xref: /openbmc/linux/net/sunrpc/xprtrdma/rpc_rdma.c (revision abfbd895)
1 /*
2  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  *      Redistributions of source code must retain the above copyright
15  *      notice, this list of conditions and the following disclaimer.
16  *
17  *      Redistributions in binary form must reproduce the above
18  *      copyright notice, this list of conditions and the following
19  *      disclaimer in the documentation and/or other materials provided
20  *      with the distribution.
21  *
22  *      Neither the name of the Network Appliance, Inc. nor the names of
23  *      its contributors may be used to endorse or promote products
24  *      derived from this software without specific prior written
25  *      permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * rpc_rdma.c
42  *
43  * This file contains the guts of the RPC RDMA protocol, and
44  * does marshaling/unmarshaling, etc. It is also where interfacing
45  * to the Linux RPC framework lives.
46  */
47 
48 #include "xprt_rdma.h"
49 
50 #include <linux/highmem.h>
51 
52 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
53 # define RPCDBG_FACILITY	RPCDBG_TRANS
54 #endif
55 
56 enum rpcrdma_chunktype {
57 	rpcrdma_noch = 0,
58 	rpcrdma_readch,
59 	rpcrdma_areadch,
60 	rpcrdma_writech,
61 	rpcrdma_replych
62 };
63 
64 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
65 static const char transfertypes[][12] = {
66 	"pure inline",	/* no chunks */
67 	" read chunk",	/* some argument via rdma read */
68 	"*read chunk",	/* entire request via rdma read */
69 	"write chunk",	/* some result via rdma write */
70 	"reply chunk"	/* entire reply via rdma write */
71 };
72 #endif
73 
74 /* The client can send a request inline as long as the RPCRDMA header
75  * plus the RPC call fit under the transport's inline limit. If the
76  * combined call message size exceeds that limit, the client must use
77  * the read chunk list for this operation.
78  */
79 static bool rpcrdma_args_inline(struct rpc_rqst *rqst)
80 {
81 	unsigned int callsize = RPCRDMA_HDRLEN_MIN + rqst->rq_snd_buf.len;
82 
83 	return callsize <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst);
84 }
85 
86 /* The client can't know how large the actual reply will be. Thus it
87  * plans for the largest possible reply for that particular ULP
88  * operation. If the maximum combined reply message size exceeds that
89  * limit, the client must provide a write list or a reply chunk for
90  * this request.
91  */
92 static bool rpcrdma_results_inline(struct rpc_rqst *rqst)
93 {
94 	unsigned int repsize = RPCRDMA_HDRLEN_MIN + rqst->rq_rcv_buf.buflen;
95 
96 	return repsize <= RPCRDMA_INLINE_READ_THRESHOLD(rqst);
97 }
98 
99 static int
100 rpcrdma_tail_pullup(struct xdr_buf *buf)
101 {
102 	size_t tlen = buf->tail[0].iov_len;
103 	size_t skip = tlen & 3;
104 
105 	/* Do not include the tail if it is only an XDR pad */
106 	if (tlen < 4)
107 		return 0;
108 
109 	/* xdr_write_pages() adds a pad at the beginning of the tail
110 	 * if the content in "buf->pages" is unaligned. Force the
111 	 * tail's actual content to land at the next XDR position
112 	 * after the head instead.
113 	 */
114 	if (skip) {
115 		unsigned char *src, *dst;
116 		unsigned int count;
117 
118 		src = buf->tail[0].iov_base;
119 		dst = buf->head[0].iov_base;
120 		dst += buf->head[0].iov_len;
121 
122 		src += skip;
123 		tlen -= skip;
124 
125 		dprintk("RPC:       %s: skip=%zu, memmove(%p, %p, %zu)\n",
126 			__func__, skip, dst, src, tlen);
127 
128 		for (count = tlen; count; count--)
129 			*dst++ = *src++;
130 	}
131 
132 	return tlen;
133 }
134 
135 /*
136  * Chunk assembly from upper layer xdr_buf.
137  *
138  * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
139  * elements. Segments are then coalesced when registered, if possible
140  * within the selected memreg mode.
141  *
142  * Returns positive number of segments converted, or a negative errno.
143  */
144 
145 static int
146 rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
147 	enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
148 {
149 	int len, n = 0, p;
150 	int page_base;
151 	struct page **ppages;
152 
153 	if (pos == 0 && xdrbuf->head[0].iov_len) {
154 		seg[n].mr_page = NULL;
155 		seg[n].mr_offset = xdrbuf->head[0].iov_base;
156 		seg[n].mr_len = xdrbuf->head[0].iov_len;
157 		++n;
158 	}
159 
160 	len = xdrbuf->page_len;
161 	ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
162 	page_base = xdrbuf->page_base & ~PAGE_MASK;
163 	p = 0;
164 	while (len && n < nsegs) {
165 		if (!ppages[p]) {
166 			/* alloc the pagelist for receiving buffer */
167 			ppages[p] = alloc_page(GFP_ATOMIC);
168 			if (!ppages[p])
169 				return -ENOMEM;
170 		}
171 		seg[n].mr_page = ppages[p];
172 		seg[n].mr_offset = (void *)(unsigned long) page_base;
173 		seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
174 		if (seg[n].mr_len > PAGE_SIZE)
175 			return -EIO;
176 		len -= seg[n].mr_len;
177 		++n;
178 		++p;
179 		page_base = 0;	/* page offset only applies to first page */
180 	}
181 
182 	/* Message overflows the seg array */
183 	if (len && n == nsegs)
184 		return -EIO;
185 
186 	/* When encoding the read list, the tail is always sent inline */
187 	if (type == rpcrdma_readch)
188 		return n;
189 
190 	if (xdrbuf->tail[0].iov_len) {
191 		/* the rpcrdma protocol allows us to omit any trailing
192 		 * xdr pad bytes, saving the server an RDMA operation. */
193 		if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
194 			return n;
195 		if (n == nsegs)
196 			/* Tail remains, but we're out of segments */
197 			return -EIO;
198 		seg[n].mr_page = NULL;
199 		seg[n].mr_offset = xdrbuf->tail[0].iov_base;
200 		seg[n].mr_len = xdrbuf->tail[0].iov_len;
201 		++n;
202 	}
203 
204 	return n;
205 }
206 
207 /*
208  * Create read/write chunk lists, and reply chunks, for RDMA
209  *
210  *   Assume check against THRESHOLD has been done, and chunks are required.
211  *   Assume only encoding one list entry for read|write chunks. The NFSv3
212  *     protocol is simple enough to allow this as it only has a single "bulk
213  *     result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
214  *     RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
215  *
216  * When used for a single reply chunk (which is a special write
217  * chunk used for the entire reply, rather than just the data), it
218  * is used primarily for READDIR and READLINK which would otherwise
219  * be severely size-limited by a small rdma inline read max. The server
220  * response will come back as an RDMA Write, followed by a message
221  * of type RDMA_NOMSG carrying the xid and length. As a result, reply
222  * chunks do not provide data alignment, however they do not require
223  * "fixup" (moving the response to the upper layer buffer) either.
224  *
225  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
226  *
227  *  Read chunklist (a linked list):
228  *   N elements, position P (same P for all chunks of same arg!):
229  *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
230  *
231  *  Write chunklist (a list of (one) counted array):
232  *   N elements:
233  *    1 - N - HLOO - HLOO - ... - HLOO - 0
234  *
235  *  Reply chunk (a counted array):
236  *   N elements:
237  *    1 - N - HLOO - HLOO - ... - HLOO
238  *
239  * Returns positive RPC/RDMA header size, or negative errno.
240  */
241 
242 static ssize_t
243 rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
244 		struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
245 {
246 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
247 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
248 	int n, nsegs, nchunks = 0;
249 	unsigned int pos;
250 	struct rpcrdma_mr_seg *seg = req->rl_segments;
251 	struct rpcrdma_read_chunk *cur_rchunk = NULL;
252 	struct rpcrdma_write_array *warray = NULL;
253 	struct rpcrdma_write_chunk *cur_wchunk = NULL;
254 	__be32 *iptr = headerp->rm_body.rm_chunks;
255 	int (*map)(struct rpcrdma_xprt *, struct rpcrdma_mr_seg *, int, bool);
256 
257 	if (type == rpcrdma_readch || type == rpcrdma_areadch) {
258 		/* a read chunk - server will RDMA Read our memory */
259 		cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
260 	} else {
261 		/* a write or reply chunk - server will RDMA Write our memory */
262 		*iptr++ = xdr_zero;	/* encode a NULL read chunk list */
263 		if (type == rpcrdma_replych)
264 			*iptr++ = xdr_zero;	/* a NULL write chunk list */
265 		warray = (struct rpcrdma_write_array *) iptr;
266 		cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
267 	}
268 
269 	if (type == rpcrdma_replych || type == rpcrdma_areadch)
270 		pos = 0;
271 	else
272 		pos = target->head[0].iov_len;
273 
274 	nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
275 	if (nsegs < 0)
276 		return nsegs;
277 
278 	map = r_xprt->rx_ia.ri_ops->ro_map;
279 	do {
280 		n = map(r_xprt, seg, nsegs, cur_wchunk != NULL);
281 		if (n <= 0)
282 			goto out;
283 		if (cur_rchunk) {	/* read */
284 			cur_rchunk->rc_discrim = xdr_one;
285 			/* all read chunks have the same "position" */
286 			cur_rchunk->rc_position = cpu_to_be32(pos);
287 			cur_rchunk->rc_target.rs_handle =
288 						cpu_to_be32(seg->mr_rkey);
289 			cur_rchunk->rc_target.rs_length =
290 						cpu_to_be32(seg->mr_len);
291 			xdr_encode_hyper(
292 					(__be32 *)&cur_rchunk->rc_target.rs_offset,
293 					seg->mr_base);
294 			dprintk("RPC:       %s: read chunk "
295 				"elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
296 				seg->mr_len, (unsigned long long)seg->mr_base,
297 				seg->mr_rkey, pos, n < nsegs ? "more" : "last");
298 			cur_rchunk++;
299 			r_xprt->rx_stats.read_chunk_count++;
300 		} else {		/* write/reply */
301 			cur_wchunk->wc_target.rs_handle =
302 						cpu_to_be32(seg->mr_rkey);
303 			cur_wchunk->wc_target.rs_length =
304 						cpu_to_be32(seg->mr_len);
305 			xdr_encode_hyper(
306 					(__be32 *)&cur_wchunk->wc_target.rs_offset,
307 					seg->mr_base);
308 			dprintk("RPC:       %s: %s chunk "
309 				"elem %d@0x%llx:0x%x (%s)\n", __func__,
310 				(type == rpcrdma_replych) ? "reply" : "write",
311 				seg->mr_len, (unsigned long long)seg->mr_base,
312 				seg->mr_rkey, n < nsegs ? "more" : "last");
313 			cur_wchunk++;
314 			if (type == rpcrdma_replych)
315 				r_xprt->rx_stats.reply_chunk_count++;
316 			else
317 				r_xprt->rx_stats.write_chunk_count++;
318 			r_xprt->rx_stats.total_rdma_request += seg->mr_len;
319 		}
320 		nchunks++;
321 		seg   += n;
322 		nsegs -= n;
323 	} while (nsegs);
324 
325 	/* success. all failures return above */
326 	req->rl_nchunks = nchunks;
327 
328 	/*
329 	 * finish off header. If write, marshal discrim and nchunks.
330 	 */
331 	if (cur_rchunk) {
332 		iptr = (__be32 *) cur_rchunk;
333 		*iptr++ = xdr_zero;	/* finish the read chunk list */
334 		*iptr++ = xdr_zero;	/* encode a NULL write chunk list */
335 		*iptr++ = xdr_zero;	/* encode a NULL reply chunk */
336 	} else {
337 		warray->wc_discrim = xdr_one;
338 		warray->wc_nchunks = cpu_to_be32(nchunks);
339 		iptr = (__be32 *) cur_wchunk;
340 		if (type == rpcrdma_writech) {
341 			*iptr++ = xdr_zero; /* finish the write chunk list */
342 			*iptr++ = xdr_zero; /* encode a NULL reply chunk */
343 		}
344 	}
345 
346 	/*
347 	 * Return header size.
348 	 */
349 	return (unsigned char *)iptr - (unsigned char *)headerp;
350 
351 out:
352 	for (pos = 0; nchunks--;)
353 		pos += r_xprt->rx_ia.ri_ops->ro_unmap(r_xprt,
354 						      &req->rl_segments[pos]);
355 	return n;
356 }
357 
358 /*
359  * Copy write data inline.
360  * This function is used for "small" requests. Data which is passed
361  * to RPC via iovecs (or page list) is copied directly into the
362  * pre-registered memory buffer for this request. For small amounts
363  * of data, this is efficient. The cutoff value is tunable.
364  */
365 static void rpcrdma_inline_pullup(struct rpc_rqst *rqst)
366 {
367 	int i, npages, curlen;
368 	int copy_len;
369 	unsigned char *srcp, *destp;
370 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
371 	int page_base;
372 	struct page **ppages;
373 
374 	destp = rqst->rq_svec[0].iov_base;
375 	curlen = rqst->rq_svec[0].iov_len;
376 	destp += curlen;
377 
378 	dprintk("RPC:       %s: destp 0x%p len %d hdrlen %d\n",
379 		__func__, destp, rqst->rq_slen, curlen);
380 
381 	copy_len = rqst->rq_snd_buf.page_len;
382 
383 	if (rqst->rq_snd_buf.tail[0].iov_len) {
384 		curlen = rqst->rq_snd_buf.tail[0].iov_len;
385 		if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
386 			memmove(destp + copy_len,
387 				rqst->rq_snd_buf.tail[0].iov_base, curlen);
388 			r_xprt->rx_stats.pullup_copy_count += curlen;
389 		}
390 		dprintk("RPC:       %s: tail destp 0x%p len %d\n",
391 			__func__, destp + copy_len, curlen);
392 		rqst->rq_svec[0].iov_len += curlen;
393 	}
394 	r_xprt->rx_stats.pullup_copy_count += copy_len;
395 
396 	page_base = rqst->rq_snd_buf.page_base;
397 	ppages = rqst->rq_snd_buf.pages + (page_base >> PAGE_SHIFT);
398 	page_base &= ~PAGE_MASK;
399 	npages = PAGE_ALIGN(page_base+copy_len) >> PAGE_SHIFT;
400 	for (i = 0; copy_len && i < npages; i++) {
401 		curlen = PAGE_SIZE - page_base;
402 		if (curlen > copy_len)
403 			curlen = copy_len;
404 		dprintk("RPC:       %s: page %d destp 0x%p len %d curlen %d\n",
405 			__func__, i, destp, copy_len, curlen);
406 		srcp = kmap_atomic(ppages[i]);
407 		memcpy(destp, srcp+page_base, curlen);
408 		kunmap_atomic(srcp);
409 		rqst->rq_svec[0].iov_len += curlen;
410 		destp += curlen;
411 		copy_len -= curlen;
412 		page_base = 0;
413 	}
414 	/* header now contains entire send message */
415 }
416 
417 /*
418  * Marshal a request: the primary job of this routine is to choose
419  * the transfer modes. See comments below.
420  *
421  * Uses multiple RDMA IOVs for a request:
422  *  [0] -- RPC RDMA header, which uses memory from the *start* of the
423  *         preregistered buffer that already holds the RPC data in
424  *         its middle.
425  *  [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
426  *  [2] -- optional padding.
427  *  [3] -- if padded, header only in [1] and data here.
428  *
429  * Returns zero on success, otherwise a negative errno.
430  */
431 
432 int
433 rpcrdma_marshal_req(struct rpc_rqst *rqst)
434 {
435 	struct rpc_xprt *xprt = rqst->rq_xprt;
436 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
437 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
438 	char *base;
439 	size_t rpclen;
440 	ssize_t hdrlen;
441 	enum rpcrdma_chunktype rtype, wtype;
442 	struct rpcrdma_msg *headerp;
443 
444 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
445 	if (test_bit(RPC_BC_PA_IN_USE, &rqst->rq_bc_pa_state))
446 		return rpcrdma_bc_marshal_reply(rqst);
447 #endif
448 
449 	/*
450 	 * rpclen gets amount of data in first buffer, which is the
451 	 * pre-registered buffer.
452 	 */
453 	base = rqst->rq_svec[0].iov_base;
454 	rpclen = rqst->rq_svec[0].iov_len;
455 
456 	headerp = rdmab_to_msg(req->rl_rdmabuf);
457 	/* don't byte-swap XID, it's already done in request */
458 	headerp->rm_xid = rqst->rq_xid;
459 	headerp->rm_vers = rpcrdma_version;
460 	headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
461 	headerp->rm_type = rdma_msg;
462 
463 	/*
464 	 * Chunks needed for results?
465 	 *
466 	 * o Read ops return data as write chunk(s), header as inline.
467 	 * o If the expected result is under the inline threshold, all ops
468 	 *   return as inline.
469 	 * o Large non-read ops return as a single reply chunk.
470 	 */
471 	if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
472 		wtype = rpcrdma_writech;
473 	else if (rpcrdma_results_inline(rqst))
474 		wtype = rpcrdma_noch;
475 	else
476 		wtype = rpcrdma_replych;
477 
478 	/*
479 	 * Chunks needed for arguments?
480 	 *
481 	 * o If the total request is under the inline threshold, all ops
482 	 *   are sent as inline.
483 	 * o Large write ops transmit data as read chunk(s), header as
484 	 *   inline.
485 	 * o Large non-write ops are sent with the entire message as a
486 	 *   single read chunk (protocol 0-position special case).
487 	 *
488 	 * This assumes that the upper layer does not present a request
489 	 * that both has a data payload, and whose non-data arguments
490 	 * by themselves are larger than the inline threshold.
491 	 */
492 	if (rpcrdma_args_inline(rqst)) {
493 		rtype = rpcrdma_noch;
494 	} else if (rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
495 		rtype = rpcrdma_readch;
496 	} else {
497 		r_xprt->rx_stats.nomsg_call_count++;
498 		headerp->rm_type = htonl(RDMA_NOMSG);
499 		rtype = rpcrdma_areadch;
500 		rpclen = 0;
501 	}
502 
503 	/* The following simplification is not true forever */
504 	if (rtype != rpcrdma_noch && wtype == rpcrdma_replych)
505 		wtype = rpcrdma_noch;
506 	if (rtype != rpcrdma_noch && wtype != rpcrdma_noch) {
507 		dprintk("RPC:       %s: cannot marshal multiple chunk lists\n",
508 			__func__);
509 		return -EIO;
510 	}
511 
512 	hdrlen = RPCRDMA_HDRLEN_MIN;
513 
514 	/*
515 	 * Pull up any extra send data into the preregistered buffer.
516 	 * When padding is in use and applies to the transfer, insert
517 	 * it and change the message type.
518 	 */
519 	if (rtype == rpcrdma_noch) {
520 
521 		rpcrdma_inline_pullup(rqst);
522 
523 		headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
524 		headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
525 		headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
526 		/* new length after pullup */
527 		rpclen = rqst->rq_svec[0].iov_len;
528 	} else if (rtype == rpcrdma_readch)
529 		rpclen += rpcrdma_tail_pullup(&rqst->rq_snd_buf);
530 	if (rtype != rpcrdma_noch) {
531 		hdrlen = rpcrdma_create_chunks(rqst, &rqst->rq_snd_buf,
532 					       headerp, rtype);
533 		wtype = rtype;	/* simplify dprintk */
534 
535 	} else if (wtype != rpcrdma_noch) {
536 		hdrlen = rpcrdma_create_chunks(rqst, &rqst->rq_rcv_buf,
537 					       headerp, wtype);
538 	}
539 	if (hdrlen < 0)
540 		return hdrlen;
541 
542 	dprintk("RPC:       %s: %s: hdrlen %zd rpclen %zd"
543 		" headerp 0x%p base 0x%p lkey 0x%x\n",
544 		__func__, transfertypes[wtype], hdrlen, rpclen,
545 		headerp, base, rdmab_lkey(req->rl_rdmabuf));
546 
547 	/*
548 	 * initialize send_iov's - normally only two: rdma chunk header and
549 	 * single preregistered RPC header buffer, but if padding is present,
550 	 * then use a preregistered (and zeroed) pad buffer between the RPC
551 	 * header and any write data. In all non-rdma cases, any following
552 	 * data has been copied into the RPC header buffer.
553 	 */
554 	req->rl_send_iov[0].addr = rdmab_addr(req->rl_rdmabuf);
555 	req->rl_send_iov[0].length = hdrlen;
556 	req->rl_send_iov[0].lkey = rdmab_lkey(req->rl_rdmabuf);
557 
558 	req->rl_niovs = 1;
559 	if (rtype == rpcrdma_areadch)
560 		return 0;
561 
562 	req->rl_send_iov[1].addr = rdmab_addr(req->rl_sendbuf);
563 	req->rl_send_iov[1].length = rpclen;
564 	req->rl_send_iov[1].lkey = rdmab_lkey(req->rl_sendbuf);
565 
566 	req->rl_niovs = 2;
567 	return 0;
568 }
569 
570 /*
571  * Chase down a received write or reply chunklist to get length
572  * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
573  */
574 static int
575 rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
576 {
577 	unsigned int i, total_len;
578 	struct rpcrdma_write_chunk *cur_wchunk;
579 	char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf);
580 
581 	i = be32_to_cpu(**iptrp);
582 	if (i > max)
583 		return -1;
584 	cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
585 	total_len = 0;
586 	while (i--) {
587 		struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
588 		ifdebug(FACILITY) {
589 			u64 off;
590 			xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
591 			dprintk("RPC:       %s: chunk %d@0x%llx:0x%x\n",
592 				__func__,
593 				be32_to_cpu(seg->rs_length),
594 				(unsigned long long)off,
595 				be32_to_cpu(seg->rs_handle));
596 		}
597 		total_len += be32_to_cpu(seg->rs_length);
598 		++cur_wchunk;
599 	}
600 	/* check and adjust for properly terminated write chunk */
601 	if (wrchunk) {
602 		__be32 *w = (__be32 *) cur_wchunk;
603 		if (*w++ != xdr_zero)
604 			return -1;
605 		cur_wchunk = (struct rpcrdma_write_chunk *) w;
606 	}
607 	if ((char *)cur_wchunk > base + rep->rr_len)
608 		return -1;
609 
610 	*iptrp = (__be32 *) cur_wchunk;
611 	return total_len;
612 }
613 
614 /*
615  * Scatter inline received data back into provided iov's.
616  */
617 static void
618 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
619 {
620 	int i, npages, curlen, olen;
621 	char *destp;
622 	struct page **ppages;
623 	int page_base;
624 
625 	curlen = rqst->rq_rcv_buf.head[0].iov_len;
626 	if (curlen > copy_len) {	/* write chunk header fixup */
627 		curlen = copy_len;
628 		rqst->rq_rcv_buf.head[0].iov_len = curlen;
629 	}
630 
631 	dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
632 		__func__, srcp, copy_len, curlen);
633 
634 	/* Shift pointer for first receive segment only */
635 	rqst->rq_rcv_buf.head[0].iov_base = srcp;
636 	srcp += curlen;
637 	copy_len -= curlen;
638 
639 	olen = copy_len;
640 	i = 0;
641 	rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
642 	page_base = rqst->rq_rcv_buf.page_base;
643 	ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
644 	page_base &= ~PAGE_MASK;
645 
646 	if (copy_len && rqst->rq_rcv_buf.page_len) {
647 		npages = PAGE_ALIGN(page_base +
648 			rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
649 		for (; i < npages; i++) {
650 			curlen = PAGE_SIZE - page_base;
651 			if (curlen > copy_len)
652 				curlen = copy_len;
653 			dprintk("RPC:       %s: page %d"
654 				" srcp 0x%p len %d curlen %d\n",
655 				__func__, i, srcp, copy_len, curlen);
656 			destp = kmap_atomic(ppages[i]);
657 			memcpy(destp + page_base, srcp, curlen);
658 			flush_dcache_page(ppages[i]);
659 			kunmap_atomic(destp);
660 			srcp += curlen;
661 			copy_len -= curlen;
662 			if (copy_len == 0)
663 				break;
664 			page_base = 0;
665 		}
666 	}
667 
668 	if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
669 		curlen = copy_len;
670 		if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
671 			curlen = rqst->rq_rcv_buf.tail[0].iov_len;
672 		if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
673 			memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
674 		dprintk("RPC:       %s: tail srcp 0x%p len %d curlen %d\n",
675 			__func__, srcp, copy_len, curlen);
676 		rqst->rq_rcv_buf.tail[0].iov_len = curlen;
677 		copy_len -= curlen; ++i;
678 	} else
679 		rqst->rq_rcv_buf.tail[0].iov_len = 0;
680 
681 	if (pad) {
682 		/* implicit padding on terminal chunk */
683 		unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
684 		while (pad--)
685 			p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
686 	}
687 
688 	if (copy_len)
689 		dprintk("RPC:       %s: %d bytes in"
690 			" %d extra segments (%d lost)\n",
691 			__func__, olen, i, copy_len);
692 
693 	/* TBD avoid a warning from call_decode() */
694 	rqst->rq_private_buf = rqst->rq_rcv_buf;
695 }
696 
697 void
698 rpcrdma_connect_worker(struct work_struct *work)
699 {
700 	struct rpcrdma_ep *ep =
701 		container_of(work, struct rpcrdma_ep, rep_connect_worker.work);
702 	struct rpcrdma_xprt *r_xprt =
703 		container_of(ep, struct rpcrdma_xprt, rx_ep);
704 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
705 
706 	spin_lock_bh(&xprt->transport_lock);
707 	if (++xprt->connect_cookie == 0)	/* maintain a reserved value */
708 		++xprt->connect_cookie;
709 	if (ep->rep_connected > 0) {
710 		if (!xprt_test_and_set_connected(xprt))
711 			xprt_wake_pending_tasks(xprt, 0);
712 	} else {
713 		if (xprt_test_and_clear_connected(xprt))
714 			xprt_wake_pending_tasks(xprt, -ENOTCONN);
715 	}
716 	spin_unlock_bh(&xprt->transport_lock);
717 }
718 
719 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
720 /* By convention, backchannel calls arrive via rdma_msg type
721  * messages, and never populate the chunk lists. This makes
722  * the RPC/RDMA header small and fixed in size, so it is
723  * straightforward to check the RPC header's direction field.
724  */
725 static bool
726 rpcrdma_is_bcall(struct rpcrdma_msg *headerp)
727 {
728 	__be32 *p = (__be32 *)headerp;
729 
730 	if (headerp->rm_type != rdma_msg)
731 		return false;
732 	if (headerp->rm_body.rm_chunks[0] != xdr_zero)
733 		return false;
734 	if (headerp->rm_body.rm_chunks[1] != xdr_zero)
735 		return false;
736 	if (headerp->rm_body.rm_chunks[2] != xdr_zero)
737 		return false;
738 
739 	/* sanity */
740 	if (p[7] != headerp->rm_xid)
741 		return false;
742 	/* call direction */
743 	if (p[8] != cpu_to_be32(RPC_CALL))
744 		return false;
745 
746 	return true;
747 }
748 #endif	/* CONFIG_SUNRPC_BACKCHANNEL */
749 
750 /*
751  * This function is called when an async event is posted to
752  * the connection which changes the connection state. All it
753  * does at this point is mark the connection up/down, the rpc
754  * timers do the rest.
755  */
756 void
757 rpcrdma_conn_func(struct rpcrdma_ep *ep)
758 {
759 	schedule_delayed_work(&ep->rep_connect_worker, 0);
760 }
761 
762 /* Process received RPC/RDMA messages.
763  *
764  * Errors must result in the RPC task either being awakened, or
765  * allowed to timeout, to discover the errors at that time.
766  */
767 void
768 rpcrdma_reply_handler(struct rpcrdma_rep *rep)
769 {
770 	struct rpcrdma_msg *headerp;
771 	struct rpcrdma_req *req;
772 	struct rpc_rqst *rqst;
773 	struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
774 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
775 	__be32 *iptr;
776 	int rdmalen, status;
777 	unsigned long cwnd;
778 	u32 credits;
779 
780 	dprintk("RPC:       %s: incoming rep %p\n", __func__, rep);
781 
782 	if (rep->rr_len == RPCRDMA_BAD_LEN)
783 		goto out_badstatus;
784 	if (rep->rr_len < RPCRDMA_HDRLEN_MIN)
785 		goto out_shortreply;
786 
787 	headerp = rdmab_to_msg(rep->rr_rdmabuf);
788 	if (headerp->rm_vers != rpcrdma_version)
789 		goto out_badversion;
790 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
791 	if (rpcrdma_is_bcall(headerp))
792 		goto out_bcall;
793 #endif
794 
795 	/* Match incoming rpcrdma_rep to an rpcrdma_req to
796 	 * get context for handling any incoming chunks.
797 	 */
798 	spin_lock_bh(&xprt->transport_lock);
799 	rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
800 	if (!rqst)
801 		goto out_nomatch;
802 
803 	req = rpcr_to_rdmar(rqst);
804 	if (req->rl_reply)
805 		goto out_duplicate;
806 
807 	dprintk("RPC:       %s: reply 0x%p completes request 0x%p\n"
808 		"                   RPC request 0x%p xid 0x%08x\n",
809 			__func__, rep, req, rqst,
810 			be32_to_cpu(headerp->rm_xid));
811 
812 	/* from here on, the reply is no longer an orphan */
813 	req->rl_reply = rep;
814 	xprt->reestablish_timeout = 0;
815 
816 	/* check for expected message types */
817 	/* The order of some of these tests is important. */
818 	switch (headerp->rm_type) {
819 	case rdma_msg:
820 		/* never expect read chunks */
821 		/* never expect reply chunks (two ways to check) */
822 		/* never expect write chunks without having offered RDMA */
823 		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
824 		    (headerp->rm_body.rm_chunks[1] == xdr_zero &&
825 		     headerp->rm_body.rm_chunks[2] != xdr_zero) ||
826 		    (headerp->rm_body.rm_chunks[1] != xdr_zero &&
827 		     req->rl_nchunks == 0))
828 			goto badheader;
829 		if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
830 			/* count any expected write chunks in read reply */
831 			/* start at write chunk array count */
832 			iptr = &headerp->rm_body.rm_chunks[2];
833 			rdmalen = rpcrdma_count_chunks(rep,
834 						req->rl_nchunks, 1, &iptr);
835 			/* check for validity, and no reply chunk after */
836 			if (rdmalen < 0 || *iptr++ != xdr_zero)
837 				goto badheader;
838 			rep->rr_len -=
839 			    ((unsigned char *)iptr - (unsigned char *)headerp);
840 			status = rep->rr_len + rdmalen;
841 			r_xprt->rx_stats.total_rdma_reply += rdmalen;
842 			/* special case - last chunk may omit padding */
843 			if (rdmalen &= 3) {
844 				rdmalen = 4 - rdmalen;
845 				status += rdmalen;
846 			}
847 		} else {
848 			/* else ordinary inline */
849 			rdmalen = 0;
850 			iptr = (__be32 *)((unsigned char *)headerp +
851 							RPCRDMA_HDRLEN_MIN);
852 			rep->rr_len -= RPCRDMA_HDRLEN_MIN;
853 			status = rep->rr_len;
854 		}
855 		/* Fix up the rpc results for upper layer */
856 		rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
857 		break;
858 
859 	case rdma_nomsg:
860 		/* never expect read or write chunks, always reply chunks */
861 		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
862 		    headerp->rm_body.rm_chunks[1] != xdr_zero ||
863 		    headerp->rm_body.rm_chunks[2] != xdr_one ||
864 		    req->rl_nchunks == 0)
865 			goto badheader;
866 		iptr = (__be32 *)((unsigned char *)headerp +
867 							RPCRDMA_HDRLEN_MIN);
868 		rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
869 		if (rdmalen < 0)
870 			goto badheader;
871 		r_xprt->rx_stats.total_rdma_reply += rdmalen;
872 		/* Reply chunk buffer already is the reply vector - no fixup. */
873 		status = rdmalen;
874 		break;
875 
876 badheader:
877 	default:
878 		dprintk("%s: invalid rpcrdma reply header (type %d):"
879 				" chunks[012] == %d %d %d"
880 				" expected chunks <= %d\n",
881 				__func__, be32_to_cpu(headerp->rm_type),
882 				headerp->rm_body.rm_chunks[0],
883 				headerp->rm_body.rm_chunks[1],
884 				headerp->rm_body.rm_chunks[2],
885 				req->rl_nchunks);
886 		status = -EIO;
887 		r_xprt->rx_stats.bad_reply_count++;
888 		break;
889 	}
890 
891 	credits = be32_to_cpu(headerp->rm_credit);
892 	if (credits == 0)
893 		credits = 1;	/* don't deadlock */
894 	else if (credits > r_xprt->rx_buf.rb_max_requests)
895 		credits = r_xprt->rx_buf.rb_max_requests;
896 
897 	cwnd = xprt->cwnd;
898 	xprt->cwnd = credits << RPC_CWNDSHIFT;
899 	if (xprt->cwnd > cwnd)
900 		xprt_release_rqst_cong(rqst->rq_task);
901 
902 	xprt_complete_rqst(rqst->rq_task, status);
903 	spin_unlock_bh(&xprt->transport_lock);
904 	dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
905 			__func__, xprt, rqst, status);
906 	return;
907 
908 out_badstatus:
909 	rpcrdma_recv_buffer_put(rep);
910 	if (r_xprt->rx_ep.rep_connected == 1) {
911 		r_xprt->rx_ep.rep_connected = -EIO;
912 		rpcrdma_conn_func(&r_xprt->rx_ep);
913 	}
914 	return;
915 
916 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
917 out_bcall:
918 	rpcrdma_bc_receive_call(r_xprt, rep);
919 	return;
920 #endif
921 
922 out_shortreply:
923 	dprintk("RPC:       %s: short/invalid reply\n", __func__);
924 	goto repost;
925 
926 out_badversion:
927 	dprintk("RPC:       %s: invalid version %d\n",
928 		__func__, be32_to_cpu(headerp->rm_vers));
929 	goto repost;
930 
931 out_nomatch:
932 	spin_unlock_bh(&xprt->transport_lock);
933 	dprintk("RPC:       %s: no match for incoming xid 0x%08x len %d\n",
934 		__func__, be32_to_cpu(headerp->rm_xid),
935 		rep->rr_len);
936 	goto repost;
937 
938 out_duplicate:
939 	spin_unlock_bh(&xprt->transport_lock);
940 	dprintk("RPC:       %s: "
941 		"duplicate reply %p to RPC request %p: xid 0x%08x\n",
942 		__func__, rep, req, be32_to_cpu(headerp->rm_xid));
943 
944 repost:
945 	r_xprt->rx_stats.bad_reply_count++;
946 	if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
947 		rpcrdma_recv_buffer_put(rep);
948 }
949