xref: /openbmc/linux/net/sunrpc/xprtrdma/rpc_rdma.c (revision 8c0b9ee8)
1 /*
2  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the BSD-type
8  * license below:
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  *      Redistributions of source code must retain the above copyright
15  *      notice, this list of conditions and the following disclaimer.
16  *
17  *      Redistributions in binary form must reproduce the above
18  *      copyright notice, this list of conditions and the following
19  *      disclaimer in the documentation and/or other materials provided
20  *      with the distribution.
21  *
22  *      Neither the name of the Network Appliance, Inc. nor the names of
23  *      its contributors may be used to endorse or promote products
24  *      derived from this software without specific prior written
25  *      permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * rpc_rdma.c
42  *
43  * This file contains the guts of the RPC RDMA protocol, and
44  * does marshaling/unmarshaling, etc. It is also where interfacing
45  * to the Linux RPC framework lives.
46  */
47 
48 #include "xprt_rdma.h"
49 
50 #include <linux/highmem.h>
51 
52 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
53 # define RPCDBG_FACILITY	RPCDBG_TRANS
54 #endif
55 
56 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
57 static const char transfertypes[][12] = {
58 	"pure inline",	/* no chunks */
59 	" read chunk",	/* some argument via rdma read */
60 	"*read chunk",	/* entire request via rdma read */
61 	"write chunk",	/* some result via rdma write */
62 	"reply chunk"	/* entire reply via rdma write */
63 };
64 #endif
65 
66 /*
67  * Chunk assembly from upper layer xdr_buf.
68  *
69  * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
70  * elements. Segments are then coalesced when registered, if possible
71  * within the selected memreg mode.
72  *
73  * Returns positive number of segments converted, or a negative errno.
74  */
75 
76 static int
77 rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
78 	enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
79 {
80 	int len, n = 0, p;
81 	int page_base;
82 	struct page **ppages;
83 
84 	if (pos == 0 && xdrbuf->head[0].iov_len) {
85 		seg[n].mr_page = NULL;
86 		seg[n].mr_offset = xdrbuf->head[0].iov_base;
87 		seg[n].mr_len = xdrbuf->head[0].iov_len;
88 		++n;
89 	}
90 
91 	len = xdrbuf->page_len;
92 	ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
93 	page_base = xdrbuf->page_base & ~PAGE_MASK;
94 	p = 0;
95 	while (len && n < nsegs) {
96 		if (!ppages[p]) {
97 			/* alloc the pagelist for receiving buffer */
98 			ppages[p] = alloc_page(GFP_ATOMIC);
99 			if (!ppages[p])
100 				return -ENOMEM;
101 		}
102 		seg[n].mr_page = ppages[p];
103 		seg[n].mr_offset = (void *)(unsigned long) page_base;
104 		seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
105 		if (seg[n].mr_len > PAGE_SIZE)
106 			return -EIO;
107 		len -= seg[n].mr_len;
108 		++n;
109 		++p;
110 		page_base = 0;	/* page offset only applies to first page */
111 	}
112 
113 	/* Message overflows the seg array */
114 	if (len && n == nsegs)
115 		return -EIO;
116 
117 	if (xdrbuf->tail[0].iov_len) {
118 		/* the rpcrdma protocol allows us to omit any trailing
119 		 * xdr pad bytes, saving the server an RDMA operation. */
120 		if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
121 			return n;
122 		if (n == nsegs)
123 			/* Tail remains, but we're out of segments */
124 			return -EIO;
125 		seg[n].mr_page = NULL;
126 		seg[n].mr_offset = xdrbuf->tail[0].iov_base;
127 		seg[n].mr_len = xdrbuf->tail[0].iov_len;
128 		++n;
129 	}
130 
131 	return n;
132 }
133 
134 /*
135  * Create read/write chunk lists, and reply chunks, for RDMA
136  *
137  *   Assume check against THRESHOLD has been done, and chunks are required.
138  *   Assume only encoding one list entry for read|write chunks. The NFSv3
139  *     protocol is simple enough to allow this as it only has a single "bulk
140  *     result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
141  *     RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
142  *
143  * When used for a single reply chunk (which is a special write
144  * chunk used for the entire reply, rather than just the data), it
145  * is used primarily for READDIR and READLINK which would otherwise
146  * be severely size-limited by a small rdma inline read max. The server
147  * response will come back as an RDMA Write, followed by a message
148  * of type RDMA_NOMSG carrying the xid and length. As a result, reply
149  * chunks do not provide data alignment, however they do not require
150  * "fixup" (moving the response to the upper layer buffer) either.
151  *
152  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
153  *
154  *  Read chunklist (a linked list):
155  *   N elements, position P (same P for all chunks of same arg!):
156  *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
157  *
158  *  Write chunklist (a list of (one) counted array):
159  *   N elements:
160  *    1 - N - HLOO - HLOO - ... - HLOO - 0
161  *
162  *  Reply chunk (a counted array):
163  *   N elements:
164  *    1 - N - HLOO - HLOO - ... - HLOO
165  *
166  * Returns positive RPC/RDMA header size, or negative errno.
167  */
168 
169 static ssize_t
170 rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
171 		struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
172 {
173 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
174 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
175 	int n, nsegs, nchunks = 0;
176 	unsigned int pos;
177 	struct rpcrdma_mr_seg *seg = req->rl_segments;
178 	struct rpcrdma_read_chunk *cur_rchunk = NULL;
179 	struct rpcrdma_write_array *warray = NULL;
180 	struct rpcrdma_write_chunk *cur_wchunk = NULL;
181 	__be32 *iptr = headerp->rm_body.rm_chunks;
182 
183 	if (type == rpcrdma_readch || type == rpcrdma_areadch) {
184 		/* a read chunk - server will RDMA Read our memory */
185 		cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
186 	} else {
187 		/* a write or reply chunk - server will RDMA Write our memory */
188 		*iptr++ = xdr_zero;	/* encode a NULL read chunk list */
189 		if (type == rpcrdma_replych)
190 			*iptr++ = xdr_zero;	/* a NULL write chunk list */
191 		warray = (struct rpcrdma_write_array *) iptr;
192 		cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
193 	}
194 
195 	if (type == rpcrdma_replych || type == rpcrdma_areadch)
196 		pos = 0;
197 	else
198 		pos = target->head[0].iov_len;
199 
200 	nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
201 	if (nsegs < 0)
202 		return nsegs;
203 
204 	do {
205 		n = rpcrdma_register_external(seg, nsegs,
206 						cur_wchunk != NULL, r_xprt);
207 		if (n <= 0)
208 			goto out;
209 		if (cur_rchunk) {	/* read */
210 			cur_rchunk->rc_discrim = xdr_one;
211 			/* all read chunks have the same "position" */
212 			cur_rchunk->rc_position = cpu_to_be32(pos);
213 			cur_rchunk->rc_target.rs_handle =
214 						cpu_to_be32(seg->mr_rkey);
215 			cur_rchunk->rc_target.rs_length =
216 						cpu_to_be32(seg->mr_len);
217 			xdr_encode_hyper(
218 					(__be32 *)&cur_rchunk->rc_target.rs_offset,
219 					seg->mr_base);
220 			dprintk("RPC:       %s: read chunk "
221 				"elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
222 				seg->mr_len, (unsigned long long)seg->mr_base,
223 				seg->mr_rkey, pos, n < nsegs ? "more" : "last");
224 			cur_rchunk++;
225 			r_xprt->rx_stats.read_chunk_count++;
226 		} else {		/* write/reply */
227 			cur_wchunk->wc_target.rs_handle =
228 						cpu_to_be32(seg->mr_rkey);
229 			cur_wchunk->wc_target.rs_length =
230 						cpu_to_be32(seg->mr_len);
231 			xdr_encode_hyper(
232 					(__be32 *)&cur_wchunk->wc_target.rs_offset,
233 					seg->mr_base);
234 			dprintk("RPC:       %s: %s chunk "
235 				"elem %d@0x%llx:0x%x (%s)\n", __func__,
236 				(type == rpcrdma_replych) ? "reply" : "write",
237 				seg->mr_len, (unsigned long long)seg->mr_base,
238 				seg->mr_rkey, n < nsegs ? "more" : "last");
239 			cur_wchunk++;
240 			if (type == rpcrdma_replych)
241 				r_xprt->rx_stats.reply_chunk_count++;
242 			else
243 				r_xprt->rx_stats.write_chunk_count++;
244 			r_xprt->rx_stats.total_rdma_request += seg->mr_len;
245 		}
246 		nchunks++;
247 		seg   += n;
248 		nsegs -= n;
249 	} while (nsegs);
250 
251 	/* success. all failures return above */
252 	req->rl_nchunks = nchunks;
253 
254 	/*
255 	 * finish off header. If write, marshal discrim and nchunks.
256 	 */
257 	if (cur_rchunk) {
258 		iptr = (__be32 *) cur_rchunk;
259 		*iptr++ = xdr_zero;	/* finish the read chunk list */
260 		*iptr++ = xdr_zero;	/* encode a NULL write chunk list */
261 		*iptr++ = xdr_zero;	/* encode a NULL reply chunk */
262 	} else {
263 		warray->wc_discrim = xdr_one;
264 		warray->wc_nchunks = cpu_to_be32(nchunks);
265 		iptr = (__be32 *) cur_wchunk;
266 		if (type == rpcrdma_writech) {
267 			*iptr++ = xdr_zero; /* finish the write chunk list */
268 			*iptr++ = xdr_zero; /* encode a NULL reply chunk */
269 		}
270 	}
271 
272 	/*
273 	 * Return header size.
274 	 */
275 	return (unsigned char *)iptr - (unsigned char *)headerp;
276 
277 out:
278 	if (r_xprt->rx_ia.ri_memreg_strategy != RPCRDMA_FRMR) {
279 		for (pos = 0; nchunks--;)
280 			pos += rpcrdma_deregister_external(
281 					&req->rl_segments[pos], r_xprt);
282 	}
283 	return n;
284 }
285 
286 /*
287  * Marshal chunks. This routine returns the header length
288  * consumed by marshaling.
289  *
290  * Returns positive RPC/RDMA header size, or negative errno.
291  */
292 
293 ssize_t
294 rpcrdma_marshal_chunks(struct rpc_rqst *rqst, ssize_t result)
295 {
296 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
297 	struct rpcrdma_msg *headerp = rdmab_to_msg(req->rl_rdmabuf);
298 
299 	if (req->rl_rtype != rpcrdma_noch)
300 		result = rpcrdma_create_chunks(rqst, &rqst->rq_snd_buf,
301 					       headerp, req->rl_rtype);
302 	else if (req->rl_wtype != rpcrdma_noch)
303 		result = rpcrdma_create_chunks(rqst, &rqst->rq_rcv_buf,
304 					       headerp, req->rl_wtype);
305 	return result;
306 }
307 
308 /*
309  * Copy write data inline.
310  * This function is used for "small" requests. Data which is passed
311  * to RPC via iovecs (or page list) is copied directly into the
312  * pre-registered memory buffer for this request. For small amounts
313  * of data, this is efficient. The cutoff value is tunable.
314  */
315 static int
316 rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad)
317 {
318 	int i, npages, curlen;
319 	int copy_len;
320 	unsigned char *srcp, *destp;
321 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
322 	int page_base;
323 	struct page **ppages;
324 
325 	destp = rqst->rq_svec[0].iov_base;
326 	curlen = rqst->rq_svec[0].iov_len;
327 	destp += curlen;
328 	/*
329 	 * Do optional padding where it makes sense. Alignment of write
330 	 * payload can help the server, if our setting is accurate.
331 	 */
332 	pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/);
333 	if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH)
334 		pad = 0;	/* don't pad this request */
335 
336 	dprintk("RPC:       %s: pad %d destp 0x%p len %d hdrlen %d\n",
337 		__func__, pad, destp, rqst->rq_slen, curlen);
338 
339 	copy_len = rqst->rq_snd_buf.page_len;
340 
341 	if (rqst->rq_snd_buf.tail[0].iov_len) {
342 		curlen = rqst->rq_snd_buf.tail[0].iov_len;
343 		if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
344 			memmove(destp + copy_len,
345 				rqst->rq_snd_buf.tail[0].iov_base, curlen);
346 			r_xprt->rx_stats.pullup_copy_count += curlen;
347 		}
348 		dprintk("RPC:       %s: tail destp 0x%p len %d\n",
349 			__func__, destp + copy_len, curlen);
350 		rqst->rq_svec[0].iov_len += curlen;
351 	}
352 	r_xprt->rx_stats.pullup_copy_count += copy_len;
353 
354 	page_base = rqst->rq_snd_buf.page_base;
355 	ppages = rqst->rq_snd_buf.pages + (page_base >> PAGE_SHIFT);
356 	page_base &= ~PAGE_MASK;
357 	npages = PAGE_ALIGN(page_base+copy_len) >> PAGE_SHIFT;
358 	for (i = 0; copy_len && i < npages; i++) {
359 		curlen = PAGE_SIZE - page_base;
360 		if (curlen > copy_len)
361 			curlen = copy_len;
362 		dprintk("RPC:       %s: page %d destp 0x%p len %d curlen %d\n",
363 			__func__, i, destp, copy_len, curlen);
364 		srcp = kmap_atomic(ppages[i]);
365 		memcpy(destp, srcp+page_base, curlen);
366 		kunmap_atomic(srcp);
367 		rqst->rq_svec[0].iov_len += curlen;
368 		destp += curlen;
369 		copy_len -= curlen;
370 		page_base = 0;
371 	}
372 	/* header now contains entire send message */
373 	return pad;
374 }
375 
376 /*
377  * Marshal a request: the primary job of this routine is to choose
378  * the transfer modes. See comments below.
379  *
380  * Uses multiple RDMA IOVs for a request:
381  *  [0] -- RPC RDMA header, which uses memory from the *start* of the
382  *         preregistered buffer that already holds the RPC data in
383  *         its middle.
384  *  [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
385  *  [2] -- optional padding.
386  *  [3] -- if padded, header only in [1] and data here.
387  *
388  * Returns zero on success, otherwise a negative errno.
389  */
390 
391 int
392 rpcrdma_marshal_req(struct rpc_rqst *rqst)
393 {
394 	struct rpc_xprt *xprt = rqst->rq_xprt;
395 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
396 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
397 	char *base;
398 	size_t rpclen, padlen;
399 	ssize_t hdrlen;
400 	struct rpcrdma_msg *headerp;
401 
402 	/*
403 	 * rpclen gets amount of data in first buffer, which is the
404 	 * pre-registered buffer.
405 	 */
406 	base = rqst->rq_svec[0].iov_base;
407 	rpclen = rqst->rq_svec[0].iov_len;
408 
409 	headerp = rdmab_to_msg(req->rl_rdmabuf);
410 	/* don't byte-swap XID, it's already done in request */
411 	headerp->rm_xid = rqst->rq_xid;
412 	headerp->rm_vers = rpcrdma_version;
413 	headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
414 	headerp->rm_type = rdma_msg;
415 
416 	/*
417 	 * Chunks needed for results?
418 	 *
419 	 * o If the expected result is under the inline threshold, all ops
420 	 *   return as inline (but see later).
421 	 * o Large non-read ops return as a single reply chunk.
422 	 * o Large read ops return data as write chunk(s), header as inline.
423 	 *
424 	 * Note: the NFS code sending down multiple result segments implies
425 	 * the op is one of read, readdir[plus], readlink or NFSv4 getacl.
426 	 */
427 
428 	/*
429 	 * This code can handle read chunks, write chunks OR reply
430 	 * chunks -- only one type. If the request is too big to fit
431 	 * inline, then we will choose read chunks. If the request is
432 	 * a READ, then use write chunks to separate the file data
433 	 * into pages; otherwise use reply chunks.
434 	 */
435 	if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst))
436 		req->rl_wtype = rpcrdma_noch;
437 	else if (rqst->rq_rcv_buf.page_len == 0)
438 		req->rl_wtype = rpcrdma_replych;
439 	else if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
440 		req->rl_wtype = rpcrdma_writech;
441 	else
442 		req->rl_wtype = rpcrdma_replych;
443 
444 	/*
445 	 * Chunks needed for arguments?
446 	 *
447 	 * o If the total request is under the inline threshold, all ops
448 	 *   are sent as inline.
449 	 * o Large non-write ops are sent with the entire message as a
450 	 *   single read chunk (protocol 0-position special case).
451 	 * o Large write ops transmit data as read chunk(s), header as
452 	 *   inline.
453 	 *
454 	 * Note: the NFS code sending down multiple argument segments
455 	 * implies the op is a write.
456 	 * TBD check NFSv4 setacl
457 	 */
458 	if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
459 		req->rl_rtype = rpcrdma_noch;
460 	else if (rqst->rq_snd_buf.page_len == 0)
461 		req->rl_rtype = rpcrdma_areadch;
462 	else
463 		req->rl_rtype = rpcrdma_readch;
464 
465 	/* The following simplification is not true forever */
466 	if (req->rl_rtype != rpcrdma_noch && req->rl_wtype == rpcrdma_replych)
467 		req->rl_wtype = rpcrdma_noch;
468 	if (req->rl_rtype != rpcrdma_noch && req->rl_wtype != rpcrdma_noch) {
469 		dprintk("RPC:       %s: cannot marshal multiple chunk lists\n",
470 			__func__);
471 		return -EIO;
472 	}
473 
474 	hdrlen = RPCRDMA_HDRLEN_MIN;
475 	padlen = 0;
476 
477 	/*
478 	 * Pull up any extra send data into the preregistered buffer.
479 	 * When padding is in use and applies to the transfer, insert
480 	 * it and change the message type.
481 	 */
482 	if (req->rl_rtype == rpcrdma_noch) {
483 
484 		padlen = rpcrdma_inline_pullup(rqst,
485 						RPCRDMA_INLINE_PAD_VALUE(rqst));
486 
487 		if (padlen) {
488 			headerp->rm_type = rdma_msgp;
489 			headerp->rm_body.rm_padded.rm_align =
490 				cpu_to_be32(RPCRDMA_INLINE_PAD_VALUE(rqst));
491 			headerp->rm_body.rm_padded.rm_thresh =
492 				cpu_to_be32(RPCRDMA_INLINE_PAD_THRESH);
493 			headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero;
494 			headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero;
495 			headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero;
496 			hdrlen += 2 * sizeof(u32); /* extra words in padhdr */
497 			if (req->rl_wtype != rpcrdma_noch) {
498 				dprintk("RPC:       %s: invalid chunk list\n",
499 					__func__);
500 				return -EIO;
501 			}
502 		} else {
503 			headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
504 			headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
505 			headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
506 			/* new length after pullup */
507 			rpclen = rqst->rq_svec[0].iov_len;
508 			/*
509 			 * Currently we try to not actually use read inline.
510 			 * Reply chunks have the desirable property that
511 			 * they land, packed, directly in the target buffers
512 			 * without headers, so they require no fixup. The
513 			 * additional RDMA Write op sends the same amount
514 			 * of data, streams on-the-wire and adds no overhead
515 			 * on receive. Therefore, we request a reply chunk
516 			 * for non-writes wherever feasible and efficient.
517 			 */
518 			if (req->rl_wtype == rpcrdma_noch)
519 				req->rl_wtype = rpcrdma_replych;
520 		}
521 	}
522 
523 	hdrlen = rpcrdma_marshal_chunks(rqst, hdrlen);
524 	if (hdrlen < 0)
525 		return hdrlen;
526 
527 	dprintk("RPC:       %s: %s: hdrlen %zd rpclen %zd padlen %zd"
528 		" headerp 0x%p base 0x%p lkey 0x%x\n",
529 		__func__, transfertypes[req->rl_wtype], hdrlen, rpclen, padlen,
530 		headerp, base, rdmab_lkey(req->rl_rdmabuf));
531 
532 	/*
533 	 * initialize send_iov's - normally only two: rdma chunk header and
534 	 * single preregistered RPC header buffer, but if padding is present,
535 	 * then use a preregistered (and zeroed) pad buffer between the RPC
536 	 * header and any write data. In all non-rdma cases, any following
537 	 * data has been copied into the RPC header buffer.
538 	 */
539 	req->rl_send_iov[0].addr = rdmab_addr(req->rl_rdmabuf);
540 	req->rl_send_iov[0].length = hdrlen;
541 	req->rl_send_iov[0].lkey = rdmab_lkey(req->rl_rdmabuf);
542 
543 	req->rl_send_iov[1].addr = rdmab_addr(req->rl_sendbuf);
544 	req->rl_send_iov[1].length = rpclen;
545 	req->rl_send_iov[1].lkey = rdmab_lkey(req->rl_sendbuf);
546 
547 	req->rl_niovs = 2;
548 
549 	if (padlen) {
550 		struct rpcrdma_ep *ep = &r_xprt->rx_ep;
551 
552 		req->rl_send_iov[2].addr = rdmab_addr(ep->rep_padbuf);
553 		req->rl_send_iov[2].length = padlen;
554 		req->rl_send_iov[2].lkey = rdmab_lkey(ep->rep_padbuf);
555 
556 		req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen;
557 		req->rl_send_iov[3].length = rqst->rq_slen - rpclen;
558 		req->rl_send_iov[3].lkey = rdmab_lkey(req->rl_sendbuf);
559 
560 		req->rl_niovs = 4;
561 	}
562 
563 	return 0;
564 }
565 
566 /*
567  * Chase down a received write or reply chunklist to get length
568  * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
569  */
570 static int
571 rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
572 {
573 	unsigned int i, total_len;
574 	struct rpcrdma_write_chunk *cur_wchunk;
575 	char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf);
576 
577 	i = be32_to_cpu(**iptrp);
578 	if (i > max)
579 		return -1;
580 	cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
581 	total_len = 0;
582 	while (i--) {
583 		struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
584 		ifdebug(FACILITY) {
585 			u64 off;
586 			xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
587 			dprintk("RPC:       %s: chunk %d@0x%llx:0x%x\n",
588 				__func__,
589 				be32_to_cpu(seg->rs_length),
590 				(unsigned long long)off,
591 				be32_to_cpu(seg->rs_handle));
592 		}
593 		total_len += be32_to_cpu(seg->rs_length);
594 		++cur_wchunk;
595 	}
596 	/* check and adjust for properly terminated write chunk */
597 	if (wrchunk) {
598 		__be32 *w = (__be32 *) cur_wchunk;
599 		if (*w++ != xdr_zero)
600 			return -1;
601 		cur_wchunk = (struct rpcrdma_write_chunk *) w;
602 	}
603 	if ((char *)cur_wchunk > base + rep->rr_len)
604 		return -1;
605 
606 	*iptrp = (__be32 *) cur_wchunk;
607 	return total_len;
608 }
609 
610 /*
611  * Scatter inline received data back into provided iov's.
612  */
613 static void
614 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
615 {
616 	int i, npages, curlen, olen;
617 	char *destp;
618 	struct page **ppages;
619 	int page_base;
620 
621 	curlen = rqst->rq_rcv_buf.head[0].iov_len;
622 	if (curlen > copy_len) {	/* write chunk header fixup */
623 		curlen = copy_len;
624 		rqst->rq_rcv_buf.head[0].iov_len = curlen;
625 	}
626 
627 	dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
628 		__func__, srcp, copy_len, curlen);
629 
630 	/* Shift pointer for first receive segment only */
631 	rqst->rq_rcv_buf.head[0].iov_base = srcp;
632 	srcp += curlen;
633 	copy_len -= curlen;
634 
635 	olen = copy_len;
636 	i = 0;
637 	rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
638 	page_base = rqst->rq_rcv_buf.page_base;
639 	ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
640 	page_base &= ~PAGE_MASK;
641 
642 	if (copy_len && rqst->rq_rcv_buf.page_len) {
643 		npages = PAGE_ALIGN(page_base +
644 			rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
645 		for (; i < npages; i++) {
646 			curlen = PAGE_SIZE - page_base;
647 			if (curlen > copy_len)
648 				curlen = copy_len;
649 			dprintk("RPC:       %s: page %d"
650 				" srcp 0x%p len %d curlen %d\n",
651 				__func__, i, srcp, copy_len, curlen);
652 			destp = kmap_atomic(ppages[i]);
653 			memcpy(destp + page_base, srcp, curlen);
654 			flush_dcache_page(ppages[i]);
655 			kunmap_atomic(destp);
656 			srcp += curlen;
657 			copy_len -= curlen;
658 			if (copy_len == 0)
659 				break;
660 			page_base = 0;
661 		}
662 	}
663 
664 	if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
665 		curlen = copy_len;
666 		if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
667 			curlen = rqst->rq_rcv_buf.tail[0].iov_len;
668 		if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
669 			memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
670 		dprintk("RPC:       %s: tail srcp 0x%p len %d curlen %d\n",
671 			__func__, srcp, copy_len, curlen);
672 		rqst->rq_rcv_buf.tail[0].iov_len = curlen;
673 		copy_len -= curlen; ++i;
674 	} else
675 		rqst->rq_rcv_buf.tail[0].iov_len = 0;
676 
677 	if (pad) {
678 		/* implicit padding on terminal chunk */
679 		unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
680 		while (pad--)
681 			p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
682 	}
683 
684 	if (copy_len)
685 		dprintk("RPC:       %s: %d bytes in"
686 			" %d extra segments (%d lost)\n",
687 			__func__, olen, i, copy_len);
688 
689 	/* TBD avoid a warning from call_decode() */
690 	rqst->rq_private_buf = rqst->rq_rcv_buf;
691 }
692 
693 void
694 rpcrdma_connect_worker(struct work_struct *work)
695 {
696 	struct rpcrdma_ep *ep =
697 		container_of(work, struct rpcrdma_ep, rep_connect_worker.work);
698 	struct rpcrdma_xprt *r_xprt =
699 		container_of(ep, struct rpcrdma_xprt, rx_ep);
700 	struct rpc_xprt *xprt = &r_xprt->rx_xprt;
701 
702 	spin_lock_bh(&xprt->transport_lock);
703 	if (++xprt->connect_cookie == 0)	/* maintain a reserved value */
704 		++xprt->connect_cookie;
705 	if (ep->rep_connected > 0) {
706 		if (!xprt_test_and_set_connected(xprt))
707 			xprt_wake_pending_tasks(xprt, 0);
708 	} else {
709 		if (xprt_test_and_clear_connected(xprt))
710 			xprt_wake_pending_tasks(xprt, -ENOTCONN);
711 	}
712 	spin_unlock_bh(&xprt->transport_lock);
713 }
714 
715 /*
716  * This function is called when an async event is posted to
717  * the connection which changes the connection state. All it
718  * does at this point is mark the connection up/down, the rpc
719  * timers do the rest.
720  */
721 void
722 rpcrdma_conn_func(struct rpcrdma_ep *ep)
723 {
724 	schedule_delayed_work(&ep->rep_connect_worker, 0);
725 }
726 
727 /*
728  * Called as a tasklet to do req/reply match and complete a request
729  * Errors must result in the RPC task either being awakened, or
730  * allowed to timeout, to discover the errors at that time.
731  */
732 void
733 rpcrdma_reply_handler(struct rpcrdma_rep *rep)
734 {
735 	struct rpcrdma_msg *headerp;
736 	struct rpcrdma_req *req;
737 	struct rpc_rqst *rqst;
738 	struct rpc_xprt *xprt = rep->rr_xprt;
739 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
740 	__be32 *iptr;
741 	int rdmalen, status;
742 	unsigned long cwnd;
743 	u32 credits;
744 
745 	/* Check status. If bad, signal disconnect and return rep to pool */
746 	if (rep->rr_len == ~0U) {
747 		rpcrdma_recv_buffer_put(rep);
748 		if (r_xprt->rx_ep.rep_connected == 1) {
749 			r_xprt->rx_ep.rep_connected = -EIO;
750 			rpcrdma_conn_func(&r_xprt->rx_ep);
751 		}
752 		return;
753 	}
754 	if (rep->rr_len < RPCRDMA_HDRLEN_MIN) {
755 		dprintk("RPC:       %s: short/invalid reply\n", __func__);
756 		goto repost;
757 	}
758 	headerp = rdmab_to_msg(rep->rr_rdmabuf);
759 	if (headerp->rm_vers != rpcrdma_version) {
760 		dprintk("RPC:       %s: invalid version %d\n",
761 			__func__, be32_to_cpu(headerp->rm_vers));
762 		goto repost;
763 	}
764 
765 	/* Get XID and try for a match. */
766 	spin_lock(&xprt->transport_lock);
767 	rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
768 	if (rqst == NULL) {
769 		spin_unlock(&xprt->transport_lock);
770 		dprintk("RPC:       %s: reply 0x%p failed "
771 			"to match any request xid 0x%08x len %d\n",
772 			__func__, rep, be32_to_cpu(headerp->rm_xid),
773 			rep->rr_len);
774 repost:
775 		r_xprt->rx_stats.bad_reply_count++;
776 		rep->rr_func = rpcrdma_reply_handler;
777 		if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
778 			rpcrdma_recv_buffer_put(rep);
779 
780 		return;
781 	}
782 
783 	/* get request object */
784 	req = rpcr_to_rdmar(rqst);
785 	if (req->rl_reply) {
786 		spin_unlock(&xprt->transport_lock);
787 		dprintk("RPC:       %s: duplicate reply 0x%p to RPC "
788 			"request 0x%p: xid 0x%08x\n", __func__, rep, req,
789 			be32_to_cpu(headerp->rm_xid));
790 		goto repost;
791 	}
792 
793 	dprintk("RPC:       %s: reply 0x%p completes request 0x%p\n"
794 		"                   RPC request 0x%p xid 0x%08x\n",
795 			__func__, rep, req, rqst,
796 			be32_to_cpu(headerp->rm_xid));
797 
798 	/* from here on, the reply is no longer an orphan */
799 	req->rl_reply = rep;
800 	xprt->reestablish_timeout = 0;
801 
802 	/* check for expected message types */
803 	/* The order of some of these tests is important. */
804 	switch (headerp->rm_type) {
805 	case rdma_msg:
806 		/* never expect read chunks */
807 		/* never expect reply chunks (two ways to check) */
808 		/* never expect write chunks without having offered RDMA */
809 		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
810 		    (headerp->rm_body.rm_chunks[1] == xdr_zero &&
811 		     headerp->rm_body.rm_chunks[2] != xdr_zero) ||
812 		    (headerp->rm_body.rm_chunks[1] != xdr_zero &&
813 		     req->rl_nchunks == 0))
814 			goto badheader;
815 		if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
816 			/* count any expected write chunks in read reply */
817 			/* start at write chunk array count */
818 			iptr = &headerp->rm_body.rm_chunks[2];
819 			rdmalen = rpcrdma_count_chunks(rep,
820 						req->rl_nchunks, 1, &iptr);
821 			/* check for validity, and no reply chunk after */
822 			if (rdmalen < 0 || *iptr++ != xdr_zero)
823 				goto badheader;
824 			rep->rr_len -=
825 			    ((unsigned char *)iptr - (unsigned char *)headerp);
826 			status = rep->rr_len + rdmalen;
827 			r_xprt->rx_stats.total_rdma_reply += rdmalen;
828 			/* special case - last chunk may omit padding */
829 			if (rdmalen &= 3) {
830 				rdmalen = 4 - rdmalen;
831 				status += rdmalen;
832 			}
833 		} else {
834 			/* else ordinary inline */
835 			rdmalen = 0;
836 			iptr = (__be32 *)((unsigned char *)headerp +
837 							RPCRDMA_HDRLEN_MIN);
838 			rep->rr_len -= RPCRDMA_HDRLEN_MIN;
839 			status = rep->rr_len;
840 		}
841 		/* Fix up the rpc results for upper layer */
842 		rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
843 		break;
844 
845 	case rdma_nomsg:
846 		/* never expect read or write chunks, always reply chunks */
847 		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
848 		    headerp->rm_body.rm_chunks[1] != xdr_zero ||
849 		    headerp->rm_body.rm_chunks[2] != xdr_one ||
850 		    req->rl_nchunks == 0)
851 			goto badheader;
852 		iptr = (__be32 *)((unsigned char *)headerp +
853 							RPCRDMA_HDRLEN_MIN);
854 		rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
855 		if (rdmalen < 0)
856 			goto badheader;
857 		r_xprt->rx_stats.total_rdma_reply += rdmalen;
858 		/* Reply chunk buffer already is the reply vector - no fixup. */
859 		status = rdmalen;
860 		break;
861 
862 badheader:
863 	default:
864 		dprintk("%s: invalid rpcrdma reply header (type %d):"
865 				" chunks[012] == %d %d %d"
866 				" expected chunks <= %d\n",
867 				__func__, be32_to_cpu(headerp->rm_type),
868 				headerp->rm_body.rm_chunks[0],
869 				headerp->rm_body.rm_chunks[1],
870 				headerp->rm_body.rm_chunks[2],
871 				req->rl_nchunks);
872 		status = -EIO;
873 		r_xprt->rx_stats.bad_reply_count++;
874 		break;
875 	}
876 
877 	credits = be32_to_cpu(headerp->rm_credit);
878 	if (credits == 0)
879 		credits = 1;	/* don't deadlock */
880 	else if (credits > r_xprt->rx_buf.rb_max_requests)
881 		credits = r_xprt->rx_buf.rb_max_requests;
882 
883 	cwnd = xprt->cwnd;
884 	xprt->cwnd = credits << RPC_CWNDSHIFT;
885 	if (xprt->cwnd > cwnd)
886 		xprt_release_rqst_cong(rqst->rq_task);
887 
888 	dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
889 			__func__, xprt, rqst, status);
890 	xprt_complete_rqst(rqst->rq_task, status);
891 	spin_unlock(&xprt->transport_lock);
892 }
893