xref: /openbmc/linux/net/sunrpc/xprtrdma/rpc_rdma.c (revision bbde9fc1824aab58bc78c084163007dd6c03fe5b)
1 /*
2  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  *      Redistributions of source code must retain the above copyright
15  *      notice, this list of conditions and the following disclaimer.
16  *
17  *      Redistributions in binary form must reproduce the above
18  *      copyright notice, this list of conditions and the following
19  *      disclaimer in the documentation and/or other materials provided
20  *      with the distribution.
21  *
22  *      Neither the name of the Network Appliance, Inc. nor the names of
23  *      its contributors may be used to endorse or promote products
24  *      derived from this software without specific prior written
25  *      permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * rpc_rdma.c
42  *
43  * This file contains the guts of the RPC RDMA protocol, and
44  * does marshaling/unmarshaling, etc. It is also where interfacing
45  * to the Linux RPC framework lives.
46  */
47 
48 #include "xprt_rdma.h"
49 
50 #include <linux/highmem.h>
51 
52 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
53 # define RPCDBG_FACILITY	RPCDBG_TRANS
54 #endif
55 
56 enum rpcrdma_chunktype {
57 	rpcrdma_noch = 0,
58 	rpcrdma_readch,
59 	rpcrdma_areadch,
60 	rpcrdma_writech,
61 	rpcrdma_replych
62 };
63 
64 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
65 static const char transfertypes[][12] = {
66 	"pure inline",	/* no chunks */
67 	" read chunk",	/* some argument via rdma read */
68 	"*read chunk",	/* entire request via rdma read */
69 	"write chunk",	/* some result via rdma write */
70 	"reply chunk"	/* entire reply via rdma write */
71 };
72 #endif
73 
74 /*
75  * Chunk assembly from upper layer xdr_buf.
76  *
77  * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
78  * elements. Segments are then coalesced when registered, if possible
79  * within the selected memreg mode.
80  *
81  * Returns positive number of segments converted, or a negative errno.
82  */
83 
84 static int
85 rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
86 	enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
87 {
88 	int len, n = 0, p;
89 	int page_base;
90 	struct page **ppages;
91 
92 	if (pos == 0 && xdrbuf->head[0].iov_len) {
93 		seg[n].mr_page = NULL;
94 		seg[n].mr_offset = xdrbuf->head[0].iov_base;
95 		seg[n].mr_len = xdrbuf->head[0].iov_len;
96 		++n;
97 	}
98 
99 	len = xdrbuf->page_len;
100 	ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
101 	page_base = xdrbuf->page_base & ~PAGE_MASK;
102 	p = 0;
103 	while (len && n < nsegs) {
104 		if (!ppages[p]) {
105 			/* alloc the pagelist for receiving buffer */
106 			ppages[p] = alloc_page(GFP_ATOMIC);
107 			if (!ppages[p])
108 				return -ENOMEM;
109 		}
110 		seg[n].mr_page = ppages[p];
111 		seg[n].mr_offset = (void *)(unsigned long) page_base;
112 		seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
113 		if (seg[n].mr_len > PAGE_SIZE)
114 			return -EIO;
115 		len -= seg[n].mr_len;
116 		++n;
117 		++p;
118 		page_base = 0;	/* page offset only applies to first page */
119 	}
120 
121 	/* Message overflows the seg array */
122 	if (len && n == nsegs)
123 		return -EIO;
124 
125 	if (xdrbuf->tail[0].iov_len) {
126 		/* the rpcrdma protocol allows us to omit any trailing
127 		 * xdr pad bytes, saving the server an RDMA operation. */
128 		if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
129 			return n;
130 		if (n == nsegs)
131 			/* Tail remains, but we're out of segments */
132 			return -EIO;
133 		seg[n].mr_page = NULL;
134 		seg[n].mr_offset = xdrbuf->tail[0].iov_base;
135 		seg[n].mr_len = xdrbuf->tail[0].iov_len;
136 		++n;
137 	}
138 
139 	return n;
140 }
141 
142 /*
143  * Create read/write chunk lists, and reply chunks, for RDMA
144  *
145  *   Assume check against THRESHOLD has been done, and chunks are required.
146  *   Assume only encoding one list entry for read|write chunks. The NFSv3
147  *     protocol is simple enough to allow this as it only has a single "bulk
148  *     result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
149  *     RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
150  *
151  * When used for a single reply chunk (which is a special write
152  * chunk used for the entire reply, rather than just the data), it
153  * is used primarily for READDIR and READLINK which would otherwise
154  * be severely size-limited by a small rdma inline read max. The server
155  * response will come back as an RDMA Write, followed by a message
156  * of type RDMA_NOMSG carrying the xid and length. As a result, reply
157  * chunks do not provide data alignment, however they do not require
158  * "fixup" (moving the response to the upper layer buffer) either.
159  *
160  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
161  *
162  *  Read chunklist (a linked list):
163  *   N elements, position P (same P for all chunks of same arg!):
164  *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
165  *
166  *  Write chunklist (a list of (one) counted array):
167  *   N elements:
168  *    1 - N - HLOO - HLOO - ... - HLOO - 0
169  *
170  *  Reply chunk (a counted array):
171  *   N elements:
172  *    1 - N - HLOO - HLOO - ... - HLOO
173  *
174  * Returns positive RPC/RDMA header size, or negative errno.
175  */
176 
177 static ssize_t
178 rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
179 		struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
180 {
181 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
182 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
183 	int n, nsegs, nchunks = 0;
184 	unsigned int pos;
185 	struct rpcrdma_mr_seg *seg = req->rl_segments;
186 	struct rpcrdma_read_chunk *cur_rchunk = NULL;
187 	struct rpcrdma_write_array *warray = NULL;
188 	struct rpcrdma_write_chunk *cur_wchunk = NULL;
189 	__be32 *iptr = headerp->rm_body.rm_chunks;
190 	int (*map)(struct rpcrdma_xprt *, struct rpcrdma_mr_seg *, int, bool);
191 
192 	if (type == rpcrdma_readch || type == rpcrdma_areadch) {
193 		/* a read chunk - server will RDMA Read our memory */
194 		cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
195 	} else {
196 		/* a write or reply chunk - server will RDMA Write our memory */
197 		*iptr++ = xdr_zero;	/* encode a NULL read chunk list */
198 		if (type == rpcrdma_replych)
199 			*iptr++ = xdr_zero;	/* a NULL write chunk list */
200 		warray = (struct rpcrdma_write_array *) iptr;
201 		cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
202 	}
203 
204 	if (type == rpcrdma_replych || type == rpcrdma_areadch)
205 		pos = 0;
206 	else
207 		pos = target->head[0].iov_len;
208 
209 	nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
210 	if (nsegs < 0)
211 		return nsegs;
212 
213 	map = r_xprt->rx_ia.ri_ops->ro_map;
214 	do {
215 		n = map(r_xprt, seg, nsegs, cur_wchunk != NULL);
216 		if (n <= 0)
217 			goto out;
218 		if (cur_rchunk) {	/* read */
219 			cur_rchunk->rc_discrim = xdr_one;
220 			/* all read chunks have the same "position" */
221 			cur_rchunk->rc_position = cpu_to_be32(pos);
222 			cur_rchunk->rc_target.rs_handle =
223 						cpu_to_be32(seg->mr_rkey);
224 			cur_rchunk->rc_target.rs_length =
225 						cpu_to_be32(seg->mr_len);
226 			xdr_encode_hyper(
227 					(__be32 *)&cur_rchunk->rc_target.rs_offset,
228 					seg->mr_base);
229 			dprintk("RPC:       %s: read chunk "
230 				"elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
231 				seg->mr_len, (unsigned long long)seg->mr_base,
232 				seg->mr_rkey, pos, n < nsegs ? "more" : "last");
233 			cur_rchunk++;
234 			r_xprt->rx_stats.read_chunk_count++;
235 		} else {		/* write/reply */
236 			cur_wchunk->wc_target.rs_handle =
237 						cpu_to_be32(seg->mr_rkey);
238 			cur_wchunk->wc_target.rs_length =
239 						cpu_to_be32(seg->mr_len);
240 			xdr_encode_hyper(
241 					(__be32 *)&cur_wchunk->wc_target.rs_offset,
242 					seg->mr_base);
243 			dprintk("RPC:       %s: %s chunk "
244 				"elem %d@0x%llx:0x%x (%s)\n", __func__,
245 				(type == rpcrdma_replych) ? "reply" : "write",
246 				seg->mr_len, (unsigned long long)seg->mr_base,
247 				seg->mr_rkey, n < nsegs ? "more" : "last");
248 			cur_wchunk++;
249 			if (type == rpcrdma_replych)
250 				r_xprt->rx_stats.reply_chunk_count++;
251 			else
252 				r_xprt->rx_stats.write_chunk_count++;
253 			r_xprt->rx_stats.total_rdma_request += seg->mr_len;
254 		}
255 		nchunks++;
256 		seg   += n;
257 		nsegs -= n;
258 	} while (nsegs);
259 
260 	/* success. all failures return above */
261 	req->rl_nchunks = nchunks;
262 
263 	/*
264 	 * finish off header. If write, marshal discrim and nchunks.
265 	 */
266 	if (cur_rchunk) {
267 		iptr = (__be32 *) cur_rchunk;
268 		*iptr++ = xdr_zero;	/* finish the read chunk list */
269 		*iptr++ = xdr_zero;	/* encode a NULL write chunk list */
270 		*iptr++ = xdr_zero;	/* encode a NULL reply chunk */
271 	} else {
272 		warray->wc_discrim = xdr_one;
273 		warray->wc_nchunks = cpu_to_be32(nchunks);
274 		iptr = (__be32 *) cur_wchunk;
275 		if (type == rpcrdma_writech) {
276 			*iptr++ = xdr_zero; /* finish the write chunk list */
277 			*iptr++ = xdr_zero; /* encode a NULL reply chunk */
278 		}
279 	}
280 
281 	/*
282 	 * Return header size.
283 	 */
284 	return (unsigned char *)iptr - (unsigned char *)headerp;
285 
286 out:
287 	for (pos = 0; nchunks--;)
288 		pos += r_xprt->rx_ia.ri_ops->ro_unmap(r_xprt,
289 						      &req->rl_segments[pos]);
290 	return n;
291 }
292 
293 /*
294  * Copy write data inline.
295  * This function is used for "small" requests. Data which is passed
296  * to RPC via iovecs (or page list) is copied directly into the
297  * pre-registered memory buffer for this request. For small amounts
298  * of data, this is efficient. The cutoff value is tunable.
299  */
300 static int
301 rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad)
302 {
303 	int i, npages, curlen;
304 	int copy_len;
305 	unsigned char *srcp, *destp;
306 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
307 	int page_base;
308 	struct page **ppages;
309 
310 	destp = rqst->rq_svec[0].iov_base;
311 	curlen = rqst->rq_svec[0].iov_len;
312 	destp += curlen;
313 	/*
314 	 * Do optional padding where it makes sense. Alignment of write
315 	 * payload can help the server, if our setting is accurate.
316 	 */
317 	pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/);
318 	if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH)
319 		pad = 0;	/* don't pad this request */
320 
321 	dprintk("RPC:       %s: pad %d destp 0x%p len %d hdrlen %d\n",
322 		__func__, pad, destp, rqst->rq_slen, curlen);
323 
324 	copy_len = rqst->rq_snd_buf.page_len;
325 
326 	if (rqst->rq_snd_buf.tail[0].iov_len) {
327 		curlen = rqst->rq_snd_buf.tail[0].iov_len;
328 		if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
329 			memmove(destp + copy_len,
330 				rqst->rq_snd_buf.tail[0].iov_base, curlen);
331 			r_xprt->rx_stats.pullup_copy_count += curlen;
332 		}
333 		dprintk("RPC:       %s: tail destp 0x%p len %d\n",
334 			__func__, destp + copy_len, curlen);
335 		rqst->rq_svec[0].iov_len += curlen;
336 	}
337 	r_xprt->rx_stats.pullup_copy_count += copy_len;
338 
339 	page_base = rqst->rq_snd_buf.page_base;
340 	ppages = rqst->rq_snd_buf.pages + (page_base >> PAGE_SHIFT);
341 	page_base &= ~PAGE_MASK;
342 	npages = PAGE_ALIGN(page_base+copy_len) >> PAGE_SHIFT;
343 	for (i = 0; copy_len && i < npages; i++) {
344 		curlen = PAGE_SIZE - page_base;
345 		if (curlen > copy_len)
346 			curlen = copy_len;
347 		dprintk("RPC:       %s: page %d destp 0x%p len %d curlen %d\n",
348 			__func__, i, destp, copy_len, curlen);
349 		srcp = kmap_atomic(ppages[i]);
350 		memcpy(destp, srcp+page_base, curlen);
351 		kunmap_atomic(srcp);
352 		rqst->rq_svec[0].iov_len += curlen;
353 		destp += curlen;
354 		copy_len -= curlen;
355 		page_base = 0;
356 	}
357 	/* header now contains entire send message */
358 	return pad;
359 }
360 
361 /*
362  * Marshal a request: the primary job of this routine is to choose
363  * the transfer modes. See comments below.
364  *
365  * Uses multiple RDMA IOVs for a request:
366  *  [0] -- RPC RDMA header, which uses memory from the *start* of the
367  *         preregistered buffer that already holds the RPC data in
368  *         its middle.
369  *  [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
370  *  [2] -- optional padding.
371  *  [3] -- if padded, header only in [1] and data here.
372  *
373  * Returns zero on success, otherwise a negative errno.
374  */
375 
376 int
377 rpcrdma_marshal_req(struct rpc_rqst *rqst)
378 {
379 	struct rpc_xprt *xprt = rqst->rq_xprt;
380 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
381 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
382 	char *base;
383 	size_t rpclen, padlen;
384 	ssize_t hdrlen;
385 	enum rpcrdma_chunktype rtype, wtype;
386 	struct rpcrdma_msg *headerp;
387 
388 	/*
389 	 * rpclen gets amount of data in first buffer, which is the
390 	 * pre-registered buffer.
391 	 */
392 	base = rqst->rq_svec[0].iov_base;
393 	rpclen = rqst->rq_svec[0].iov_len;
394 
395 	headerp = rdmab_to_msg(req->rl_rdmabuf);
396 	/* don't byte-swap XID, it's already done in request */
397 	headerp->rm_xid = rqst->rq_xid;
398 	headerp->rm_vers = rpcrdma_version;
399 	headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
400 	headerp->rm_type = rdma_msg;
401 
402 	/*
403 	 * Chunks needed for results?
404 	 *
405 	 * o If the expected result is under the inline threshold, all ops
406 	 *   return as inline (but see later).
407 	 * o Large non-read ops return as a single reply chunk.
408 	 * o Large read ops return data as write chunk(s), header as inline.
409 	 *
410 	 * Note: the NFS code sending down multiple result segments implies
411 	 * the op is one of read, readdir[plus], readlink or NFSv4 getacl.
412 	 */
413 
414 	/*
415 	 * This code can handle read chunks, write chunks OR reply
416 	 * chunks -- only one type. If the request is too big to fit
417 	 * inline, then we will choose read chunks. If the request is
418 	 * a READ, then use write chunks to separate the file data
419 	 * into pages; otherwise use reply chunks.
420 	 */
421 	if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst))
422 		wtype = rpcrdma_noch;
423 	else if (rqst->rq_rcv_buf.page_len == 0)
424 		wtype = rpcrdma_replych;
425 	else if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
426 		wtype = rpcrdma_writech;
427 	else
428 		wtype = rpcrdma_replych;
429 
430 	/*
431 	 * Chunks needed for arguments?
432 	 *
433 	 * o If the total request is under the inline threshold, all ops
434 	 *   are sent as inline.
435 	 * o Large non-write ops are sent with the entire message as a
436 	 *   single read chunk (protocol 0-position special case).
437 	 * o Large write ops transmit data as read chunk(s), header as
438 	 *   inline.
439 	 *
440 	 * Note: the NFS code sending down multiple argument segments
441 	 * implies the op is a write.
442 	 * TBD check NFSv4 setacl
443 	 */
444 	if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
445 		rtype = rpcrdma_noch;
446 	else if (rqst->rq_snd_buf.page_len == 0)
447 		rtype = rpcrdma_areadch;
448 	else
449 		rtype = rpcrdma_readch;
450 
451 	/* The following simplification is not true forever */
452 	if (rtype != rpcrdma_noch && wtype == rpcrdma_replych)
453 		wtype = rpcrdma_noch;
454 	if (rtype != rpcrdma_noch && wtype != rpcrdma_noch) {
455 		dprintk("RPC:       %s: cannot marshal multiple chunk lists\n",
456 			__func__);
457 		return -EIO;
458 	}
459 
460 	hdrlen = RPCRDMA_HDRLEN_MIN;
461 	padlen = 0;
462 
463 	/*
464 	 * Pull up any extra send data into the preregistered buffer.
465 	 * When padding is in use and applies to the transfer, insert
466 	 * it and change the message type.
467 	 */
468 	if (rtype == rpcrdma_noch) {
469 
470 		padlen = rpcrdma_inline_pullup(rqst,
471 						RPCRDMA_INLINE_PAD_VALUE(rqst));
472 
473 		if (padlen) {
474 			headerp->rm_type = rdma_msgp;
475 			headerp->rm_body.rm_padded.rm_align =
476 				cpu_to_be32(RPCRDMA_INLINE_PAD_VALUE(rqst));
477 			headerp->rm_body.rm_padded.rm_thresh =
478 				cpu_to_be32(RPCRDMA_INLINE_PAD_THRESH);
479 			headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero;
480 			headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero;
481 			headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero;
482 			hdrlen += 2 * sizeof(u32); /* extra words in padhdr */
483 			if (wtype != rpcrdma_noch) {
484 				dprintk("RPC:       %s: invalid chunk list\n",
485 					__func__);
486 				return -EIO;
487 			}
488 		} else {
489 			headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
490 			headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
491 			headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
492 			/* new length after pullup */
493 			rpclen = rqst->rq_svec[0].iov_len;
494 			/*
495 			 * Currently we try to not actually use read inline.
496 			 * Reply chunks have the desirable property that
497 			 * they land, packed, directly in the target buffers
498 			 * without headers, so they require no fixup. The
499 			 * additional RDMA Write op sends the same amount
500 			 * of data, streams on-the-wire and adds no overhead
501 			 * on receive. Therefore, we request a reply chunk
502 			 * for non-writes wherever feasible and efficient.
503 			 */
504 			if (wtype == rpcrdma_noch)
505 				wtype = rpcrdma_replych;
506 		}
507 	}
508 
509 	if (rtype != rpcrdma_noch) {
510 		hdrlen = rpcrdma_create_chunks(rqst, &rqst->rq_snd_buf,
511 					       headerp, rtype);
512 		wtype = rtype;	/* simplify dprintk */
513 
514 	} else if (wtype != rpcrdma_noch) {
515 		hdrlen = rpcrdma_create_chunks(rqst, &rqst->rq_rcv_buf,
516 					       headerp, wtype);
517 	}
518 	if (hdrlen < 0)
519 		return hdrlen;
520 
521 	dprintk("RPC:       %s: %s: hdrlen %zd rpclen %zd padlen %zd"
522 		" headerp 0x%p base 0x%p lkey 0x%x\n",
523 		__func__, transfertypes[wtype], hdrlen, rpclen, padlen,
524 		headerp, base, rdmab_lkey(req->rl_rdmabuf));
525 
526 	/*
527 	 * initialize send_iov's - normally only two: rdma chunk header and
528 	 * single preregistered RPC header buffer, but if padding is present,
529 	 * then use a preregistered (and zeroed) pad buffer between the RPC
530 	 * header and any write data. In all non-rdma cases, any following
531 	 * data has been copied into the RPC header buffer.
532 	 */
533 	req->rl_send_iov[0].addr = rdmab_addr(req->rl_rdmabuf);
534 	req->rl_send_iov[0].length = hdrlen;
535 	req->rl_send_iov[0].lkey = rdmab_lkey(req->rl_rdmabuf);
536 
537 	req->rl_send_iov[1].addr = rdmab_addr(req->rl_sendbuf);
538 	req->rl_send_iov[1].length = rpclen;
539 	req->rl_send_iov[1].lkey = rdmab_lkey(req->rl_sendbuf);
540 
541 	req->rl_niovs = 2;
542 
543 	if (padlen) {
544 		struct rpcrdma_ep *ep = &r_xprt->rx_ep;
545 
546 		req->rl_send_iov[2].addr = rdmab_addr(ep->rep_padbuf);
547 		req->rl_send_iov[2].length = padlen;
548 		req->rl_send_iov[2].lkey = rdmab_lkey(ep->rep_padbuf);
549 
550 		req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen;
551 		req->rl_send_iov[3].length = rqst->rq_slen - rpclen;
552 		req->rl_send_iov[3].lkey = rdmab_lkey(req->rl_sendbuf);
553 
554 		req->rl_niovs = 4;
555 	}
556 
557 	return 0;
558 }
559 
560 /*
561  * Chase down a received write or reply chunklist to get length
562  * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
563  */
564 static int
565 rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
566 {
567 	unsigned int i, total_len;
568 	struct rpcrdma_write_chunk *cur_wchunk;
569 	char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf);
570 
571 	i = be32_to_cpu(**iptrp);
572 	if (i > max)
573 		return -1;
574 	cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
575 	total_len = 0;
576 	while (i--) {
577 		struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
578 		ifdebug(FACILITY) {
579 			u64 off;
580 			xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
581 			dprintk("RPC:       %s: chunk %d@0x%llx:0x%x\n",
582 				__func__,
583 				be32_to_cpu(seg->rs_length),
584 				(unsigned long long)off,
585 				be32_to_cpu(seg->rs_handle));
586 		}
587 		total_len += be32_to_cpu(seg->rs_length);
588 		++cur_wchunk;
589 	}
590 	/* check and adjust for properly terminated write chunk */
591 	if (wrchunk) {
592 		__be32 *w = (__be32 *) cur_wchunk;
593 		if (*w++ != xdr_zero)
594 			return -1;
595 		cur_wchunk = (struct rpcrdma_write_chunk *) w;
596 	}
597 	if ((char *)cur_wchunk > base + rep->rr_len)
598 		return -1;
599 
600 	*iptrp = (__be32 *) cur_wchunk;
601 	return total_len;
602 }
603 
604 /*
605  * Scatter inline received data back into provided iov's.
606  */
607 static void
608 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
609 {
610 	int i, npages, curlen, olen;
611 	char *destp;
612 	struct page **ppages;
613 	int page_base;
614 
615 	curlen = rqst->rq_rcv_buf.head[0].iov_len;
616 	if (curlen > copy_len) {	/* write chunk header fixup */
617 		curlen = copy_len;
618 		rqst->rq_rcv_buf.head[0].iov_len = curlen;
619 	}
620 
621 	dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
622 		__func__, srcp, copy_len, curlen);
623 
624 	/* Shift pointer for first receive segment only */
625 	rqst->rq_rcv_buf.head[0].iov_base = srcp;
626 	srcp += curlen;
627 	copy_len -= curlen;
628 
629 	olen = copy_len;
630 	i = 0;
631 	rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
632 	page_base = rqst->rq_rcv_buf.page_base;
633 	ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
634 	page_base &= ~PAGE_MASK;
635 
636 	if (copy_len && rqst->rq_rcv_buf.page_len) {
637 		npages = PAGE_ALIGN(page_base +
638 			rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
639 		for (; i < npages; i++) {
640 			curlen = PAGE_SIZE - page_base;
641 			if (curlen > copy_len)
642 				curlen = copy_len;
643 			dprintk("RPC:       %s: page %d"
644 				" srcp 0x%p len %d curlen %d\n",
645 				__func__, i, srcp, copy_len, curlen);
646 			destp = kmap_atomic(ppages[i]);
647 			memcpy(destp + page_base, srcp, curlen);
648 			flush_dcache_page(ppages[i]);
649 			kunmap_atomic(destp);
650 			srcp += curlen;
651 			copy_len -= curlen;
652 			if (copy_len == 0)
653 				break;
654 			page_base = 0;
655 		}
656 	}
657 
658 	if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
659 		curlen = copy_len;
660 		if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
661 			curlen = rqst->rq_rcv_buf.tail[0].iov_len;
662 		if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
663 			memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
664 		dprintk("RPC:       %s: tail srcp 0x%p len %d curlen %d\n",
665 			__func__, srcp, copy_len, curlen);
666 		rqst->rq_rcv_buf.tail[0].iov_len = curlen;
667 		copy_len -= curlen; ++i;
668 	} else
669 		rqst->rq_rcv_buf.tail[0].iov_len = 0;
670 
671 	if (pad) {
672 		/* implicit padding on terminal chunk */
673 		unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
674 		while (pad--)
675 			p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
676 	}
677 
678 	if (copy_len)
679 		dprintk("RPC:       %s: %d bytes in"
680 			" %d extra segments (%d lost)\n",
681 			__func__, olen, i, copy_len);
682 
683 	/* TBD avoid a warning from call_decode() */
684 	rqst->rq_private_buf = rqst->rq_rcv_buf;
685 }
686 
687 void
688 rpcrdma_connect_worker(struct work_struct *work)
689 {
690 	struct rpcrdma_ep *ep =
691 		container_of(work, struct rpcrdma_ep, rep_connect_worker.work);
692 	struct rpcrdma_xprt *r_xprt =
693 		container_of(ep, struct rpcrdma_xprt, rx_ep);
694 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
695 
696 	spin_lock_bh(&xprt->transport_lock);
697 	if (++xprt->connect_cookie == 0)	/* maintain a reserved value */
698 		++xprt->connect_cookie;
699 	if (ep->rep_connected > 0) {
700 		if (!xprt_test_and_set_connected(xprt))
701 			xprt_wake_pending_tasks(xprt, 0);
702 	} else {
703 		if (xprt_test_and_clear_connected(xprt))
704 			xprt_wake_pending_tasks(xprt, -ENOTCONN);
705 	}
706 	spin_unlock_bh(&xprt->transport_lock);
707 }
708 
709 /*
710  * This function is called when an async event is posted to
711  * the connection which changes the connection state. All it
712  * does at this point is mark the connection up/down, the rpc
713  * timers do the rest.
714  */
715 void
716 rpcrdma_conn_func(struct rpcrdma_ep *ep)
717 {
718 	schedule_delayed_work(&ep->rep_connect_worker, 0);
719 }
720 
721 /*
722  * Called as a tasklet to do req/reply match and complete a request
723  * Errors must result in the RPC task either being awakened, or
724  * allowed to timeout, to discover the errors at that time.
725  */
726 void
727 rpcrdma_reply_handler(struct rpcrdma_rep *rep)
728 {
729 	struct rpcrdma_msg *headerp;
730 	struct rpcrdma_req *req;
731 	struct rpc_rqst *rqst;
732 	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
733 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
734 	__be32 *iptr;
735 	int rdmalen, status;
736 	unsigned long cwnd;
737 	u32 credits;
738 
739 	/* Check status. If bad, signal disconnect and return rep to pool */
740 	if (rep->rr_len == ~0U) {
741 		rpcrdma_recv_buffer_put(rep);
742 		if (r_xprt->rx_ep.rep_connected == 1) {
743 			r_xprt->rx_ep.rep_connected = -EIO;
744 			rpcrdma_conn_func(&r_xprt->rx_ep);
745 		}
746 		return;
747 	}
748 	if (rep->rr_len < RPCRDMA_HDRLEN_MIN) {
749 		dprintk("RPC:       %s: short/invalid reply\n", __func__);
750 		goto repost;
751 	}
752 	headerp = rdmab_to_msg(rep->rr_rdmabuf);
753 	if (headerp->rm_vers != rpcrdma_version) {
754 		dprintk("RPC:       %s: invalid version %d\n",
755 			__func__, be32_to_cpu(headerp->rm_vers));
756 		goto repost;
757 	}
758 
759 	/* Get XID and try for a match. */
760 	spin_lock(&xprt->transport_lock);
761 	rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
762 	if (rqst == NULL) {
763 		spin_unlock(&xprt->transport_lock);
764 		dprintk("RPC:       %s: reply 0x%p failed "
765 			"to match any request xid 0x%08x len %d\n",
766 			__func__, rep, be32_to_cpu(headerp->rm_xid),
767 			rep->rr_len);
768 repost:
769 		r_xprt->rx_stats.bad_reply_count++;
770 		if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
771 			rpcrdma_recv_buffer_put(rep);
772 
773 		return;
774 	}
775 
776 	/* get request object */
777 	req = rpcr_to_rdmar(rqst);
778 	if (req->rl_reply) {
779 		spin_unlock(&xprt->transport_lock);
780 		dprintk("RPC:       %s: duplicate reply 0x%p to RPC "
781 			"request 0x%p: xid 0x%08x\n", __func__, rep, req,
782 			be32_to_cpu(headerp->rm_xid));
783 		goto repost;
784 	}
785 
786 	dprintk("RPC:       %s: reply 0x%p completes request 0x%p\n"
787 		"                   RPC request 0x%p xid 0x%08x\n",
788 			__func__, rep, req, rqst,
789 			be32_to_cpu(headerp->rm_xid));
790 
791 	/* from here on, the reply is no longer an orphan */
792 	req->rl_reply = rep;
793 	xprt->reestablish_timeout = 0;
794 
795 	/* check for expected message types */
796 	/* The order of some of these tests is important. */
797 	switch (headerp->rm_type) {
798 	case rdma_msg:
799 		/* never expect read chunks */
800 		/* never expect reply chunks (two ways to check) */
801 		/* never expect write chunks without having offered RDMA */
802 		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
803 		    (headerp->rm_body.rm_chunks[1] == xdr_zero &&
804 		     headerp->rm_body.rm_chunks[2] != xdr_zero) ||
805 		    (headerp->rm_body.rm_chunks[1] != xdr_zero &&
806 		     req->rl_nchunks == 0))
807 			goto badheader;
808 		if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
809 			/* count any expected write chunks in read reply */
810 			/* start at write chunk array count */
811 			iptr = &headerp->rm_body.rm_chunks[2];
812 			rdmalen = rpcrdma_count_chunks(rep,
813 						req->rl_nchunks, 1, &iptr);
814 			/* check for validity, and no reply chunk after */
815 			if (rdmalen < 0 || *iptr++ != xdr_zero)
816 				goto badheader;
817 			rep->rr_len -=
818 			    ((unsigned char *)iptr - (unsigned char *)headerp);
819 			status = rep->rr_len + rdmalen;
820 			r_xprt->rx_stats.total_rdma_reply += rdmalen;
821 			/* special case - last chunk may omit padding */
822 			if (rdmalen &= 3) {
823 				rdmalen = 4 - rdmalen;
824 				status += rdmalen;
825 			}
826 		} else {
827 			/* else ordinary inline */
828 			rdmalen = 0;
829 			iptr = (__be32 *)((unsigned char *)headerp +
830 							RPCRDMA_HDRLEN_MIN);
831 			rep->rr_len -= RPCRDMA_HDRLEN_MIN;
832 			status = rep->rr_len;
833 		}
834 		/* Fix up the rpc results for upper layer */
835 		rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
836 		break;
837 
838 	case rdma_nomsg:
839 		/* never expect read or write chunks, always reply chunks */
840 		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
841 		    headerp->rm_body.rm_chunks[1] != xdr_zero ||
842 		    headerp->rm_body.rm_chunks[2] != xdr_one ||
843 		    req->rl_nchunks == 0)
844 			goto badheader;
845 		iptr = (__be32 *)((unsigned char *)headerp +
846 							RPCRDMA_HDRLEN_MIN);
847 		rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
848 		if (rdmalen < 0)
849 			goto badheader;
850 		r_xprt->rx_stats.total_rdma_reply += rdmalen;
851 		/* Reply chunk buffer already is the reply vector - no fixup. */
852 		status = rdmalen;
853 		break;
854 
855 badheader:
856 	default:
857 		dprintk("%s: invalid rpcrdma reply header (type %d):"
858 				" chunks[012] == %d %d %d"
859 				" expected chunks <= %d\n",
860 				__func__, be32_to_cpu(headerp->rm_type),
861 				headerp->rm_body.rm_chunks[0],
862 				headerp->rm_body.rm_chunks[1],
863 				headerp->rm_body.rm_chunks[2],
864 				req->rl_nchunks);
865 		status = -EIO;
866 		r_xprt->rx_stats.bad_reply_count++;
867 		break;
868 	}
869 
870 	credits = be32_to_cpu(headerp->rm_credit);
871 	if (credits == 0)
872 		credits = 1;	/* don't deadlock */
873 	else if (credits > r_xprt->rx_buf.rb_max_requests)
874 		credits = r_xprt->rx_buf.rb_max_requests;
875 
876 	cwnd = xprt->cwnd;
877 	xprt->cwnd = credits << RPC_CWNDSHIFT;
878 	if (xprt->cwnd > cwnd)
879 		xprt_release_rqst_cong(rqst->rq_task);
880 
881 	dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
882 			__func__, xprt, rqst, status);
883 	xprt_complete_rqst(rqst->rq_task, status);
884 	spin_unlock(&xprt->transport_lock);
885 }
886