1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (c) 2014-2017 Oracle. All rights reserved. 4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the BSD-type 10 * license below: 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 16 * Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 19 * Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials provided 22 * with the distribution. 23 * 24 * Neither the name of the Network Appliance, Inc. nor the names of 25 * its contributors may be used to endorse or promote products 26 * derived from this software without specific prior written 27 * permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 */ 41 42 /* 43 * rpc_rdma.c 44 * 45 * This file contains the guts of the RPC RDMA protocol, and 46 * does marshaling/unmarshaling, etc. It is also where interfacing 47 * to the Linux RPC framework lives. 48 */ 49 50 #include <linux/highmem.h> 51 52 #include <linux/sunrpc/svc_rdma.h> 53 54 #include "xprt_rdma.h" 55 #include <trace/events/rpcrdma.h> 56 57 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) 58 # define RPCDBG_FACILITY RPCDBG_TRANS 59 #endif 60 61 /* Returns size of largest RPC-over-RDMA header in a Call message 62 * 63 * The largest Call header contains a full-size Read list and a 64 * minimal Reply chunk. 65 */ 66 static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs) 67 { 68 unsigned int size; 69 70 /* Fixed header fields and list discriminators */ 71 size = RPCRDMA_HDRLEN_MIN; 72 73 /* Maximum Read list size */ 74 size = maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32); 75 76 /* Minimal Read chunk size */ 77 size += sizeof(__be32); /* segment count */ 78 size += rpcrdma_segment_maxsz * sizeof(__be32); 79 size += sizeof(__be32); /* list discriminator */ 80 81 dprintk("RPC: %s: max call header size = %u\n", 82 __func__, size); 83 return size; 84 } 85 86 /* Returns size of largest RPC-over-RDMA header in a Reply message 87 * 88 * There is only one Write list or one Reply chunk per Reply 89 * message. The larger list is the Write list. 90 */ 91 static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs) 92 { 93 unsigned int size; 94 95 /* Fixed header fields and list discriminators */ 96 size = RPCRDMA_HDRLEN_MIN; 97 98 /* Maximum Write list size */ 99 size = sizeof(__be32); /* segment count */ 100 size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32); 101 size += sizeof(__be32); /* list discriminator */ 102 103 dprintk("RPC: %s: max reply header size = %u\n", 104 __func__, size); 105 return size; 106 } 107 108 void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt) 109 { 110 struct rpcrdma_create_data_internal *cdata = &r_xprt->rx_data; 111 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 112 unsigned int maxsegs = ia->ri_max_segs; 113 114 ia->ri_max_inline_write = cdata->inline_wsize - 115 rpcrdma_max_call_header_size(maxsegs); 116 ia->ri_max_inline_read = cdata->inline_rsize - 117 rpcrdma_max_reply_header_size(maxsegs); 118 } 119 120 /* The client can send a request inline as long as the RPCRDMA header 121 * plus the RPC call fit under the transport's inline limit. If the 122 * combined call message size exceeds that limit, the client must use 123 * a Read chunk for this operation. 124 * 125 * A Read chunk is also required if sending the RPC call inline would 126 * exceed this device's max_sge limit. 127 */ 128 static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt, 129 struct rpc_rqst *rqst) 130 { 131 struct xdr_buf *xdr = &rqst->rq_snd_buf; 132 unsigned int count, remaining, offset; 133 134 if (xdr->len > r_xprt->rx_ia.ri_max_inline_write) 135 return false; 136 137 if (xdr->page_len) { 138 remaining = xdr->page_len; 139 offset = offset_in_page(xdr->page_base); 140 count = RPCRDMA_MIN_SEND_SGES; 141 while (remaining) { 142 remaining -= min_t(unsigned int, 143 PAGE_SIZE - offset, remaining); 144 offset = 0; 145 if (++count > r_xprt->rx_ia.ri_max_send_sges) 146 return false; 147 } 148 } 149 150 return true; 151 } 152 153 /* The client can't know how large the actual reply will be. Thus it 154 * plans for the largest possible reply for that particular ULP 155 * operation. If the maximum combined reply message size exceeds that 156 * limit, the client must provide a write list or a reply chunk for 157 * this request. 158 */ 159 static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt, 160 struct rpc_rqst *rqst) 161 { 162 struct rpcrdma_ia *ia = &r_xprt->rx_ia; 163 164 return rqst->rq_rcv_buf.buflen <= ia->ri_max_inline_read; 165 } 166 167 /* Split @vec on page boundaries into SGEs. FMR registers pages, not 168 * a byte range. Other modes coalesce these SGEs into a single MR 169 * when they can. 170 * 171 * Returns pointer to next available SGE, and bumps the total number 172 * of SGEs consumed. 173 */ 174 static struct rpcrdma_mr_seg * 175 rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg, 176 unsigned int *n) 177 { 178 u32 remaining, page_offset; 179 char *base; 180 181 base = vec->iov_base; 182 page_offset = offset_in_page(base); 183 remaining = vec->iov_len; 184 while (remaining) { 185 seg->mr_page = NULL; 186 seg->mr_offset = base; 187 seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining); 188 remaining -= seg->mr_len; 189 base += seg->mr_len; 190 ++seg; 191 ++(*n); 192 page_offset = 0; 193 } 194 return seg; 195 } 196 197 /* Convert @xdrbuf into SGEs no larger than a page each. As they 198 * are registered, these SGEs are then coalesced into RDMA segments 199 * when the selected memreg mode supports it. 200 * 201 * Returns positive number of SGEs consumed, or a negative errno. 202 */ 203 204 static int 205 rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf, 206 unsigned int pos, enum rpcrdma_chunktype type, 207 struct rpcrdma_mr_seg *seg) 208 { 209 unsigned long page_base; 210 unsigned int len, n; 211 struct page **ppages; 212 213 n = 0; 214 if (pos == 0) 215 seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n); 216 217 len = xdrbuf->page_len; 218 ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT); 219 page_base = offset_in_page(xdrbuf->page_base); 220 while (len) { 221 /* ACL likes to be lazy in allocating pages - ACLs 222 * are small by default but can get huge. 223 */ 224 if (unlikely(xdrbuf->flags & XDRBUF_SPARSE_PAGES)) { 225 if (!*ppages) 226 *ppages = alloc_page(GFP_ATOMIC); 227 if (!*ppages) 228 return -ENOBUFS; 229 } 230 seg->mr_page = *ppages; 231 seg->mr_offset = (char *)page_base; 232 seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len); 233 len -= seg->mr_len; 234 ++ppages; 235 ++seg; 236 ++n; 237 page_base = 0; 238 } 239 240 /* When encoding a Read chunk, the tail iovec contains an 241 * XDR pad and may be omitted. 242 */ 243 if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup) 244 goto out; 245 246 /* When encoding a Write chunk, some servers need to see an 247 * extra segment for non-XDR-aligned Write chunks. The upper 248 * layer provides space in the tail iovec that may be used 249 * for this purpose. 250 */ 251 if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup) 252 goto out; 253 254 if (xdrbuf->tail[0].iov_len) 255 seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n); 256 257 out: 258 if (unlikely(n > RPCRDMA_MAX_SEGS)) 259 return -EIO; 260 return n; 261 } 262 263 static inline int 264 encode_item_present(struct xdr_stream *xdr) 265 { 266 __be32 *p; 267 268 p = xdr_reserve_space(xdr, sizeof(*p)); 269 if (unlikely(!p)) 270 return -EMSGSIZE; 271 272 *p = xdr_one; 273 return 0; 274 } 275 276 static inline int 277 encode_item_not_present(struct xdr_stream *xdr) 278 { 279 __be32 *p; 280 281 p = xdr_reserve_space(xdr, sizeof(*p)); 282 if (unlikely(!p)) 283 return -EMSGSIZE; 284 285 *p = xdr_zero; 286 return 0; 287 } 288 289 static void 290 xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mr *mr) 291 { 292 *iptr++ = cpu_to_be32(mr->mr_handle); 293 *iptr++ = cpu_to_be32(mr->mr_length); 294 xdr_encode_hyper(iptr, mr->mr_offset); 295 } 296 297 static int 298 encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr) 299 { 300 __be32 *p; 301 302 p = xdr_reserve_space(xdr, 4 * sizeof(*p)); 303 if (unlikely(!p)) 304 return -EMSGSIZE; 305 306 xdr_encode_rdma_segment(p, mr); 307 return 0; 308 } 309 310 static int 311 encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr, 312 u32 position) 313 { 314 __be32 *p; 315 316 p = xdr_reserve_space(xdr, 6 * sizeof(*p)); 317 if (unlikely(!p)) 318 return -EMSGSIZE; 319 320 *p++ = xdr_one; /* Item present */ 321 *p++ = cpu_to_be32(position); 322 xdr_encode_rdma_segment(p, mr); 323 return 0; 324 } 325 326 /* Register and XDR encode the Read list. Supports encoding a list of read 327 * segments that belong to a single read chunk. 328 * 329 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): 330 * 331 * Read chunklist (a linked list): 332 * N elements, position P (same P for all chunks of same arg!): 333 * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0 334 * 335 * Returns zero on success, or a negative errno if a failure occurred. 336 * @xdr is advanced to the next position in the stream. 337 * 338 * Only a single @pos value is currently supported. 339 */ 340 static noinline int 341 rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, 342 struct rpc_rqst *rqst, enum rpcrdma_chunktype rtype) 343 { 344 struct xdr_stream *xdr = &req->rl_stream; 345 struct rpcrdma_mr_seg *seg; 346 struct rpcrdma_mr *mr; 347 unsigned int pos; 348 int nsegs; 349 350 pos = rqst->rq_snd_buf.head[0].iov_len; 351 if (rtype == rpcrdma_areadch) 352 pos = 0; 353 seg = req->rl_segments; 354 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos, 355 rtype, seg); 356 if (nsegs < 0) 357 return nsegs; 358 359 do { 360 seg = frwr_map(r_xprt, seg, nsegs, false, rqst->rq_xid, &mr); 361 if (IS_ERR(seg)) 362 return PTR_ERR(seg); 363 rpcrdma_mr_push(mr, &req->rl_registered); 364 365 if (encode_read_segment(xdr, mr, pos) < 0) 366 return -EMSGSIZE; 367 368 trace_xprtrdma_chunk_read(rqst->rq_task, pos, mr, nsegs); 369 r_xprt->rx_stats.read_chunk_count++; 370 nsegs -= mr->mr_nents; 371 } while (nsegs); 372 373 return 0; 374 } 375 376 /* Register and XDR encode the Write list. Supports encoding a list 377 * containing one array of plain segments that belong to a single 378 * write chunk. 379 * 380 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): 381 * 382 * Write chunklist (a list of (one) counted array): 383 * N elements: 384 * 1 - N - HLOO - HLOO - ... - HLOO - 0 385 * 386 * Returns zero on success, or a negative errno if a failure occurred. 387 * @xdr is advanced to the next position in the stream. 388 * 389 * Only a single Write chunk is currently supported. 390 */ 391 static noinline int 392 rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, 393 struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype) 394 { 395 struct xdr_stream *xdr = &req->rl_stream; 396 struct rpcrdma_mr_seg *seg; 397 struct rpcrdma_mr *mr; 398 int nsegs, nchunks; 399 __be32 *segcount; 400 401 seg = req->rl_segments; 402 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 403 rqst->rq_rcv_buf.head[0].iov_len, 404 wtype, seg); 405 if (nsegs < 0) 406 return nsegs; 407 408 if (encode_item_present(xdr) < 0) 409 return -EMSGSIZE; 410 segcount = xdr_reserve_space(xdr, sizeof(*segcount)); 411 if (unlikely(!segcount)) 412 return -EMSGSIZE; 413 /* Actual value encoded below */ 414 415 nchunks = 0; 416 do { 417 seg = frwr_map(r_xprt, seg, nsegs, true, rqst->rq_xid, &mr); 418 if (IS_ERR(seg)) 419 return PTR_ERR(seg); 420 rpcrdma_mr_push(mr, &req->rl_registered); 421 422 if (encode_rdma_segment(xdr, mr) < 0) 423 return -EMSGSIZE; 424 425 trace_xprtrdma_chunk_write(rqst->rq_task, mr, nsegs); 426 r_xprt->rx_stats.write_chunk_count++; 427 r_xprt->rx_stats.total_rdma_request += mr->mr_length; 428 nchunks++; 429 nsegs -= mr->mr_nents; 430 } while (nsegs); 431 432 /* Update count of segments in this Write chunk */ 433 *segcount = cpu_to_be32(nchunks); 434 435 return 0; 436 } 437 438 /* Register and XDR encode the Reply chunk. Supports encoding an array 439 * of plain segments that belong to a single write (reply) chunk. 440 * 441 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): 442 * 443 * Reply chunk (a counted array): 444 * N elements: 445 * 1 - N - HLOO - HLOO - ... - HLOO 446 * 447 * Returns zero on success, or a negative errno if a failure occurred. 448 * @xdr is advanced to the next position in the stream. 449 */ 450 static noinline int 451 rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, 452 struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype) 453 { 454 struct xdr_stream *xdr = &req->rl_stream; 455 struct rpcrdma_mr_seg *seg; 456 struct rpcrdma_mr *mr; 457 int nsegs, nchunks; 458 __be32 *segcount; 459 460 seg = req->rl_segments; 461 nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg); 462 if (nsegs < 0) 463 return nsegs; 464 465 if (encode_item_present(xdr) < 0) 466 return -EMSGSIZE; 467 segcount = xdr_reserve_space(xdr, sizeof(*segcount)); 468 if (unlikely(!segcount)) 469 return -EMSGSIZE; 470 /* Actual value encoded below */ 471 472 nchunks = 0; 473 do { 474 seg = frwr_map(r_xprt, seg, nsegs, true, rqst->rq_xid, &mr); 475 if (IS_ERR(seg)) 476 return PTR_ERR(seg); 477 rpcrdma_mr_push(mr, &req->rl_registered); 478 479 if (encode_rdma_segment(xdr, mr) < 0) 480 return -EMSGSIZE; 481 482 trace_xprtrdma_chunk_reply(rqst->rq_task, mr, nsegs); 483 r_xprt->rx_stats.reply_chunk_count++; 484 r_xprt->rx_stats.total_rdma_request += mr->mr_length; 485 nchunks++; 486 nsegs -= mr->mr_nents; 487 } while (nsegs); 488 489 /* Update count of segments in the Reply chunk */ 490 *segcount = cpu_to_be32(nchunks); 491 492 return 0; 493 } 494 495 /** 496 * rpcrdma_unmap_sendctx - DMA-unmap Send buffers 497 * @sc: sendctx containing SGEs to unmap 498 * 499 */ 500 void 501 rpcrdma_unmap_sendctx(struct rpcrdma_sendctx *sc) 502 { 503 struct rpcrdma_ia *ia = &sc->sc_xprt->rx_ia; 504 struct ib_sge *sge; 505 unsigned int count; 506 507 /* The first two SGEs contain the transport header and 508 * the inline buffer. These are always left mapped so 509 * they can be cheaply re-used. 510 */ 511 sge = &sc->sc_sges[2]; 512 for (count = sc->sc_unmap_count; count; ++sge, --count) 513 ib_dma_unmap_page(ia->ri_device, 514 sge->addr, sge->length, DMA_TO_DEVICE); 515 516 if (test_and_clear_bit(RPCRDMA_REQ_F_TX_RESOURCES, &sc->sc_req->rl_flags)) { 517 smp_mb__after_atomic(); 518 wake_up_bit(&sc->sc_req->rl_flags, RPCRDMA_REQ_F_TX_RESOURCES); 519 } 520 } 521 522 /* Prepare an SGE for the RPC-over-RDMA transport header. 523 */ 524 static bool 525 rpcrdma_prepare_hdr_sge(struct rpcrdma_ia *ia, struct rpcrdma_req *req, 526 u32 len) 527 { 528 struct rpcrdma_sendctx *sc = req->rl_sendctx; 529 struct rpcrdma_regbuf *rb = req->rl_rdmabuf; 530 struct ib_sge *sge = sc->sc_sges; 531 532 if (!rpcrdma_dma_map_regbuf(ia, rb)) 533 goto out_regbuf; 534 sge->addr = rdmab_addr(rb); 535 sge->length = len; 536 sge->lkey = rdmab_lkey(rb); 537 538 ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, 539 sge->length, DMA_TO_DEVICE); 540 sc->sc_wr.num_sge++; 541 return true; 542 543 out_regbuf: 544 pr_err("rpcrdma: failed to DMA map a Send buffer\n"); 545 return false; 546 } 547 548 /* Prepare the Send SGEs. The head and tail iovec, and each entry 549 * in the page list, gets its own SGE. 550 */ 551 static bool 552 rpcrdma_prepare_msg_sges(struct rpcrdma_ia *ia, struct rpcrdma_req *req, 553 struct xdr_buf *xdr, enum rpcrdma_chunktype rtype) 554 { 555 struct rpcrdma_sendctx *sc = req->rl_sendctx; 556 unsigned int sge_no, page_base, len, remaining; 557 struct rpcrdma_regbuf *rb = req->rl_sendbuf; 558 struct ib_device *device = ia->ri_device; 559 struct ib_sge *sge = sc->sc_sges; 560 u32 lkey = ia->ri_pd->local_dma_lkey; 561 struct page *page, **ppages; 562 563 /* The head iovec is straightforward, as it is already 564 * DMA-mapped. Sync the content that has changed. 565 */ 566 if (!rpcrdma_dma_map_regbuf(ia, rb)) 567 goto out_regbuf; 568 sge_no = 1; 569 sge[sge_no].addr = rdmab_addr(rb); 570 sge[sge_no].length = xdr->head[0].iov_len; 571 sge[sge_no].lkey = rdmab_lkey(rb); 572 ib_dma_sync_single_for_device(rdmab_device(rb), sge[sge_no].addr, 573 sge[sge_no].length, DMA_TO_DEVICE); 574 575 /* If there is a Read chunk, the page list is being handled 576 * via explicit RDMA, and thus is skipped here. However, the 577 * tail iovec may include an XDR pad for the page list, as 578 * well as additional content, and may not reside in the 579 * same page as the head iovec. 580 */ 581 if (rtype == rpcrdma_readch) { 582 len = xdr->tail[0].iov_len; 583 584 /* Do not include the tail if it is only an XDR pad */ 585 if (len < 4) 586 goto out; 587 588 page = virt_to_page(xdr->tail[0].iov_base); 589 page_base = offset_in_page(xdr->tail[0].iov_base); 590 591 /* If the content in the page list is an odd length, 592 * xdr_write_pages() has added a pad at the beginning 593 * of the tail iovec. Force the tail's non-pad content 594 * to land at the next XDR position in the Send message. 595 */ 596 page_base += len & 3; 597 len -= len & 3; 598 goto map_tail; 599 } 600 601 /* If there is a page list present, temporarily DMA map 602 * and prepare an SGE for each page to be sent. 603 */ 604 if (xdr->page_len) { 605 ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT); 606 page_base = offset_in_page(xdr->page_base); 607 remaining = xdr->page_len; 608 while (remaining) { 609 sge_no++; 610 if (sge_no > RPCRDMA_MAX_SEND_SGES - 2) 611 goto out_mapping_overflow; 612 613 len = min_t(u32, PAGE_SIZE - page_base, remaining); 614 sge[sge_no].addr = ib_dma_map_page(device, *ppages, 615 page_base, len, 616 DMA_TO_DEVICE); 617 if (ib_dma_mapping_error(device, sge[sge_no].addr)) 618 goto out_mapping_err; 619 sge[sge_no].length = len; 620 sge[sge_no].lkey = lkey; 621 622 sc->sc_unmap_count++; 623 ppages++; 624 remaining -= len; 625 page_base = 0; 626 } 627 } 628 629 /* The tail iovec is not always constructed in the same 630 * page where the head iovec resides (see, for example, 631 * gss_wrap_req_priv). To neatly accommodate that case, 632 * DMA map it separately. 633 */ 634 if (xdr->tail[0].iov_len) { 635 page = virt_to_page(xdr->tail[0].iov_base); 636 page_base = offset_in_page(xdr->tail[0].iov_base); 637 len = xdr->tail[0].iov_len; 638 639 map_tail: 640 sge_no++; 641 sge[sge_no].addr = ib_dma_map_page(device, page, 642 page_base, len, 643 DMA_TO_DEVICE); 644 if (ib_dma_mapping_error(device, sge[sge_no].addr)) 645 goto out_mapping_err; 646 sge[sge_no].length = len; 647 sge[sge_no].lkey = lkey; 648 sc->sc_unmap_count++; 649 } 650 651 out: 652 sc->sc_wr.num_sge += sge_no; 653 if (sc->sc_unmap_count) 654 __set_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags); 655 return true; 656 657 out_regbuf: 658 pr_err("rpcrdma: failed to DMA map a Send buffer\n"); 659 return false; 660 661 out_mapping_overflow: 662 rpcrdma_unmap_sendctx(sc); 663 pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no); 664 return false; 665 666 out_mapping_err: 667 rpcrdma_unmap_sendctx(sc); 668 trace_xprtrdma_dma_maperr(sge[sge_no].addr); 669 return false; 670 } 671 672 /** 673 * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR 674 * @r_xprt: controlling transport 675 * @req: context of RPC Call being marshalled 676 * @hdrlen: size of transport header, in bytes 677 * @xdr: xdr_buf containing RPC Call 678 * @rtype: chunk type being encoded 679 * 680 * Returns 0 on success; otherwise a negative errno is returned. 681 */ 682 int 683 rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt, 684 struct rpcrdma_req *req, u32 hdrlen, 685 struct xdr_buf *xdr, enum rpcrdma_chunktype rtype) 686 { 687 req->rl_sendctx = rpcrdma_sendctx_get_locked(&r_xprt->rx_buf); 688 if (!req->rl_sendctx) 689 return -EAGAIN; 690 req->rl_sendctx->sc_wr.num_sge = 0; 691 req->rl_sendctx->sc_unmap_count = 0; 692 req->rl_sendctx->sc_req = req; 693 __clear_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags); 694 695 if (!rpcrdma_prepare_hdr_sge(&r_xprt->rx_ia, req, hdrlen)) 696 return -EIO; 697 698 if (rtype != rpcrdma_areadch) 699 if (!rpcrdma_prepare_msg_sges(&r_xprt->rx_ia, req, xdr, rtype)) 700 return -EIO; 701 702 return 0; 703 } 704 705 /** 706 * rpcrdma_marshal_req - Marshal and send one RPC request 707 * @r_xprt: controlling transport 708 * @rqst: RPC request to be marshaled 709 * 710 * For the RPC in "rqst", this function: 711 * - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG) 712 * - Registers Read, Write, and Reply chunks 713 * - Constructs the transport header 714 * - Posts a Send WR to send the transport header and request 715 * 716 * Returns: 717 * %0 if the RPC was sent successfully, 718 * %-ENOTCONN if the connection was lost, 719 * %-EAGAIN if the caller should call again with the same arguments, 720 * %-ENOBUFS if the caller should call again after a delay, 721 * %-EMSGSIZE if the transport header is too small, 722 * %-EIO if a permanent problem occurred while marshaling. 723 */ 724 int 725 rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst) 726 { 727 struct rpcrdma_req *req = rpcr_to_rdmar(rqst); 728 struct xdr_stream *xdr = &req->rl_stream; 729 enum rpcrdma_chunktype rtype, wtype; 730 bool ddp_allowed; 731 __be32 *p; 732 int ret; 733 734 rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0); 735 xdr_init_encode(xdr, &req->rl_hdrbuf, 736 req->rl_rdmabuf->rg_base); 737 738 /* Fixed header fields */ 739 ret = -EMSGSIZE; 740 p = xdr_reserve_space(xdr, 4 * sizeof(*p)); 741 if (!p) 742 goto out_err; 743 *p++ = rqst->rq_xid; 744 *p++ = rpcrdma_version; 745 *p++ = cpu_to_be32(r_xprt->rx_buf.rb_max_requests); 746 747 /* When the ULP employs a GSS flavor that guarantees integrity 748 * or privacy, direct data placement of individual data items 749 * is not allowed. 750 */ 751 ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags & 752 RPCAUTH_AUTH_DATATOUCH); 753 754 /* 755 * Chunks needed for results? 756 * 757 * o If the expected result is under the inline threshold, all ops 758 * return as inline. 759 * o Large read ops return data as write chunk(s), header as 760 * inline. 761 * o Large non-read ops return as a single reply chunk. 762 */ 763 if (rpcrdma_results_inline(r_xprt, rqst)) 764 wtype = rpcrdma_noch; 765 else if (ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) 766 wtype = rpcrdma_writech; 767 else 768 wtype = rpcrdma_replych; 769 770 /* 771 * Chunks needed for arguments? 772 * 773 * o If the total request is under the inline threshold, all ops 774 * are sent as inline. 775 * o Large write ops transmit data as read chunk(s), header as 776 * inline. 777 * o Large non-write ops are sent with the entire message as a 778 * single read chunk (protocol 0-position special case). 779 * 780 * This assumes that the upper layer does not present a request 781 * that both has a data payload, and whose non-data arguments 782 * by themselves are larger than the inline threshold. 783 */ 784 if (rpcrdma_args_inline(r_xprt, rqst)) { 785 *p++ = rdma_msg; 786 rtype = rpcrdma_noch; 787 } else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) { 788 *p++ = rdma_msg; 789 rtype = rpcrdma_readch; 790 } else { 791 r_xprt->rx_stats.nomsg_call_count++; 792 *p++ = rdma_nomsg; 793 rtype = rpcrdma_areadch; 794 } 795 796 /* If this is a retransmit, discard previously registered 797 * chunks. Very likely the connection has been replaced, 798 * so these registrations are invalid and unusable. 799 */ 800 while (unlikely(!list_empty(&req->rl_registered))) { 801 struct rpcrdma_mr *mr; 802 803 mr = rpcrdma_mr_pop(&req->rl_registered); 804 rpcrdma_mr_recycle(mr); 805 } 806 807 /* This implementation supports the following combinations 808 * of chunk lists in one RPC-over-RDMA Call message: 809 * 810 * - Read list 811 * - Write list 812 * - Reply chunk 813 * - Read list + Reply chunk 814 * 815 * It might not yet support the following combinations: 816 * 817 * - Read list + Write list 818 * 819 * It does not support the following combinations: 820 * 821 * - Write list + Reply chunk 822 * - Read list + Write list + Reply chunk 823 * 824 * This implementation supports only a single chunk in each 825 * Read or Write list. Thus for example the client cannot 826 * send a Call message with a Position Zero Read chunk and a 827 * regular Read chunk at the same time. 828 */ 829 if (rtype != rpcrdma_noch) { 830 ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype); 831 if (ret) 832 goto out_err; 833 } 834 ret = encode_item_not_present(xdr); 835 if (ret) 836 goto out_err; 837 838 if (wtype == rpcrdma_writech) { 839 ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype); 840 if (ret) 841 goto out_err; 842 } 843 ret = encode_item_not_present(xdr); 844 if (ret) 845 goto out_err; 846 847 if (wtype != rpcrdma_replych) 848 ret = encode_item_not_present(xdr); 849 else 850 ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype); 851 if (ret) 852 goto out_err; 853 854 trace_xprtrdma_marshal(rqst, xdr_stream_pos(xdr), rtype, wtype); 855 856 ret = rpcrdma_prepare_send_sges(r_xprt, req, xdr_stream_pos(xdr), 857 &rqst->rq_snd_buf, rtype); 858 if (ret) 859 goto out_err; 860 return 0; 861 862 out_err: 863 switch (ret) { 864 case -EAGAIN: 865 xprt_wait_for_buffer_space(rqst->rq_xprt); 866 break; 867 case -ENOBUFS: 868 break; 869 default: 870 r_xprt->rx_stats.failed_marshal_count++; 871 } 872 return ret; 873 } 874 875 /** 876 * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs 877 * @rqst: controlling RPC request 878 * @srcp: points to RPC message payload in receive buffer 879 * @copy_len: remaining length of receive buffer content 880 * @pad: Write chunk pad bytes needed (zero for pure inline) 881 * 882 * The upper layer has set the maximum number of bytes it can 883 * receive in each component of rq_rcv_buf. These values are set in 884 * the head.iov_len, page_len, tail.iov_len, and buflen fields. 885 * 886 * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in 887 * many cases this function simply updates iov_base pointers in 888 * rq_rcv_buf to point directly to the received reply data, to 889 * avoid copying reply data. 890 * 891 * Returns the count of bytes which had to be memcopied. 892 */ 893 static unsigned long 894 rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad) 895 { 896 unsigned long fixup_copy_count; 897 int i, npages, curlen; 898 char *destp; 899 struct page **ppages; 900 int page_base; 901 902 /* The head iovec is redirected to the RPC reply message 903 * in the receive buffer, to avoid a memcopy. 904 */ 905 rqst->rq_rcv_buf.head[0].iov_base = srcp; 906 rqst->rq_private_buf.head[0].iov_base = srcp; 907 908 /* The contents of the receive buffer that follow 909 * head.iov_len bytes are copied into the page list. 910 */ 911 curlen = rqst->rq_rcv_buf.head[0].iov_len; 912 if (curlen > copy_len) 913 curlen = copy_len; 914 trace_xprtrdma_fixup(rqst, copy_len, curlen); 915 srcp += curlen; 916 copy_len -= curlen; 917 918 ppages = rqst->rq_rcv_buf.pages + 919 (rqst->rq_rcv_buf.page_base >> PAGE_SHIFT); 920 page_base = offset_in_page(rqst->rq_rcv_buf.page_base); 921 fixup_copy_count = 0; 922 if (copy_len && rqst->rq_rcv_buf.page_len) { 923 int pagelist_len; 924 925 pagelist_len = rqst->rq_rcv_buf.page_len; 926 if (pagelist_len > copy_len) 927 pagelist_len = copy_len; 928 npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT; 929 for (i = 0; i < npages; i++) { 930 curlen = PAGE_SIZE - page_base; 931 if (curlen > pagelist_len) 932 curlen = pagelist_len; 933 934 trace_xprtrdma_fixup_pg(rqst, i, srcp, 935 copy_len, curlen); 936 destp = kmap_atomic(ppages[i]); 937 memcpy(destp + page_base, srcp, curlen); 938 flush_dcache_page(ppages[i]); 939 kunmap_atomic(destp); 940 srcp += curlen; 941 copy_len -= curlen; 942 fixup_copy_count += curlen; 943 pagelist_len -= curlen; 944 if (!pagelist_len) 945 break; 946 page_base = 0; 947 } 948 949 /* Implicit padding for the last segment in a Write 950 * chunk is inserted inline at the front of the tail 951 * iovec. The upper layer ignores the content of 952 * the pad. Simply ensure inline content in the tail 953 * that follows the Write chunk is properly aligned. 954 */ 955 if (pad) 956 srcp -= pad; 957 } 958 959 /* The tail iovec is redirected to the remaining data 960 * in the receive buffer, to avoid a memcopy. 961 */ 962 if (copy_len || pad) { 963 rqst->rq_rcv_buf.tail[0].iov_base = srcp; 964 rqst->rq_private_buf.tail[0].iov_base = srcp; 965 } 966 967 return fixup_copy_count; 968 } 969 970 /* By convention, backchannel calls arrive via rdma_msg type 971 * messages, and never populate the chunk lists. This makes 972 * the RPC/RDMA header small and fixed in size, so it is 973 * straightforward to check the RPC header's direction field. 974 */ 975 static bool 976 rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep) 977 #if defined(CONFIG_SUNRPC_BACKCHANNEL) 978 { 979 struct xdr_stream *xdr = &rep->rr_stream; 980 __be32 *p; 981 982 if (rep->rr_proc != rdma_msg) 983 return false; 984 985 /* Peek at stream contents without advancing. */ 986 p = xdr_inline_decode(xdr, 0); 987 988 /* Chunk lists */ 989 if (*p++ != xdr_zero) 990 return false; 991 if (*p++ != xdr_zero) 992 return false; 993 if (*p++ != xdr_zero) 994 return false; 995 996 /* RPC header */ 997 if (*p++ != rep->rr_xid) 998 return false; 999 if (*p != cpu_to_be32(RPC_CALL)) 1000 return false; 1001 1002 /* Now that we are sure this is a backchannel call, 1003 * advance to the RPC header. 1004 */ 1005 p = xdr_inline_decode(xdr, 3 * sizeof(*p)); 1006 if (unlikely(!p)) 1007 goto out_short; 1008 1009 rpcrdma_bc_receive_call(r_xprt, rep); 1010 return true; 1011 1012 out_short: 1013 pr_warn("RPC/RDMA short backward direction call\n"); 1014 return true; 1015 } 1016 #else /* CONFIG_SUNRPC_BACKCHANNEL */ 1017 { 1018 return false; 1019 } 1020 #endif /* CONFIG_SUNRPC_BACKCHANNEL */ 1021 1022 static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length) 1023 { 1024 u32 handle; 1025 u64 offset; 1026 __be32 *p; 1027 1028 p = xdr_inline_decode(xdr, 4 * sizeof(*p)); 1029 if (unlikely(!p)) 1030 return -EIO; 1031 1032 handle = be32_to_cpup(p++); 1033 *length = be32_to_cpup(p++); 1034 xdr_decode_hyper(p, &offset); 1035 1036 trace_xprtrdma_decode_seg(handle, *length, offset); 1037 return 0; 1038 } 1039 1040 static int decode_write_chunk(struct xdr_stream *xdr, u32 *length) 1041 { 1042 u32 segcount, seglength; 1043 __be32 *p; 1044 1045 p = xdr_inline_decode(xdr, sizeof(*p)); 1046 if (unlikely(!p)) 1047 return -EIO; 1048 1049 *length = 0; 1050 segcount = be32_to_cpup(p); 1051 while (segcount--) { 1052 if (decode_rdma_segment(xdr, &seglength)) 1053 return -EIO; 1054 *length += seglength; 1055 } 1056 1057 return 0; 1058 } 1059 1060 /* In RPC-over-RDMA Version One replies, a Read list is never 1061 * expected. This decoder is a stub that returns an error if 1062 * a Read list is present. 1063 */ 1064 static int decode_read_list(struct xdr_stream *xdr) 1065 { 1066 __be32 *p; 1067 1068 p = xdr_inline_decode(xdr, sizeof(*p)); 1069 if (unlikely(!p)) 1070 return -EIO; 1071 if (unlikely(*p != xdr_zero)) 1072 return -EIO; 1073 return 0; 1074 } 1075 1076 /* Supports only one Write chunk in the Write list 1077 */ 1078 static int decode_write_list(struct xdr_stream *xdr, u32 *length) 1079 { 1080 u32 chunklen; 1081 bool first; 1082 __be32 *p; 1083 1084 *length = 0; 1085 first = true; 1086 do { 1087 p = xdr_inline_decode(xdr, sizeof(*p)); 1088 if (unlikely(!p)) 1089 return -EIO; 1090 if (*p == xdr_zero) 1091 break; 1092 if (!first) 1093 return -EIO; 1094 1095 if (decode_write_chunk(xdr, &chunklen)) 1096 return -EIO; 1097 *length += chunklen; 1098 first = false; 1099 } while (true); 1100 return 0; 1101 } 1102 1103 static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length) 1104 { 1105 __be32 *p; 1106 1107 p = xdr_inline_decode(xdr, sizeof(*p)); 1108 if (unlikely(!p)) 1109 return -EIO; 1110 1111 *length = 0; 1112 if (*p != xdr_zero) 1113 if (decode_write_chunk(xdr, length)) 1114 return -EIO; 1115 return 0; 1116 } 1117 1118 static int 1119 rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep, 1120 struct rpc_rqst *rqst) 1121 { 1122 struct xdr_stream *xdr = &rep->rr_stream; 1123 u32 writelist, replychunk, rpclen; 1124 char *base; 1125 1126 /* Decode the chunk lists */ 1127 if (decode_read_list(xdr)) 1128 return -EIO; 1129 if (decode_write_list(xdr, &writelist)) 1130 return -EIO; 1131 if (decode_reply_chunk(xdr, &replychunk)) 1132 return -EIO; 1133 1134 /* RDMA_MSG sanity checks */ 1135 if (unlikely(replychunk)) 1136 return -EIO; 1137 1138 /* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */ 1139 base = (char *)xdr_inline_decode(xdr, 0); 1140 rpclen = xdr_stream_remaining(xdr); 1141 r_xprt->rx_stats.fixup_copy_count += 1142 rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3); 1143 1144 r_xprt->rx_stats.total_rdma_reply += writelist; 1145 return rpclen + xdr_align_size(writelist); 1146 } 1147 1148 static noinline int 1149 rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep) 1150 { 1151 struct xdr_stream *xdr = &rep->rr_stream; 1152 u32 writelist, replychunk; 1153 1154 /* Decode the chunk lists */ 1155 if (decode_read_list(xdr)) 1156 return -EIO; 1157 if (decode_write_list(xdr, &writelist)) 1158 return -EIO; 1159 if (decode_reply_chunk(xdr, &replychunk)) 1160 return -EIO; 1161 1162 /* RDMA_NOMSG sanity checks */ 1163 if (unlikely(writelist)) 1164 return -EIO; 1165 if (unlikely(!replychunk)) 1166 return -EIO; 1167 1168 /* Reply chunk buffer already is the reply vector */ 1169 r_xprt->rx_stats.total_rdma_reply += replychunk; 1170 return replychunk; 1171 } 1172 1173 static noinline int 1174 rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep, 1175 struct rpc_rqst *rqst) 1176 { 1177 struct xdr_stream *xdr = &rep->rr_stream; 1178 __be32 *p; 1179 1180 p = xdr_inline_decode(xdr, sizeof(*p)); 1181 if (unlikely(!p)) 1182 return -EIO; 1183 1184 switch (*p) { 1185 case err_vers: 1186 p = xdr_inline_decode(xdr, 2 * sizeof(*p)); 1187 if (!p) 1188 break; 1189 dprintk("RPC: %s: server reports " 1190 "version error (%u-%u), xid %08x\n", __func__, 1191 be32_to_cpup(p), be32_to_cpu(*(p + 1)), 1192 be32_to_cpu(rep->rr_xid)); 1193 break; 1194 case err_chunk: 1195 dprintk("RPC: %s: server reports " 1196 "header decoding error, xid %08x\n", __func__, 1197 be32_to_cpu(rep->rr_xid)); 1198 break; 1199 default: 1200 dprintk("RPC: %s: server reports " 1201 "unrecognized error %d, xid %08x\n", __func__, 1202 be32_to_cpup(p), be32_to_cpu(rep->rr_xid)); 1203 } 1204 1205 r_xprt->rx_stats.bad_reply_count++; 1206 return -EREMOTEIO; 1207 } 1208 1209 /* Perform XID lookup, reconstruction of the RPC reply, and 1210 * RPC completion while holding the transport lock to ensure 1211 * the rep, rqst, and rq_task pointers remain stable. 1212 */ 1213 void rpcrdma_complete_rqst(struct rpcrdma_rep *rep) 1214 { 1215 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; 1216 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 1217 struct rpc_rqst *rqst = rep->rr_rqst; 1218 int status; 1219 1220 xprt->reestablish_timeout = 0; 1221 1222 switch (rep->rr_proc) { 1223 case rdma_msg: 1224 status = rpcrdma_decode_msg(r_xprt, rep, rqst); 1225 break; 1226 case rdma_nomsg: 1227 status = rpcrdma_decode_nomsg(r_xprt, rep); 1228 break; 1229 case rdma_error: 1230 status = rpcrdma_decode_error(r_xprt, rep, rqst); 1231 break; 1232 default: 1233 status = -EIO; 1234 } 1235 if (status < 0) 1236 goto out_badheader; 1237 1238 out: 1239 spin_lock(&xprt->queue_lock); 1240 xprt_complete_rqst(rqst->rq_task, status); 1241 xprt_unpin_rqst(rqst); 1242 spin_unlock(&xprt->queue_lock); 1243 return; 1244 1245 /* If the incoming reply terminated a pending RPC, the next 1246 * RPC call will post a replacement receive buffer as it is 1247 * being marshaled. 1248 */ 1249 out_badheader: 1250 trace_xprtrdma_reply_hdr(rep); 1251 r_xprt->rx_stats.bad_reply_count++; 1252 goto out; 1253 } 1254 1255 void rpcrdma_release_rqst(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) 1256 { 1257 /* Invalidate and unmap the data payloads before waking 1258 * the waiting application. This guarantees the memory 1259 * regions are properly fenced from the server before the 1260 * application accesses the data. It also ensures proper 1261 * send flow control: waking the next RPC waits until this 1262 * RPC has relinquished all its Send Queue entries. 1263 */ 1264 if (!list_empty(&req->rl_registered)) 1265 frwr_unmap_sync(r_xprt, &req->rl_registered); 1266 1267 /* Ensure that any DMA mapped pages associated with 1268 * the Send of the RPC Call have been unmapped before 1269 * allowing the RPC to complete. This protects argument 1270 * memory not controlled by the RPC client from being 1271 * re-used before we're done with it. 1272 */ 1273 if (test_bit(RPCRDMA_REQ_F_TX_RESOURCES, &req->rl_flags)) { 1274 r_xprt->rx_stats.reply_waits_for_send++; 1275 out_of_line_wait_on_bit(&req->rl_flags, 1276 RPCRDMA_REQ_F_TX_RESOURCES, 1277 bit_wait, 1278 TASK_UNINTERRUPTIBLE); 1279 } 1280 } 1281 1282 /* Reply handling runs in the poll worker thread. Anything that 1283 * might wait is deferred to a separate workqueue. 1284 */ 1285 void rpcrdma_deferred_completion(struct work_struct *work) 1286 { 1287 struct rpcrdma_rep *rep = 1288 container_of(work, struct rpcrdma_rep, rr_work); 1289 struct rpcrdma_req *req = rpcr_to_rdmar(rep->rr_rqst); 1290 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; 1291 1292 trace_xprtrdma_defer_cmp(rep); 1293 if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE) 1294 frwr_reminv(rep, &req->rl_registered); 1295 rpcrdma_release_rqst(r_xprt, req); 1296 rpcrdma_complete_rqst(rep); 1297 } 1298 1299 /* Process received RPC/RDMA messages. 1300 * 1301 * Errors must result in the RPC task either being awakened, or 1302 * allowed to timeout, to discover the errors at that time. 1303 */ 1304 void rpcrdma_reply_handler(struct rpcrdma_rep *rep) 1305 { 1306 struct rpcrdma_xprt *r_xprt = rep->rr_rxprt; 1307 struct rpc_xprt *xprt = &r_xprt->rx_xprt; 1308 struct rpcrdma_buffer *buf = &r_xprt->rx_buf; 1309 struct rpcrdma_req *req; 1310 struct rpc_rqst *rqst; 1311 u32 credits; 1312 __be32 *p; 1313 1314 /* Fixed transport header fields */ 1315 xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf, 1316 rep->rr_hdrbuf.head[0].iov_base); 1317 p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p)); 1318 if (unlikely(!p)) 1319 goto out_shortreply; 1320 rep->rr_xid = *p++; 1321 rep->rr_vers = *p++; 1322 credits = be32_to_cpu(*p++); 1323 rep->rr_proc = *p++; 1324 1325 if (rep->rr_vers != rpcrdma_version) 1326 goto out_badversion; 1327 1328 if (rpcrdma_is_bcall(r_xprt, rep)) 1329 return; 1330 1331 /* Match incoming rpcrdma_rep to an rpcrdma_req to 1332 * get context for handling any incoming chunks. 1333 */ 1334 spin_lock(&xprt->queue_lock); 1335 rqst = xprt_lookup_rqst(xprt, rep->rr_xid); 1336 if (!rqst) 1337 goto out_norqst; 1338 xprt_pin_rqst(rqst); 1339 spin_unlock(&xprt->queue_lock); 1340 1341 if (credits == 0) 1342 credits = 1; /* don't deadlock */ 1343 else if (credits > buf->rb_max_requests) 1344 credits = buf->rb_max_requests; 1345 if (buf->rb_credits != credits) { 1346 spin_lock_bh(&xprt->transport_lock); 1347 buf->rb_credits = credits; 1348 xprt->cwnd = credits << RPC_CWNDSHIFT; 1349 spin_unlock_bh(&xprt->transport_lock); 1350 } 1351 1352 req = rpcr_to_rdmar(rqst); 1353 if (req->rl_reply) { 1354 trace_xprtrdma_leaked_rep(rqst, req->rl_reply); 1355 rpcrdma_recv_buffer_put(req->rl_reply); 1356 } 1357 req->rl_reply = rep; 1358 rep->rr_rqst = rqst; 1359 clear_bit(RPCRDMA_REQ_F_PENDING, &req->rl_flags); 1360 1361 trace_xprtrdma_reply(rqst->rq_task, rep, req, credits); 1362 queue_work(buf->rb_completion_wq, &rep->rr_work); 1363 return; 1364 1365 out_badversion: 1366 trace_xprtrdma_reply_vers(rep); 1367 goto out; 1368 1369 out_norqst: 1370 spin_unlock(&xprt->queue_lock); 1371 trace_xprtrdma_reply_rqst(rep); 1372 goto out; 1373 1374 out_shortreply: 1375 trace_xprtrdma_reply_short(rep); 1376 1377 out: 1378 rpcrdma_recv_buffer_put(rep); 1379 } 1380