1 /* 2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the BSD-type 8 * license below: 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 14 * Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 17 * Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials provided 20 * with the distribution. 21 * 22 * Neither the name of the Network Appliance, Inc. nor the names of 23 * its contributors may be used to endorse or promote products 24 * derived from this software without specific prior written 25 * permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * rpc_rdma.c 42 * 43 * This file contains the guts of the RPC RDMA protocol, and 44 * does marshaling/unmarshaling, etc. It is also where interfacing 45 * to the Linux RPC framework lives. 46 */ 47 48 #include "xprt_rdma.h" 49 50 #include <linux/highmem.h> 51 52 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 53 # define RPCDBG_FACILITY RPCDBG_TRANS 54 #endif 55 56 static const char transfertypes[][12] = { 57 "inline", /* no chunks */ 58 "read list", /* some argument via rdma read */ 59 "*read list", /* entire request via rdma read */ 60 "write list", /* some result via rdma write */ 61 "reply chunk" /* entire reply via rdma write */ 62 }; 63 64 /* Returns size of largest RPC-over-RDMA header in a Call message 65 * 66 * The largest Call header contains a full-size Read list and a 67 * minimal Reply chunk. 68 */ 69 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs) 70 { 71 unsigned int size; 72 73 /* Fixed header fields and list discriminators */ 74 size = RPCRDMA_HDRLEN_MIN; 75 76 /* Maximum Read list size */ 77 maxsegs += 2; /* segment for head and tail buffers */ 78 size = maxsegs * sizeof(struct rpcrdma_read_chunk); 79 80 /* Minimal Read chunk size */ 81 size += sizeof(__be32); /* segment count */ 82 size += sizeof(struct rpcrdma_segment); 83 size += sizeof(__be32); /* list discriminator */ 84 85 dprintk("RPC: %s: max call header size = %u\n", 86 __func__, size); 87 return size; 88 } 89 90 /* Returns size of largest RPC-over-RDMA header in a Reply message 91 * 92 * There is only one Write list or one Reply chunk per Reply 93 * message. The larger list is the Write list. 94 */ 95 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs) 96 { 97 unsigned int size; 98 99 /* Fixed header fields and list discriminators */ 100 size = RPCRDMA_HDRLEN_MIN; 101 102 /* Maximum Write list size */ 103 maxsegs += 2; /* segment for head and tail buffers */ 104 size = sizeof(__be32); /* segment count */ 105 size += maxsegs * sizeof(struct rpcrdma_segment); 106 size += sizeof(__be32); /* list discriminator */ 107 108 dprintk("RPC: %s: max reply header size = %u\n", 109 __func__, size); 110 return size; 111 } 112 113 void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt) 114 { 115 struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; 116 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 117 unsigned int maxsegs = ia->ri_max_segs; 118 119 ia->ri_max_inline_write = cdata->inline_wsize - 120 rpcrdma_max_call_header_size(maxsegs); 121 ia->ri_max_inline_read = cdata->inline_rsize - 122 rpcrdma_max_reply_header_size(maxsegs); 123 } 124 125 /* The client can send a request inline as long as the RPCRDMA header 126 * plus the RPC call fit under the transport's inline limit. If the 127 * combined call message size exceeds that limit, the client must use 128 * a Read chunk for this operation. 129 * 130 * A Read chunk is also required if sending the RPC call inline would 131 * exceed this device's max_sge limit. 132 */ 133 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt, 134 struct rpc_rqst *rqst) 135 { 136 struct xdr_buf *xdr = &rqst->rq_snd_buf; 137 unsigned int count, remaining, offset; 138 139 if (xdr->len > r_xprt->rx_ia.ri_max_inline_write) 140 return false; 141 142 if (xdr->page_len) { 143 remaining = xdr->page_len; 144 offset = offset_in_page(xdr->page_base); 145 count = 0; 146 while (remaining) { 147 remaining -= min_t(unsigned int, 148 PAGE_SIZE - offset, remaining); 149 offset = 0; 150 if (++count > r_xprt->rx_ia.ri_max_send_sges) 151 return false; 152 } 153 } 154 155 return true; 156 } 157 158 /* The client can't know how large the actual reply will be. Thus it 159 * plans for the largest possible reply for that particular ULP 160 * operation. If the maximum combined reply message size exceeds that 161 * limit, the client must provide a write list or a reply chunk for 162 * this request. 163 */ 164 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt, 165 struct rpc_rqst *rqst) 166 { 167 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 168 169 return rqst->rq_rcv_buf.buflen <= ia->ri_max_inline_read; 170 } 171 172 /* Split "vec" on page boundaries into segments. FMR registers pages, 173 * not a byte range. Other modes coalesce these segments into a single 174 * MR when they can. 175 */ 176 static int 177 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg, int n) 178 { 179 size_t page_offset; 180 u32 remaining; 181 char *base; 182 183 base = vec->iov_base; 184 page_offset = offset_in_page(base); 185 remaining = vec->iov_len; 186 while (remaining && n < RPCRDMA_MAX_SEGS) { 187 seg[n].mr_page = NULL; 188 seg[n].mr_offset = base; 189 seg[n].mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining); 190 remaining -= seg[n].mr_len; 191 base += seg[n].mr_len; 192 ++n; 193 page_offset = 0; 194 } 195 return n; 196 } 197 198 /* 199 * Chunk assembly from upper layer xdr_buf. 200 * 201 * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk 202 * elements. Segments are then coalesced when registered, if possible 203 * within the selected memreg mode. 204 * 205 * Returns positive number of segments converted, or a negative errno. 206 */ 207 208 static int 209 rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf, 210 unsigned int pos, enum rpcrdma_chunktype type, 211 struct rpcrdma_mr_seg *seg) 212 { 213 int len, n, p, page_base; 214 struct page **ppages; 215 216 n = 0; 217 if (pos == 0) { 218 n = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, n); 219 if (n == RPCRDMA_MAX_SEGS) 220 goto out_overflow; 221 } 222 223 len = xdrbuf->page_len; 224 ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT); 225 page_base = offset_in_page(xdrbuf->page_base); 226 p = 0; 227 while (len && n < RPCRDMA_MAX_SEGS) { 228 if (!ppages[p]) { 229 /* alloc the pagelist for receiving buffer */ 230 ppages[p] = alloc_page(GFP_ATOMIC); 231 if (!ppages[p]) 232 return -EAGAIN; 233 } 234 seg[n].mr_page = ppages[p]; 235 seg[n].mr_offset = (void *)(unsigned long) page_base; 236 seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len); 237 if (seg[n].mr_len > PAGE_SIZE) 238 goto out_overflow; 239 len -= seg[n].mr_len; 240 ++n; 241 ++p; 242 page_base = 0; /* page offset only applies to first page */ 243 } 244 245 /* Message overflows the seg array */ 246 if (len && n == RPCRDMA_MAX_SEGS) 247 goto out_overflow; 248 249 /* When encoding a Read chunk, the tail iovec contains an 250 * XDR pad and may be omitted. 251 */ 252 if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup) 253 return n; 254 255 /* When encoding a Write chunk, some servers need to see an 256 * extra segment for non-XDR-aligned Write chunks. The upper 257 * layer provides space in the tail iovec that may be used 258 * for this purpose. 259 */ 260 if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup) 261 return n; 262 263 if (xdrbuf->tail[0].iov_len) { 264 n = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, n); 265 if (n == RPCRDMA_MAX_SEGS) 266 goto out_overflow; 267 } 268 269 return n; 270 271 out_overflow: 272 pr_err("rpcrdma: segment array overflow\n"); 273 return -EIO; 274 } 275 276 static inline __be32 * 277 xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mw *mw) 278 { 279 *iptr++ = cpu_to_be32(mw->mw_handle); 280 *iptr++ = cpu_to_be32(mw->mw_length); 281 return xdr_encode_hyper(iptr, mw->mw_offset); 282 } 283 284 /* XDR-encode the Read list. Supports encoding a list of read 285 * segments that belong to a single read chunk. 286 * 287 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): 288 * 289 * Read chunklist (a linked list): 290 * N elements, position P (same P for all chunks of same arg!): 291 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0 292 * 293 * Returns a pointer to the XDR word in the RDMA header following 294 * the end of the Read list, or an error pointer. 295 */ 296 static __be32 * 297 rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt, 298 struct rpcrdma_req *req, struct rpc_rqst *rqst, 299 __be32 *iptr, enum rpcrdma_chunktype rtype) 300 { 301 struct rpcrdma_mr_seg *seg; 302 struct rpcrdma_mw *mw; 303 unsigned int pos; 304 int n, nsegs; 305 306 if (rtype == rpcrdma_noch) { 307 *iptr++ = xdr_zero; /* item not present */ 308 return iptr; 309 } 310 311 pos = rqst->rq_snd_buf.head[0].iov_len; 312 if (rtype == rpcrdma_areadch) 313 pos = 0; 314 seg = req->rl_segments; 315 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos, 316 rtype, seg); 317 if (nsegs < 0) 318 return ERR_PTR(nsegs); 319 320 do { 321 n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs, 322 false, &mw); 323 if (n < 0) 324 return ERR_PTR(n); 325 rpcrdma_push_mw(mw, &req->rl_registered); 326 327 *iptr++ = xdr_one; /* item present */ 328 329 /* All read segments in this chunk 330 * have the same "position". 331 */ 332 *iptr++ = cpu_to_be32(pos); 333 iptr = xdr_encode_rdma_segment(iptr, mw); 334 335 dprintk("RPC: %5u %s: pos %u %u@0x%016llx:0x%08x (%s)\n", 336 rqst->rq_task->tk_pid, __func__, pos, 337 mw->mw_length, (unsigned long long)mw->mw_offset, 338 mw->mw_handle, n < nsegs ? "more" : "last"); 339 340 r_xprt->rx_stats.read_chunk_count++; 341 seg += n; 342 nsegs -= n; 343 } while (nsegs); 344 345 /* Finish Read list */ 346 *iptr++ = xdr_zero; /* Next item not present */ 347 return iptr; 348 } 349 350 /* XDR-encode the Write list. Supports encoding a list containing 351 * one array of plain segments that belong to a single write chunk. 352 * 353 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): 354 * 355 * Write chunklist (a list of (one) counted array): 356 * N elements: 357 * 1 - N - HLOO - HLOO - ... - HLOO - 0 358 * 359 * Returns a pointer to the XDR word in the RDMA header following 360 * the end of the Write list, or an error pointer. 361 */ 362 static __be32 * 363 rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, 364 struct rpc_rqst *rqst, __be32 *iptr, 365 enum rpcrdma_chunktype wtype) 366 { 367 struct rpcrdma_mr_seg *seg; 368 struct rpcrdma_mw *mw; 369 int n, nsegs, nchunks; 370 __be32 *segcount; 371 372 if (wtype != rpcrdma_writech) { 373 *iptr++ = xdr_zero; /* no Write list present */ 374 return iptr; 375 } 376 377 seg = req->rl_segments; 378 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 379 rqst->rq_rcv_buf.head[0].iov_len, 380 wtype, seg); 381 if (nsegs < 0) 382 return ERR_PTR(nsegs); 383 384 *iptr++ = xdr_one; /* Write list present */ 385 segcount = iptr++; /* save location of segment count */ 386 387 nchunks = 0; 388 do { 389 n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs, 390 true, &mw); 391 if (n < 0) 392 return ERR_PTR(n); 393 rpcrdma_push_mw(mw, &req->rl_registered); 394 395 iptr = xdr_encode_rdma_segment(iptr, mw); 396 397 dprintk("RPC: %5u %s: %u@0x016%llx:0x%08x (%s)\n", 398 rqst->rq_task->tk_pid, __func__, 399 mw->mw_length, (unsigned long long)mw->mw_offset, 400 mw->mw_handle, n < nsegs ? "more" : "last"); 401 402 r_xprt->rx_stats.write_chunk_count++; 403 r_xprt->rx_stats.total_rdma_request += seg->mr_len; 404 nchunks++; 405 seg += n; 406 nsegs -= n; 407 } while (nsegs); 408 409 /* Update count of segments in this Write chunk */ 410 *segcount = cpu_to_be32(nchunks); 411 412 /* Finish Write list */ 413 *iptr++ = xdr_zero; /* Next item not present */ 414 return iptr; 415 } 416 417 /* XDR-encode the Reply chunk. Supports encoding an array of plain 418 * segments that belong to a single write (reply) chunk. 419 * 420 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): 421 * 422 * Reply chunk (a counted array): 423 * N elements: 424 * 1 - N - HLOO - HLOO - ... - HLOO 425 * 426 * Returns a pointer to the XDR word in the RDMA header following 427 * the end of the Reply chunk, or an error pointer. 428 */ 429 static __be32 * 430 rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt, 431 struct rpcrdma_req *req, struct rpc_rqst *rqst, 432 __be32 *iptr, enum rpcrdma_chunktype wtype) 433 { 434 struct rpcrdma_mr_seg *seg; 435 struct rpcrdma_mw *mw; 436 int n, nsegs, nchunks; 437 __be32 *segcount; 438 439 if (wtype != rpcrdma_replych) { 440 *iptr++ = xdr_zero; /* no Reply chunk present */ 441 return iptr; 442 } 443 444 seg = req->rl_segments; 445 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg); 446 if (nsegs < 0) 447 return ERR_PTR(nsegs); 448 449 *iptr++ = xdr_one; /* Reply chunk present */ 450 segcount = iptr++; /* save location of segment count */ 451 452 nchunks = 0; 453 do { 454 n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs, 455 true, &mw); 456 if (n < 0) 457 return ERR_PTR(n); 458 rpcrdma_push_mw(mw, &req->rl_registered); 459 460 iptr = xdr_encode_rdma_segment(iptr, mw); 461 462 dprintk("RPC: %5u %s: %u@0x%016llx:0x%08x (%s)\n", 463 rqst->rq_task->tk_pid, __func__, 464 mw->mw_length, (unsigned long long)mw->mw_offset, 465 mw->mw_handle, n < nsegs ? "more" : "last"); 466 467 r_xprt->rx_stats.reply_chunk_count++; 468 r_xprt->rx_stats.total_rdma_request += seg->mr_len; 469 nchunks++; 470 seg += n; 471 nsegs -= n; 472 } while (nsegs); 473 474 /* Update count of segments in the Reply chunk */ 475 *segcount = cpu_to_be32(nchunks); 476 477 return iptr; 478 } 479 480 /* Prepare the RPC-over-RDMA header SGE. 481 */ 482 static bool 483 rpcrdma_prepare_hdr_sge(struct rpcrdma_ia *ia, struct rpcrdma_req *req, 484 u32 len) 485 { 486 struct rpcrdma_regbuf *rb = req->rl_rdmabuf; 487 struct ib_sge *sge = &req->rl_send_sge[0]; 488 489 if (unlikely(!rpcrdma_regbuf_is_mapped(rb))) { 490 if (!__rpcrdma_dma_map_regbuf(ia, rb)) 491 return false; 492 sge->addr = rdmab_addr(rb); 493 sge->lkey = rdmab_lkey(rb); 494 } 495 sge->length = len; 496 497 ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, 498 sge->length, DMA_TO_DEVICE); 499 req->rl_send_wr.num_sge++; 500 return true; 501 } 502 503 /* Prepare the Send SGEs. The head and tail iovec, and each entry 504 * in the page list, gets its own SGE. 505 */ 506 static bool 507 rpcrdma_prepare_msg_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req, 508 struct xdr_buf *xdr, enum rpcrdma_chunktype rtype) 509 { 510 unsigned int sge_no, page_base, len, remaining; 511 struct rpcrdma_regbuf *rb = req->rl_sendbuf; 512 struct ib_device *device = ia->ri_device; 513 struct ib_sge *sge = req->rl_send_sge; 514 u32 lkey = ia->ri_pd->local_dma_lkey; 515 struct page *page, **ppages; 516 517 /* The head iovec is straightforward, as it is already 518 * DMA-mapped. Sync the content that has changed. 519 */ 520 if (!rpcrdma_dma_map_regbuf(ia, rb)) 521 return false; 522 sge_no = 1; 523 sge[sge_no].addr = rdmab_addr(rb); 524 sge[sge_no].length = xdr->head[0].iov_len; 525 sge[sge_no].lkey = rdmab_lkey(rb); 526 ib_dma_sync_single_for_device(rdmab_device(rb), sge[sge_no].addr, 527 sge[sge_no].length, DMA_TO_DEVICE); 528 529 /* If there is a Read chunk, the page list is being handled 530 * via explicit RDMA, and thus is skipped here. However, the 531 * tail iovec may include an XDR pad for the page list, as 532 * well as additional content, and may not reside in the 533 * same page as the head iovec. 534 */ 535 if (rtype == rpcrdma_readch) { 536 len = xdr->tail[0].iov_len; 537 538 /* Do not include the tail if it is only an XDR pad */ 539 if (len < 4) 540 goto out; 541 542 page = virt_to_page(xdr->tail[0].iov_base); 543 page_base = offset_in_page(xdr->tail[0].iov_base); 544 545 /* If the content in the page list is an odd length, 546 * xdr_write_pages() has added a pad at the beginning 547 * of the tail iovec. Force the tail's non-pad content 548 * to land at the next XDR position in the Send message. 549 */ 550 page_base += len & 3; 551 len -= len & 3; 552 goto map_tail; 553 } 554 555 /* If there is a page list present, temporarily DMA map 556 * and prepare an SGE for each page to be sent. 557 */ 558 if (xdr->page_len) { 559 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT); 560 page_base = offset_in_page(xdr->page_base); 561 remaining = xdr->page_len; 562 while (remaining) { 563 sge_no++; 564 if (sge_no > RPCRDMA_MAX_SEND_SGES - 2) 565 goto out_mapping_overflow; 566 567 len = min_t(u32, PAGE_SIZE - page_base, remaining); 568 sge[sge_no].addr = ib_dma_map_page(device, *ppages, 569 page_base, len, 570 DMA_TO_DEVICE); 571 if (ib_dma_mapping_error(device, sge[sge_no].addr)) 572 goto out_mapping_err; 573 sge[sge_no].length = len; 574 sge[sge_no].lkey = lkey; 575 576 req->rl_mapped_sges++; 577 ppages++; 578 remaining -= len; 579 page_base = 0; 580 } 581 } 582 583 /* The tail iovec is not always constructed in the same 584 * page where the head iovec resides (see, for example, 585 * gss_wrap_req_priv). To neatly accommodate that case, 586 * DMA map it separately. 587 */ 588 if (xdr->tail[0].iov_len) { 589 page = virt_to_page(xdr->tail[0].iov_base); 590 page_base = offset_in_page(xdr->tail[0].iov_base); 591 len = xdr->tail[0].iov_len; 592 593 map_tail: 594 sge_no++; 595 sge[sge_no].addr = ib_dma_map_page(device, page, 596 page_base, len, 597 DMA_TO_DEVICE); 598 if (ib_dma_mapping_error(device, sge[sge_no].addr)) 599 goto out_mapping_err; 600 sge[sge_no].length = len; 601 sge[sge_no].lkey = lkey; 602 req->rl_mapped_sges++; 603 } 604 605 out: 606 req->rl_send_wr.num_sge = sge_no + 1; 607 return true; 608 609 out_mapping_overflow: 610 pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no); 611 return false; 612 613 out_mapping_err: 614 pr_err("rpcrdma: Send mapping error\n"); 615 return false; 616 } 617 618 bool 619 rpcrdma_prepare_send_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req, 620 u32 hdrlen, struct xdr_buf *xdr, 621 enum rpcrdma_chunktype rtype) 622 { 623 req->rl_send_wr.num_sge = 0; 624 req->rl_mapped_sges = 0; 625 626 if (!rpcrdma_prepare_hdr_sge(ia, req, hdrlen)) 627 goto out_map; 628 629 if (rtype != rpcrdma_areadch) 630 if (!rpcrdma_prepare_msg_sges(ia, req, xdr, rtype)) 631 goto out_map; 632 633 return true; 634 635 out_map: 636 pr_err("rpcrdma: failed to DMA map a Send buffer\n"); 637 return false; 638 } 639 640 void 641 rpcrdma_unmap_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req) 642 { 643 struct ib_device *device = ia->ri_device; 644 struct ib_sge *sge; 645 int count; 646 647 sge = &req->rl_send_sge[2]; 648 for (count = req->rl_mapped_sges; count--; sge++) 649 ib_dma_unmap_page(device, sge->addr, sge->length, 650 DMA_TO_DEVICE); 651 req->rl_mapped_sges = 0; 652 } 653 654 /* 655 * Marshal a request: the primary job of this routine is to choose 656 * the transfer modes. See comments below. 657 * 658 * Returns zero on success, otherwise a negative errno. 659 */ 660 661 int 662 rpcrdma_marshal_req(struct rpc_rqst *rqst) 663 { 664 struct rpc_xprt *xprt = rqst->rq_xprt; 665 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); 666 struct rpcrdma_req *req = rpcr_to_rdmar(rqst); 667 enum rpcrdma_chunktype rtype, wtype; 668 struct rpcrdma_msg *headerp; 669 bool ddp_allowed; 670 ssize_t hdrlen; 671 size_t rpclen; 672 __be32 *iptr; 673 674 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 675 if (test_bit(RPC_BC_PA_IN_USE, &rqst->rq_bc_pa_state)) 676 return rpcrdma_bc_marshal_reply(rqst); 677 #endif 678 679 headerp = rdmab_to_msg(req->rl_rdmabuf); 680 /* don't byte-swap XID, it's already done in request */ 681 headerp->rm_xid = rqst->rq_xid; 682 headerp->rm_vers = rpcrdma_version; 683 headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests); 684 headerp->rm_type = rdma_msg; 685 686 /* When the ULP employs a GSS flavor that guarantees integrity 687 * or privacy, direct data placement of individual data items 688 * is not allowed. 689 */ 690 ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags & 691 RPCAUTH_AUTH_DATATOUCH); 692 693 /* 694 * Chunks needed for results? 695 * 696 * o If the expected result is under the inline threshold, all ops 697 * return as inline. 698 * o Large read ops return data as write chunk(s), header as 699 * inline. 700 * o Large non-read ops return as a single reply chunk. 701 */ 702 if (rpcrdma_results_inline(r_xprt, rqst)) 703 wtype = rpcrdma_noch; 704 else if (ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) 705 wtype = rpcrdma_writech; 706 else 707 wtype = rpcrdma_replych; 708 709 /* 710 * Chunks needed for arguments? 711 * 712 * o If the total request is under the inline threshold, all ops 713 * are sent as inline. 714 * o Large write ops transmit data as read chunk(s), header as 715 * inline. 716 * o Large non-write ops are sent with the entire message as a 717 * single read chunk (protocol 0-position special case). 718 * 719 * This assumes that the upper layer does not present a request 720 * that both has a data payload, and whose non-data arguments 721 * by themselves are larger than the inline threshold. 722 */ 723 if (rpcrdma_args_inline(r_xprt, rqst)) { 724 rtype = rpcrdma_noch; 725 rpclen = rqst->rq_snd_buf.len; 726 } else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) { 727 rtype = rpcrdma_readch; 728 rpclen = rqst->rq_snd_buf.head[0].iov_len + 729 rqst->rq_snd_buf.tail[0].iov_len; 730 } else { 731 r_xprt->rx_stats.nomsg_call_count++; 732 headerp->rm_type = htonl(RDMA_NOMSG); 733 rtype = rpcrdma_areadch; 734 rpclen = 0; 735 } 736 737 req->rl_xid = rqst->rq_xid; 738 rpcrdma_insert_req(&r_xprt->rx_buf, req); 739 740 /* This implementation supports the following combinations 741 * of chunk lists in one RPC-over-RDMA Call message: 742 * 743 * - Read list 744 * - Write list 745 * - Reply chunk 746 * - Read list + Reply chunk 747 * 748 * It might not yet support the following combinations: 749 * 750 * - Read list + Write list 751 * 752 * It does not support the following combinations: 753 * 754 * - Write list + Reply chunk 755 * - Read list + Write list + Reply chunk 756 * 757 * This implementation supports only a single chunk in each 758 * Read or Write list. Thus for example the client cannot 759 * send a Call message with a Position Zero Read chunk and a 760 * regular Read chunk at the same time. 761 */ 762 iptr = headerp->rm_body.rm_chunks; 763 iptr = rpcrdma_encode_read_list(r_xprt, req, rqst, iptr, rtype); 764 if (IS_ERR(iptr)) 765 goto out_err; 766 iptr = rpcrdma_encode_write_list(r_xprt, req, rqst, iptr, wtype); 767 if (IS_ERR(iptr)) 768 goto out_err; 769 iptr = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, iptr, wtype); 770 if (IS_ERR(iptr)) 771 goto out_err; 772 hdrlen = (unsigned char *)iptr - (unsigned char *)headerp; 773 774 dprintk("RPC: %5u %s: %s/%s: hdrlen %zd rpclen %zd\n", 775 rqst->rq_task->tk_pid, __func__, 776 transfertypes[rtype], transfertypes[wtype], 777 hdrlen, rpclen); 778 779 if (!rpcrdma_prepare_send_sges(&r_xprt->rx_ia, req, hdrlen, 780 &rqst->rq_snd_buf, rtype)) { 781 iptr = ERR_PTR(-EIO); 782 goto out_err; 783 } 784 return 0; 785 786 out_err: 787 if (PTR_ERR(iptr) != -ENOBUFS) { 788 pr_err("rpcrdma: rpcrdma_marshal_req failed, status %ld\n", 789 PTR_ERR(iptr)); 790 r_xprt->rx_stats.failed_marshal_count++; 791 } 792 return PTR_ERR(iptr); 793 } 794 795 /* 796 * Chase down a received write or reply chunklist to get length 797 * RDMA'd by server. See map at rpcrdma_create_chunks()! :-) 798 */ 799 static int 800 rpcrdma_count_chunks(struct rpcrdma_rep *rep, int wrchunk, __be32 **iptrp) 801 { 802 unsigned int i, total_len; 803 struct rpcrdma_write_chunk *cur_wchunk; 804 char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf); 805 806 i = be32_to_cpu(**iptrp); 807 cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1); 808 total_len = 0; 809 while (i--) { 810 struct rpcrdma_segment *seg = &cur_wchunk->wc_target; 811 ifdebug(FACILITY) { 812 u64 off; 813 xdr_decode_hyper((__be32 *)&seg->rs_offset, &off); 814 dprintk("RPC: %s: chunk %d@0x%016llx:0x%08x\n", 815 __func__, 816 be32_to_cpu(seg->rs_length), 817 (unsigned long long)off, 818 be32_to_cpu(seg->rs_handle)); 819 } 820 total_len += be32_to_cpu(seg->rs_length); 821 ++cur_wchunk; 822 } 823 /* check and adjust for properly terminated write chunk */ 824 if (wrchunk) { 825 __be32 *w = (__be32 *) cur_wchunk; 826 if (*w++ != xdr_zero) 827 return -1; 828 cur_wchunk = (struct rpcrdma_write_chunk *) w; 829 } 830 if ((char *)cur_wchunk > base + rep->rr_len) 831 return -1; 832 833 *iptrp = (__be32 *) cur_wchunk; 834 return total_len; 835 } 836 837 /** 838 * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs 839 * @rqst: controlling RPC request 840 * @srcp: points to RPC message payload in receive buffer 841 * @copy_len: remaining length of receive buffer content 842 * @pad: Write chunk pad bytes needed (zero for pure inline) 843 * 844 * The upper layer has set the maximum number of bytes it can 845 * receive in each component of rq_rcv_buf. These values are set in 846 * the head.iov_len, page_len, tail.iov_len, and buflen fields. 847 * 848 * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in 849 * many cases this function simply updates iov_base pointers in 850 * rq_rcv_buf to point directly to the received reply data, to 851 * avoid copying reply data. 852 * 853 * Returns the count of bytes which had to be memcopied. 854 */ 855 static unsigned long 856 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad) 857 { 858 unsigned long fixup_copy_count; 859 int i, npages, curlen; 860 char *destp; 861 struct page **ppages; 862 int page_base; 863 864 /* The head iovec is redirected to the RPC reply message 865 * in the receive buffer, to avoid a memcopy. 866 */ 867 rqst->rq_rcv_buf.head[0].iov_base = srcp; 868 rqst->rq_private_buf.head[0].iov_base = srcp; 869 870 /* The contents of the receive buffer that follow 871 * head.iov_len bytes are copied into the page list. 872 */ 873 curlen = rqst->rq_rcv_buf.head[0].iov_len; 874 if (curlen > copy_len) 875 curlen = copy_len; 876 dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n", 877 __func__, srcp, copy_len, curlen); 878 srcp += curlen; 879 copy_len -= curlen; 880 881 ppages = rqst->rq_rcv_buf.pages + 882 (rqst->rq_rcv_buf.page_base >> PAGE_SHIFT); 883 page_base = offset_in_page(rqst->rq_rcv_buf.page_base); 884 fixup_copy_count = 0; 885 if (copy_len && rqst->rq_rcv_buf.page_len) { 886 int pagelist_len; 887 888 pagelist_len = rqst->rq_rcv_buf.page_len; 889 if (pagelist_len > copy_len) 890 pagelist_len = copy_len; 891 npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT; 892 for (i = 0; i < npages; i++) { 893 curlen = PAGE_SIZE - page_base; 894 if (curlen > pagelist_len) 895 curlen = pagelist_len; 896 897 dprintk("RPC: %s: page %d" 898 " srcp 0x%p len %d curlen %d\n", 899 __func__, i, srcp, copy_len, curlen); 900 destp = kmap_atomic(ppages[i]); 901 memcpy(destp + page_base, srcp, curlen); 902 flush_dcache_page(ppages[i]); 903 kunmap_atomic(destp); 904 srcp += curlen; 905 copy_len -= curlen; 906 fixup_copy_count += curlen; 907 pagelist_len -= curlen; 908 if (!pagelist_len) 909 break; 910 page_base = 0; 911 } 912 913 /* Implicit padding for the last segment in a Write 914 * chunk is inserted inline at the front of the tail 915 * iovec. The upper layer ignores the content of 916 * the pad. Simply ensure inline content in the tail 917 * that follows the Write chunk is properly aligned. 918 */ 919 if (pad) 920 srcp -= pad; 921 } 922 923 /* The tail iovec is redirected to the remaining data 924 * in the receive buffer, to avoid a memcopy. 925 */ 926 if (copy_len || pad) { 927 rqst->rq_rcv_buf.tail[0].iov_base = srcp; 928 rqst->rq_private_buf.tail[0].iov_base = srcp; 929 } 930 931 return fixup_copy_count; 932 } 933 934 /* Caller must guarantee @rep remains stable during this call. 935 */ 936 static void 937 rpcrdma_mark_remote_invalidation(struct list_head *mws, 938 struct rpcrdma_rep *rep) 939 { 940 struct rpcrdma_mw *mw; 941 942 if (!(rep->rr_wc_flags & IB_WC_WITH_INVALIDATE)) 943 return; 944 945 list_for_each_entry(mw, mws, mw_list) 946 if (mw->mw_handle == rep->rr_inv_rkey) { 947 mw->mw_flags = RPCRDMA_MW_F_RI; 948 break; /* only one invalidated MR per RPC */ 949 } 950 } 951 952 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 953 /* By convention, backchannel calls arrive via rdma_msg type 954 * messages, and never populate the chunk lists. This makes 955 * the RPC/RDMA header small and fixed in size, so it is 956 * straightforward to check the RPC header's direction field. 957 */ 958 static bool 959 rpcrdma_is_bcall(struct rpcrdma_msg *headerp) 960 { 961 __be32 *p = (__be32 *)headerp; 962 963 if (headerp->rm_type != rdma_msg) 964 return false; 965 if (headerp->rm_body.rm_chunks[0] != xdr_zero) 966 return false; 967 if (headerp->rm_body.rm_chunks[1] != xdr_zero) 968 return false; 969 if (headerp->rm_body.rm_chunks[2] != xdr_zero) 970 return false; 971 972 /* sanity */ 973 if (p[7] != headerp->rm_xid) 974 return false; 975 /* call direction */ 976 if (p[8] != cpu_to_be32(RPC_CALL)) 977 return false; 978 979 return true; 980 } 981 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 982 983 /* Process received RPC/RDMA messages. 984 * 985 * Errors must result in the RPC task either being awakened, or 986 * allowed to timeout, to discover the errors at that time. 987 */ 988 void 989 rpcrdma_reply_handler(struct work_struct *work) 990 { 991 struct rpcrdma_rep *rep = 992 container_of(work, struct rpcrdma_rep, rr_work); 993 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; 994 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 995 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 996 struct rpcrdma_msg *headerp; 997 struct rpcrdma_req *req; 998 struct rpc_rqst *rqst; 999 __be32 *iptr; 1000 int rdmalen, status, rmerr; 1001 unsigned long cwnd; 1002 struct list_head mws; 1003 1004 dprintk("RPC: %s: incoming rep %p\n", __func__, rep); 1005 1006 if (rep->rr_len == RPCRDMA_BAD_LEN) 1007 goto out_badstatus; 1008 if (rep->rr_len < RPCRDMA_HDRLEN_ERR) 1009 goto out_shortreply; 1010 1011 headerp = rdmab_to_msg(rep->rr_rdmabuf); 1012 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1013 if (rpcrdma_is_bcall(headerp)) 1014 goto out_bcall; 1015 #endif 1016 1017 /* Match incoming rpcrdma_rep to an rpcrdma_req to 1018 * get context for handling any incoming chunks. 1019 */ 1020 spin_lock(&buf->rb_lock); 1021 req = rpcrdma_lookup_req_locked(&r_xprt->rx_buf, 1022 headerp->rm_xid); 1023 if (!req) 1024 goto out_nomatch; 1025 if (req->rl_reply) 1026 goto out_duplicate; 1027 1028 list_replace_init(&req->rl_registered, &mws); 1029 rpcrdma_mark_remote_invalidation(&mws, rep); 1030 1031 /* Avoid races with signals and duplicate replies 1032 * by marking this req as matched. 1033 */ 1034 req->rl_reply = rep; 1035 spin_unlock(&buf->rb_lock); 1036 1037 dprintk("RPC: %s: reply %p completes request %p (xid 0x%08x)\n", 1038 __func__, rep, req, be32_to_cpu(headerp->rm_xid)); 1039 1040 /* Invalidate and unmap the data payloads before waking the 1041 * waiting application. This guarantees the memory regions 1042 * are properly fenced from the server before the application 1043 * accesses the data. It also ensures proper send flow control: 1044 * waking the next RPC waits until this RPC has relinquished 1045 * all its Send Queue entries. 1046 */ 1047 if (!list_empty(&mws)) 1048 r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt, &mws); 1049 1050 /* Perform XID lookup, reconstruction of the RPC reply, and 1051 * RPC completion while holding the transport lock to ensure 1052 * the rep, rqst, and rq_task pointers remain stable. 1053 */ 1054 spin_lock_bh(&xprt->transport_lock); 1055 rqst = xprt_lookup_rqst(xprt, headerp->rm_xid); 1056 if (!rqst) 1057 goto out_norqst; 1058 xprt->reestablish_timeout = 0; 1059 if (headerp->rm_vers != rpcrdma_version) 1060 goto out_badversion; 1061 1062 /* check for expected message types */ 1063 /* The order of some of these tests is important. */ 1064 switch (headerp->rm_type) { 1065 case rdma_msg: 1066 /* never expect read chunks */ 1067 /* never expect reply chunks (two ways to check) */ 1068 if (headerp->rm_body.rm_chunks[0] != xdr_zero || 1069 (headerp->rm_body.rm_chunks[1] == xdr_zero && 1070 headerp->rm_body.rm_chunks[2] != xdr_zero)) 1071 goto badheader; 1072 if (headerp->rm_body.rm_chunks[1] != xdr_zero) { 1073 /* count any expected write chunks in read reply */ 1074 /* start at write chunk array count */ 1075 iptr = &headerp->rm_body.rm_chunks[2]; 1076 rdmalen = rpcrdma_count_chunks(rep, 1, &iptr); 1077 /* check for validity, and no reply chunk after */ 1078 if (rdmalen < 0 || *iptr++ != xdr_zero) 1079 goto badheader; 1080 rep->rr_len -= 1081 ((unsigned char *)iptr - (unsigned char *)headerp); 1082 status = rep->rr_len + rdmalen; 1083 r_xprt->rx_stats.total_rdma_reply += rdmalen; 1084 /* special case - last chunk may omit padding */ 1085 if (rdmalen &= 3) { 1086 rdmalen = 4 - rdmalen; 1087 status += rdmalen; 1088 } 1089 } else { 1090 /* else ordinary inline */ 1091 rdmalen = 0; 1092 iptr = (__be32 *)((unsigned char *)headerp + 1093 RPCRDMA_HDRLEN_MIN); 1094 rep->rr_len -= RPCRDMA_HDRLEN_MIN; 1095 status = rep->rr_len; 1096 } 1097 1098 r_xprt->rx_stats.fixup_copy_count += 1099 rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, 1100 rdmalen); 1101 break; 1102 1103 case rdma_nomsg: 1104 /* never expect read or write chunks, always reply chunks */ 1105 if (headerp->rm_body.rm_chunks[0] != xdr_zero || 1106 headerp->rm_body.rm_chunks[1] != xdr_zero || 1107 headerp->rm_body.rm_chunks[2] != xdr_one) 1108 goto badheader; 1109 iptr = (__be32 *)((unsigned char *)headerp + 1110 RPCRDMA_HDRLEN_MIN); 1111 rdmalen = rpcrdma_count_chunks(rep, 0, &iptr); 1112 if (rdmalen < 0) 1113 goto badheader; 1114 r_xprt->rx_stats.total_rdma_reply += rdmalen; 1115 /* Reply chunk buffer already is the reply vector - no fixup. */ 1116 status = rdmalen; 1117 break; 1118 1119 case rdma_error: 1120 goto out_rdmaerr; 1121 1122 badheader: 1123 default: 1124 dprintk("RPC: %5u %s: invalid rpcrdma reply (type %u)\n", 1125 rqst->rq_task->tk_pid, __func__, 1126 be32_to_cpu(headerp->rm_type)); 1127 status = -EIO; 1128 r_xprt->rx_stats.bad_reply_count++; 1129 break; 1130 } 1131 1132 out: 1133 cwnd = xprt->cwnd; 1134 xprt->cwnd = atomic_read(&r_xprt->rx_buf.rb_credits) << RPC_CWNDSHIFT; 1135 if (xprt->cwnd > cwnd) 1136 xprt_release_rqst_cong(rqst->rq_task); 1137 1138 xprt_complete_rqst(rqst->rq_task, status); 1139 spin_unlock_bh(&xprt->transport_lock); 1140 dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n", 1141 __func__, xprt, rqst, status); 1142 return; 1143 1144 out_badstatus: 1145 rpcrdma_recv_buffer_put(rep); 1146 if (r_xprt->rx_ep.rep_connected == 1) { 1147 r_xprt->rx_ep.rep_connected = -EIO; 1148 rpcrdma_conn_func(&r_xprt->rx_ep); 1149 } 1150 return; 1151 1152 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 1153 out_bcall: 1154 rpcrdma_bc_receive_call(r_xprt, rep); 1155 return; 1156 #endif 1157 1158 /* If the incoming reply terminated a pending RPC, the next 1159 * RPC call will post a replacement receive buffer as it is 1160 * being marshaled. 1161 */ 1162 out_badversion: 1163 dprintk("RPC: %s: invalid version %d\n", 1164 __func__, be32_to_cpu(headerp->rm_vers)); 1165 status = -EIO; 1166 r_xprt->rx_stats.bad_reply_count++; 1167 goto out; 1168 1169 out_rdmaerr: 1170 rmerr = be32_to_cpu(headerp->rm_body.rm_error.rm_err); 1171 switch (rmerr) { 1172 case ERR_VERS: 1173 pr_err("%s: server reports header version error (%u-%u)\n", 1174 __func__, 1175 be32_to_cpu(headerp->rm_body.rm_error.rm_vers_low), 1176 be32_to_cpu(headerp->rm_body.rm_error.rm_vers_high)); 1177 break; 1178 case ERR_CHUNK: 1179 pr_err("%s: server reports header decoding error\n", 1180 __func__); 1181 break; 1182 default: 1183 pr_err("%s: server reports unknown error %d\n", 1184 __func__, rmerr); 1185 } 1186 status = -EREMOTEIO; 1187 r_xprt->rx_stats.bad_reply_count++; 1188 goto out; 1189 1190 /* The req was still available, but by the time the transport_lock 1191 * was acquired, the rqst and task had been released. Thus the RPC 1192 * has already been terminated. 1193 */ 1194 out_norqst: 1195 spin_unlock_bh(&xprt->transport_lock); 1196 rpcrdma_buffer_put(req); 1197 dprintk("RPC: %s: race, no rqst left for req %p\n", 1198 __func__, req); 1199 return; 1200 1201 out_shortreply: 1202 dprintk("RPC: %s: short/invalid reply\n", __func__); 1203 goto repost; 1204 1205 out_nomatch: 1206 spin_unlock(&buf->rb_lock); 1207 dprintk("RPC: %s: no match for incoming xid 0x%08x len %d\n", 1208 __func__, be32_to_cpu(headerp->rm_xid), 1209 rep->rr_len); 1210 goto repost; 1211 1212 out_duplicate: 1213 spin_unlock(&buf->rb_lock); 1214 dprintk("RPC: %s: " 1215 "duplicate reply %p to RPC request %p: xid 0x%08x\n", 1216 __func__, rep, req, be32_to_cpu(headerp->rm_xid)); 1217 1218 /* If no pending RPC transaction was matched, post a replacement 1219 * receive buffer before returning. 1220 */ 1221 repost: 1222 r_xprt->rx_stats.bad_reply_count++; 1223 if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, rep)) 1224 rpcrdma_recv_buffer_put(rep); 1225 } 1226