page(ppages[i]);
942 			kunmap_atomic(destp);
943 			srcp += curlen;
944 			copy_len -= curlen;
945 			fixup_copy_count += curlen;
946 			pagelist_len -= curlen;
947 			if (!pagelist_len)
948 				break;
949 			page_base = 0;
950 		}
951 
952 		/* Implicit padding for the last segment in a Write
953 		 * chunk is inserted inline at the front of the tail
954 		 * iovec. The upper layer ignores the content of
955 		 * the pad. Simply ensure inline content in the tail
956 		 * that follows the Write chunk is properly aligned.
957 		 */
958 		if (pad)
959 			srcp -= pad;
960 	}
961 
962 	/* The tail iovec is redirected to the remaining data
963 	 * in the receive buffer, to avoid a memcopy.
964 	 */
965 	if (copy_len || pad) {
966 		rqst->rq_rcv_buf.tail[0].iov_base = srcp;
967 		rqst->rq_private_buf.tail[0].iov_base = srcp;
968 	}
969 
970 	return fixup_copy_count;
971 }
972 
973 /* By convention, backchannel calls arrive via rdma_msg type
974  * messages, and never populate the chunk lists. This makes
975  * the RPC/RDMA header small and fixed in size, so it is
976  * straightforward to check the RPC header's direction field.
977  */
978 static bool
979 rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
980 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
981 {
982 	struct xdr_stream *xdr = &rep->rr_stream;
983 	__be32 *p;
984 
985 	if (rep->rr_proc != rdma_msg)
986 		return false;
987 
988 	/* Peek at stream contents without advancing. */
989 	p = xdr_inline_decode(xdr, 0);
990 
991 	/* Chunk lists */
992 	if (*p++ != xdr_zero)
993 		return false;
994 	if (*p++ != xdr_zero)
995 		return false;
996 	if (*p++ != xdr_zero)
997 		return false;
998 
999 	/* RPC header */
1000 	if (*p++ != rep->rr_xid)
1001 		return false;
1002 	if (*p != cpu_to_be32(RPC_CALL))
1003 		return false;
1004 
1005 	/* Now that we are sure this is a backchannel call,
1006 	 * advance to the RPC header.
1007 	 */
1008 	p = xdr_inline_decode(xdr, 3 * sizeof(*p));
1009 	if (unlikely(!p))
1010 		goto out_short;
1011 
1012 	rpcrdma_bc_receive_call(r_xprt, rep);
1013 	return true;
1014 
1015 out_short:
1016 	pr_warn("RPC/RDMA short backward direction call\n");
1017 	if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, rep))
1018 		xprt_disconnect_done(&r_xprt->rx_xprt);
1019 	return true;
1020 }
1021 #else	/* CONFIG_SUNRPC_BACKCHANNEL */
1022 {
1023 	return false;
1024 }
1025 #endif	/* CONFIG_SUNRPC_BACKCHANNEL */
1026 
1027 static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length)
1028 {
1029 	u32 handle;
1030 	u64 offset;
1031 	__be32 *p;
1032 
1033 	p = xdr_inline_decode(xdr, 4 * sizeof(*p));
1034 	if (unlikely(!p))
1035 		return -EIO;
1036 
1037 	handle = be32_to_cpup(p++);
1038 	*length = be32_to_cpup(p++);
1039 	xdr_decode_hyper(p, &offset);
1040 
1041 	trace_xprtrdma_decode_seg(handle, *length, offset);
1042 	return 0;
1043 }
1044 
1045 static int decode_write_chunk(struct xdr_stream *xdr, u32 *length)
1046 {
1047 	u32 segcount, seglength;
1048 	__be32 *p;
1049 
1050 	p = xdr_inline_decode(xdr, sizeof(*p));
1051 	if (unlikely(!p))
1052 		return -EIO;
1053 
1054 	*length = 0;
1055 	segcount = be32_to_cpup(p);
1056 	while (segcount--) {
1057 		if (decode_rdma_segment(xdr, &seglength))
1058 			return -EIO;
1059 		*length += seglength;
1060 	}
1061 
1062 	return 0;
1063 }
1064 
1065 /* In RPC-over-RDMA Version One replies, a Read list is never
1066  * expected. This decoder is a stub that returns an error if
1067  * a Read list is present.
1068  */
1069 static int decode_read_list(struct xdr_stream *xdr)
1070 {
1071 	__be32 *p;
1072 
1073 	p = xdr_inline_decode(xdr, sizeof(*p));
1074 	if (unlikely(!p))
1075 		return -EIO;
1076 	if (unlikely(*p != xdr_zero))
1077 		return -EIO;
1078 	return 0;
1079 }
1080 
1081 /* Supports only one Write chunk in the Write list
1082  */
1083 static int decode_write_list(struct xdr_stream *xdr, u32 *length)
1084 {
1085 	u32 chunklen;
1086 	bool first;
1087 	__be32 *p;
1088 
1089 	*length = 0;
1090 	first = true;
1091 	do {
1092 		p = xdr_inline_decode(xdr, sizeof(*p));
1093 		if (unlikely(!p))
1094 			return -EIO;
1095 		if (*p == xdr_zero)
1096 			break;
1097 		if (!first)
1098 			return -EIO;
1099 
1100 		if (decode_write_chunk(xdr, &chunklen))
1101 			return -EIO;
1102 		*length += chunklen;
1103 		first = false;
1104 	} while (true);
1105 	return 0;
1106 }
1107 
1108 static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length)
1109 {
1110 	__be32 *p;
1111 
1112 	p = xdr_inline_decode(xdr, sizeof(*p));
1113 	if (unlikely(!p))
1114 		return -EIO;
1115 
1116 	*length = 0;
1117 	if (*p != xdr_zero)
1118 		if (decode_write_chunk(xdr, length))
1119 			return -EIO;
1120 	return 0;
1121 }
1122 
1123 static int
1124 rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1125 		   struct rpc_rqst *rqst)
1126 {
1127 	struct xdr_stream *xdr = &rep->rr_stream;
1128 	u32 writelist, replychunk, rpclen;
1129 	char *base;
1130 
1131 	/* Decode the chunk lists */
1132 	if (decode_read_list(xdr))
1133 		return -EIO;
1134 	if (decode_write_list(xdr, &writelist))
1135 		return -EIO;
1136 	if (decode_reply_chunk(xdr, &replychunk))
1137 		return -EIO;
1138 
1139 	/* RDMA_MSG sanity checks */
1140 	if (unlikely(replychunk))
1141 		return -EIO;
1142 
1143 	/* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */
1144 	base = (char *)xdr_inline_decode(xdr, 0);
1145 	rpclen = xdr_stream_remaining(xdr);
1146 	r_xprt->rx_stats.fixup_copy_count +=
1147 		rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3);
1148 
1149 	r_xprt->rx_stats.total_rdma_reply += writelist;
1150 	return rpclen + xdr_align_size(writelist);
1151 }
1152 
1153 static noinline int
1154 rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1155 {
1156 	struct xdr_stream *xdr = &rep->rr_stream;
1157 	u32 writelist, replychunk;
1158 
1159 	/* Decode the chunk lists */
1160 	if (decode_read_list(xdr))
1161 		return -EIO;
1162 	if (decode_write_list(xdr, &writelist))
1163 		return -EIO;
1164 	if (decode_reply_chunk(xdr, &replychunk))
1165 		return -EIO;
1166 
1167 	/* RDMA_NOMSG sanity checks */
1168 	if (unlikely(writelist))
1169 		return -EIO;
1170 	if (unlikely(!replychunk))
1171 		return -EIO;
1172 
1173 	/* Reply chunk buffer already is the reply vector */
1174 	r_xprt->rx_stats.total_rdma_reply += replychunk;
1175 	return replychunk;
1176 }
1177 
1178 static noinline int
1179 rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1180 		     struct rpc_rqst *rqst)
1181 {
1182 	struct xdr_stream *xdr = &rep->rr_stream;
1183 	__be32 *p;
1184 
1185 	p = xdr_inline_decode(xdr, sizeof(*p));
1186 	if (unlikely(!p))
1187 		return -EIO;
1188 
1189 	switch (*p) {
1190 	case err_vers:
1191 		p = xdr_inline_decode(xdr, 2 * sizeof(*p));
1192 		if (!p)
1193 			break;
1194 		dprintk("RPC: %5u: %s: server reports version error (%u-%u)\n",
1195 			rqst->rq_task->tk_pid, __func__,
1196 			be32_to_cpup(p), be32_to_cpu(*(p + 1)));
1197 		break;
1198 	case err_chunk:
1199 		dprintk("RPC: %5u: %s: server reports header decoding error\n",
1200 			rqst->rq_task->tk_pid, __func__);
1201 		break;
1202 	default:
1203 		dprintk("RPC: %5u: %s: server reports unrecognized error %d\n",
1204 			rqst->rq_task->tk_pid, __func__, be32_to_cpup(p));
1205 	}
1206 
1207 	r_xprt->rx_stats.bad_reply_count++;
1208 	return -EREMOTEIO;
1209 }
1210 
1211 /* Perform XID lookup, reconstruction of the RPC reply, and
1212  * RPC completion while holding the transport lock to ensure
1213  * the rep, rqst, and rq_task pointers remain stable.
1214  */
1215 void rpcrdma_complete_rqst(struct rpcrdma_rep *rep)
1216 {
1217 	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1218 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1219 	struct rpc_rqst *rqst = rep->rr_rqst;
1220 	unsigned long cwnd;
1221 	int status;
1222 
1223 	xprt->reestablish_timeout = 0;
1224 
1225 	switch (rep->rr_proc) {
1226 	case rdma_msg:
1227 		status = rpcrdma_decode_msg(r_xprt, rep, rqst);
1228 		break;
1229 	case rdma_nomsg:
1230 		status = rpcrdma_decode_nomsg(r_xprt, rep);
1231 		break;
1232 	case rdma_error:
1233 		status = rpcrdma_decode_error(r_xprt, rep, rqst);
1234 		break;
1235 	default:
1236 		status = -EIO;
1237 	}
1238 	if (status < 0)
1239 		goto out_badheader;
1240 
1241 out:
1242 	spin_lock(&xprt->recv_lock);
1243 	cwnd = xprt->cwnd;
1244 	xprt->cwnd = r_xprt->rx_buf.rb_credits << RPC_CWNDSHIFT;
1245 	if (xprt->cwnd > cwnd)
1246 		xprt_release_rqst_cong(rqst->rq_task);
1247 
1248 	xprt_complete_rqst(rqst->rq_task, status);
1249 	xprt_unpin_rqst(rqst);
1250 	spin_unlock(&xprt->recv_lock);
1251 	return;
1252 
1253 /* If the incoming reply terminated a pending RPC, the next
1254  * RPC call will post a replacement receive buffer as it is
1255  * being marshaled.
1256  */
1257 out_badheader:
1258 	trace_xprtrdma_reply_hdr(rep);
1259 	r_xprt->rx_stats.bad_reply_count++;
1260 	status = -EIO;
1261 	goto out;
1262 }
1263 
1264 void rpcrdma_release_rqst(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
1265 {
1266 	/* Invalidate and unmap the data payloads before waking
1267 	 * the waiting application. This guarantees the memory
1268 	 * regions are properly fenced from the server before the
1269 	 * application accesses the data. It also ensures proper
1270 	 * send flow control: waking the next RPC waits until this
1271 	 * RPC has relinquished all its Send Queue entries.
1272 	 */
1273 	if (!list_empty(&req->rl_registered))
1274 		r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt,
1275 						    &req->rl_registered);
1276 
1277 	/* Ensure that any DMA mapped pages associated with
1278 	 * the Send of the RPC Call have been unmapped before
1279 	 * allowing the RPC to complete. This protects argument
1280 	 * memory not controlled by the RPC client from being
1281 	 * re-used before we're done with it.
1282 	 */
1283 	if (test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) {
1284 		r_xprt->rx_stats.reply_waits_for_send++;
1285 		out_of_line_wait_on_bit(&req->rl_flags,
1286 					RPCRDMA_REQ_F_TX_RESOURCES,
1287 					bit_wait,
1288 					TASK_UNINTERRUPTIBLE);
1289 	}
1290 }
1291 
1292 /* Reply handling runs in the poll worker thread. Anything that
1293  * might wait is deferred to a separate workqueue.
1294  */
1295 void rpcrdma_deferred_completion(struct work_struct *work)
1296 {
1297 	struct rpcrdma_rep *rep =
1298 			container_of(work, struct rpcrdma_rep, rr_work);
1299 	struct rpcrdma_req *req = rpcr_to_rdmar(rep->rr_rqst);
1300 	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1301 
1302 	trace_xprtrdma_defer_cmp(rep);
1303 	if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE)
1304 		r_xprt->rx_ia.ri_ops->ro_reminv(rep, &req->rl_registered);
1305 	rpcrdma_release_rqst(r_xprt, req);
1306 	rpcrdma_complete_rqst(rep);
1307 }
1308 
1309 /* Process received RPC/RDMA messages.
1310  *
1311  * Errors must result in the RPC task either being awakened, or
1312  * allowed to timeout, to discover the errors at that time.
1313  */
1314 void rpcrdma_reply_handler(struct rpcrdma_rep *rep)
1315 {
1316 	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1317 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1318 	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1319 	struct rpcrdma_req *req;
1320 	struct rpc_rqst *rqst;
1321 	u32 credits;
1322 	__be32 *p;
1323 
1324 	if (rep->rr_hdrbuf.head[0].iov_len == 0)
1325 		goto out_badstatus;
1326 
1327 	xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf,
1328 			rep->rr_hdrbuf.head[0].iov_base);
1329 
1330 	/* Fixed transport header fields */
1331 	p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p));
1332 	if (unlikely(!p))
1333 		goto out_shortreply;
1334 	rep->rr_xid = *p++;
1335 	rep->rr_vers = *p++;
1336 	credits = be32_to_cpu(*p++);
1337 	rep->rr_proc = *p++;
1338 
1339 	if (rep->rr_vers != rpcrdma_version)
1340 		goto out_badversion;
1341 
1342 	if (rpcrdma_is_bcall(r_xprt, rep))
1343 		return;
1344 
1345 	/* Match incoming rpcrdma_rep to an rpcrdma_req to
1346 	 * get context for handling any incoming chunks.
1347 	 */
1348 	spin_lock(&xprt->recv_lock);
1349 	rqst = xprt_lookup_rqst(xprt, rep->rr_xid);
1350 	if (!rqst)
1351 		goto out_norqst;
1352 	xprt_pin_rqst(rqst);
1353 
1354 	if (credits == 0)
1355 		credits = 1;	/* don't deadlock */
1356 	else if (credits > buf->rb_max_requests)
1357 		credits = buf->rb_max_requests;
1358 	buf->rb_credits = credits;
1359 
1360 	spin_unlock(&xprt->recv_lock);
1361 
1362 	req = rpcr_to_rdmar(rqst);
1363 	req->rl_reply = rep;
1364 	rep->rr_rqst = rqst;
1365 	clear_bit(RPCRDMA_REQ_F_PENDING, &req->rl_flags);
1366 
1367 	trace_xprtrdma_reply(rqst->rq_task, rep, req, credits);
1368 
1369 	queue_work_on(req->rl_cpu, rpcrdma_receive_wq, &rep->rr_work);
1370 	return;
1371 
1372 out_badstatus:
1373 	rpcrdma_recv_buffer_put(rep);
1374 	if (r_xprt->rx_ep.rep_connected == 1) {
1375 		r_xprt->rx_ep.rep_connected = -EIO;
1376 		rpcrdma_conn_func(&r_xprt->rx_ep);
1377 	}
1378 	return;
1379 
1380 out_badversion:
1381 	trace_xprtrdma_reply_vers(rep);
1382 	goto repost;
1383 
1384 /* The RPC transaction has already been terminated, or the header
1385  * is corrupt.
1386  */
1387 out_norqst:
1388 	spin_unlock(&xprt->recv_lock);
1389 	trace_xprtrdma_reply_rqst(rep);
1390 	goto repost;
1391 
1392 out_shortreply:
1393 	trace_xprtrdma_reply_short(rep);
1394 
1395 /* If no pending RPC transaction was matched, post a replacement
1396  * receive buffer before returning.
1397  */
1398 repost:
1399 	r_xprt->rx_stats.bad_reply_count++;
1400 	if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, rep))
1401 		rpcrdma_recv_buffer_put(rep);
1402 }
1403